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Quantum magneto-oscillations provide a powerful tool for quantifying Fermi-liquid parameters of metals. In
particular, the quasiparticle effective mass and spin susceptibility are extracted from the experiment using the
Lifshitz-Kosevich formula, derived under the assumption that the properties of the system in a nonzero mag-
netic field are determined uniquely by the zero-field Fermi-liquid state. This assumption is valid in three
dimensiong3D) but, generally speaking, erroneous in 2D where the Lifshitz-Kosevich formula may be applied
only if the oscillations are strongly damped by thermal smearing and disorder. In this work, the effects of
interactions and disorder on the amplitude of magneto-oscillations in 2D are studied. It is found that the
effective mass diverges logarithmically with decreasing temperature signaling a deviation from the Fermi-
liquid behavior. It is also shown that the quasiparticle lifetime due to inelastic interactions does not enter the
oscillation amplitude, although these interactions do renormalize the effective mass. This result provides a
generalization of the Fowler-Prange theorem formulated originally for the electron-phonon interaction.
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Patterns of quantum magneto-oscillations in thermodynontransferrable to 2MRefs. 11,12 for any field strength.
namic (de Haas—van Alphen effectand transport Hence the situation needs to be clarified. The second
(Shubnikov—de Haas effectuantities encode three impor- controversy—not specific to 2D—is related to the effect of
tant parameters of a Fermi-liqui@L) metal. The period of quasiparticle damping. It is often mentioned in the literature
the oscillations gives the area of the extremal cross section ghat any scattering of quasiparticles, elastic and inelastic,
the Fermi surface, the slope of the temperature dependencentributes to the smearing of magneto-oscillations via the
of the oscillations amplitude provides the quasiparticle effeceffective Dingle temperaturcattering ratefor a given pro-
tive mass, and the phase shift between oscillations of spin-upess. Alternatively, Fowler and Prartgeshowed that the
and spin-down electrons yields tlieenormalized spin sus-  electron-phonon scattering rate does not appear in the oscil-
ceptibility. Magneto-oscillations studies of the FL state inlations amplitude due to the cancellation of tikalependent
two dimensiong2D) date back to early 1970's, when semi- parts of the Matsubara self-eneryf. also Ref. 14 To the
conductor heterostructures first became availatleother  best of our knowledge, this cancellation has never been dis-
surge of the activity in this field, which occurred in mid cussed for other interactions, including the electron-electron
1990’s, was stimulated by the discovery of the metallic stateone, which is of a primary importance for two-dimensional
at v=1/2.2 Recently, Shubnikov—de Haas oscillations haveelectron systems. The last issue to be addressed in this paper
been used to determine the parameters of the “anomalougand not discussed previously in the literajuieethe effect of
metallic state in Si metal-oxide-semiconductor field-effectinterference between electron-impurity and electron-electron
transistofMOSFET’S and other semiconductor heterostruc- scattering on magneto-oscillations, neglected in the LK for-
tures exhibiting an apparent metal-insulator transition in zeranula. The theory of interference effects in the ballistic
magnetic field~® Despite the long and successful history of regime’® whenT 7> 1, wherer is the electron-impurity scat-
guantifying FL's in 3D via magneto-oscillations, this method tering time(we set =kg=1 throughout the papgroffers a
remains controversial in 2D. The primary goal of our paperplausible explanation of the metallic temperature dependence
is to resolve some of the open issues. in the metallic phase of the two-dimensional metal-insulator

The first controversy is related to the applicability of the transition. Unusualwithin the LK framework temperature
current theory of magneto-oscillations to the two- dependences of the oscillation amplitude are also commonly
dimensional case. The analysis of the experimental data inbserved in Si MOSFET! but the proper theory is cur-
2D is often based on the premise that the classic result farently lacking.
magneto-oscillations in a Fermi liquid for the three- Our answers to these open questions are as follgws.
dimensional case, known as the “Lifshitz-Kosevi¢hK) Although it is true that the LK formula does not work in 2D
formula,”’ =% is transferrable to 2D upon a trivial change in at T=0 and in the absence of disorder, it is still applicable to
the electron spectrum. The crucial features of the LK for-the situation when finite temperature and/or disorder cause
mula, i.e., its validity for arbitrarily strong interactiofwith-  the oscillations to be exponentially smafii.) The cancella-
out destroying the Fermi liqudand the fact that the FL tion of the scattering rate term in the Matsubara self-energy
parameters entering the formula are taken at zero magnetis pertinent to any inelastic interaction, including the
field, survive on this premise. The deviations of the observeelectron-electron one. Due to this cancellation, the scattering
oscillation pattern in stronger fields from that predicted byrate of inelastic processes does not enter the oscillation am-
the LK formula are ascribed to oscillations in the effective plitude. (iii) Interference between electron-impurity and
factort and the effective mas§.0On the other hand, there electron-electron interactions gives a n@&in T dependence
have been warnings that the three-dimensional LK formula i®f the amplitude’s argument, that can be interpreted equiva-
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lently either as a T-dependent” effective mass or Dingle interacting system @8=0 and in a finite field are not adia-
temperature. The functional form of this dependence is thdatically connected in 2D. This fact has been emphasized by
samein the diffusive (TT<<1) and ballistic T>1) regimes. recent findings that the ground state of a two-dimensional
We limit our analysis to the de Haas—van Alphen effectelectron liquid is not a Fermi liquid even fdi>1, but
and assume the chemical potential is fixed. The main featurasther a charge-ordered stafeNevertheless, an absence of
of the results for the de Haas—van Alphen effect, in particuthe full LK formula in 2D does not preclude a canonical
lar, the T dependence of the oscillation amplitude, are com-analysis of magneto-oscillations, if under more restrictive
monly expected to apply to the Shubnikov—de Haas effect asonditions, as the FL behavior is restored at higher energies.
well, although a rigorous proof of that is currently lacking.  The power-counting argument f@against neglecting the
Assuming a fixed chemical potential is not essential for theoscillatory part of the self-energy in 3[2D) is valid atT
case of small oscillations, which is the focus of this paper=Tp=0. If the real and/or Dingle temperatures are suffi-
(see below. We begin with a brief reminder of how the LK ciently high, i.e.,
formula is derived in the Luttinger formalisf?. The key
issue here is whether the zero-field FL parameters determine 274(Tlw?  Tplwe) =1, ©)]
uniquely the oscillation pattern in a finitend not small
field. The (Matsubara self-energy(that encodes all FL pa-
rameters consists of two part =35+ 3 .o, WhereXy may
contain a monotonidnonoscillatory dependence on mag-
netic field andX .. oscillates with the fieg(/jz. For electron-
electron interactions in 30X osd/|2 0| ~N"°% whereN is . -
the number of occupied Landau levels, whereas the leading Ar=(4m Tloc)exp - 2a[aT+iZo(inT.T) wc}, (4)

termin the oscillatory part of the thermodynamic poterflal - where we assumed thatis high[in the sense of condition
falls off asN™>“for X 5= 0. Expanding) in Zo,cup to the  (3)] and limited the Matsubara sum by the first teey
second ordefthe first order term vanishes due to the prop-= 7T, The oscillatory part o results in a correction té,
erty 5Q/ 6 =0), one finds that the oscillatory part Bfcan  which is itself of orderA, (with exponential accuragyThe
always be neglected in the semiclassical regiMe>(Q).  net contribution to) is of orderA?, which is of the same
With this simplification and for a momentum-independent, qer asA, for 3..=0. Thus, harmonics wittk=2 are
self-energy, the amplitude of theth harmonic in() is given  4tfected by the oscillations iB and a two-dimensional ana-
by log of the LK formula, which includes the sum over &l
2 o can only be derived in a perturbation theory for a specific
Ak:477 kT D exp( _ 2mk[entiZolien, T)] . (1) interaction but not for a generic Fermi liquid. However, the
W¢  £,>0 Wc k=1 harmonic does not includg.s. and, as long as Ed3)
B B . o is satisfied, the analysis can proceed as in the three-
wheres,=m(2n+1)T andwc=eB/mc. Notice thatiZois  nonconal case. In what follows, we assume that(Bpjs
real and does not contain a constant term. The second arg%'étisﬁed and the amplitude of the fignd only important
ment of 3, emphasizes the fact that the temperature enter,

: ; . Rarmonic is given by Eq4).
2 in tWO. ways. via the Matsubara frequency and via the Next we discuss whether the quasiparticle relaxation rate
thermal distribution of electrons and other degrees of free-

dom. For a generic Fermi liquid and in the presence ofshort‘:’ﬁ-fECtS the amplitude of magneto-oscillations. We $gt
range impuritiesiS. o(ie,,T) = ae, +Sgre, /27, so that the =0 temporarily. Suppose that a quasiparticle relaxation rate

. ; : x : is measured in a clean Fermi liquid, e.g., via electron heat
effective mass is deflned a8* =m(1+a). The amplitude conductivity, with a result that /< T?. It seems natural to
then assumes a familiar form

assume that the same rate contributes also to the Dingle tem-
perature of magneto-oscillations. That thisnist the case
(2) Wwas shown for the electron-phonon interaction by Fowler
and Prangé® Here we generalize their arguments for the
. . B ] ) electron-electron interaction in 3D and 2D, and then give a
wherew; =eB/m*c, andTp=1/277is the Dingle tempera- general result for an arbitrary interaction. For a generic
ture. Momentum dependence &, of the form Bue(p  Fermi liquid in 3D, the Matsubara self-energy, up to the qua-
—Pr) results in a change of the effective mass in BJ.to  gratic ine,, and T terms, can be written as
m*=m(1+a)(1+B) ! and in multiplying Eq. (2) by
Zsm*/m,_where_zS is the re.normalizatio.n factor. _ iSo(ien, T)=ae,+iBve(p—pp)+ y[(7T)%— Sﬁ]_ (5)
In arbitrary dimensionalityD, the estimates for the ratio
of oscillatory to monotonic-in-field parts of the self-energy In addition to a direct calculation, the validity of the qua-
and for the leading oscillatory term i change toN~P2  dratic term in Eq(5) is readily established by noticing that
and N~ (P*2)2 respectively. FoD=2, the oscillations in upon analytic continuations,—¢&+i0 this term gives the
the self-energy are as important as in the thermodynamigorrect form for the imaginary part of the on-shell self-
potential itself'?> The Luttinger expansion aT=Tp=0  energy: —ImS§x(7T)?+¢2.'8 The amplitude of the first
breaks down and the LK formula is not, generally speakingharmonic(4) containsi (i« T,T), in which the quadratic
valid.}? The physical reason is that the ground states of amerm vanishes identically. THE? terms from higher Matsub-

the amplitudes ofall oscillatory quantities, including the
self-energy, are exponentially small. Neglecting the oscilla-
tory part of the self-energy, the amplitude of the first har-
monic takes the form

27k T F{ ZWZTD)
TP — A & ,
sinh( 272k T/ w})

We

241309-2



RAPID COMMUNICATIONS

QUANTUM MAGNETO-OSCILLATIONS IN ATWO- . .. PHYSICAL REVIEW B 68, 241309R) (2003

ara frequencieslegitimately considered within this scheme @ ()

in 3D) increase the amplitude and cannot be interpreted as - 4 :

“damping.” ' I
F 124 Vg

In 2D, the integral over momentum transfers diverges
logarithmically at the lower limit, changing the behavior of ©) — +
Im=§ to E?In E, whereE=maxe,T}. This change does not UYWL = VWL

alter the principal result. Consider the simplest case of a ML = VU + W@\mm
contact interaction. To the second order in this interaction,

the quadratic term in Eq5) is replaced by =[]+ I:C.%

N g

2 en—mT
~ m
i20(ien, T)=— il 2 wpln(eg /o). (6) FIG. 1. (8 The interference correction to the self-energy.
Vg om=0 The vertex correction is assigned to either one of the verticés) in

. . because the self-energy arises as insertions into the thermodynamic
Although the sum in Eq(6) does not have an analytic solu potential (closed loops (c) Singlet/triplet-channel contributions to

tion, it obviously vanishes fog,= 7-rT.. ' the effective potential.
To analyze a general case of a finite range and dynamic

interaction, including the screened Coulomb one, it is conve-

nient to find the imaginary part of the retarded self—t_anergy Eg‘t(isn,p)= o7 f

first and then continue back to Matsubara frequencies. On en(@m—en)>0

the mass shell, IE]S is given by

d2

q .
(ZW)ZVme!Q)

Xr(iwqu)G(isn_iwmvp_q)v (7)

whereG(ie,,p)=(ien— £y +isgre,/27) "t and the effective
interactionV =V + 3V, contains the contributions from both
singlet and triplet channels,

o
2(2m)P

whereF (w)=[d°qé(w— Ve q)ImVR(w,q) andVR(w,q) is

the retarded interaction potential. As a function of a complex Vs ‘(iom,q)=(2me?/q+Fp/v) '~ Il(iwy,q),
variable z, f(z2)=Im2R(z) has the following properties in y 0 _

the upper half-plane(i) all lines Imz=(2n+1)T are Vi, (lwn,q)=vIF~Il(ioy,q),

branch cuts on which Reis continuous but Infi changes \ypare;, = m/ 4. The factor of two in Eq(7) accounts for two
jumpwise; (i) due to the fact that tafik—im(n+1/2)]  ogsipilities of including the vertex correction in Figlal
= cothx, all pointsz=im(2n+1)T are zeroes of(z). Thus, e Fermi-liquid constants? and FJ (Ref. 20 determine

Iﬁgcggirr: IgZ)iiS'?nleglc;:iT: tsgngizgti@omezr:r;TIhier]Crleuz(ajlir;\iis the renormalized charge and spin susceptibilities, respec-
=inwT. : ; _ 2 2
. . . . . Lo ly. Th r = +1)+
into this band is legitimate and at=i#T it yields the Mat- tl_V]e_]X:L reedl\J/sgseX télafm:'cg?) TEJ\Z/EL'TZ)"'TT)—% ;?]IQFT)F
m

subara seIf—energﬁO_(isoz i7T,T), _which is equal to zero. — 7 w2+ (que)2]~ Y2 in the diffusive and ballistic lim-
Zeroes off(z) atz=im(2n+1)T with n=1 do not lead t0  jts  respectively. The general form of tfemall q) polar-

vanishing ofX(ie,,T) for n=1 because those zeroes areizarion operator

separated from the real axis by branch cuts and thus are not . .

accessible by analytic continuation. The two-dimensional M(iwn,q)=—v[1=|wy|T(iwy,0)] (8)

case is special only in that tigintegration results inthe lé o quces toll (i wyn,q) = — DG (DG2+ | wy|) in the diffu-

factor in F(w) which does not change the reasoning giveng;,,o limit, where D=v27/2, and to 1% wy,q)=— 11

above. In particular, for a dynamically screened Coulomb_|wm|/m] in the ballistic one. Omitting the de-

interaction in 2D (w) = winw| and stillXo(i 7T, T)=0. AS  ajis of lengthy but straightforward calculations, we give just

this result does not depend on the particular form of thene result for the self-energy valid to logarithmic accuracy
interaction, it can be viewed as a generalization of the

Fowler-Prange theorem. Note that in 3D the Fowler-Prange iEg“(iTrT,T)z —Tln(gF/T)Q(TT,FS_)/ZgFT,
theorem is of limited applicability because nothing prevents 0 0 0
one from consideringc>1 and lower values off+T,, Where Q(T7.F;)=g,(T)+[3F,/(1+F,)]g,(T7) and
when the effect o o(iey-0,T) Needs to be taken into ac- 9p/o(X) are slowly varying functions which interpolate be-
count. In 2D, one is bound to consider orly(ie,_o,T) tween the diffusive and ballistic regimes. The limiting values
within the Luttinger approximation. of g,/,(x) are as follows:g,(0)=1,9,(x>1)=3/2,9,(0)
Finally, we discuss the effect of interference between=1,9,(x>1)=1/2. Apart from the numerical coefficients,
electron-electron and  electron-impurity  scattering onthe T dependence df¢'(#T,T) is the same in the diffusive
magneto-oscillations, extending the analysis of the interferand ballistic regimes. In that sense, the behavior of the self-
ence corrections to the self-energy in 2D from the diffusiveenergy is similar to that of the tunneling density of stéfes.
(Tr<1) (Ref. 19 to the ballistic T~>1) limit. The general ~Notice that the interference correction to theattering rate
form of the interference correction to the Matsubara selfin the ballistic regiméIm3 §|,~ (T/e7)In(ex/T) is smaller
energy is(see Fig. 1 than the scattering rate in a clean FUME{|i

Im3&(e)=—

w w—E&
Jda)F(a)) cothz—_l_—tanh? ,
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~(T?/gg)In(ee/T), in the parameterTr) ‘<1. However, Equivalently, the nonlineafl dependence o (i« T,T)
due to the cancellation of th&2InT term iniS,(i#T,T)  May be interpreted as'Bdependent Dingle temperature:
discussed earlier in this paper, the interference correction is _ _ 0

the main nonlineaf-dependent term in the Matsubara self- To(T)=Tol[1=(T/ee)n(er/MHQT7F]. (10
energy, leading to a modification of the LK formula. The One of the empirical procedures used in Ref. 6 to account for
TInT dependence of the self-energy can be interpreted asthe observed Qewa_tlons from the LK formula was to assume
logarithmic T dependence of the effective mass. Followingthat the effective Dingle temperature has the sahuepen-
this interpretation, the interference effect leads to a replacedence as the zero-field resistivity. Comparing Etp) with
ment of the effective mass in the argument of the exponentiathe result for the interference correction to the resistitty,

in A, by we see that, although this recipe is not precise, it has some
theoretical justification: the general structure of fhe(T)
m In(e/T) and p(T) depedencies is similar in the ballistic regime, ex-
m*(T)=m* 1———Q(T7,F2) ) ©) cept for a factor of In{c/T) present inTp(T) but not in
m* 27T8|:T p(T)
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