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Quantum magneto-oscillations in a two-dimensional Fermi liquid
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Quantum magneto-oscillations provide a powerful tool for quantifying Fermi-liquid parameters of metals. In
particular, the quasiparticle effective mass and spin susceptibility are extracted from the experiment using the
Lifshitz-Kosevich formula, derived under the assumption that the properties of the system in a nonzero mag-
netic field are determined uniquely by the zero-field Fermi-liquid state. This assumption is valid in three
dimensions~3D! but, generally speaking, erroneous in 2D where the Lifshitz-Kosevich formula may be applied
only if the oscillations are strongly damped by thermal smearing and disorder. In this work, the effects of
interactions and disorder on the amplitude of magneto-oscillations in 2D are studied. It is found that the
effective mass diverges logarithmically with decreasing temperature signaling a deviation from the Fermi-
liquid behavior. It is also shown that the quasiparticle lifetime due to inelastic interactions does not enter the
oscillation amplitude, although these interactions do renormalize the effective mass. This result provides a
generalization of the Fowler-Prange theorem formulated originally for the electron-phonon interaction.
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Patterns of quantum magneto-oscillations in thermo
namic ~de Haas–van Alphen effect! and transport
~Shubnikov–de Haas effect! quantities encode three impo
tant parameters of a Fermi-liquid~FL! metal. The period of
the oscillations gives the area of the extremal cross sectio
the Fermi surface, the slope of the temperature depend
of the oscillations amplitude provides the quasiparticle eff
tive mass, and the phase shift between oscillations of spin
and spin-down electrons yields the~renormalized! spin sus-
ceptibility. Magneto-oscillations studies of the FL state
two dimensions~2D! date back to early 1970’s, when sem
conductor heterostructures first became available.1 Another
surge of the activity in this field, which occurred in m
1990’s, was stimulated by the discovery of the metallic st
at n51/2.2 Recently, Shubnikov–de Haas oscillations ha
been used to determine the parameters of the ‘‘anomalo
metallic state in Si metal-oxide-semiconductor field-effe
transistor~MOSFET’s! and other semiconductor heterostru
tures exhibiting an apparent metal-insulator transition in z
magnetic field.3–6 Despite the long and successful history
quantifying FL’s in 3D via magneto-oscillations, this metho
remains controversial in 2D. The primary goal of our pap
is to resolve some of the open issues.

The first controversy is related to the applicability of t
current theory of magneto-oscillations to the tw
dimensional case. The analysis of the experimental dat
2D is often based on the premise that the classic result
magneto-oscillations in a Fermi liquid for the thre
dimensional case, known as the ‘‘Lifshitz-Kosevich~LK !
formula,’’7–9 is transferrable to 2D upon a trivial change
the electron spectrum. The crucial features of the LK f
mula, i.e., its validity for arbitrarily strong interactions~with-
out destroying the Fermi liquid! and the fact that the FL
parameters entering the formula are taken at zero magn
field, survive on this premise. The deviations of the obser
oscillation pattern in stronger fields from that predicted
the LK formula are ascribed to oscillations in the effectiveg
factor1 and the effective mass.10 On the other hand, ther
have been warnings that the three-dimensional LK formul
0163-1829/2003/68~24!/241309~4!/$20.00 68 2413
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nontransferrable to 2D~Refs. 11,12! for any field strength.
Hence the situation needs to be clarified. The sec
controversy—not specific to 2D—is related to the effect
quasiparticle damping. It is often mentioned in the literatu
that any scattering of quasiparticles, elastic and inelas
contributes to the smearing of magneto-oscillations via
effective Dingle temperature~scattering rate! for a given pro-
cess. Alternatively, Fowler and Prange13 showed that the
electron-phonon scattering rate does not appear in the o
lations amplitude due to the cancellation of twoT-dependent
parts of the Matsubara self-energy~cf. also Ref. 14!. To the
best of our knowledge, this cancellation has never been
cussed for other interactions, including the electron-elect
one, which is of a primary importance for two-dimension
electron systems. The last issue to be addressed in this p
~and not discussed previously in the literature! is the effect of
interference between electron-impurity and electron-elect
scattering on magneto-oscillations, neglected in the LK f
mula. The theory of interference effects in the ballis
regime,15 whenTt@1, wheret is the electron-impurity scat
tering time~we set\5kB51 throughout the paper!, offers a
plausible explanation of the metallic temperature depende
in the metallic phase of the two-dimensional metal-insula
transition. Unusual~within the LK framework! temperature
dependences of the oscillation amplitude are also commo
observed in Si MOSFETs,6,16 but the proper theory is cur
rently lacking.

Our answers to these open questions are as follows~i!
Although it is true that the LK formula does not work in 2
at T50 and in the absence of disorder, it is still applicable
the situation when finite temperature and/or disorder ca
the oscillations to be exponentially small.~ii ! The cancella-
tion of the scattering rate term in the Matsubara self-ene
is pertinent to any inelastic interaction, including the
electron-electron one. Due to this cancellation, the scatte
rate of inelastic processes does not enter the oscillation
plitude. ~iii ! Interference between electron-impurity an
electron-electron interactions gives a newT ln T dependence
of the amplitude’s argument, that can be interpreted equ
©2003 The American Physical Society09-1
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lently either as a ‘‘T-dependent’’ effective mass or Dingl
temperature. The functional form of this dependence is
samein the diffusive (Tt!1) and ballistic (Tt@1) regimes.

We limit our analysis to the de Haas–van Alphen effe
and assume the chemical potential is fixed. The main feat
of the results for the de Haas–van Alphen effect, in parti
lar, theT dependence of the oscillation amplitude, are co
monly expected to apply to the Shubnikov–de Haas effec
well, although a rigorous proof of that is currently lackin
Assuming a fixed chemical potential is not essential for
case of small oscillations, which is the focus of this pap
~see below!. We begin with a brief reminder of how the LK
formula is derived in the Luttinger formalism.8,9 The key
issue here is whether the zero-field FL parameters determ
uniquely the oscillation pattern in a finite~and not small!
field. The ~Matsubara! self-energy~that encodes all FL pa
rameters! consists of two partsS5S01Sosc, whereS0 may
contain a monotonic~nonoscillatory! dependence on mag
netic field andSosc oscillates with the field. For electron
electron interactions in 3DuSoscu/uS0u;N23/2, whereN is
the number of occupied Landau levels, whereas the lea
term in the oscillatory part of the thermodynamic potentialV
falls off asN25/2 for Sosc50. ExpandingV in Sosc up to the
second order~the first order term vanishes due to the pro
erty dV/dS50), one finds that the oscillatory part ofS can
always be neglected in the semiclassical regime (N@1).
With this simplification and for a momentum-independe
self-energy, the amplitude of thekth harmonic inV is given
by

Ak5
4p2kT

vc
(

«n.0
expS 2

2pk@«n1 iS0~ i«n ,T!#

vc
D , ~1!

where«n5p(2n11)T andvc5eB/mc. Notice thatiS0 is
real and does not contain a constant term. The second a
ment of S0 emphasizes the fact that the temperature en
S0 in two ways: via the Matsubara frequency and via t
thermal distribution of electrons and other degrees of fr
dom. For a generic Fermi liquid and in the presence of sh
range impuritiesiS0( i«n ,T)5a«n1sgn«n/2t, so that the
effective mass is defined asm* 5m(11a). The amplitude
then assumes a familiar form

Ak5
2p2kT/vc

sinh~2p2kT/vc* !
expS 2

2p2TD

vc
D , ~2!

wherevc* 5eB/m* c, andTD51/2pt is the Dingle tempera-
ture. Momentum dependence ofS0 of the form bvF(p
2pF) results in a change of the effective mass in Eq.~2! to
m* 5m(11a)(11b)21 and in multiplying Eq. ~2! by
Zsm* /m, whereZs is the renormalization factor.

In arbitrary dimensionalityD, the estimates for the ratio
of oscillatory to monotonic-in-field parts of the self-ener
and for the leading oscillatory term inV change toN2D/2

and N2(D12)/2, respectively. ForD52, the oscillations in
the self-energy are as important as in the thermodyna
potential itself.12 The Luttinger expansion atT5TD50
breaks down and the LK formula is not, generally speaki
valid.12 The physical reason is that the ground states of
24130
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interacting system atB50 and in a finite field are not adia
batically connected in 2D. This fact has been emphasized
recent findings that the ground state of a two-dimensio
electron liquid is not a Fermi liquid even forN@1, but
rather a charge-ordered state.17 Nevertheless, an absence
the full LK formula in 2D does not preclude a canonic
analysis of magneto-oscillations, if under more restrict
conditions, as the FL behavior is restored at higher energ

The power-counting argument for~against! neglecting the
oscillatory part of the self-energy in 3D~2D! is valid at T
5TD50. If the real and/or Dingle temperatures are su
ciently high, i.e.,

2p2~T/vc* ,TD /vc!*1, ~3!

the amplitudes ofall oscillatory quantities, including the
self-energy, are exponentially small. Neglecting the osci
tory part of the self-energy, the amplitude of the first h
monic takes the form

A15~4p2T/vc!exp$22p@pT1 iS0~ ipT,T!#/vc%, ~4!

where we assumed thatT is high @in the sense of condition
~3!# and limited the Matsubara sum by the first term«0
5pT. The oscillatory part ofS results in a correction toA1
which is itself of orderA1 ~with exponential accuracy!. The
net contribution toV is of orderA1

2, which is of the same
order asA2 for Sosc50. Thus, harmonics withk>2 are
affected by the oscillations inS and a two-dimensional ana
log of the LK formula, which includes the sum over allk,
can only be derived in a perturbation theory for a spec
interaction but not for a generic Fermi liquid. However, t
k51 harmonic does not includeSosc and, as long as Eq.~3!
is satisfied, the analysis can proceed as in the th
dimensional case. In what follows, we assume that Eq.~3! is
satisfied and the amplitude of the first~and only important!
harmonic is given by Eq.~4!.

Next we discuss whether the quasiparticle relaxation r
affects the amplitude of magneto-oscillations. We setTD
50 temporarily. Suppose that a quasiparticle relaxation r
is measured in a clean Fermi liquid, e.g., via electron h
conductivity, with a result that 1/te-e}T2. It seems natural to
assume that the same rate contributes also to the Dingle
perature of magneto-oscillations. That this isnot the case
was shown for the electron-phonon interaction by Fow
and Prange.13 Here we generalize their arguments for t
electron-electron interaction in 3D and 2D, and then giv
general result for an arbitrary interaction. For a gene
Fermi liquid in 3D, the Matsubara self-energy, up to the qu
dratic in «n andT terms, can be written as

iS0~ i«n ,T!5a«n1 ibvF~p2pF!1g@~pT!22«n
2#. ~5!

In addition to a direct calculation, the validity of the qu
dratic term in Eq.~5! is readily established by noticing tha
upon analytic continuationi«n→«1 i0 this term gives the
correct form for the imaginary part of the on-shell se
energy: 2ImS0

R}(pT)21«2.18 The amplitude of the first
harmonic~4! containsiS0( ipT,T), in which the quadratic
term vanishes identically. TheT2 terms from higher Matsub-
9-2
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ara frequencies~legitimately considered within this schem
in 3D! increase the amplitude and cannot be interpreted
‘‘damping.’’

In 2D, the integral over momentum transfers diverg
logarithmically at the lower limit, changing the behavior
ImS0

R to E2ln E, whereE5max$«,T%. This change does no
alter the principal result. Consider the simplest case o
contact interaction. To the second order in this interacti
the quadratic term in Eq.~5! is replaced by

i S̃0~ i«n ,T!52
U2m

p2vF
2

T (
vm50

«n2pT

vmln~«F /vm!. ~6!

Although the sum in Eq.~6! does not have an analytic solu
tion, it obviously vanishes for«n5pT.

To analyze a general case of a finite range and dyna
interaction, including the screened Coulomb one, it is con
nient to find the imaginary part of the retarded self-ene
first and then continue back to Matsubara frequencies.
the mass shell, ImS0

R is given by

ImS0
R~«!52

p

2~2p!DE dvF~v!Fcoth
v

2T
2tanh

v2«

2T G ,
whereF(v)5*dDqd(v2vF•q)ImVR(v,q) andVR(v,q) is
the retarded interaction potential. As a function of a comp
variable z, f (z)[ImSR(z) has the following properties in
the upper half-plane:~i! all lines Imz5p(2n11)T are
branch cuts on which Ref is continuous but Imf changes
jumpwise; ~ii ! due to the fact that tanh@x2ip(n11/2)#
5cothx, all pointsz5 ip(2n11)T are zeroes off (z). Thus,
function f (z) is analytic in the band 0<Imz,pT including
the pointz5 ipT. Analytic continuation from the real axi
into this band is legitimate and atz5 ipT it yields the Mat-
subara self-energyS̃0( i«05 ipT,T), which is equal to zero
Zeroes off (z) at z5 ip(2n11)T with n>1 do not lead to
vanishing ofS̃0( i«n ,T) for n>1 because those zeroes a
separated from the real axis by branch cuts and thus are
accessible by analytic continuation. The two-dimensio
case is special only in that theq integration results in the lnv
factor in F(v) which does not change the reasoning giv
above. In particular, for a dynamically screened Coulo
interaction in 2D,F(v)}v lnuvu and still S̃0( ipT,T)50. As
this result does not depend on the particular form of
interaction, it can be viewed as a generalization of
Fowler-Prange theorem. Note that in 3D the Fowler-Pra
theorem is of limited applicability because nothing preve
one from consideringk.1 and lower values ofT1TD ,
when the effect ofS0( i«n.0 ,T) needs to be taken into ac
count. In 2D, one is bound to consider onlyS0( i«n50 ,T)
within the Luttinger approximation.

Finally, we discuss the effect of interference betwe
electron-electron and electron-impurity scattering
magneto-oscillations, extending the analysis of the inter
ence corrections to the self-energy in 2D from the diffus
(Tt!1) ~Ref. 19! to the ballistic (Tt@1) limit. The general
form of the interference correction to the Matsubara s
energy is~see Fig. 1!
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int~ i«n ,p!522T (

«n(vm2«n).0
E d2q

~2p!2
V~ ivm ,q!

3G~ ivm ,q!G~ i«n2 ivm ,p2q!, ~7!

whereG( i«n ,p)5( i«n2jp1 isgn«n/2t)21 and the effective
interactionV5Vs13Vt contains the contributions from bot
singlet and triplet channels,15

Vs
21~ ivm ,q!5~2pe2/q1Fr

0/n!212P~ ivm ,q!,

Vs
21~ ivm ,q!5n/Fs

02P~ ivm ,q!,

wheren5m/p. The factor of two in Eq.~7! accounts for two
possibilities of including the vertex correction in Fig. 1~a!.
The Fermi-liquid constantsFr

0 and Fs
0 ~Ref. 20! determine

the renormalized charge and spin susceptibilities, resp
tively. The vertex G( ivm ,q)5@A(uvmut11)21(qvFt)2

21#21 reduces to G5(Dtq21uvmut)21 and G
5t21@ uvmu21(qvF)2#21/2 in the diffusive and ballistic lim-
its, respectively. The general form of the~small q) polar-
izarion operator

P~ ivm ,q!52n@12uvmutG~ ivm ,q!# ~8!

reduces toP( ivm ,q)52nDq2/(Dq21uvmu) in the diffu-
sive limit, where D5vF

2t/2, and to P0( ivm ,q)52n@1
2uvmu/A(vFq)21vm

2 # in the ballistic one. Omitting the de
tails of lengthy but straightforward calculations, we give ju
the result for the self-energy valid to logarithmic accurac

iS0
int~ ipT,T!52T ln~«F /T!Q~Tt,Fs

0 !/2«Ft,

where Q(Tt,Fs
0)5gr(Tt)1@3Fs

0/(11Fs
0)#gs(Tt) and

gr/s(x) are slowly varying functions which interpolate be
tween the diffusive and ballistic regimes. The limiting valu
of gr/s(x) are as follows:gr(0)51,gr(x@1)53/2,gs(0)
51,gs(x@1)51/2. Apart from the numerical coefficients
theT dependence ofiS0

int(pT,T) is the same in the diffusive
and ballistic regimes. In that sense, the behavior of the s
energy is similar to that of the tunneling density of states21

Notice that the interference correction to thescattering rate
in the ballistic regimeuImS0

Ru int;(T/«Ft)ln(«F /T) is smaller
than the scattering rate in a clean FL,uImS0

Ru int

FIG. 1. ~a! The interference correction to the self-energy.~b!
The vertex correction is assigned to either one of the vertices in~a!
because the self-energy arises as insertions into the thermodyn
potential~closed loops!. ~c! Singlet/triplet-channel contributions to
the effective potential.
9-3
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;(T2/«F)ln(«F /T), in the parameter (Tt)21!1. However,
due to the cancellation of theT2ln T term in iS0( ipT,T)
discussed earlier in this paper, the interference correctio
the main nonlinearT-dependent term in the Matsubara se
energy, leading to a modification of the LK formula. Th
T ln T dependence of the self-energy can be interpreted
logarithmic T dependence of the effective mass. Followi
this interpretation, the interference effect leads to a repla
ment of the effective mass in the argument of the exponen
in A1 by

m* ~T!5m* S 12
m

m*

ln~«F /T!

2p«Ft
Q~Tt,Fs

0 !D . ~9!

Note that the effective mass is reduced by the singlet-cha
interaction but enhanced by the ferromagnetic (Fs

0,0) in-
teraction in the triplet channel. The lnT dependence of the
effective mass is a characteristic feature of the ‘‘margi
Fermi-liquid’’ model.22,23
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