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A theoretical study of the phase property of the reflection coefficient of a single-channel quantum system is
presented. This reflection phase information is required for a complete characterization of the scattering
problem in the system. It is found that the phase of the reflection coefficient of the system shifts abruptly by
when the reflection probability passes through a zero. It is also found that in certain systems this phase
discontinuity can appear even when no zero and no phase discontinuity are present in the transmission coef-
ficient. Possible experiments for the observation of the reflection phase discontinuity are discussed.
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As the characteristic feature size of electronic devicegry, and that the Friedel sum rule is not strictly valid for the
continues to shrink, interest has focused on the nature afystems as a result of the appearance of the transmission
electron transport through essentially one-dimensionazeros:>!In addition, models that take into account specific
nanometer-scale channels such as atomic Wifesnd car- properties of the dot states in a semichaotic structure were
bon nanotube¥:*? It is now well known that quantum ef- also proposed and a mechanism for the phase drops based on
fects have significant influence on the electric properties ofarge differences in the coupling of the dot states to the con-
nanometer-scale devices. A notable example is that the cofinuous states of the leads was discusSédVery recently,
ductance of atomic point contacts, in which a “neck” of studies of the transmission phase have also been made for

atoms between two electrodes is just a few atomic diametefuantum dot systems with Kondo correlatiéhs® However,
wide, is quantized in units of €/h.*~" Both the atomic all these studies have not addressed the phase properties of
point contacts consisting of only a single-atom neck and thathe reflected electrons.
consisting of a 20-A-long single-atom chains have been In this work, we report on a study of the phase properties
observed™" A link between the chemical valence of the at- Of the reflection coefficient of single-channel quantum de-
oms and the number of conductance channels in single-atotfices. This phase information is needed for a complete char-
wires has also been demonstratethese findings are remi- acterization of a scattering problem in a quantum system. In
niscent of the properties of phase-coherent ballistic electro@ two-terminal device, the reflection amplitude can be ob-
transport in semiconductor mesoscopic point contacts ant®ined from the transmission amplitude using the current
have shown that it becomes possible to study the influence gonservation law. However, the reflection phase cannot be
quantum effects on electron transport using nanometer-scafeund from the transmission phase, unless the relation be-
atomic systems. tween the two phases is known. We will present our results
One of the current interests in the Study is the phase prOFj‘Dr the reflection phase found by direct calculations. We will
erties of scattering electrons in single-channel atomic wire§how that the phase discontinuity can also occur in the re-
containing a quantum confinement structure. Such an atomidection coefficient of quantum devices, and that in certain
system can be fabricated by, e.g., local probe method$ystems this discontinuity can occur even when no disconti-
which, as demonstrated in Ref. 13, allow us to build system&Uity is present in the transmission coefficient. We will fi-
of the same complexity as used by nature. It waghally discuss possible devices for experimental observations
discovered+*°that the phase of the transmission of electronsf the reflection phase discontinuity.
in a single-channel quantum wire with an attached quantum It is worthwhile to recall some generic properties of the
dot exhibits two interesting features: first, the phase acquirelfansmission phase of a quantum system. The electron trans-
by electrons traversing the quantum dot increases smoothRort in single-channel atomic systems can be described by a
by « along a resonance peak; second, the phase changd®itary 2X2 matrix, which can be expressed in a most gen-
abruptly by 7 in the tail of the resonant peak, where the €ral way as
transmission amplitude of the system vanishes. The first fea-
ture was explained by Schustet al. in Ref. 14 using the
Breit-Wigner resonance formula, while the second one was S=
totally unexpected. Several theoretical moH&i® have
been proposed to explain the observed phase drops. It was N
shown!®!" based on analytical and numerical calculationsV'th real parameters, ¢1, o, and . ZfWhen the sys-
for quantum dots embedded in a single-channel wire, that thi¥MS aré symmetric under time reversatt’ and e, can be
sharp phase drops occur exactly when the transmission amit [0 Zero. The scattering mati$ds linked to the charg&
plitude vanishes. Later, it was shown that identical vanishingf the system via the Friedel sum rule,
of the transmission amplitude can occur generically in
single-channel systems if the time reversal is a good symme- 6Q/e=[8InDet(S)]/2mi. 2
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Thus, the phase of the transmission coefficiént as int 0,= 0+ @,— TO(—sing) (4)
=|t|e'%, and the Friedel phas@- are not independent, g
an
T 0, =0—@;—7TO(—Ssing). 5
0t=6,:—§—7-r®(—cos¢), 3 r=0r— @1 ( ) 5

It is seen tha¥, — 0, =2¢4. Similar to the transmission co-
efficient, a prerequisitéout not a sufficient conditiorfor the
where®(x) is the step function ok2°~??1t is seen that in  occurrence of the discontinuities in the two reflection phases
difference from the Friedel phase, which is a continuouds the existence of reflection zeros, at which ¢#0.
function, the phase of the transmission coefficient may ex- It is interesting to see whether or not reflection zeros can
hibit discontinuity. A prerequisite for the occurrence of the appear in an in-line one-dimensional double-barrier structure
discontinuity is the existence of transmission zeros, at whiclmade from a single-atom chain. We have discussed, in the
cos¢=0. above, that such a resonant atom-chain structure does not
Calculations and analysis have shown that transmissiopossess the transmission zeros, as a result of that there exists
zeros can appear in a system with a multilevel quantum dabdnly one coherent path for electrons passing through the con-
coupled to two one-dimensional leads, provided that all thdined region. The situation becomes different when the re-
coupling elements between the dot and the leads are takdlection of the electron wave is considered. Here, the reflec-
into account®2®However, it has been rigorously proved that tion wave is a result of interference between two coherent
the transmission coefficient of a double barrier confined, inpaths: direct reflection from first barrier and resonant reflec-
line, one-dimensional wire with multiple quasibound statestion from the confined region. Thus the reflection coefficient
does not have zeros at energies for which the leads are opean be zero if the interference is fully destructive. In fact, a
for conductior?**A deep understanding of the physical ori- fully destructive interference does exist in the reflection of
gin of transmission zeros is then needed in order to resolvin-line one-dimensional double-barrier systems symmetric
these seemingly contradictory results. If a detailed analysis iander mirror reflection. Thus, a symmetric, resonant atom-
made, one can find that in each of the models used in Refghain system can have reflection zeros.
16-23 there exist at least two coherent paths for electrons The question is then that will the phase of the reflection
passing through the confined dot region from one lead to theoefficient of an in-line one-dimensional double-barrier
other one. Thus the transmitted wave is a result of interferstructure made from a single-atom chain be discontinuous at
ence between different coherent electron paths. However, ithe reflection zeros? We will answer this question with nu-
the system consisting of an in-line double-barrier confinedmerical calculations. In the calculations, we employ a tight-
one-dimensional wire, there exists only one coherent path fopinding model. The model consists of three regions: a finite
the electrons passing through the confinement region, whicbhain of single monovalence atoms, i.e., a confinement re-
can be the one associated with resonant tunneling or the orggon (C), and two single-channel semi-infinite leads on the
at off-resonance. Thus no effect of multiple-path interferenceéeft (L) and the right(R). The Hamiltonian of the system is
can be seen in the transmitted wave of the system. The aboygven by
analysis leads us to conclude that zeros in the transmission
through a confined region arise from interference between

_ t t
different coherent paths that contribute to the transmission. 1 " i, r;le o [ecan@n—A(an:1@n+H.C)]
This conclusion can be generalized and stated as follows: if a
wave emitted from a confined region consists of contribu- S T +
tions from different coherent paths, destructive interference +n(n, nfTe LR) [202nan =A@y 180+ H.C)]
can lead to zero wave emitting.
A chain of single monovalence atoms can be considered —v|_(aELancwL H.c.)—vR(aﬁRanch H.c), (6)

as a single-channel quantum wire. By creating two weak-

coupling junctions inside the chain or at the connections bewherea! (a,) is the creation(annihilation) operator for an
tween the chain’s ends and two conducting leads, one reaglectron at siten, ec andeq are the on-site energies in the
izes an in-line one-dimensional double-barrier structureconfined region and the two leads, ardis the hopping
Thus, the transmission of the system can show resonant osyegral. The first term is the Hamiltonian of the finite atomic
cillations, but certainly should not have zeros between resoehain; the second term is the Hamiltonian of the two leads;
nant peaks. As a consequence, no phase discontinuity cdime couplings between the finite atomic chain and the two
appear in the transmission of the system. The situation willeads are given by the remaining two terms with coupling
be different if the single-atom chain contains a cavity, suclparameters), andvg and site indicesice C, n_eL, and

as an atomic cluster or an attached conducting molecule. Inge R.

this case, the transmission can have zero and phase discon-The transmission coefficients of the systearandt’, can
tinuity, as a result of the presence of multiple coherent elecbe calculated as in Ref. 23 using, e.g., the Fisher-Lee

tron paths in the cavity region. relation?® The reflection coefficients,andr’, can be calcu-

For a single-channel quantum wire, it can be derived thatated using a procedure as described in Ref. 30. For an in-
the phases of the reflection coefficiengs,and 6, , as inr line double-barrier structure, it can be shown that the reflec-
=|r|e'% andr’=|r'|e'%" are given by tion coefficientr can be written as
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FIG. 1. Scattering parameters of the single-channel symmetric F!G- 2. Scattering parameters of the quantum-confined single-
double-barrier structure. The confined region is modeled by a wiréhannel wire structure. The confined region is modeled by a wire of

of ten single on-site energy sites and is coupled to two semi-infinitd€" Single on-site energy sites and is coupled via tunneling junctions
leads in an in-line configuration to two semi-infinite leads in a crossbar configuration.

dips, occurring at the same energies as of the corresponding
transmission peaks. The phase shifts of the transmission and
reflection coefficients of the system are shown in Figs) 1
and Xd), respectively. It is seen that the phase shift of the
transmission coefficient is continuous. This result is consis-
2 tent with the fact that there exist no zeros in the transmission
(8  Probability, and is in agreement with previous studies
However, in strong contrast, the phase shift of the reflection
coefficient exhibits discontinuities; it drops abruptly by
precisely when the reflection probability passes through a
zero.

It is of interest to ask the question that can both the dis-
continuity of the transmission phase and the discontinuity of
the reflection phase be observed in a single monovalence-
atom wire device? For an answer to this question, we con-
sider a single-channel device model with a different struc-
ture. The same finite wire of ten atoms as in Fig. 1 is
assumed in the model. However, instead of the in-line struc-
ture, the wire couples to the two semiinfinite leads in a cross-
bar configuration. Figure 2 shows the results of the calcula-
(10) tions for the system. It is seen that the transmission

probability exhibits eight peaks with unit height, but oscillat-
is the Green’s function at the first site of the right-hand-sideing widths. This result can be understood in terms of the
lead. A similar expression can also be derived for the refleclocal density of states on the finite wit®In principle, the
tion coefficientr’. system has ten states localized within the finite wire. How-

Figure 1 shows the results of the calculations for an in-ever, not all the ten states appear as resonances in the trans-
line single-channel double-barrier model with a chain of tenmission. This is due to the fact that two of these states have
atomic sites, sandwiched in between two single-channeheir energies outside of the conduction band of the leads. An
leads with an in-line configuration. In the calculations, theinteresting feature seen in these calculations is that zeros
on-site energiessc ande,, are assumed to have a value of appear in both the transmission and reflection probabilities.
2\. The coupling parameters are assumed tovbevg  As we have already discussed, these zeros can be understood
=—0.5\. Thus the system is symmetric with respect to theas arising from destructive interferences between coherent
direction of the current. The transmission and reflectionelectron paths. An important result found in these calcula-
probabilities of the system are shown in Fig&)land Xb), tions is that both the transmission phase and the reflection
respectively. It is seen, as expected, that the transmissigrhase show abrupt phase drops #yat the corresponding
probability exhibits ten resonant peaks of unit height, andransmission and reflection zeros. The co-occurrence of the
that the reflection probability exhibits ten zero reflectiontransmission zeros and the sharp transmission phase drops is

~ L
E—ec+re k2

r=———= 1,
E—e+rek?

()

wheres=gc+es with e given by

\2
E—ec—3R(E)

In the above equation, the self-eneg§(E) can be found
from

SR(E)=viGR(E), (9)

where

GR(E)=[E—er—NGRE)]™*
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in agreement with the experimental observation by Schustestomic (or moleculay wire to a long perfect atomi@r mo-
et al. and previous calculations. However, the presence ofeculap wire in a crossbar or @-junction configuration. This
both the transmission phase drops and the reflection phasystem is similar to the device studied in Fig. 2 without
drops in a single-quantum system, as predicted in this workjouble-barrier confinement. However, our calculations have
has not yet been observed. We have also done the calculdhown that the transmission and reflection phases of such a
tions for a number of other crossbar single-channel atomsystem exhibit the same discontinuous behavior as seen in
wire devices and the same phase properties of the transmi§ig- 2. i
sion and reflection coefficients as in Fig. 2 have been found. [N Summary, we have presented a theoretical study for the
It is challenging to measure the phase of the reflectioP@S€ properties of the transmission and reflection coeffi-
coefficient of a single-channel quantum-wire system, alcients of single-channel quantum-confined systems. Our
though the measurement of the transmission phase has e ldythas shownTtE_at tpe ref:jegctlontph%[se is discontinuous at
successfully carried out for a single-channel system with a@esegtg):] szrr]%?é thf fraﬁi%isii%onn Iwgs}(/eciznc?)\r/r?nlst?eiglr]n-
attached quantum dot. The phase drops of the reflection o Y P pietely

efficient are very sensitive to the symmetry of quantum-wire. - o->" Single-channel devices, such as atomic-wire Cross-
systems. For e);am le, in a sin yIe—chanynel (?Jlouble-barrietr)ar andT-shaped junctions, are proposed for experimental

ystems. ample, ngle-c Observation of the phase discontinuity in the reflection

confined atom-wire system, a tiny difference between the

two barriers will destroy the reflection zeros and thereforecoefﬂC'em'

the reflection phase discontinuities. A simple, but promising This work was supported by the Swedish Foundation for
system for the observation of the discontinuities in the reflecStrategic Researcf8SBH and the Swedish Research Council
tion phase is the one obtained by attaching a finite piece ofVR).
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