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Generalized drift-diffusion model for miniband superlattices
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A drift-diffusion model of miniband transport in strongly coupled superlattices is derived from the single-
miniband Boltzmann-Poisson transport equation with a Bhatnagar-Gross-Krook collision term. We use a con-
sistent Chapman-Enskog method to analyze the hyperbolic limit, at which collision and electric-field terms
dominate the other terms in the Boltzmann equation. The reduced equation is of the drift-diffusion type, but it
includes additional terms, and diffusion and drift do not obey the Einstein relation except in the limit of high
temperatures.
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In recent years, nonlinear charge transport in semicondudum diffusion theories® “First-principles derivations”
tor superlattice§SL's) has blossomed as a field, driven by typically solve a kinetic equation numerically or approxi-
the availability of many experimental results and by theoretmately assuming a constant applied electric field and ignor-
ical analyses and simulations of rate equation motiélds  ing space and time dependence. Then a current density
it often happens, these models have not been derived fropCross the SL is calculated for different values of the fle'd,
more fundamental “first-principles formulations” such as ki- and a drift velocity and a diffusion coefficient are figured
netic theory. The situation is different depending on whethePUt. These functions are then inserted in a DDE. Results that
the SL's are weakly or strongly coupled. In weakly coupled@re “valid for any type of SL" typically mean that stationary,
SLs, neighboring quantum wells are separated by “thick” space_-lndependent solutions of a sfuff|C|ent_Iy general I_<|net|c
barriers and vertical transport occurs via sequential resonagguation have been found numerlcéllp\gal_n the crucial
tunneling through them. Provided intersubband scattering igd€rivation of a rate equation model from a kinetic equation is
much faster than escape times from a quantum well and th@issing. In this paper, we provide such a derivation starting
latter are much smaller than dielectric relaxation times, electrom a simple Boltzmann-Poisson system that describes one-
trons are at local equilibrium in the subband of lowestdimensional(1D) electron transport in the lowest miniband
energy? Then the tunneling current density across a barrie®f @ strongly coupled SL:
under stationary conditions can be calculated from “first
principles” using the transfer Hamiltonian methbdreen a_f+v(k)ﬂ+e_Fﬂ
functions for a SL under a constant external fiektc. This at ax h oK
tunneling curren{which depends on the electron density in FOuk, ) — F(x, —k,1)
the two quantum wells separated by the barrier and on the =y (f—fFP) = p— 7 (1)
local value of the electric fie)ds theninsertedin a discrete 2
rate equation model including charge continuity and a dis-
crete Poisson equatidri.No derivation of this very reason- JF e
able model seems to be known to this date, although its e~ (N~ No), @
validity has been corroborated by numerous experiments.

In strongly coupled SL's, barriers are “thin,” minibands | [ [
are wide, and quantum wells cannot be considered as sepa-  N=5— f(X.k,t)dkzzf fFP(k;nydk,  (3)
rate entities. Practical models to analyze nonlinear transport -l !
are of the drift-diffusion typ&or hydrodynamic model$’

Drift-diffusion equation(DDE) models typically use a drift 1+exp('u_5(k))
velocity obtained from a simplified kinetic equation and a kgT '
diffusion coefficient that obeys the Einstein relatfoithe
resulting model is a variant of the well-known Kroemer DDE Herel, ¢, f, n, Np, kg, T, F, m*, ande>0 are the SL

for the Gunn effect in bulkn-GaAs? For the large fields period, the dielectric constant, the one-particle distribution
involved and for the nonparabolic SL miniband energy, usingunction, the 2D electron density, the 2D doping density, the
an Einstein relation to figure out the diffusion coefficient is Boltzmann constant, the lattice temperature, minus the elec-
questionab®¥ and, in fact, incorrect except in a particular tric field, the effective mass of the electron, and minus the
limit. Hydrodynamic models are considerably more compli-electron charge, respectively. The first collision term repre-
cated and have been solved numerically, but not many analgents energy relaxation towards a 1D effective Fermi-Dirac
ses of them have been carried out. The same applies to quadistribution f*°(k;n) (local equilibrium?® with collision fre-
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L5 We shall derive a reduced balance equation for the elec-
i | tron density by using the Chapman-Enskog an¥atz,

o

T=300K T=10% OOk e=fOxcm+ > fMGnyem,  (5)
1

1 m=

an_g N () e 6
& (n)e™ (6)

The coefficients (™ (k;n) depend on the “slow variablest

andt only through their dependence on the electron density

and the electric fieldwhich is itself a functional of). The

| . 1 electron density obeys a reduced evolution equatinin

20 30 which the functionalsN(™(n) are chosen so that the
f(M(k;n) are bounded and7/| periodic ink. Moreover, the

FIG. 1. Electron density vs chemical potential at 10 K (  condition ST f ™ (kn)dk=27f{P/1=0m=1, ensures
=25.5%;T) and at 300 K M= —0.4%gT). thatf(™, m=1, do not contain contributions proportional to

the zero-order termi(®). N(™(n) can be found by integrating
quencyv,. The second collision term accounts for impurity Eq. (1) over k, using Eq.(3), and inserting Eq(5) in the
elastic ~ collisions: [™) do(x,k,k')S(EK)—EKNIF(K)  result: N™(n)=—1(a/ax)[™,0(k)f™dk/(27). Then,
—f(K) 1dk" =2o(x,k, —K)[ f(—k) — (k) ]/(Al sinkl) integration of Eq.(2) overx yields
=y[f(—K)—f(k)]/2, provided we use the tight-binding mini-
band dispersion relatior§(k) = (A/2)(1—coxl) (A is the IF e &
miniband width, and ignore transversal degrees of SﬁﬁL 520 "
freedom®! For simplicity, v, and »; will be fixed constants. m

Exact and Fermi-Dirac distribution functions have thewhereJ(t) is the total current density. To find the equations
same electron density, thereby preserving charge continuitior f(™ we insert Eq(5) and(6) in Eq. (1), and equate like
as in the BGK(Bhatnagar-Gross-Krogkmodels of collision  powers ofe:
processe$? Then the chemical potential depends om and
is found by inverting the exact relatigdB); cf. Fig. 1. BGK
collision terms with a Boltzmann distribution function, the
Boltzmann limitof Eq. (4), were introduced by Ignatov
et al,*® who adapted collision models by Ktitor@t al. con-
taining inelastic energy relaxation and elastic impurity mo- LE@=—
mentum relaxation term$.

To derive a reduced balance equation fiowe shall as-  anq 50 on. We have definegli(k)=eF# ~*du(k)/dk+ (v,
sume that the electric-field contribution in E4) is compa- vi/2)u(k) + v;u(—k)/2, and the subscripts 0 and 1 mean
rable to the collision terms and that these terms dominate thﬁ]at anlat is replaced byN©(n) and by N®)(n), respec-
other two. This is the so-callddyperbolic limit in which the tively.
ratio of df/dt or v(k)df/dix to (eF/ﬁ)af/ak is Of. ordere The linear equatioiCu=S has a bounded 2/|-periodic
<1. Letoy and F,, be el_ectron velocity and fl_6|d scales ¢oution provided/ ™! |S dk=0. This solvability condition
typical of the macroscopic phenomena described by th‘?ogether with Eqs(8), (9), etc. also yield the previously

sought balance equation; for example, let them be the pos (m) ; ;
tive values at which thézeroth order drift velocity reaches fg;g%gl Ord:?ctjetrﬁsrﬁ]défg? Teuitlla(tﬁ:i)ﬁ Keeping only the

its maximum. In the hyperbolic limit, the timig it takes an

electron with speedv,, to traverse a distancex, JE  n n

=gFyl/(eNp), over which the field variation is of order e——+er M| —oyV(F)=I(), (10
! i . at I Np

Fwm . is much longer than the mean free time between colli-

sions, v;1~h/(eFMI)=tl. We therefore definee=t,/t,

0 I L 1 L
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wkpT

ﬂ””v(k)f(m)(k;n)dsz(t), @

Ty

LD =—

d d
— Q)
at+v(k)ax)f o, (8

; (€)

1

P g J
—+ (k) — ] fO)] — —§(0)
gt ol )&x) lo= 5t

=hoyNp/(¢F31%) and formally multiply the two first V(F)= 2_]: szw, (12)
terms on the left side dfl) by €. After obtaining the num- 1+ F? Ah7elo(M)

ber of desired terms, we set 1. The solution of Eq(1) for

€=0 is straightforwardly calculated in terms of its Fourier [ o 5+ 8 cosk
coefficients _as f©@(kin)=57 __ ek with 0=(1 In(s)= J __codmiin(1+e ydk,  (12)

—ij A1) fF°1(1+j2F?), in which F=F/Fy, Fy ~ _ _
=h\ve(vet v)/(el), and 7o=\(ve+ 1)/ ve. SincefFPis  provided M(n/Np)=Z1(u)Zo(M)/[ZT2(M)Zo(p)], n
an even function ok, its Fourier coefficient; " is real. Note ~ =u/(kgT), and 6=A/(2kgT). Using Eq.(3), the dimen-
that Eq.(3) implies f")=fiP=n. sionless chemical potentiaju=x(n/Np) is calculated
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graphically in Fig. 1 as a function of/Np, with z(1)
=M. Then we haveM(1)=1. In the Boltzmann limit,\M
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TABLE I. Numerical values of the oscillation frequencieg,m,,
compared with the experimental valwg,, for five of the SL's of
Ref. 18, together with the corresponding applied voltégel,, and

=1 for anyn, and the electron current density in Ef0) has
the usual drift form. Thus\ is a low-temperature, density-

dg are well and barrier widths, respectively.

dependent correction to the usual drift current density. Th

B (&) dg (A) Np/l (cM3) vy (GHD) vpum (GHZ) @ (V)

drift velocity vy V(F) has the Esaki-Tsu form with a maxi-

mum that becomes y~All 1(8) Vre/[4%1o(8) Vret vi] in 513 8.7 1.410" 19.44 19.5 0.95
the Boltzmann limit®[1,(8) is the modified Bessel function 48 9 8x 10 29.12 29.1 1.07
of the nth ordei. 40 10 8x 10'6 46.35 46.5 1.2
The first-order correction in Eq7) is found by first solv-  36.4 9.3 167 52.79 52.8 1.24
ing Eq. (8). After straightforward but lengthy calculations 354 9.6 ox 106 65 65 1.73
and settinge=1, we obtain(hereg’ meansdg/dn)
JF evyn kKgTom an
aF aF) eNp el aF) er T VAO=IOF V() (19
e—+VF,—|— —_—
o x| eNp ox The difference between the predictions of E4) and (19
JE\ &2F JF can be remarkable if the dimensionless parametisr rela-
=D( F, X Sa?"l‘A( F, &_x)'](t)’ (13)  tively large and the dimensionless coefficieht A/(2kgT)
is not small, as illustrated in Fig. 2. The parameter values in
this figure correspond to the 5.13-nm GaAs/%S?-nmzAlAs
312 2o SL of Ref. 18, for whiche=0.34:Np=0.84X10" cm™ <,
i 2evyFy[Fy—(1+272)F2?] (149 A=55meV, = v;=10"Hz, x,/I=0.75. Wehave se-
el(vet vj)(F3+F?)3 ’ lected bias and boundary conditions so that dipole mediated
current self-oscillations occur in this SL: voltage bias di-
vided by SL length equals 172, and F=2Jl/(eNpv ) at
AB dF both SL ends. The difference in oscillation frequency and
V:UMVM(A_ Z_eK)’ 19 wave shape can be explained by taking into account the
equal-area rule as in the theory of the Gunn eftdédhe
taller wave of the GDDE moves at a slower average speed
A2IFy, 4hv\yC than the wave of Eq(19).
= Sher (F2iE? ( Al ) (16) For SLs with a smaller value of, the difference between
ere(Fu+F9) the predictions of the GDDE and the DOE9) is smaller. Is
there a limit in which these equations agree? To explore this,
(5F2 — 4F?) M we calculate the deviation of drift velocity and diffusion co-
_ M 2 efficient in the GDDE from the Einstein relatigsettingn
(F3,+4F%)?M =Np andu=M):
AhvFE(F2 —F?) (1ot 75 )(nM)’ . !
AI(FZ +F?)3 - @0 sy
=06
0.4 |
Te(F—2F%)(NMy)'  8hivy[FFyu(nM)']? 02
C= > > + TN 0 300 600 900 1200
F2,+4F Al(FZ+F?) ol
(18) M770
10
Here the density-dependent function M,(n/Np) 81 (b)
=T,(w) Zo(M)/[ Zo() (M) ] becomes simply the constant = © |
[,(8)/1,(5) in the Boltzmann limit. Despite its formidable R4
appearance, thgeneralized drift-diffusion equatiofGDDE) 2
(13) is (in dimensionless uniisa small perturbation of the 0 5 @ 90

drift equation(10), analyzed in studies of the Gunn effect a
long time agd’!® Table | shows that the solution of the
GDDE and Eq/(2) yield self-oscillations of the current with

x/x,

FIG. 2. (Color onling (a) Current Jo=evyNp/l) vs time dur-

frequencies that agree with those measured by Schombufgy self-oscillations for a 100-period SL at 300 K, as described by

et all8

An often used DDE consists of Eq10) (with M=1)

plus a diffusion term obeying the Einstein relatfon:

the GDDE in the Boltzmann limi{solid line) and by the DDE
(dashed ling (b) Comparison between the dipole wave for the
GDDE (1) and the dipole wave for the DDE2).
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40 ] Zy(M) in the previous formula. Moreover, Eq) and (4)
30 | give n=e* °ly(8)poNp, Where po=m*KkgT/(7h>Np).
20 ] For n=Np, the Boltzmann limit holds provided,>1. If
§ we also haves=A/(2kgT)<1, Eq.(20) becomes
10 -
RE) o _ A2 3F2 Fal 72
1.5_— R LT F YTy PRI R(F)~1+ Py 5 N N
Lok 1 8kgT| 2(Fyy+4F°) (Fy+F9)
[ —— Fermi-Di i 2 2\ 2
0.5 = - Birlltlilggﬁc g » kgTNp[Fy—(1+19)F ]+F2 2
ool | Boltz. limit, 8<<1 (b) T=300 K sl (Ff/l + FZ)
L ) Il | Il | 1 | Il | 1 -
% 080 | | | (C) | ] - - | o - -
E " ] Ignoring correcting terms, in this limit the right-hand side of
o o4l T=10K ] Eq. (21) becomes 1 and the Einstein relation holds. Figure 3
g | shows the deviation from the Einstein relation at different
Tt T=300K | temperatures, either using the Fermi-Dirac distribution in Eq.
T 0 0'5 —= /‘1"5/2"25 (1), using its Boltzmann limit, or the two-term approxima-
) F/FM ’ ' tion (21). Deviations are more appreciable at low tempera-

tures. In the limitkg T>max@,7#?Np /m*), the GDDE(13)

FIG. 3. RatioR(F) at(a) 10 K and(b) 300 K. (c) Relative error .
becomes the DDE19) up to terms of ordees if we setA

of the Boltzmann limit result with respect to using the Fermi-Dirac

distribution. =1+0(e)~ 1; . ) i
In conclusion, we have derived a generalized drift-
eF D(F,0) - AZ, diffusion model for charge transport in miniband superlat-

tices by means of a consistent Chapman-Enskog method. At
all temperatures, its predictions deviate appreciably from

R(F)= keTV(F,0) 4kgTZ;

1—2F2(nT,\’ 2 F2 nZ.\ 12 those of the usual DDE with the Esaki-Tsu drift velocity and
1__2(_2) S (_1> } diffusion obeying the Einstein relation. The DDE holds in
1+47°\ Lo | 1+ 7?2721 o the limit e<1, kgT>max(, 2Ny /m*), which is not very
e?AINp[1—(1+ Tg)]_—z]zl . realistic for many strongly coupled SL’s,_even at room tem-
perature. Detailed analyses and comparison between the pre-
2ehi(vet v)?To(1+ F?)3 dictions of the two DD models and those of the original

(20) kinetic equation will be considered in future works.
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