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Generalized drift-diffusion model for miniband superlattices
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A drift-diffusion model of miniband transport in strongly coupled superlattices is derived from the single-
miniband Boltzmann-Poisson transport equation with a Bhatnagar-Gross-Krook collision term. We use a con-
sistent Chapman-Enskog method to analyze the hyperbolic limit, at which collision and electric-field terms
dominate the other terms in the Boltzmann equation. The reduced equation is of the drift-diffusion type, but it
includes additional terms, and diffusion and drift do not obey the Einstein relation except in the limit of high
temperatures.

DOI: 10.1103/PhysRevB.68.241304 PACS number~s!: 73.63.2b, 73.23.2b, 72.10.2d, 72.20.Ht
u
y
e

ro
i-
he
ed
k’
na
g
t

le
s

rie
rs

in
th

is
-
i

.
s
e
po

a

E

in
is

ar
li
a
u

i-
or-
sity
ld,
d

that
,

etic

is
ing
ne-
d

ion
the
lec-
the
re-
rac
In recent years, nonlinear charge transport in semicond
tor superlattices~SL’s! has blossomed as a field, driven b
the availability of many experimental results and by theor
ical analyses and simulations of rate equation models.1–3 As
it often happens, these models have not been derived f
more fundamental ‘‘first-principles formulations’’ such as k
netic theory. The situation is different depending on whet
the SL’s are weakly or strongly coupled. In weakly coupl
SL’s, neighboring quantum wells are separated by ‘‘thic
barriers and vertical transport occurs via sequential reso
tunneling through them. Provided intersubband scatterin
much faster than escape times from a quantum well and
latter are much smaller than dielectric relaxation times, e
trons are at local equilibrium in the subband of lowe
energy.2 Then the tunneling current density across a bar
under stationary conditions can be calculated from ‘‘fi
principles’’ using the transfer Hamiltonian method,4 Green
functions for a SL under a constant external field,3 etc. This
tunneling current~which depends on the electron density
the two quantum wells separated by the barrier and on
local value of the electric field! is theninsertedin a discrete
rate equation model including charge continuity and a d
crete Poisson equation.2,3 No derivation of this very reason
able model seems to be known to this date, although
validity has been corroborated by numerous experiments

In strongly coupled SL’s, barriers are ‘‘thin,’’ miniband
are wide, and quantum wells cannot be considered as s
rate entities. Practical models to analyze nonlinear trans
are of the drift-diffusion type5 or hydrodynamic models.6,7

Drift-diffusion equation~DDE! models typically use a drift
velocity obtained from a simplified kinetic equation and
diffusion coefficient that obeys the Einstein relation.8 The
resulting model is a variant of the well-known Kroemer DD
for the Gunn effect in bulkn-GaAs.9 For the large fields
involved and for the nonparabolic SL miniband energy, us
an Einstein relation to figure out the diffusion coefficient
questionable10 and, in fact, incorrect except in a particul
limit. Hydrodynamic models are considerably more comp
cated and have been solved numerically, but not many an
ses of them have been carried out. The same applies to q
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tum diffusion theories.10 ‘‘First-principles derivations’’
typically solve a kinetic equation numerically or approx
mately assuming a constant applied electric field and ign
ing space and time dependence. Then a current den
across the SL is calculated for different values of the fie
and a drift velocity and a diffusion coefficient are figure
out. These functions are then inserted in a DDE. Results
are ‘‘valid for any type of SL’’ typically mean that stationary
space-independent solutions of a sufficiently general kin
equation have been found numerically.3 Again the crucial
derivation of a rate equation model from a kinetic equation
missing. In this paper, we provide such a derivation start
from a simple Boltzmann-Poisson system that describes o
dimensional~1D! electron transport in the lowest miniban
of a strongly coupled SL:
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f FD~k;n!5
m* kBT

p\2
lnF11expS m2E~k!

kBT D G . ~4!

Here l, «, f, n, ND , kB , T, F, m* , and e.0 are the SL
period, the dielectric constant, the one-particle distribut
function, the 2D electron density, the 2D doping density,
Boltzmann constant, the lattice temperature, minus the e
tric field, the effective mass of the electron, and minus
electron charge, respectively. The first collision term rep
sents energy relaxation towards a 1D effective Fermi-Di
distribution f FD(k;n) ~local equilibrium!3 with collision fre-
©2003 The American Physical Society04-1
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quencyne . The second collision term accounts for impuri
elastic collisions: *2p/ l

p/ l f0(x,k,k8)d„E(k)2E(k8)…@ f (k8)
2 f (k)#dk852f0(x,k,2k)@ f (2k)2 f (k)#/(D l sinkl)
[ni@f(2k)2f(k)#/2, provided we use the tight-binding min
band dispersion relation,E(k)5(D/2)(12coskl) (D is the
miniband width!, and ignore transversal degrees
freedom.11 For simplicity,ne andn i will be fixed constants.

Exact and Fermi-Dirac distribution functions have t
same electron density, thereby preserving charge contin
as in the BGK~Bhatnagar-Gross-Krook! models of collision
processes.12 Then the chemical potentialm depends onn and
is found by inverting the exact relation~3!; cf. Fig. 1. BGK
collision terms with a Boltzmann distribution function, th
Boltzmann limit of Eq. ~4!, were introduced by Ignatov
et al.,13 who adapted collision models by Ktitorovet al.con-
taining inelastic energy relaxation and elastic impurity m
mentum relaxation terms.14

To derive a reduced balance equation forn, we shall as-
sume that the electric-field contribution in Eq.~1! is compa-
rable to the collision terms and that these terms dominate
other two. This is the so-calledhyperbolic limit, in which the
ratio of ] f /]t or v(k)] f /]x to (eF/\)] f /]k is of order e
!1. Let vM and FM be electron velocity and field scale
typical of the macroscopic phenomena described by
sought balance equation; for example, let them be the p
tive values at which the~zeroth order! drift velocity reaches
its maximum. In the hyperbolic limit, the timet0 it takes an
electron with speed vM to traverse a distancex0
5«FMl /(eND), over which the field variation is of orde
FM , is much longer than the mean free time between co
sions, ne

21;\/(eFMl )5t1. We therefore definee5t1 /t0

5\vMND /(«FM
2 l 2) and formally multiply the two first

terms on the left side of~1! by e.15 After obtaining the num-
ber of desired terms, we sete51. The solution of Eq.~1! for
e50 is straightforwardly calculated in terms of its Fouri
coefficients as f (0)(k;n)5( j 52`

` f j
(0)ei jkl , with f j

(0)5(1
2 i j F/te) f j

FD/(11 j 2F 2), in which F5F/FM , FM

5\Ane(ne1n i)/(el), and te5A(ne1n i)/ne. Since f FD is
an even function ofk, its Fourier coefficientf j

FD is real. Note
that Eq.~3! implies f 0

(0)5 f 0
FD5n.

FIG. 1. Electron density vs chemical potential at 10 K (M
525.59kBT) and at 300 K (M520.45kBT).
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We shall derive a reduced balance equation for the e
tron density by using the Chapman-Enskog ansatz,16

f ~x,k,t;e!5 f (0)~k;n!1 (
m51

`

f (m)~k;n!em, ~5!

]n

]t
5 (

m50

`

N(m)~n!em. ~6!

The coefficientsf (m)(k;n) depend on the ‘‘slow variables’’x
and t only through their dependence on the electron den
and the electric field~which is itself a functional ofn). The
electron density obeys a reduced evolution equation~6! in
which the functionalsN(m)(n) are chosen so that th
f (m)(k;n) are bounded and 2p/ l periodic ink. Moreover, the
condition *2p/ l

p/ l f (m)(k;n)dk52p f 0
(m)/ l 50,m>1, ensures

that f (m), m>1, do not contain contributions proportional t
the zero-order termf (0). N(m)(n) can be found by integrating
Eq. ~1! over k, using Eq.~3!, and inserting Eq.~5! in the
result: N(m)(n)52 l (]/]x)*2p/ l

p/ l v(k) f (m)dk/(2p). Then,
integration of Eq.~2! over x yields

«
]F

]t
1

e

2p (
m50

`

emE
2p/ l

p/ l

v~k! f (m)~k;n!dk5J~ t !, ~7!

whereJ(t) is the total current density. To find the equatio
for f (m), we insert Eq.~5! and~6! in Eq. ~1!, and equate like
powers ofe:

Lf (1)52S ]

]t
1v~k!

]

]xD f (0)u0 , ~8!

Lf (2)52S ]

]t
1v~k!

]

]xD f (1)u02
]

]t
f (0)U

1

, ~9!

and so on. We have definedLu(k)[eF\21du(k)/dk1(ne
1n i /2)u(k)1n iu(2k)/2, and the subscripts 0 and 1 mea
that ]n/]t is replaced byN(0)(n) and byN(1)(n), respec-
tively.

The linear equationLu5S has a bounded 2p/ l -periodic
solution provided*2p/ l

p/ l S dk50. This solvability condition
together with Eqs.~8!, ~9!, etc. also yield the previously
found N(m) and the reduced equation~7!. Keeping only the
leading order terms in Eq.~7!, we obtain

«
]F

]t
1e

n

l
MS n

ND
D vMV~F!5J~ t !, ~10!

V~F!5
2F

11F 2
, vM5

D l I1~M !

4\teI0~M !
, ~11!

Im~s!5E
2p

p

cos~mk!ln~11es2d1d cosk!dk, ~12!

provided M(n/ND)5I1(m̃)I0(M )/@I1(M )I0(m̃)#, m̃
[m/(kBT), and d5D/(2kBT). Using Eq. ~3!, the dimen-
sionless chemical potentialm̃5m̃(n/ND) is calculated
4-2
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graphically in Fig. 1 as a function ofn/ND , with m̃(1)
5M . Then we haveM(1)51. In the Boltzmann limit,M
51 for anyn, and the electron current density in Eq.~10! has
the usual drift form. ThusM is a low-temperature, density
dependent correction to the usual drift current density. T
drift velocity vMV(F) has the Esaki-Tsu form with a max
mum that becomesvM'D l I 1(d)Ane/@4\I 0(d)Ane1n i # in
the Boltzmann limit13 @ I n(d) is the modified Bessel function
of the nth order#.

The first-order correction in Eq.~7! is found by first solv-
ing Eq. ~8!. After straightforward but lengthy calculation
and settinge51, we obtain~hereg8 meansdg/dn)

«
]F

]t
1VS F,

]F

]x D eND

l S 11
« l

eND

]F

]x D
5DS F,

]F

]x D «
]2F

]x2 1AS F,
]F

]x D J~ t !, ~13!

A511
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3 @FM
2 2~112te

2!F2#
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2 1F2!3
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V5vMVMS A2
DB

2e

]F

]x D , ~15!
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D2lF M

8\ete~FM
2 1F2!

S 12
4\vMC

D l D , ~16!

B5
~5FM

2 24F2!M2

~FM
2 14F2!2M

2
4\vMFM

2 ~FM
2 2F2!~te1te

21!~nM!8

D l ~FM
2 1F2!3

, ~17!

C5
te~FM

2 22F2!~nM2!8

FM
2 14F2

1
8\vM@FFM~nM!8#2

D l ~FM
2 1F2!2

.

~18!

Here the density-dependent functionM2(n/ND)
5I2(m̃)I0(M )/@I0(m̃)I1(M )# becomes simply the constan
I 2(d)/I 1(d) in the Boltzmann limit. Despite its formidabl
appearance, thegeneralized drift-diffusion equation~GDDE!
~13! is ~in dimensionless units! a small perturbation of the
drift equation~10!, analyzed in studies of the Gunn effect
long time ago.17,15 Table I shows that the solution of th
GDDE and Eq.~2! yield self-oscillations of the current with
frequencies that agree with those measured by Schom
et al.18

An often used DDE consists of Eq.~10! ~with M[1)
plus a diffusion term obeying the Einstein relation:8
24130
e
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]F

]t
1

evMn

l
V~F!5J~ t !1

kBTvM

Fl
V~F!

]n

]x
. ~19!

The difference between the predictions of Eqs.~13! and~19!
can be remarkable if the dimensionless parametere is rela-
tively large and the dimensionless coefficientd5D/(2kBT)
is not small, as illustrated in Fig. 2. The parameter values
this figure correspond to the 5.13-nm GaAs/0.87-nm Al
SL of Ref. 18, for whiche50.34:ND50.8431011 cm22,
D555 meV, ne5n i51013 Hz, x0/ l 50.75. Wehave se-
lected bias and boundary conditions so that dipole media
current self-oscillations occur in this SL: voltage bias d
vided by SL length equals 1.2FM , andF52Jl/(eNDvM) at
both SL ends. The difference in oscillation frequency a
wave shape can be explained by taking into account
equal-area rule as in the theory of the Gunn effect:19 the
taller wave of the GDDE moves at a slower average sp
than the wave of Eq.~19!.

For SL’s with a smaller value ofe, the difference between
the predictions of the GDDE and the DDE~19! is smaller. Is
there a limit in which these equations agree? To explore t
we calculate the deviation of drift velocity and diffusion c
efficient in the GDDE from the Einstein relation~settingn

5ND and m̃5M ):

TABLE I. Numerical values of the oscillation frequenciesnnum,
compared with the experimental valuenexp for five of the SL’s of
Ref. 18, together with the corresponding applied voltageF. dW and
dB are well and barrier widths, respectively.

dW ~Å! dB ~Å! ND / l (cm23) nexp ~GHz! nnum ~GHz! F ~V!

51.3 8.7 1.431017 19.44 19.5 0.95
48 9 831016 29.12 29.1 1.07
40 10 831016 46.35 46.5 1.2
36.4 9.3 1017 52.79 52.8 1.24
35.4 9.6 931016 65 65 1.73

FIG. 2. ~Color online! ~a! Current (J05evMND / l ) vs time dur-
ing self-oscillations for a 100-period SL at 300 K, as described
the GDDE in the Boltzmann limit~solid line! and by the DDE
~dashed line!. ~b! Comparison between the dipole wave for th
GDDE ~1! and the dipole wave for the DDE,~2!.
4-3
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R~F ![
eF D~F,0!

kBTV~F,0!
5

DI0

4kBTI1

3

12
122F 2

114F 2 S nI2

I0
D 8

2
2F 2

~11F 2!2te
2 F S nI1

I0
D 8G2

11
e2D lND@12~11te

2!F 2#I 1

2«\2~ne1n i !
2I0~11F 2!3

.

~20!

In the Boltzmann limit, exp(m̃2d1d coskl)!1, and we can
substitute the modified Bessel functionsI s(d) instead of
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Ignoring correcting terms, in this limit the right-hand side
Eq. ~21! becomes 1 and the Einstein relation holds. Figur
shows the deviation from the Einstein relation at differe
temperatures, either using the Fermi-Dirac distribution in E
~1!, using its Boltzmann limit, or the two-term approxima
tion ~21!. Deviations are more appreciable at low tempe
tures. In the limitkBT@max(D,p\2ND /m* ), the GDDE~13!
becomes the DDE~19! up to terms of ordered if we setA
511O(e);1.

In conclusion, we have derived a generalized dr
diffusion model for charge transport in miniband superl
tices by means of a consistent Chapman-Enskog method
all temperatures, its predictions deviate appreciably fr
those of the usual DDE with the Esaki-Tsu drift velocity a
diffusion obeying the Einstein relation. The DDE holds
the limit e!1, kBT@max(D,p\2ND /m* ), which is not very
realistic for many strongly coupled SL’s, even at room te
perature. Detailed analyses and comparison between the
dictions of the two DD models and those of the origin
kinetic equation will be considered in future works.
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