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We study a Luttinger Liquid in a finite one-dimensional wire with box-like boundary conditions by consid-
ering the local distribution of the single-particle spectral weight. This corresponds to the experimental prob-
ability of extracting a single electron at a given place and energy, which can be interpreted as the square of an
electron wave function. For the noninteracting case, this is given by a standing wave at the Fermi wave vector.
In the presence of interactions, however, the wave functions obtain additional structure with a sharp depletion
near the edges and modulations throughout the wire. In the spinful case, these modulations correspond to the
separate spin- and charge-like excitations in the system.
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The problem of a particle in a one-dimensional box is asion®® In a linearized region around the Fermi points the
classic example in almost any quantum mechanics text boolermion field can be expanded in terms of left and right mov-
since it gives a pedagogical introduction to the concept ofrs
energy quantization and provides a complete visualization of
the corresponding wave functions. It is however only re- W (x,t)~e ¥ yn(x,t)+e KXy (x,t). )
cently that this problem has gained true experimental rel-
evance due to the progress in constructing smaller and mofehe Fourier modes of the left- and right-moving fermion
refined structures to confine electrons in dots and wires. It isjensity are then represented by bosonic creation and annihi-
for example, now possible to resolve the electron wave funclation operators, which effectively act by “shifting” fermions
tions in a finite piece of carbon nanotube by scanning tunm steps up or down the spectrum. In the presence of interac-
neling microscopy(STM) experiments3 Most experimen-  tions it is then possible to solve the model by a Bogoliubov
tal realizations of one-dimensional electron boxes contaifransformation which mixes the left- and right-moving
many electrons in a Fermi sea, but it is possible to study &0sons. This transformation can be described by a single
single particle excitation on top of such a ground-state con-Luttinger liquid parameter”g, which gives the hyperbolic
figuration and classify the possible energy levels and wav&°Sinea and sines of the Bogoliubov transformation
functions.

However, electron-electron interactions may produce in- 1/1
teresting effects in such one-dimensional many-body systems 2 9/, B= §<§ - g) : &)
and systematically change the shape of the electron wave-
functions. In fact single-particle excitations are no longer theHere g<1 for repulsive backscattering interactions amd
eigenstates of an interacting Hamiltonian, but of course it is=1 for no interactions. Forward scattering does not affect
still interesting to determine the probability of extracting or this parameter, but rescales the effective Fermi velocity.
inserting individual electrons at a given position and energy. Let us now consider spinless fermions in a one-
This local probability density can be interpreted as the squardimensional box of length with fixed boundary conditions
of the electron wave function. We therefore study the funda¥'(0)=¥(L)=0. After bosonization the fermion fields be-
mental problem of single-particle excitations in a many-bodycome exponentials of the boson operators in a linearized re-
interacting fermion system confined to a one-dimensionalgion around the Fermi points
box using the Luttinger Liquid formalism.

We find that the classic example of a box provides again a

good visualization of the effect of interactions on the wave Yr(X, )= gl Am(adrixt) =B (1) 3
function and the energy quantization. In particular, in addi- ma

tion to the expected rapid Fermi wave vector oscillations in

the wave-function we can recognize long wavelength modu-

lations, which correspond to the underlying boson-like exci- (X, t) = g~ VAT(ad (x) = Bor(x.1)) (4)
tations in the Luttinger liquid. For repulsive interactions the 2ma

wave-functions are sharply depleted at the edges with a char-

acteristic power law. Analytic expressions for the wave func-where a is a short-distance cutoff parameter. The fixed

tions of the first few levels are presented. For an analysis dfoundary condition therefore relates the left- and right-

an interacting boson system see Ref. 4. moving boson fieldspr(X,t) = — ¢ (—X,t) + ¢y and deter-
The Luttinger liquid formalism is a well-established tool mines the mode expansion in terms of ordinary boson cre-

to describe interacting electrons confined to one dimenation and annihilation operators, and zero médes
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where[ ¢,,Q]=i and ¢o=\7/2g. The eigenvalues of the )t | | U‘ | | J U |
zero modesQ=(n—ny—3)\w/g are quantized with the & n=1, g5 .+ =08 . )
number of electrons, whereny=kgL/7 corresponds to the © g=0.7 L
number of electrons in the ground state. 2 * =08 ﬁ/‘*”w
The Hamiltonian is given byH=(mv/L)Zmalan ! A 2

+ (v/2L)Q?, wherev is the renormalized Fermi velocity. We

| | ; . + |
see that the last term iH resembles a “charging” energy Il W [\ #// :
T

proportional to the square of the excess number of fermions
but this will not affect our calculations since we always con- o
sider single-particle excitations with exactly one additional

fgrmlon n=n9+;L. In general f[here may also b? an f"‘dd" FIG. 1. (Color online The wave function squared corresponding

tional capacitative energy with a corresponding single+, m=1 andn,=40 in units ofc. The modulations become more

particle charging energi,. ) __ pronounced with increasing interaction stren¢smallerg). Last
The boson excitations become highly degenerate with inpanel: the integrated probability density for the first 50 levels com-

creasing energy levels which are always quantized pared to the power law behaviar?’.
=m(mv/L). However, we are interested in the correspond-

ing fermionwave function of a single-particle excitation on
the ground stat wy,|x)={(wm|¥'(x)|0). The probability
density p(wn,,X) is given by the sum of the corresponding
degenerate wave functiod® ,|x) squared

0
L2 x L 10 20 30 40 50

presence of interactions. These correlation functions can be
simplified to power laws of sine functiofi$ but the form
above avoids any singularities in the integral of Ef).since

for a given levelw, we can truncate the sum in the expo-
nential byk=m. For the first few levels we are even able to
P(wm,X)E; [(@m N ¥T(x)[0)[2. (6)  evaluatep analytically:

This is the local density of states which gives the experimen- 208

tal probability of tuqneling an electron into tht_'-z system at p(wl,X)=C(Sin—X) 20m?[ y,(x)elkF ],
energy o, and positionx. This spectral density can be L

readily evaluated for an equally spaced spectrum by the Fou-

rier transformation of Green’s function

X 2aB .
sinf) (M2 30

N p(wz,X)=C
”("’m'x):ZJ dte“ni(U(x,)¥'(x0). (7)
: | M xa(0 ),
After defining a “mixed wave” Xm(X) = ae™(™L)
+ge"M™IL) “we find
X 2apB -
sin—L) (glmz[xf(x)e'kFX]

X 2ap P(wg,X)ZC
(llfL(X,t)llfI(x,O)):c(sinT)
+|m2[X1(X)X2(X)e'kFX]+ §|m2[X3(X)e'kFX] .

’

*© e*ik(ﬂ'vl/L)
xextt 3, S —u(P
k=1

(10)
(8) The probability density shows an oscillation dfzx with
modulations according to the mixing of left- and right-
+ x| 29k moving components iny,,. As can be seen in Fig. 1, the
(RO PL(X,00) = —c| sin— amplitude of the modulations increases with the interaction

strength(smallerg) and the envelope shows a depletion near
o e kmih) the edges with a characteristic power la%#? in agreement
X ex k§=:l — X |- (9 with the notion of a boundary exponent? In the limit of
small level spacing.—« we recover the known Luttinger
Here c=(42“3/L)(27-ra/L)252 is a nonuniversal cutoff- liquid power law behavior of the integrated density of states
dependent renormalization parameter which sets the units ipu(cu)ocwzﬁ2 (last panel of Fig. L In Fig. 2 we see that the
our calculations and suppresses the spectral weight in th@odulations of level,, always havem “nodes” and m+1
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FIG. 2. The wave function squared of the first few levels for
g=0.7 andny=40 in units ofc.

maxima with roughly equal spacing and height resembling a
standing wave with a small wave vectey,/v, correspond-
ing to the density waves from the boson excitations relative
to the Fermi-energy. It is also instructive to consider the
noninteracting limitg=1, for which we always recover a
normalized standing wave of wave vectork2¢ wq,/v)

of degenerate many-boson statasd vice versa
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ith dulati depleti h h FIG. 3. (Color onling The single-particle density of a spinful
W't out any modu _atlo_ns or dep etion, even though a gen_er%teracting electron system as a function of energy and position
single fermion excitation still corresponds to a superposﬂmr{mong a finite box forg,=0.7,g.=0.6, andv.=2.3. (slightly

S st dce g Cc . S

broadened, so that the fast oscillations are averaged This may

Itis now interesting to explore this modulation pattern for yesemble the outcome ofdi/dV measurement in a STM experi-
the spinful case where we expect separate spin- and charg@ent on a finite interacting wire. Top: fully resolved level fog
like excitations. In this case the electron field with spin =4m.=1, and kcL/7)=40. The two charge peaks and the five

== is expressed in terms of spin and charge boson operaveaker spin peaks are visible.

tors with two Luttinger liquid parameteig andg.,

scaled xm,,(X)=(a,/\2)e™™D+ (B, /\2)e” ML),y
=s,c,
YR o (X)= Lei v‘ﬂ(achR,c—BCQSL,C)eiovﬂ(as¢R,s—Bs¢L,s), [sin(wx/L)]asﬂs[sin(ﬂx/L)]acﬁc,
’ In Fig. 3 we show the square of the wave functions at the
1D jowest energies in a spinful interacting electron system with
0s=0.79.=0.6, andv.=2.3 . Due to the different veloci-
and the analogous expression fg¢pf ,. The mode expan- ties, the degeneracy is lifted and many more levels appear as
sions for the spin and charge bosons are the same as in Bije energy is increasddee also Fig. 4 in Ref.)8Each level
(5), and the Hamiltonian is also given by the a simple sumis classified by a spin and a charge quantum numieand
H=EFCYS(Emy(vVq-r/L)mVa;yamyﬂL(v,,Qﬁ/ZL)). There- m¢, respectively, which is reflected by the corresponding
fore, the spin and charge excitations are decoupled except fiymber of nodes and maxima in the wave functions. For
the quantization conditons on the zero mod€y,  €xample, the levem;=4m.=1 shows a superposition of
= (N7/2g99)!, Q.=(Vm/\29)[n—1—2keL/m] that two charge maxima and five weaker spin maxima. The inte-

V2ma

[I,n] must be either both even or both odd,1] in our

the overall

factor is given by

grated weight of the individual levels decreases with increas-

cas¢. For the noninteracting case, spin and charge excitad €nergy, but the totahveragegidensity of states increases
tions are exactly degenerate, but now the excitations areith the known power lawp(w)>xw?s*Ac. The superstruc-
classified by the product space of two evenly spaced bosotures survive even in the continuum limit and give rise to the
spectra with different energy spacimg<v.. The partition  observed slow oscillations with wave vectest . andw/vg
function and the electron Green’s function factorize. Therenear the edge of a semiinfinite Luttinger liqdid>*?In the

fore, the wave functions are products of spin and charg@oninteracting limitgs=g.=1, we recover again standing
modulations which are similar to the ones shown inwaves with a fixed wave vector without any modulations,
Fig. 2 and Eq.(10), except that the mixed wave is re- and remarkably all the many degenerate spin and charge bo-
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son states at each energy level exactly sum up to an intéaken into account depending on the individual system. Car-
grated normalized spectral weight of unity. bon nanotubes are one promising system, but unfortunately
In Fig. 3 we have chosen values g{=0.7 andg. in ordinary STM experiments the metallic substrate appears
=0.6, which emphasize the locations of both spin ando screen all interaction effects® while a less conducting
charge modulations, but in systems where the interactionsurface may impede the quality of the STM images. Other
are mostly spin independegy is likely to be much closer to  possible systems include metallic one-dimensional nano-
unity and the spin modulations are less pronounced. Nonestryctures on cleaved surfatésand cleaved edge over-
theless, the level structure due tq<v. as well as the  growth wires, where spectral properties can be detected in-
charge modulations are likely to be observable when classigirectly by a clever way of analyzing the tunneling between

fying Luttinger liquid systems in real space with STM ex- a4jacent wires as a function of voltage and magnetic ff&ld.

periments. In experimental systems there will be a number ok yis point we cannot speculate which experimental system
complications that have to be taken into account. First of al s

) best suited, but given the rapid progress in STM imaging
in order to observe the f(_ea'_[ures, the temperature hgs to lOa‘;‘ﬁd nanostructured materials the predicted wave functions
well below the characteristic energy scate /L, which

. are likely to be observable soon when classifying different
corresponds to a few hundred degrees kelvin for a nanostru%—inds of potential Luttinger liquid systems

turret ?f ?r?ct)ﬁt ]1;|Ocl)dAth Sercond,v\?o”nunl\l/er:sarl f;]lghei:]torrde;i Orﬁ)' In conclusion we have shown that the single-particle wave
erators ene eory as well as long-range interactio Tlﬁmctions of interacting fermions in a box can be used to

may alter t_he be_hawor near the edz%%s and give corrections sualize the true nature of the underlying boson excitations.
the depletion with the power law~*”, although the node

structure will be rather robost. Additional bands may also be This research was supported in part by the Swedish Re-
observed by the STM at higher energies, which has to bsearch Council and INFM.
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