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Coulomb blockade regime of a single-wall carbon nanotube
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We study a model of carbon nanotube with a half filled conduction band. At this filling the system is a Mott
insulator. The Coulomb interaction is assumed to be unscreened. It is shown that this allows to develop the
adiabatic approximation which leads to considerable simplifications in calculations of the excitation spectrum.
We give a detailed analysis of the spectrum and the phase diagram at half filling, and discuss effects of small
doping. In the latter case several phases develop strong superconducting fluctuations corresponding to various
types of pairing.

DOI: 10.1103/PhysRevB.68.235419 PACS number~s!: 71.10.Pm, 72.80.Sk
nt
a
a
-
rv
io
e

gh
ne

ha
s
ap
nt
o

he
po
se
uc
a

m
t

tio
. 3

to
ua
b
tiv
if
i

t
a
fo
w
u

ll
er
o

gly

iffer-

n-

il-
the

-
is

he
heir

ob-

ne-
I. INTRODUCTION

Carbon nanotubes have attracted an enormous amou
attention and generated an immense level of theoretical
experimental activity. It has been rightly pointed out th
single-wall carbon nanotubes~SWCN! represent ideal one
dimensional~1D! systems and one may expect to obse
here exotic phenomena characteristic for strong correlat
in one dimension. Most of the attention has been conc
trated on a possibility of Tomonaga-Luttinger liquid. Thou
such liquid is certainly a very interesting object, it is just o
of many wonders strong correlations can produce.

In this paper we concentrate on the physics of an armc
SWCN at half filling. The features which dominate this phy
ics are the unscreened Coulomb interaction and Umkl
processes. The importance of the unscreened Coulomb i
action for nanotubes away from half filling was already n
ticed in the previous studies.1,2At half filling some additional
factors come into play. It was realized in Ref. 3 that t
long-range Coulomb interaction makes the operators res
sible for the Umklapp scattering terms relevant. Con
quently, the gaps for collective excitations generated by s
operators are not exponentially small, as it would be aw
from half filling, but have power-law dependence on the U
klapp scattering matrix elements. Such enhancement of
gaps increases chances for their experimental observa
Unfortunately, in their further analysis the authors of Ref
resorted to renormalization group~RG! equations, which for
systems with many fields do not provide much insight in
the properties at the strong-coupling fixed point. RG eq
tions also do not take into account the drastic difference
tween velocities of the plasma modes and all other collec
excitations. Instead of adding difficulties, however, the d
ference in velocities leads to considerable simplifications
actual calculations~see Ref. 4!. In this paper we shall exploi
this feature to our advantage and develop an approach b
on the adiabatic approximation similar to the one used
the problem of electron-phonon interaction. As a result
will be able to provide a rather detailed information abo
the spectrum and the phase diagram of the system. As wi
shown below, the interplay of the long-range Coulomb int
action and Umklapp processes at half filling gives rise t
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phase diagram which includes several interesting stron
correlated states. The system has a hidden Z23Z23Z2 sym-
metry and these phases are conveniently classified as d
ent symmetry-breaking patterns of this group.

II. THE PROBLEM OF SINGLE-CHANNEL WIRE
AT HALF FILLING

To warm up, let us first recall the problem of the u
screened Coulomb interaction for a single chain~or a single
channel quantum wire! at half filling. The charge and spin
sectors decouple; the Tomonaga-Luttinger liquid Ham
tonian for the charge sector should be supplemented by
Umklapp term which contains only the charge fieldFc :

V5Ua0~R↑
1L↑R↓

1L↓1H.c.!5
U

2p2a0

cos@A8pFc#, ~1!

whereUa0 is the 2kF5p Fourier component of the interac
tion. The full Hamiltonian density for the charge sector
H5H01V, where

H05
1

2 F ~p̂c!
21~]xFc!E dyV~x2y!~]yFc!G ,

V~x!5v2d~x!1
e2v
puxu

, ~2!

v being the Fermi velocity. This model is very close to t
sine-Gordon one. The spectrum contains solitons and t
bound states~breathers or excitons!. To get their spectrum
one can just expand the cosine around its minimum and
tain

v25~vq!2F11
2e2

pv
ln~1/qa0!G1mb

2 , ~3!

where the breather gap ismb5(2/p)AUeF, eF5pv/a0 .
The breathers are effectively optical phonons of the o
dimensional Wigner crystal.5 The soliton gap is larger; it was
estimated in Ref. 4, a better estimate is
©2003 The American Physical Society19-1
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Ms5
1

p
@11~2e2/pv !ln~v/Msa0!#AUeF. ~4!

The spectrum in the spin sector is gapless, and the spin
locity is approximatelyv. Thus already for a simple one
chain problem, the long-distant Coulomb force brings th
important new features:~i! strong upward renormalization o
the charge velocity seen in Eq.~3!, ~ii ! the presence of exci
ton modes in the charge sector, and~iii ! power-law depen-
dence of the mass scalesMs ,mb on the Umklapp matrix
elementU.

III. THE EXCITATION SPECTRUM OF NANOTUBE
AT HALF FILLING

SWCN’s are manufactured by wrapping two-dimensio
graphite sheets into cylinders~compactification!. The elec-
tronic spectrum of an infinite graphite sheet contains t
Dirac cones with different chirality, centered at differe
points of the Brillouin zone~the blue dots on Fig. 1!. Under
compactification the spectrum is divided into subbands c
responding to different quantized values of the transve
momentum. In the so-called armchair nanotubesky50 re-
mains an eigenvalue and the spectrum in the lowest subb
stays gapless; at half filling it is also doubly degenerate
low energies. This degeneracy is a vestige of the double-c
structure of the two-dimensional dispersion. We discuss
spectrum in some detail in Appendix A; more detailed info
mation can be obtained from the book.6

FIG. 1. ~Color! The Bravais lattice cell~shown in dotted lines!
including two inequivalent carbon ions~shown in red and green!
and the Brillouin zone for graphite.e1 and e2 are basis vectors o
the diatomic unit cell. The positions of the tips of two Dirac con
labeled by 1 and 2 are represented by blue and brown dots.
23541
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In Appendix B we derive the bosonized form of the effe
tive low-energy Hamiltonian. The total Hamiltonian densi
is

H5H0@Fc
(1)#1

1

2 (
a

@~p̂ (a)!21v2~]xF
(a)!2#1V, ~5!

whereH0 is given by Eq.~2!; Fc
(1) is the symmetric charge

mode. The labela takes three values,a5(c,2),(s,1),(s,
2), corresponding to the antisymmetric charge field a
symmetric and antisymmetric spin fields, respectively~see
Appendix A!. The interaction densityV contains Umklapp
terms

V52
1

2~pa!2
cos~A4pFc

(1)!@gccos~A4pFc
(2)!

1~g32g1!cos~A4pFs
(1)!1g3cos~A4pQs

(2)!

2g1cos~A4pFs
(2)!#1•••, ~6!

where the dots stand for all other terms that do not invo
Fc

(1) and stay marginal even in the presence of the
screened Coulomb interaction. The couplingsgc , g1 , andg3
are determined by the lattice Hamiltonian. In Appendix B w
estimate them for realistic carbon nanotubes, where, a
turns out,gc5g1 and, hence, there are only two independe
coupling constants. The unscreened Coulomb interac
strongly reduces the scaling dimension of the opera
cos(A4pFc

(1)) in the long-wavelength limit, making it
smaller than 1. Thus the Umklapp terms~6! become strongly
relevant, with the scaling dimension almost equal to 1. T
circumstance dramatically increases the values of the ga

One may well expect that the double degeneracy of
electron band in carbon nanotubes makes the problem s
lar to the problem of two interacting chains~the ‘‘ladder’’
problem! much discussed in literature. This is indeed t
case. To put the problem in a broader context, let us disc
two extreme types of ladders:~i! the ones where two chain
are placed far apart such that there is no direct tunne
between them, and~ii ! those in which the interchain tunne
ing is stronger than all the interactions. Hamiltonians~5! and
~6! are formally equivalent to the first case describing tw
well separated chains. As a matter of fact, the Hamilton
for case~ii ! is not very different. The calculations done
Ref. 7 for the ladder with strong interchain tunneling yiel
the same Hamiltonian as Eq.~6!, but with Fc,2 field being
substituted by its dual counterpartQc,2 :

VB5VA@Fc,2→Qc,2#. ~7!

Therefore one expects that the two models have the s
excitation spectrum though the response functions are di
ent due to the different field identification.

Hamiltonian ~6! is not very convenient to analyze in it
bosonic form since the effective potential contains mutua
nonlocal and noncommuting fields,Fs,2 and Qs,2 . The
physics becomes significantly more transparent when
uses the refermionization procedure.8,9 Fermionizing all the
fields except ofFc

(1) , we obtain
9-2
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H5H0@Fc
(1)#1 iv~2Rf

†]xRf1L f
†]xL f !

1
iv
2 (

a50

3

~2xR
a]xxR

a1xL
a]xxL

a!2
i

pa
cos~A4pFc

(1)!

3Fgc~Rf
†L f2H.c.!12gt (

a51

3

xR
axL

a12gsxR
0xL

0G ,

gc5g1 , gt5~g32g1!, gs52g12g3 , ~8!

where xR ,xL are Majorana~real! fermions andRf ,L f are
Dirac fermions emerging from the fermionization of the o
erator cos(A4pFc,2) or, in the second case, cos(A4pQc,2).
Note that Eq.~8! is manifestly SU~2! symmetric. The triplet
of Majorana fermions (a51,2,3) transforms according to th
spin S51 representation of the SU~2! group, whereas the
fermion labeled bya50 is a singlet under the SU~2!.

Following Ref. 10, we shall handle Hamiltonian~8! using
the adiabatic approximation, whose validity is guaranteed
the fact that the velocity in the symmetric charge secto
strongly enhanced by the long-distant Coulomb interact
with respect to the bare Fermi velocity. The results ha
certain similarity with the SU~4! theory proposed in Ref. 11
but also contain important differences, which we shall d
cuss.

Thus, from theFc
(1)-mode point of view, the other de

grees of freedom are static. Integrating over this mode,
obtains an effective potential for the fermions in the form
the ground-state energy of the sine-Gordon model. Acco
ing to Ref. 12 the energy density is proportional to the squ
of the breather massmb of such sine-Gordon model and i
the regime of small sine-Gordon coupling constantb2 is
equal to

E'2
mb

2

4pvc
'2v/~pavc!F igc~Rf

†L f2H.c.!

12igt (
a51

3

xR
axL

a12igsxR
0xL

0G , ~9!

wherevc'vF@11(2e2/pvF)ln(eF /M)#1/2 andv'vF . So as
we see, the integration over the fast mode gives rise to
mass terms for all of the fermions. The fermionic mod
acquire gaps

M c,25
vgc

pavc
, M s,t5

vgt

pavc
, M s,s5

vgs

pavc
. ~10!

They correspond to neutral excitations with the quant
numbers given in the Table I that follows; see also Fig. 2.
far as the fast modes are concerned, one has to treat d
ently the ones with and without electric charge. The neu
modes do not involve solitons of fieldFc

(1) . One can get a
good estimate of their spectrum replacing the term in
square brackets in expression for the Hamiltonian~8! by a
constant and expanding around the minimum of the cos
potential. As a result one gets the same spectrum as fo
single chain~3! with
23541
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25p~M c,2

2 13M s,t
2 1M s,s

2 !ln~v/a!,

where with the logarithmic accuracyM is either M c,2 or
MS . Thus

mb /M;@ ln~v/aM !#1/2@1,

which further supports the adiabatic approximation. Ho
ever, as we have already mentioned, its validity is alrea
assured by the difference in the velocities. Apart from t
breather modes there are massive modes correspondin
half-period solitons inFc

(1) with zero modes of the fermion
bound to them. These excitations have the largest gap~we
call it Me) and carry quantum numbers of electron.

The results for the spectrum are summarized in Tabl
see also Fig. 2. Excitations are characterized by quan
numbers associated with the full continuous symmetry gro
of the effective model~8!. These are the total chargeQ mea-
sured in units of the electron chargee, total spin S, and
‘‘vorticity’’ V. Let us comment on the latter. While the glob
U~1! phase invariance and the spin SU~2! symmetry, leading
to conservation of the total charge and spin,

Q5
2

Ap
E

2`

`

]xFc
(1)~x!, Sz5

1

Ap
E

2`

`

]xFs
(1)~x!,

~11!

are exact symmetries of the original, microscopic Ham
tonian, an extra~‘‘flavor’’ ! U~1! symmetry generated by glo
bal phase transformations of thef spinor (Rf ,L f) ~or equiva-
lently, by uniform translations of the dual fieldQc

(2)),
emerges in the low-energy limit only. This symmetry leads
conservation of the flavor charge

V5
2

Ap
E

2`

`

]xFc
(2)~x!, ~12!

which, together with conservation ofQ, implies independent
conservation of the particle numbers at each Dirac po
Q1,25(Q6V)/2.

The nomenclature vorticity we have chosen follows fro
the microscopic origin of the flavor density. Indeed, consid
a lattice operator describing a current flowing around
elementary plaquette of sublatticea or b:

j plaq,n~r !5 i @cn
†~r !cn~r2e2!1cn

†~r2e2!cn~r1e1!

1cn
†~r1e1!cn~r !2H.c.#

n5a,b. ~13!

TABLE I.

Mass Q S V

M s,t triplet 0 1 0
M s,s singlet 0 0 0
M c,2 vortex 0 0 62
mb breathers 0 0 0
Me electron 61 1/2 61
9-3
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From this construction it follows that the state with a no
zero ^ j plaq, a(b)& would represent an orbital antiferromagne
or a staggered flux phase, realized on the sublatticea (b), as
shown in Fig. 3. Projecting Eq.~13! onto theky50 subband
and passing to the continuum limit, one makes sure that
sumjplaq,a1 jplaq,b does transform to the flavor charge dens

r f5(
s

@ :R1s
† R1s :2:R2s

† R2s :1~R→L !#;]xFc
(2) .

Previous attempts to study the problem of two coup
channels have mostly relied on the assumption of equal
locities with the subsequent use of RG analysis. The
proach was pioneered by Linet al.11 who argued that a
strong coupling the spectrum of the two-chain problem
half filling acquires a higher symmetry, such as SO~6! or
even SO~8!. In fact, Gell-Mann-Low equations alone are i
sufficient to extract information about strong-coupling r
gime ~they have to be supplemented by Callan-Syman
equations for the physical observables! and therefore canno
provide a legitimate ground for such conclusions. Our
proach is based on a different assumption; here the lo
range Coulomb interaction legitimates a clear separation

FIG. 2. ~Color! A schematic picture of the excitation spectrum
~a! at half filling and~b! at small doping.

FIG. 3. ~Color! A staggered flux~orbital antiferromagnet! state
corresponding to a nonzero value of vorticityV. The arrows indicate
local currents flowing across the links of thea ~red! andb ~green!
sublattices.
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scales between single-particle excitations and collec
modes. This significantly simplifies the calculations prov
ing one with the well-controlled approximation. It is instru
tive to compare the results with those conjectured in Ref.
Though the structure of the multiplets is the same as in
SU(4);SO(6) theory, there are important differences in t
spectrum. Two quasiparticle multiplets~particles and antipar-
ticles! are fourfold degenerate, as in the SU~4! theory, but the
sixfold degenerate multiplet of the SU~4! is split into a dou-
blet with the massM c,2 , a magnetic triplet with the mas
MS,t , and a singlet mode with the massMS,s . The ratios of
the quasiparticle mass to the masses of the neutral mode
vastly different from the SU~4! Gross-Neveu model ratio
MS/Me5A2. They depend on the Coulomb interaction a
the quasiparticle gap is much larger than the spin and
parity collective-mode gaps. The gaps of the collect
modes are not equal. In nanotubes where there are only
independent coupling constants we expect that

2M c1Mt1Ms50 ~14!

~recall that since we deal with Majorana fermions, t
masses may be negative, the spectral gaps being their a
lute values!.

IV. THE ORDER PARAMETERS OF DIFFERENT PHASES

From now on we shall concentrate on the model desc
ing carbon nanotubes. Different phases, shown in Fig. 3,
respond to different ground-state phase lockings and are
termined by the signs of the fermionic masses,8 Eqs. ~10!.
These sign changes are not reflected in the thermodyna
which is sensitive only to absolute values of the masses.
difference in the correlation functions may, however, be qu
dramatic.

We use the following conventions:8

cos~ApFs
(1)!5s1s2 , sin~ApFs

(1)!5m1m2 ,

cos~ApQs
(1)!5m1s2 , sin~ApQs

(1)!5s1m2 , ~15!

cos~ApFs
(2)!5s0s3 , sin~ApFs

(2)!5m0m3 ,

cos~ApQs
(2)!5m0s3 , sin~ApQs

(2)!5s0m3 ~16!

where$s i% and $m i%( i 51,2,3,0) are order and disorder p
rameters of the 2D Ising models associated with the sin
( i 51,2,3) and triplet (i 50) Majorana fermions. A particula
Ising model is ordered (^s&Þ0) or disordered (̂m&Þ0) de-
pending on the sign of the corresponding Majorana ma
M,0 or M.0. In order to understand the structure a
properties of the correlation functions, one has to recall t
in the ordered phase of the Ising model, where^s&Þ0, the
correlation functionŠ^m(v,q)m(2v,2q)&‹ contains a co-
herent peak, while the correlation function of thes ’s does
not.

There are six possible phases, two of them being Hald
spin liquids. Such liquids are characterized by the prese
of a coherent triplet magnetic excitation~magnon! in the
two-point correlation function of the staggered magneti
9-4
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tions. In non-Haldane disordered phases, the spectrum
triplet excitations is incoherent; however spin-singlet mod
may be coherent. Table II and Fig. 3 show which operat
acquire nonzero expectation values in the correspond
ground states. It will be assumed that in all phases the s
metric charge field is locked atFc

(1)50, so that
^cosApFc

(1)&Þ0, ^sinApFc
(1)&50.

Below we give a brief characterization of each phase;
more details see the subsequent discussion.

~1! PhaseA: g1.ug3u. This phase has a long-range bo
density wave~BDW! order atT50 ~see Fig. 4 below!.

~2! PhaseB: 0,g1,g3 . This is a Haldane spin-liquid
phase whose excitation spectrum contains a coherent tr
magnon with the massMS,t , associated with the correlatio
function of the site-diagonal spin operatorS(2); see Eq.~24!.
Under doping it develops a power-law response of the p
ing susceptibility of type described further in the text. T

TABLE II.

Phase

A ^cos(ApFc
(2))&Þ0 ^sa&Þ0 ^s0&Þ0

B ^cos(ApFc
(2))&Þ0 ^ma&Þ0 ^s0&Þ0

C ^sin(ApFc
(2))&Þ0 ^ma&Þ0 ^s0&Þ0

D ^sin(ApFc
(2))&Þ0 ^ma&Þ0 ^m0&Þ0

E ^sin(ApFc
(2))&Þ0 ^sa&Þ0 ^m0&Þ0

F ^cos(ApFc
(2))&Þ0 ^sa&Þ0 ^m0&Þ0

FIG. 4. ~Color! The phase diagram. For each quadrant it is
dicated which Ising-models order and disorder parameters h
nonzero ground-state expectation values. The phases are sep
by critical lines on which one of the particle masses vanishes.
green and red lines areZ2 and SU2(2) critical lines respectively.
Theg150 axis corresponds to theU(1) critical line. PhasesA and
D have density wave order. Under doping phasesB, E, and C, F
develop a power-law response to superconducting paring.
23541
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corresponding superconducting order parameter transfo
nontrivially under the lattice point group.

~3! Non-Haldane phaseC: 2g3,g1,0. The magnetic
singlet mode with massMS,s becomes coherent in this phas
As a result a coherent peak appears in the correlation fu
tion of the charge-density wave order parameterDCDW , Eq.
~18!. Under doping this phase develops superconducting
relations in thes channel.

~4! PhaseD: g1,2ug3u. There is a charge-density wav
~CDW! long-range order in the ground state of this pha
Phases CDW and BDW are mutually dual.

~5! PhaseE: g3,g1,0. This is another Haldane phas
dual to phaseB. PhaseE has a coherent magnon in the sit
off-diagonal spin densityS(2), Eq. ~25!. Under doping it
develops superconducting correlations of the same type
phaseB.

~6! PhaseF: 0,g1,2g3 . This phase is dual to phaseC
and has a coherent spin-singlet mode displayed by the B
order-parameter correlation function. Under doping it dev
ops superconducting correlations in thes channel.

A. Order parameters, possible orderings,
and dominant correlations

CDW. Already for geometrical reasons~the lattice is bi-
partite! one may expect that the system at half filling c
develop a commensurate charge-density wave. Introdu
locally averaged electron densities fora andb sublattices,

r̄n~r !5 1
3 @cn

†cn~r !1cn
†cn~r1e1!1cn

†cn~r2e2!#,

n5a,b, ~17!

we define the CDW order parameter~OP! as follows:

DCDW~r !5 r̄a~r !2 r̄b~r !

;(
s

~R1s
† L1s2R2s

† L2s!1H.c.

;sin~ApFc
(1)!cos~ApFc

(2)!s1s2s3s0

2cos~ApFc
(1)!sin~ApFc

(2)!m1m2m3m0 .

~18!

This OP has a nonzero average value in phaseD. In phaseC
where^sin(ApFc

(2))&Þ0 and^ma&Þ0 (a51,2,3), the most
singular part of the CDW order parameter is proportional
m0 . Since we are in the phase with^s0&Þ0, operatorm0 has
a nonzero matrix element between the ground state an
state with one Majorana fermion. Therefore, the correlat
function of CDW OP’s contains a coherent peak correspo
ing to an emission of the singlet magnetic mode with t
massMS,s .

BDW. The bond density wave order parameter is simi
to the CDW one, but is off diagonal in the site indices,

-
ve
ated
e

9-5
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DBDW~r !5ca
†~r !@cb~r1e1!2cb~r2e2!#

2@ca
†~r1e1!2ca

†~r2e2!#cb~r !1H.c.

; i(
s

~R1s
† L1s2R2s

† L2s!1H.c.

;sin~ApFc
(1)!sin~ApFc

(2)!m1m2m3m0

1cos~ApFc
(1)!cos~ApFc

(2)!s1s2s3s0 .

~19!

This phase is dual to the CDW one. The BDW order para
eter condenses in phaseA. The dimerization ordering patter
in this phase is shown in Fig. 4. In the disordered phasF
~which is dual to phaseC), the spectral weight of the OP
DBDW contains a coherent magnetic singlet mode with
massMS,s .

Note that the CDW and BDW OP’s do not contain a
~Fig. 5! oscillatory pieces. These show up in the density d
tributions that are not uniform across a sublattice but oth
wise are consistent with the uniaxial symmetry of the na
tube,

r̃n~r !5 1
2 @cn

†cn~r1e1!1cn
†cn~r2e2!2cn

†cn~r !#,

n5a,b.

Two incommensurate CDW OP’s can then be constructe
follows:

DmCDW
(1) ~r !5 r̃a~r !1 r̃b~r !

;e22iQx(
s

~L1s
† R2s2R1s

† L2s!1H.c.

; ik1↑k2↑e22iQxeiApQc
(2)

3@sin~ApFc
(1)!m1m2m3s0

1 i cos~ApF (1)!s1s2s3m0#1H.c., ~20!

FIG. 5. The dimerization in BDW phase.
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DmCDW
(2) ~r !5 r̃a~r !2 r̃b~r !

;e22iQx(
s

~R1s
† R2s2L1s

† L2s!1H.c.

;k1↑k2↑e22iQx@Rf
†xR

(0)1L f
†xL

(0)#1H.c.,

~21!

where k ’s are Klein factors. Since the dual antisymmetr

charge fieldQc
(2) is strongly disordered (^eiApQc

(2)
&50), the

OP DmCDW
(1) has zero expectation value in all sectors of t

phase diagram. In phaseF, where ^sa&Þ0(a51,2,3),
^m0&Þ0, the correlation function of the mCDW1 OP dis-
plays a coherent peak corresponding to emission of a vo
particle with the massMc,2 .

The charge distribution corresponding to the OPDmCDW
(2)

is depicted in Fig. 6. This kind of order can be induced
applying a modulated potential of sufficient strength th
couples toDmCDW

2 . The potential must be strong enough
overcome the energy gaps of the corresponding excita
branches and to drive the system into a state with an indu
order of the mCDW2 type.

Magnetization. The total magnetization is given by

S15 1
2 ca

†sca1 1
2 cb

†scb5IR1IL1 1
2 $e2iQx@~R2

1sL1!

2~L2
1sR1!#1H.c.%.

Its smooth part is equal to the sum of the chiral currents
the Majorana triplet,

I R(L)
a 5J1,R(L)

a 1J2,R(L)
a 52

i

2
eabcxR(L)

b xR(L)
c .

The oscillating part of the spin density is~Klein factors omit-
ted!

S2Q
(1);eiApQc

(2)
@2sin~ApFc

(1)!m0N1 icos~ApFc
(1)!s0Ñ#.

~22!

FIG. 6. ~Color! The charge distribution for the mCDW order
9-6
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Here Ñ5(m1s2s3 ,s1m2s3 ,s1s2m3) and N
5(s1m2s3 ,m1s2m3 ,m1m2s3). This OP is never coherent

On the other hand, to define thestaggered magnetizatio
S(2)(r ) associated with the bipartite lattice, we need to
troduce locally averaged spin densities for the two sub
tices @cf. Eq. ~17!#:

s̄n~r !5 1
6 @cn

†scn~r !1cn
†scn~r1e1!1cn

†scn~r2e2!#,

n5a,b. ~23!

Then

S(2)~r !5 s̄a~r !2 s̄b~r !

;~R1
†sL12R2

†sL2!1H.c.

;cos~ApFc
(1)!cos~ApFc

(2)!s0N

2sin~ApFc
(1)!sin~ApFc

(2)!m0Ñ. ~24!

The OPS(2)(r ) is coherent in the Haldane spin-liquid pha
B, the corresponding particle representing a massive tri
magnon. Note that in the expression~24! the vector fieldN
plays the role of the staggered magnetization of the effec
antiferromagnetic spin-1 chain.8

In full analogy with the BDW OP~19!, one can construc
the site-off-diagonal staggered magnetization

S(2)~r !5 1
2 ca

†~r !s@cb~r1e1!2cb~r2e2!#

2 1
2 @ca

†~r1e1!2ca
†~r2e2!#scb~r !

;
i

2
~R1

†sL12R2
†sL2!1H.c.

;cos~ApFc
(1)!sin~ApFc

(2)!m0N

1sin~ApFc
(1)!cos~ApFc

(2)!s0Ñ. ~25!

The structure of Eq.~25! indicates that phaseE represents a
Haldane spin liquid and is dual to phaseB. Indeed, in phase
E it is the vector fieldÑ that can be regarded as the stagge
magnetization of the effectiveS51 chain, and, hence, th
spectral weight of the operatorS(2) contains in this phase
coherent triplet magnon.

Pairing operators. Let us construct thes-wave supercon
ducting (SC) order parameterDsSC. To this end, we first
build locally averaged, site-diagonal, singlet pairing ope
tors:

DsSC
n ~r !5 1

3 @cn,↑cn,↓~r !1cn,↑cn,↓~r1e1!

1cn,↑cn,↓~r2e2!#, n5a,b.

The OPDsSC is then defined as
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DsSC~r !5DsSC
a ~r !1DsSC

b ~r !

;(
s

s~L1sR2,2s2L2sR1,2s!

;k1↑k2↓e2 iApQc
(1)

~cosApFc
(2)s1s2s3m0

1 i sinApFc
(2)m1m2m3s0!. ~26!

The amplitude of this OP acquires a finite value in no
Haldane phasesC and F. These two phases, with cohere
singlet magnetic modes in their spectrum at half filling, e
hibit power-laws SC correlations under doping.

The s-wave-type superconductivity is not the only po
sible singlet SC order one can imagine. One can introd
SC orderparameter which transforms nontrivially under th
point group

DmSC5
1
3 ca↑~r !@cb↓~r !2cb↓~r1e1!

2cb↓~r2e2!#2~↑↔↓ !

;(
s

s~L1sR2,2s1L2sR1,2s!1oscillatory terms

;e2 iApQc
(1)

@cos~ApFc
(2)!m1m2m3s0

1 i sin~ApFc
(2)!s1s2s3m0#. ~27!

This pairing OP exhibits power-law correlations in dop
Haldane phasesB andE.

To see what kind of superconductivity this is, let us co
sider the lattice mean-field Hamiltonian

H5~ca↑
1 ,cb↓

1 ,ca↓ ,cb↑!

3S 0 t~k! 0 g~k!D

t* ~k! 0 2g~k!D 0

0 2g* ~k!D* 0 t~k!

g* ~k!D* 0 t* ~k! 0

D
3S ca↑

cb2↓
ca↓

1

cb2↑
1

D , ~28!

whereg(k)52112 cos(kx/2)ei A3ky/2. The spectrum is

E25ut~k!u21ug~k!u2uDu2. ~29!

In the Haldane phaseC under doping we get the following
OP:

cas]xcb2s2ca2s]xcbs . ~30!

TheAharonov-Bohmeffect: they component of the vecto
potential is coupled to
9-7
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~R1s
1 L1s1L1s

1 R1s!2~R2s
1 L2s1L2s

1 R2s!

;cos~ApFc
(1)!sin~ApFc

(2)!s1s2s3s0

2sin~ApFc
(1)!cos~ApFc

(2)!m1m2m3m0 . ~31!

It is coherent in Haldane phaseE with an emission of the
magnetic singlet.

The staggered fluxaround a hexagonal plaquette is

F56eip/6e2iQx~L2
1L12R2

1R1!1H.c.

;~RfxR
(0)2L fxL

(0)!e2iQx1 ip/61H.c., ~32!

where the flavor fermion is associated withFc
(2) field.

Therefore there is an interesting possibility to drive a syst
into a peculiar critical state with a mixture of the magne
singlet and nonmagnetic orbital mode by applying a m
netic field with the corresponding period.

V. SMALL DOPING

The large velocity difference between the symmet
charge modes and the other part of the spectrum holds a
to the stability of the approach at finite doping. For sm
dopingkFa!exp(2pv/2e2) the soliton mode ofFc

(1) field,
though becoming gapless, still lies above the others in
most of the momentum space@see Fig. 2~b!#. This means that
one can still integrate overFc

(1) and obtain Eq.~9! though
with a prefactor,1. Thus a small doping will decrease th
gaps. It may also give rise to finite decay rates for the c
lective modes. This is a pseudogap regime which is perh
similar to the one existing in the underdoped state of
cuprate superconductors~see, for example, the recen
paper.13 The physics of this regime will be governed by tw
energy scales: the scale of collective modesMc @see Eq.
~10!# and the electronic scaleMe . At energies smaller than
Mc the system is a Luttinger liquid, atMc,E,Me the col-
lective modes contribute to all physical properties giving r
to strong enhancement of the magnetic susceptibility
specific heat. AboveMe the effects of backscattering disa
pear.

Let us briefly discuss a possible enhancement of the
perconducting fluctuations in a doped regime. In tho
phases where the amplitude of the SC order paramete
frozen ~see the discussion above! its power-law correlations
are determined by the scaling dimension of opera
exp@i ApQ1

(c)#. This scaling dimension is equal to 1/4K̃c

where K̃c is the renormalized Luttinger constant. At larg
doping the value of this constant is determined by the lo
distant Coulomb interaction and is small, but close to
transition~small doping! it is close to one~see Ref. 14 for a
more detailed analysis!. Therefore there is a window of dop
ing whereK̃c,1/2 where the pairing susceptibility diverge
A more detailed description of the pseudogap regime will
given elsewhere.
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VI. CONCLUSION

Let us summarize our results. We have analyzed the ef
of the long-range Coulomb interaction on the low-ener
properties of the armchain nanotube. We have shown tha
spectrum of the system is very rich. The phase diagram
cludes six phases differing from each other by their respo
functions. Under doping four of them have enhanced sup
conducting fluctuations.

SWCN’s exhibit two types of behavior: either band ins
lators or Luttinger liquids. Armchair CN’s are believed to b
metallic and be of the Tomonaga-Luttinger~TLL ! type. This,
in fact, is only true away from 1/2 filling. As shown in thi
paper, the picture changes dramatically at 1/2 filling wh
effects of strong correlations become crucial. To obse
these effects in experimental conditions, the chemical po
tial must be fine tuned to the valuem50 at which the Fermi
‘‘surface’’ is represented by two degeneracy~Dirac! points.
Then, due to the special role of Umklapp processes in
presence of unscreen Coulomb interaction, on lowering
temperature, one must be able to see a crossover from
metallic, TLL behavior to an insulator discussed in the pap
Such insulating state is Mott-type, with a much richer sp
trum than in the Hubbard model. One important difference
that, unlike in the Hubbard model, the spin excitations ha
spectral gaps.

The estimates of interaction matrix elements for carb
nanotubes are provided in3:

gi5b i

e2

Ne
, i 5c,t,s

bc'0.4, b t'0.5, bs'21.3, ~33!

whereN is the number of transverse bands of the nanot
ande'1.4 is the dielectric constant. These estimates indic
that realistic nanotubes belong to phaseB. Equation~10! also
gives the following estimates for the spectral gaps of
collective modes:

uMi u5ub i u
e2

pNae

v
vc

. ~34!

Sincea is the short distance cutoff of the bosonic theory a
is therefore non universal, this formula contains a cert
degree of ambiguity. For noninteracting electronspa5a0
~the lattice spacing!. Taking N510, v/vc51/3, and a0
50.246 nm we get the estimate of order of 0.1 eV. T
single-particle gaps should be even greater.

Since the gaps should be quite sizable, one may won
whether they have not been already observed. The exis
techniques produce simultaneously carbon nanotubes of
ferent sizes and chiralities and one has to select the rele
ones using some criteria. The simplest one is to differ
tween metallic and insulating~semiconductor! nanotubes.
Naturally, on the first glance Mott and band insulators lo
alike. Therefore it is possible that the Mott insulating arm
chair nanotubes have been overlooked being taken for s
conducting ones. To distinguish Mott insulator from a ba
one has to measure transport and magnetic properties
9-8
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compare the gaps. The clearest sign of ’mottness’ is the
ference in gap sizes in different response functions. Thi
the feature to look for experimentally.
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APPENDIX A

The original Hamiltonian describing noninteracting ele
trons on a honeycomb lattice can be compactly written in
two-sublattice~Nambu! representation

H05(
k

Ck
†H~k!Ck , ~A1!

where

Ck5S ca~k!

cb~k!
D , H~k!5S 0 t~k!

t* ~k! 0 D , ~A2!

t~k!5112 cos~kx/2!ei (A3/2)ky, ~A3!

and the sum in Eq.~A1! goes over the Brillouin zone. Th
spectrum has two degeneracy points~nodes! at Q1,2
5(64p/3,0). Linearizing the noninteracting Hamiltonia
near these points yields two cones associated w
(211)-dimensional massless Dirac fermions:

H~Q1,21p!5v~typy7txpx!, v5A3t/2. ~A4!

When a two-dimensional sheet of graphite is wrapped to p
duce an armchair nanotube,ky gets quantized, and th
lowest-energy subband corresponding toky50 stays gapless
The resulting problem is one dimensional because the w
function does not depend ony. Projecting the fermionic an
nihilation operators of thea and b sublattices onto theky
50 subspace, we get

S ca~r !

cb~r !
D→eiQxS r 1~x!

l 1~x!
D 1e2 iQxS r 2~x!

l 2~x!
D . ~A5!

The effective 1D Hamiltonian is brought to its canonical d
agonal form

H052 iv (
j 51,2

E dx ~Rj
†]xRj2L j

†]xL j ! ~A6!

by linear transformations

r 15~R11L1!/A2, l 15~2R11L1!/A2,
23541
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r 25~R22L2!/A2, l 25~R21L2!/A2. ~A7!

The structure of these transformations reflects the fact
different Dirac points,kx5Q and kx52Q, are not associ-
ated with fermions of different chiralities, as it is the case
standard chains and ladders; instead each of these poin
characterized by a pair of right (Rj ) and left (L j ) fields. This
is because the gapless spectrum of the armchair nano
keeps the memory of the two-cone Dirac structure of
dispersion law in the 2D graphite~in fact, the 1D spectrum is
obtained from the 2D one by cutting the two cones by
planeky50). For this reason, in case of nanotubes, smo
components of the physical fields are contributed not only
the diagonal ‘‘currents,’’Rj

†Rj , andL j
†L j , but also by off-

diagonal ‘‘mass bilinears,’’Rj
†L j , andL j

†Rj .
The chiral fermionic fields can be bosonized in terms

chiral bosonic fieldsF j s
R,L ,

S Rj s

L j s
D 5

k j s

A2pa
e6 iA4pF j s

R,L
, j 51,2, s561,

@F j s
R ,F j 8,s8

L
#5

i

4
d j j 8dss8 . ~A8!

Herea is the short-distance cutoff in the bosonic theory, a
k j s are Klein factors obeying the algebra$k j s ,k j 8s8%
5d j j 8dss8 . The product of the four Klein factorsG
5k1↑k1↓k2↑k2↓ satisfiesG251. SinceG is not a dynamical
variable, we can conveniently chooseG51.

In the bulk of this paper, we adopted the description
terms of four scalar fieldsFc

(6) , Fs
(6) and their dual coun-

terpartsQc
(6) , Qs

(6) , known from earlier studies of the two
channel Kondo problem.15 These fields describe the symme
ric and antisymmetric charge excitations~equivalently, the
‘‘charge’’ and flavor modes!,

Fc
(6)5 1

2 ~F1↑1F1↓6F2↑6F2↓!, ~A9!

as well as the symmetric and antisymmetric spin excitati
~or the ‘‘spin’’ and ‘‘spin-flavor’’ modes!,

Fs
(6)5 1

2 ~F1↑2F1↓6F2↑7F2↓!. ~A10!

Here F j s5F j s
R 1F j s

L . The corresponding dual fieldsQc
(6)

andQs
(6) are obtained from the above expressions by rep

ing F j s by Q j s52F j s
R 1F j s

L .

APPENDIX B

The interaction can be written as

@ra1rb#~r1!Vaa~r12!@ra1rb#~r2!

12ra~r1!@Vab~r12!2Vaa~r12!#rb~r2!, ~B1!

where, in the low-energy limit, the local electron densities
the a andb sublattices are represented by

ra~r !→r r~x!1e2iQxMr~x!1e22iQxMr
1~x!,

rb~r !→r l~x!1e2iQxM l~x!1e22iQxM l
1~x!,
9-9
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r r5r 1
1r 11r 2

1r 2 , r l5 l 1
1l 11 l 2

1l 2 ,

Mr5r 2
1r 1 , Ml5 l 2

1l 1 . ~B2!

Substituting Eq.~B2! into Eq. ~B1! and dropping the oscil-
latory terms we get four terms:

~r r1r l !1Vaa~r12!~r r1r l !2 ,

2@Uab~0!2Uaa~0!#r r~x!r l~x!,

2Uaa~2Q!@Mr~x!Mr
1~x!1Ml~x!Ml

1~x!#,

2Uab~2Q!~MrMl
11MlMr

1!,

whereU(0) andU(2Q) stand for the Fourier transforms o
the interaction potentials. The first term here gives the L
tinger coefficient renormalization. The ‘‘backscattering’’ in
teraction expressed in terms of the standard Dirac ferm
with flavor indices 1,2 looks as follows:

1
2 g1~R1,s

1 L1,s2R2,s
1 L2,s1H.c.!2

1g2@~L2,s
1 L1,s!~R1,s8

1 R2,s8!1H.c.#

1g3~L2,s
1 R1,s2R2,s

1 L1,s!~L1,s8
1 R2,s82R1,s8

1 L2,s8!,

~B3!
,

23541
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where the couplings are expressed in terms of the Fou
components of the interaction:

g15Uaa~0!2Uab~0!,

g25Uab~2Q!2Uaa~2Q!, g35Uaa~2Q!1Uab~2Q!.
~B4!

In the UV model, which apart from the Hubbard~on-site!
interactionU also includes the interaction between electro
on nearest-neighbor sitesV, the couplingsgi are given by

g15U23V, g252U, g35U. ~B5!

The bare Hamiltonian forR,L is standard

H05 ivE dx@La
1]xLa2Ra

1]xRa#. ~B6!

As already explained in Secs. I and II, in the presence
long-range Coulomb potential, Umklapp processes with
structure R1

†R2
†L3L41H.c. represent the strongly releva

part of interaction~B3!. In the bosonic language, these a
the processes containing the symmetric charge fieldFc

1 .
Using bosonization rules~A8!–~A10!, one straightforwardly
derives Eq.~6!. Theg2 part of ~B3! does not contribute.
-
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