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Coulomb blockade regime of a single-wall carbon nanotube
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We study a model of carbon nanotube with a half filled conduction band. At this filling the system is a Mott
insulator. The Coulomb interaction is assumed to be unscreened. It is shown that this allows to develop the
adiabatic approximation which leads to considerable simplifications in calculations of the excitation spectrum.
We give a detailed analysis of the spectrum and the phase diagram at half filling, and discuss effects of small
doping. In the latter case several phases develop strong superconducting fluctuations corresponding to various
types of pairing.
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[. INTRODUCTION phase diagram which includes several interesting strongly
correlated states. The system has a hiddexnz, X Z, sym-
Carbon nanotubes have attracted an enormous amount @fetry and these phases are conveniently classified as differ-
attention and generated an immense level of theoretical argnt symmetry-breaking patterns of this group.
experimental activity. It has been rightly pointed out that
single-wall carbon nanotubdSWCN) represent ideal one- Il. THE PROBLEM OF SINGLE-CHANNEL WIRE
dimensional(1D) systems and one may expect to observe AT HALF EILLING
here exotic phenomena characteristic for strong correlations )
in one dimension. Most of the attention has been concen- To warm up, let us first recall the problem of the un-
trated on a possibility of Tomonaga-Luttinger liquid. Though Screened Coulomb interaction for a single chaina single
such liquid is certainly a very interesting object, it is just onechannel quantum wijeat half filling. The charge and spin
of many wonders strong correlations can produce. sectors decouple; the Tomonaga-Luttinger liquid Hamil-
In this paper we concentrate on the physics of an armchafehian for the charge sector should be supplemented by the
SWCN at half filling. The features which dominate this phys-Umklapp term which contains only the charge fidi:
ics are the unscreened Coulomb interaction and Umklapp
processes. The importance of the unscreened Coulomb inter- N . U
action for nanotubes away from half filling was already no- V=Uag(R/ L;R/L +H.c)=
ticed in the previous studig€At half filling some additional

factors come into play It was realized in Ref. 3 that thewhereu ay is the 2<F:7T Fourier component of the interac-

long-range Coulomb interaction makes the operators respofion, The full Hamiltonian density for the charge sector is
sible for the Umklapp scattering terms relevant. Conses/=7,+ ), where

qguently, the gaps for collective excitations generated by such
operators are not exponentially small, as it would be away 1 .
from half filling, but have power-law dependence on the Um- H0=§[(wc)2+(ax<bc)f dyV(x—y)(dy®¢) |,
klapp scattering matrix elements. Such enhancement of the
gaps increases chances for their experimental observation. )
Unfortunately, in their further analysis the authors of Ref. 3 V(X)=026 ev

L . . ve8(x)+ , (2
resorted to renormalization groRG) equations, which for ||
systems with many fields do not provide much insight into ) . ) ] )
the properties at the Strong_coup”ng fixed point_ RG equal) belng the Fermi VE|OC|ty. This model is very close to the
tions also do not take into account the drastic difference beSine-Gordon one. The spectrum contains solitons and their
tween velocities of the plasma modes and all other collectivdound statesbreathers or excitonsTo get their spectrum
excitations. Instead of adding difficulties, however, the dif-One can just expand the cosine around its minimum and ob-
ference in velocities leads to considerable simplifications irfain
actual calculationgsee Ref. 4 In this paper we shall exploit
this feature to our advantage and develop an approach based
on the adiabatic approximation similar to the one used for
the problem of electron-phonon interaction. As a result we
will be able to provide a rather detailed information aboutwhere the breather gap im,=(2/7)JUep, er=mv/a,.
the spectrum and the phase diagram of the system. As will b&he breathers are effectively optical phonons of the one-
shown below, the interplay of the long-range Coulomb inter-dimensional Wigner crystalThe soliton gap is larger; it was
action and Umklapp processes at half filling gives rise to aestimated in Ref. 4, a better estimate is

cog V8w d ], (1)

2
2 ao

2

2 2 2e 2
o =(vQq) 1+ Tr—vln(llqao) +mg, 3)
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In Appendix B we derive the bosonized form of the effec-
tive low-energy Hamiltonian. The total Hamiltonian density
is

H=Ho[®¢"]+ % 2 (7 ®)2+0%(5,0)%]+V, (5)

where’H, is given by Eq.(2); ®{") is the symmetric charge
mode. The labeh takes three valueg=(c,—),(s,+),(s,
—), corresponding to the antisymmetric charge field and
symmetric and antisymmetric spin fields, respectivedge
Appendix A). The interaction density’ contains Umklapp

1 terms

1
V= cog Ard ) g.coq VATD )

- 2(ma)?
+(gs—9gp)cog V4m®L)+gscoq ATOL )
—g;c08 ATd )]+, (6)

where the dots stand for all other terms that do not involve
<I>(C+) and stay marginal even in the presence of the un-
X screened Coulomb interaction. The couplings g, andgs
are determined by the lattice Hamiltonian. In Appendix B we
estimate them for realistic carbon nanotubes, where, as it

and the Brillouin zone for graphitey, ande, are basis vectors of tumsl.OUt’gC:gl and, tl]_?]nce, there aredogy t\INO Itr:d.epende.m
the diatomic unit cell. The positions of the tips of two Dirac cones COUPIING constants. € unscreene oulomb interaction

labeled by 1 and 2 are represented by blue and brown dots. strongly reduces the scaling dimension of the operator
cos(/47®{")) in the long-wavelength limit, making it
1 smaller than 1. Thus the Umklapp teriits become strongly
M=—[1+ (2% mv)In(v/Mdag)] VU ek. (4)  relevant, with the scaling dimension almost equal to 1. This
77 circumstance dramatically increases the values of the gaps.
The spectrum in the spin sector is gapless, and the spin ve; One may w_eII expect that the double degeneracy of ;he;
locity is approximatelyy. Thus already for a simple one- electron band in carbon nanotubes makes the problem simi-
chain problem, the long-distant Coulomb force brings threeIar o the problem of two interacting chairithe *ladder

. : 2 problem much discussed in literature. This is indeed the
important new featuresi) strong upward renormalization of : .

. ; " .~ case. To put the problem in a broader context, let us discuss
the charge velocity seen in EB), (ii) the presence of exci-

ton modes in the charge sector, afiit) power-law depen- two extreme types of ladder§) the ones where two chains

dence of the mass scald. m. on the Umklaop matrix &€ placed far apart such that there is no direct tunneling
s:'b PP between them, andi) those in which the interchain tunnel-

FIG. 1. (Color) The Bravais lattice celilshown in dotted lines
including two inequivalent carbon ionshown in red and green

elementu. ing is stronger than all the interactions. Hamiltoni&bsand
(6) are formally equivalent to the first case describing two
lll. THE EXCITATION SPECTRUM OF NANOTUBE well separated chains. As a matter of fact, the Hamiltonian

AT HALF FILLING for case(ii) is not very different. The calculations done in

, : 4 . Ref. 7 for the ladder with strong interchain tunneling yields
SWCN'’s are manufactured by wrapping two d|men$|onalthe same Hamiltonian as E¢B), but with & _ field being

graphite sheets into cylindefsompactification The elec- : . i

tronic spectrum of an infinite graphite sheet contains twos’UbS’t'tUted by its dual counterpa - -

Dlr_ac cones W!th qllfferent chirality, centereql at different Vo=Val®o_— 0, _]. @
points of the Brillouin zondthe blue dots on Fig.)1Under

compactification the spectrum is divided into subbands corTherefore one expects that the two models have the same
responding to different quantized values of the transversexcitation spectrum though the response functions are differ-
momentum. In the so-called armchair nanotukigs 0 re-  ent due to the different field identification.

mains an eigenvalue and the spectrum in the lowest subband Hamiltonian (6) is not very convenient to analyze in its
stays gapless; at half filling it is also doubly degenerate abosonic form since the effective potential contains mutually
low energies. This degeneracy is a vestige of the double-cormonlocal and noncommuting field®s ~ and O _. The
structure of the two-dimensional dispersion. We discuss th@hysics becomes significantly more transparent when one
spectrum in some detail in Appendix A; more detailed infor-uses the refermionization proced@réFermionizing all the
mation can be obtained from the bobk. fields except ofb{"), we obtain

235419-2



COULOMB BLOCKADE REGIME OF A SINGLE-WALL . .. PHYSICAL REVIEW B 68, 235419 (2003

H=Ho[®L+iv(—R]o,Re+LIa,Ly) TABLE |.
+'U§_a 4 a a_i (+) Mass Q S Vv
?a:o( XROXXRT XLOxX1) ECOS(\/ECDC ) M., triplet 0 1 5
3 Mss singlet 0 0 0
X| Qe(RL—H.c)+20, 2 XFx+20axRxL | m;BrZZILee’(rS % ° =2
M. electron *1 1/2 +1

9c=01, 0:=(93—091), 09s=—01— U3, (8)

where ygr,x. are Majorana(rea) fermions andR;,L; are mé=m(M2_+3M2,+ M2 )In(v/a),

Dirac fermions emerging from the fermionization of the op- _ T T

erator COS(/ECI)C,J or, in the second case, CQ%@CY,). where with the logarithmic accuradyl is either M, _ or

Note that Eq(8) is manifestly SW2) symmetric. The triplet Ms- Thus

of Majorana fermionsd=1,2,3) transforms according to the 125

spin S=1 representation of the §P) group, whereas the My /M~[In(o/aM) 71,

fermion labeled bya=0 is a singlet under the Sp). which further supports the adiabatic approximation. How-
Following Ref. 10, we shall handle Hamiltonié8) using  ever, as we have already mentioned, its validity is already

the adiabatic approximation, whose validity is guaranteed byssured by the difference in the velocities. Apart from the

the fact that the velocity in the symmetric charge sector idreather modes there are massive modes corresponding to

strongly enhanced by the long-distant Coulomb interactiorhalf-period solitons irﬂ)fﬁ) with zero modes of the fermions

with respect to the bare Fermi velocity. The results havebound to them. These excitations have the largest (gap

certain similarity with the S) theory proposed in Ref. 11, call it M) and carry quantum numbers of electron.

but also contain important differences, which we shall dis- The results for the spectrum are summarized in Table I;

Cuss. see also Fig. 2. Excitations are characterized by quantum
Thus, from thed)é”—mode point of view, the other de- numbers associated with the full continuous symmetry group

grees of freedom are static. Integrating over this mode, onef the effective mode(8). These are the total char@@&mea-

obtains an effective potential for the fermions in the form ofsured in units of the electron charge total spin S and

the ground-state energy of the sine-Gordon model. Accord=vorticity” V. Let us comment on the latter. While the global

ing to Ref. 12 the energy density is proportional to the squaréJ(1) phase invariance and the spin @Jsymmetry, leading

of the breather masg,, of such sine-Gordon model and in to conservation of the total charge and spin,

the regime of small sine-Gordon coupling constgit is

equal to 2 " * L[ "
Q=— &xq)f; )(X)- SZ:_f axq)(s )(X)'
& T
i . -
B~ —~—vl(mav)| ige(RiLi—H.c)
C

are exact symmetries of the original, microscopic Hamil-
tonian, an extrd“flavor” ) U(1) symmetry generated by glo-
, 9) bal phase transformations of thepinor (R;,L) (or equiva-
lently, by uniform translations of the dual fiel®{"),
emerges in the low-energy limit only. This symmetry leads to
(éonservation of the flavor charge

3
- - 0.0
+ Zlgtazl XBXE+2igsxpx?

wherev ~vg[1+ (2% mvE)In(e-/M)]¥? andv~ve . So as
we see, the integration over the fast mode gives rise to th
mass terms for all of the fermions. The fermionic modes

acquire gaps V= \/—_J 3D (), (12
maJ —x
M._= el . Mg= Vo . M= v0s . (100  Wwhich, together with conservation &, implies independent
' TaUg Tomav, T mave conservation of the particle numbers at each Dirac point,

I . =(Q=xV)/2.
They corrgspor_ld to neutral excitations with the quantqulﬁz'hta(Qnomgnclature vorticity we have chosen follows from
humbers given in the Table | that follows; see also Fig. 2. A%he microscopic origin of the flavor density. Indeed, consider

Lar:uastrt]geofna;; vmwct)r? zsngr\?vifhoonlfteé?:cdt}ic?lli;raz t(_)r;;e?]teg't?:é' lattice operator describing a current flowing around the
y ge. lementary plaquette of sublattieeor b:

modes do not involve solitons of fiel#"). One can get a
good estimate of_ their spectrum replacing _the term in the jplaq’y(r):i[lpz(r)wy(r_ez)_i_ Pir—e)y,(r+e)
square brackets in expression for the Hamiltoni@nby a

constant and expanding around the minimum of the cosine + z//I(rJrel) Y (r)—H.c]
potential. As a result one gets the same spectrum as for the
single chain(3) with v=a,b. (13
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scales between single-particle excitations and collective
QS partils E modes. This significantly simplifies the calculations provid-
ing one with the well-controlled approximation. It is instruc-
tive to compare the results with those conjectured in Ref. 11.
Flasmon Though the structure of the multiplets is the same as in the
SU(4)~SO(6) theory, there are important differences in the
spectrum. Two quasiparticle multipl€jsarticles and antipar-
ticles) are fourfold degenerate, as in the @Wtheory, but the
sixfold degenerate multiplet of the $4 is split into a dou-
blet with the massM _, a magnetic triplet with the mass

Other
collective

modes Ms,, and a singlet mode with the malks ;. The ratios of
k = g the quasiparticle mass to the masses of the neutral modes are
a) b) vastly different from the SU!) Gross-Neveu model ratio

Ms/M =2. They depend on the Coulomb interaction and
the quasiparticle gap is much larger than the spin and the
parity collective-mode gaps. The gaps of the collective
modes are not equal. In nanotubes where there are only two
independent coupling constants we expect that

FIG. 2. (Color) A schematic picture of the excitation spectrum:
(a) at half filling and(b) at small doping.

From this construction it follows that the state with a non-
zero (] piaq, atyy Would represent an orbital antiferromagnet,
ora stqgggred flux phage, realized on the subladtid®), as 2M +M+M¢=0 (14)
shown in Fig. 3. Projecting Eq13) onto thek,=0 subband . ) ) .

and passing to the continuum limit, one makes sure that thgecall that since we deal with Majorana fermions, the

SUM] pjaga+  plag does transform to the flavor charge densitylmf‘sselS m$ay be negative, the spectral gaps being their abso-
ute value

pi=2 [1RI,R1, 1= 1R},Ry, 1+ (R—L) ]~ 3@ ). IV. THE ORDER PARAMETERS OF DIFFERENT PHASES

From now on we shall concentrate on the model describ-

Previous attempts to study the problem of two coupledng carbon nanotubes. Different phases, shown in Fig. 3, cor-
channels have mostly relied on the assumption of equal verespond to different ground-state phase lockings and are de-
locities with the subsequent use of RG analysis. The aptermined by the signs of the fermionic mas8esgs. (10).
proach was pioneered by Liat al** who argued that at These sign changes are not reflected in the thermodynamics
strong coupling the spectrum of the two-chain problem atvhich is sensitive only to absolute values of the masses. The
half filling acquires a higher symmetry, such as(60or difference in the correlation functions may, however, be quite
even S@8). In fact, Gell-Mann-Low equations alone are in- dramatic.
sufficient to extract information about strong-coupling re- We use the following conventiorfs:
gime (they have to be supplemented by Callan-Symanzik
equations for the physical observablesd therefore cannot cod Vad{ N =010, siNVTPL)=pius,
provide a legitimate ground for such conclusions. Our ap-
proach is based on a different assumption; here the long-  cog Va®{")=u,0,, siNV7O)=01u,, (15
range Coulomb interaction legitimates a clear separation of

cog V7®{ ) = og03,  SinVTD{T)) = pops,

cog 7O )= poo3,  siNVmOL))=oous (16)

where{o;} and{u;}(i=1,2,3,0) are order and disorder pa-
rameters of the 2D Ising models associated with the singlet
(i=1,2,3) and triplet(=0) Majorana fermions. A particular
Ising model is ordered({¢) #0) or disordered () + 0) de-
pending on the sign of the corresponding Majorana mass,
M<O0 or M>0. In order to understand the structure and
properties of the correlation functions, one has to recall that
in the ordered phase of the Ising model, whése # 0, the
correlation functiord( u(w,q) u(—w,—q))) contains a co-
herent peak, while the correlation function of thés does
not.

FIG. 3. (Color) A staggered fluxorbital antiferromagnetstate There are six possible phases, two of them being Haldane
corresponding to a nonzero value of vorticityThe arrows indicate ~ Spin liquids. Such liquids are characterized by the presence
local currents flowing across the links of tagred andb (green  Of a coherent triplet magnetic excitatigmagnon in the
sublattices. two-point correlation function of the staggered magnetiza-
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TABLE 1I. corresponding superconducting order parameter transforms
nontrivially under the lattice point group.
Phase (3) Non-Haldane phas€: —g3;<g;<0. The magnetic
A [ singlet mode with masil s s becomes cc_)herent in this .phase.
<COS(\/;®(°_))>¢O (02)#0 (00)#0 As a result a coherent peak appears in the correlation func-
B <COS(\/;(DC ))#0 (pa)#0 (o) #0 ; f the ch d i d &t E
c (sin(T B0 (10 (0040 tion of the charge-density wave order parametgp,y, Ed.
) e Ka 0 (18). Under doping this phase develops superconducting cor-
D @”NFCDQ ))#0 (pa)#0 {(r0)#0  relations in thes channel.
E <S'”(\/;(D%7)))>¢O (03)#0 (10)#0 (4) PhaseD: g;< —|gs|. There is a charge-density wave
F (cos(m®{))#0 (02)#0 (n0)#0  (CDW) long-range order in the ground state of this phase.

Phases CDW and BDW are mutually dual.
(5) PhaseE: g3<g;<0. This is another Haldane phase

tions. In non-Haldane disordered phases, the spectrum %fual to phas®. PhaseE has a coherent magnon in the site-

triplet excitations is incoherent; however spin-singlet mOde%ff-diagonaI spin densityg("), Eq. (25). Under doping it

may .be coherent. Table Il and Fig. 3 show which Operatqr%evelops superconducting correlations of the same type as
acquire nonzero expectation values in the correspondin haseB

ground states. It will be assumed that in all phases the symi- (6) PhaseF: 0<g,< —gs. This phase is dual to pha&z

metric_ charge field is locked atbe’=0, so that ;.4 has a coherent spin-singlet mode displayed by the BDW

(cosﬁdﬂj’)f& (sin ﬁq’g+)>:0; . order-parameter correlation function. Under doping it devel-

more details see the subsequent discussion.

(1) PhaseA: g,>|gs|. This phase has a long-range bond
density wave(BDW) order atT=0 (see Fig. 4 beloyw A. Order parameters, possible orderings,

(2) PhaseB: 0<g,;<g;. This is a Haldane spin-liquid and dominant correlations
phase whose excitation spectrum contains a coherent triplet cpw; Already for geometrical reasorithe lattice is bi-
magnon with the masBl s, associated with the correlation partite one may expect that the system at half filling can
function of the site-diagonal spin opera®r; see Eq(24).  develop a commensurate charge-density wave. Introducing

Under doping it develops a power-law response of the pairocally averaged electron densities fpandb sublattices,
ing susceptibility of type described further in the text. The

g1 P (D=3l D+l (r+e)+yly,(r—e)],

v=a,b, (17

____>

we define the CDW order parame{@P) as follows:

F A -
5 123 BDW 5 u_1,23 o0 Acow(r)=pa(r) = pp(r)
- mSC
SSC 10 N o3 ~> (RI,L1,—R},L,,)+H.c.
g mSC CDW“‘\ C ~sin(\T®{H) cog V7D ) oy 00050
D N\ e —cos Va®{)sin(Va®{) wapopspo.
k 18
n_1,2,3 n_o0 19

: This OP has a nonzero average value in ptiask phaseC

I where(sin(7®{))#0 and(u,)#0 (a=1,2,3), the most

! singular part of the CDW order parameter is proportional to

FIG. 4. (Color) The phase diagram. For each quadrant it is in-#0" Since we ar_e in the phase withro) # 0, operator has

dicated which Ising-models order and disorder parameters hav@ NONZero matrix element between the ground state and a
nonzero ground-state expectation values. The phases are separagi@t€ With one Majorana fermion. Therefore, the correlation
by critical lines on which one of the particle masses vanishes. Théunction of CDW OP’s contains a coherent peak correspond-
green and red lines a@, and SU,(2) critical lines respectively. INg to an emission of the singlet magnetic mode with the
Theg;=0 axis corresponds to tHé(1) critical line. Phasesiand  MassMg.
D have density wave order. Under doping phaBe&, andC, F BDW. The bond density wave order parameter is similar
develop a power-law response to superconducting paring. to the CDW one, but is off diagonal in the site indices,
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® ° y
O/ \O/.\O/ . !

I N

FIG. 5. The dimerization in BDW phase.

Apowl(N) =YL [ (1 +€1) — (1 —€))]
—[yl(r+e)—yl(r—e)lgy(r)+H.c.

~i (RI,L1,—Rb,Lo,)+H.cC. FIG. 6. (Color The charge distribution for the mCDW order.
~sinTR{)sin VTP oo Afndol 1) =pa(r) = py(1)
+cog \/;q)((;r))cog \/;qn g_))0'10'20'30'0- —2|Qx2 (Rl(rRZU 10L20) +Hec.
(19

~ K11 K21 € ZIQX[RTX(O) fX(LO)]+HC

This phase is dual to the CDW one. The BDW order param- (21)
eter condenses in phadeThe dimerization ordering pattern
in this phase is shown in Fig. 4. In the disordered pHase where k’s are Klein factors. Since the dual ant|symmetr|c
(which is dual to phas€), the spectral weight of the OP charge field®{ ™ is strongly dlsordered(e""(’c y=0), the
Agpw contains a coherent magnetic singlet mode with theoP A{);,,, has zero expectation value in all sectors of the
massMgs. phase diagram. In phasg, where (o,)#0(a=1,2,3),
Note that the CDW and BDW OP’s do not contain any (u,)#0, the correlation function of the mCDWOP dis-
(Fig. 9 oscillatory pieces. These show up in the density displays a coherent peak corresponding to emission of a vortex
tributions that are not uniform across a sublattice but otherparticle with the mas#/.
wise are consistent with the uniaxial symmetry of the nano- The charge dlstrlbutlon correspondlng to the ®82,w
tube, is depicted in Fig. 6. This kind of order can be induced by
applying a modulated potential of sufficient strength that
- couples toA ,cpw- The potential must be strong enough to
p (=3[l (r+e)+yly,(r—e)—yly,(n], overcome the energy gaps of the corresponding excitation
branches and to drive the system into a state with an induced
order of the mCDW type.
v=a,b. Magnetization The total magnetization is given by

=17 1t — 11:2iQxr R+
= o, + op,=lpt+1, +5]{e R, oL
Two incommensurate CDW OP’s can then be constructed as ~ ° Vaoyat zpin=lrtlit ol LRy oly)
follows: —(L, oRy)]+H.c}.

Its smooth part is equal to the sum of the chiral currents of

A§n+c:)o\/\)(r)=5a(r)+7)b(f) the Majorana triplet,

i
_ _ b
‘Z'QXE (L] Ry, —RI L,,)+H.cC. 1R =I1rw) T I2RW)=— EfabCXR(L)XCR(L) :

~iky Ky e 2% 7ol :[I('ar:]()e oscillating part of the spin density(ilein factors omit-

X[sin(Vr® ) wypopso . -
¢ JTAmArsTo S~ 0L [ —sin( rd L") woN -+ icog VD) o]
+i cog Va® ) oyop03u0] + H.C., (20) (22)
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Here N=(r10203,014203,010243) and N Agsd 1) =A%sdr)+Asdr)
=(01 203, m10213, k1 M203). This OP is never coherent.
On the other hand, to define tistaggered magnetization
S()(r) associated with the bipartite lattice, we need to in-
troduce locally averaged spin densities for the two sublat- )
tices[cf. Eq. (17)]: ~ Ky ka8 V0 (cosVmD ) oy paa g

~2 0(L1,Ro— 5= LRy )

_ +isinm®) wypopso). (26)
sN=s[Wlov, (N +ylop,(r+e) + yloy,(r—e)],

The amplitude of this OP acquires a finite value in non-
Haldane phase€ and F. These two phases, with coherent
singlet magnetic modes in their spectrum at half filling, ex-
hibit power-laws SC correlations under doping.

Then The swave-type superconductivity is not the only pos-
sible singlet SC order one can imagine. One can introduce
SC orderparameter which transforms nontrivially under the
point group

v=a,b. (23

SN =s,(r) = (1)
~(RloL;—R)olL,)+H.c.
~cog J7r®{)cog V7rd{ )N
—sin(J7®{)sin(Vrd{ ) uoN.  (24)

Amsc=5War (N[ (1) = i (1 +€y)
— Y (r—e)]=(T+1)

~> o(L1,Ry o+ Lo,Ry ) +o0scillatory terms
The OPS7)(r) is coherent in the Haldane spin-liquid phase 7
B, the corresponding particle representing a massive triplet —ime) (=)

. : i ~e co ()
magnon. Note that in the expressi@¥) the vector fieldN ol s(\/; ¢ H1H2psT0
plays the role of the staggered magnetization of the effective +i sin( \/;q)g*))algzﬁm]_ 27
antiferromagnetic spin-1 chafh.

In full analogy with the BDW OR19), one can construct Thjs pairing OP exhibits power-law correlations in doped

the site-off-diagonal staggered magnetization Haldane phaseB andE.
To see what kind of superconductivity this is, let us con-
2(*)(r)=%z//;(r)a{z//b(r+el)— I(r—e)] sider the lattice mean-field Hamiltonian
—3Ll(r+e)—yl(r—e)]oyy(r) H=(a; W) thal +or)
[ 0 t(k 0 k)A
~ ~(RloL,—RlalLy)+H.c. (k) 9tk
2 t* (k) 0 -g(kA 0
X
~cog 7@ sin(\7®{ ) uoN 0 —g*ka* 0 t(k)
. _ ~ *(K)A* 0 t* (k 0
+sin(Vr®{))cog Vad ) ooN.  (25) 9" (k) (k)
Yay
The structure of Eq(25) indicates that phasé represents a Yo |
Haldane spin liquid and is dual to phaBelndeed, in phase X v | (28
E it is the vector fieldN that can be regarded as the staggered f‘l
magnetization of the effectiv€=1 chain, and, hence, the Up—q
spectral weight of the operat@{~) contains in this phase a _
coherent triplet magnon. whereg(k) = —1+ 2 cosk/2)e' /2. The spectrum is
Pairing operators Let us construct the-wave supercon-
ducting (SC) order parametei sc. To this end, we first E2=|t(k)|?+|g(k)|?|A|2. (29
build locally averaged, site-diagonal, singlet pairing opera-
tors: In the Haldane phas€ under doping we get the following
OP:
Avsdr):%[wv,Tlpv,l(r)_F wv,va,l(r+el)
° lpaa'awa*o'_ ‘ﬂaf aﬂwaa . (30)

+¢/V,T‘//v,l(r_62)]a V:aab-

The Aharonov-Bohneffect: they component of the vector
The OPA¢scis then defined as potential is coupled to
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(Rigb1o+ L1sR10) — (RaLast L2,Ra0) VI CONCLUSION

_ () i (=) Let us summarize our results. We have analyzed the effect
cog L") sin(Vm @) 050500 of the long-range Coulomb interaction on the low-energy
—sin(Va®{)cog Vad L)) wapopaug. (31)  Properties of the armchain nanotube. We have shown that the

spectrum of the system is very rich. The phase diagram in-
cludes six phases differing from each other by their response
It is coherent in Haldane phagewith an emission of the functions. Under doping four of them have enhanced super-
magnetic singlet. conducting fluctuations.
The staggered flwaround a hexagonal plaguette is SWCN's exhibit two types of behavior: either band insu-
lators or Luttinger liquids. Armchair CN’s are believed to be
o imi6a2iOxe) + N metallic and be of the Tomonaga-LuttingdiLL ) type. This,
P=6e""e" (L, L1 —R; Ry +H.c. in fact, is only true away from 1/2 filling. As shown in this
0 O\ - 2i0x+i7/6 paper, the picture changes dramatically at 1/2 filling when
N(RfX(R)_LfX(L here +He., (32) effects of strong correlations become crucial. To observe
these effects in experimental conditions, the chemical poten-
where the flavor fermion is associated with{ ) field. tial must be fine tuned to the valye=0 at which the Fermi
Therefore there is an interesting possibility to drive a systemSurface” is represented by two degenerairac) points.
into a peculiar critical state with a mixture of the magnetic Then, due to the special role of Umklapp processes in the

singlet and nonmagnetic orbital mode by applying a magPresence of unscreen Coulomb interaction, on lowering the
netic field with the corresponding period. temperature, one must be able to see a crossover from the

metallic, TLL behavior to an insulator discussed in the paper.
Such insulating state is Mott-type, with a much richer spec-
V. SMALL DOPING trum than in the Hubbard model. One important difference is
that, unlike in the Hubbard model, the spin excitations have
The large velocity difference between the symmetricspectral gaps.
charge modes and the other part of the spectrum holds a key The estimates of interaction matrix elements for carbon
to the stability of the approach at finite doping. For smallnanotubes are provided®in

dopingkra<exp(—mv/2e?) the soliton mode oﬁ)ff) field, ,

though becoming gapless, still lies above the others in the € .

most of the momentum spafsee Fig. 2b)]. This means that 9=Bige oS

one can still integrate oveb(c+) and obtain Eq(9) though

with a prefactor<l1. Thus a small doping will decrease the B.~0.4, pB,~05, B~-—1.3, (33

gaps. It may also give rise to finite decay rates for the col- )

lective modes. This is a pseudogap regime which is perhap¥hereN is the number of transverse bands of the nanotube
similar to the one existing in the underdoped state of the@nde~ 1..4.|sthe dielectric constant. These estimates indicate
cuprate superconductorgésee, for example, the recent that realistic nan_otubes _belong to ph&séquation(10) also
paper® The physics of this regime will be governed by two gives the following estimates for the spectral gaps of the
energy scales: the scale of collective modés [see Eq. collective modes:

(10)] and the electronic scaldl.. At energies smaller than )

M. the system is a Luttinger liquid, 8 .<E<M, the col- M| =8| e v (34)
lective modes contribute to all physical properties giving rise : "mNae v,

D ey e e v e Sine s he shor sance oo te bosoric ey end
pear. is therefore non u_nlversal, th|_s forml_JIa contains a certain
Let us briefly discuss a possible enhancement of the sfegree (.)f amblgL_uty. For_ noninteracting electrome =a,
perconducting fluctuations in a doped regime. In thosd!e lattice spacing Taking N=10, v/v.=1/3, anda,
phases where the amplitude of the SC order parameter ig 0-246 Nm we get the estimate of order of 0.1 eV. The

frozen (see the discussion abgvies power-law correlations SiNgle-particle gaps should be even greater.
are determined by the scaling dimension of operator Since the gaps should be quite sizable, one may wonder

. © . . . L = whether they have not been already observed. The existing
exdli ‘/;(9* ]. This scaling dimension is equal to K¢ techniques produce simultaneously carbon nanotubes of dif-

where K, is the renormalized Luttinger constant. At large ferent sizes and chiralities and one has to select the relevant
doping the value of this constant is determined by the longpnes using some criteria. The simplest one is to differ be-
distant Coulomb interaction and is small, but close to ttheen metallic and insu|atingsemiconductdr nanotubes.
transition(small doping it is close to ongsee Ref. 14 for a  Naturally, on the first glance Mott and band insulators look
more detailed analysisTherefore there is a window of dop- gjike. Therefore it is possible that the Mott insulating arm-
ing whereK < 1/2 where the pairing susceptibility diverges. chair nanotubes have been overlooked being taken for semi-
A more detailed description of the pseudogap regime will beconducting ones. To distinguish Mott insulator from a band
given elsewhere. one has to measure transport and magnetic properties and
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compare the gaps. The clearest sign of 'mottness’ is the dif- r,=(Ry—Ly)/2, 1,=(Ry+L,y)/\2. (A7)
ference in gap sizes in different response functions. This is )
the feature to look for experimentally. The structure of these transformations reflects the fact that

different Dirac pointsk,=Q andk,=—Q, are not associ-

ated with fermions of different chiralities, as it is the case for

standard chains and ladders; instead each of these points is
We are grateful to P. Azaria, A. O. Gogolin, Ph. Lechemi-characterized by a pair of righg{) and left (;) fields. This

nant, A. Chubukov, P. Coleman, and F. H. L. Essler for fruit-is because the gapless spectrum of the armchair nanotube

ful discussions. A.M.T. acknowledges support from U.S. Dekeeps the memory of the two-cone Dirac structure of the

partment of Energy under Contract No. DE-ACO02- dispersion law in the 2D graphiten fact, the 1D spectrum is

98CH10886 and a kind hospitality of Abdus Salam ICTPobtained from the 2D one by cutting the two cones by the

where a part of the work was conducted. A.A.N. was partlyplanek,=0). For this reason, in case of nanotubes, smooth

supported by MIUR, under Project COFIN2003 “Field components of the physical fields are contributed not only by

Theory, Statistical Mechanics, and Electron Systems.” Hethe diagonall “currents,’R}er, and LJ-TLj, but also by off-

also acknowledges the support from the Institute for Theoryiagonal “mass biIinears,RTLj , and LTRJ. .

of Strongly Correlated and Complex Systems at Brookhaven. The chiral fermionic fields can be bosonized in terms of

chiral bosonic fieldsb™:-
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APPENDIX A
R, ; —
The original Hamiltonian describing noninteracting elec- ( ! ): Nio ei'v“‘ﬂ‘bﬁ}L, =12, o==*1,

trons on a honeycomb lattice can be compactly written in the Lio 2T
two-sublattice(Namby representation _

i

L
[(I)Fg,(bj,’g,]=25”,500,. (A8)

Ho=2 W{H()Vy, (A1)
. Here« is the short-distance cutoff in the bosonic theory, and
where kj, are Klein factors obeying the algebrgx;,,kj/,}
=0jj 0507 - The product of the four Klein factord
Pa(k) t(k) =Ky Ky Ko Ko, Satisfies?=1. Sincel is not a dynamical
= H(k)= (A2) iable. we o i
Pp(K) ) (k) 0 ] variable, we can conveniently chooBe-=1.
In the bulk of this paper, we adopted the description in
t(k) =1+ 2 cogk,/2)ei(32ky, (A3) terms of four scalar field®{), ®{*) and their dual coun-
_ o terparts® (™), ©(*), known from earlier studies of the two-
and the sum in Eq(A1) goes over the Brillouin zone. The channel Kondo problert? These fields describe the symmet-

spectrum has two degeneracy pointsodes at Qi ric and antisymmetric charge excitatiofesquivalently, the
=(*+4m/3,0). Linearizing the noninteracting Hamiltonian “charge” and flavor modes

near these points yields two cones associated with
(2+1)-dimensional massless Dirac fermions: PLI)=3( Dy + Dy =Dy = Dy)), (A9)

1p)= — ' - J3t/2. Ad as well as the symmetric and antisymmetric spin excitations
H(QuztP)=v(nypy = 7P, v=13 A4 (or the “spin” and “spin-flavor” modes,

When a two-dimensional sheet of graphite is wrapped to pro- o

duce an armchair nanotubé, gets quantized, and the D =3(Dy =Dy =Dy T Dy)). (A10)
lowest-energy subband correspondingje-0 stays gapless. Here ®;, = ®R +®" . The corresponding dual fieldg ()

The resulting problem is one dimensional because the wave oy e 1o . ¢
function does not depend gn Projecting the fermionic an- _andG)S are obtalne(g{froml_the above expressions by replac-
nihilation operators of the and b sublattices onto th&, 'Y ®jg by Oj,=—Oj, +dj,.

=0 subspace, we get

APPENDIX B
(%(r)) _)eiQx( rl(x)> +eiQx( rZ(X))_ (A5) The interaction can be written as
(1) [1(x) [2(x)
+ v +
The effective 1D Hamiltonian is brought to its canonical di- [pat Pol(r)Vaa(r2)lpat pol(r2)
agonal form +2pa(r)[Van(r12) = Vaa(rid1pp(ra), (B1)

where, in the low-energy limit, the local electron densities on
Ho= —iuzi,z f dx (RIo,R;—La,L) (A6)  thea andb sublattices are represented by
i=1,

by linear transformations pa(r)—=pr(X)+ 7 OM () +e M (%),
r=(Ry+Ly)/\2, 1,=(—Rq+Ly)IV2, pu(1)— pi(X) + €M, (x) +e 2 PM|" (x),
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pr=riritriry, p=Ii1+151,, where the coupling§ are e_xpressed in terms of the Fourier
components of the interaction:

M, =rry, M=11. (B2)

Substituting Eq(B2) into Eq. (B1) and dropping the oscil-
latory terms we get four terms:

91=Ua4(0)—U4,(0),

92=Uap(2Q) ~Uaa(2Q),  935=Uaa(2Q) +U4p(2Q).
(B4)

(Pr+PI)1Vaa(r12)(pr+Pl)27
B In the UV model, which apart from the Hubbatdn-site
2[Uap(0) = Uaa(0)]pr(X) pi(x), interactionU also includes the interaction between electrons

2U11(2Q)[M, ()M, (X) + M, (OM (x)], on nearest-neighbor sit&4 the couplinggy; are given by

2Ua6(2Q) (MM +MM;), 9:=U-3V. g,=-U, g3=U. (BS)

whereU(0) andU(2Q) stand for the Fourier transforms of The bare Hamiltonian foR,L is standard
the interaction potentials. The first term here gives the Lut-
tinger coefficient renormalization. The “backscattering” in-
teraction expressed in terms of the standard Dirac fermions
with flavor indices 1,2 looks as follows:

H0=ivf dx[L; dLa—Ra 9¢Ra,]. (B6)

As already explained in Secs. | and I, in the presence of
391(R{,L1,— Ry Lo, +H.C)2 long-range Coulomb potential, Umklapp processes with the
structure R]RJL L.+ H.c. represent the strongly relevant
part of interaction(B3). In the bosonic language, these are
the processes containing the symmetric charge fie[d.
Using bosonization rule6A8)—(A10), one straightforwardly
(B3) derives Eq.(6). Theg, part of (B3) does not contribute.

+ gZ[( L;,a-l—l,o')(R]to./ RZ,(r’) + HC]

+ gS( L;,(TR].,(T_ RzaLl,(r)(LIU/ RZ,(r’ - RIU-' L2,(r’)v
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