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Statistics of current fluctuations in mesoscopic coherent conductors at nonzero frequencies
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We formulate a general approach which describes statistics of current fluctuations in mesoscopic coherent
conductors at arbitrary frequencies and in the presence of interactions. Applying this approach to the nonin-
teracting case, we analyze frequency dispersion of the third cumulant of the current ofea@tfnrequencies
well below both the inverse charge relaxation time and the inverse electron dwell time. This dispersion turns
out to be important in the frequency range comparable to applied voltages. For comparatively transparent
conductors it may lead to the sign changeSef

DOI: 10.1103/PhysRevB.68.235333 PACS nunfder73.23—b, 72.70+m

Investigations of current fluctuations in mesoscopic con- It is worthwhile to point out that the frequency depen-
ductors can provide a great deal of information about propdence of current correlators can be caused by various rea-
erties of such systems. During past years much attention h&ons. One of them is the effect of an external electromagnetic
been devoted to shot noieExperimental and theoretical environment which is important for quantitative interpreta-
studies of the second moment of the current operator descrifion of the experimentally detected behavior of higher
ing shot noise revealed a rich variety of properties caused byumulantsi> Another source of the frequency dispersion is
an interplay between scattering, quantum coherence arige internal dynamics of a quantum scatterer. Here the im-

charge discreteness. Furthermore, such studies can subst@QItant time scales are the correspondi@ time 7gc and
tially deepen our understanding of the role of electron-the electron dwell timerp inside the conductor. The latter

gale was recently taken into consideration in the analysis of

electron interactions in mesoscopic transport because sh§1 14 '
noise and interaction effects are known to be closelne secontf and the third* current cumulants for chaotic
quantum dots.

related® . . .
In this paper we will address current fluctuations at fre-
One can also go beyond the second moment and stud . . i
uencies not directly related to any of such scales. We will

tr1|gzgr—ort?1er correlattorf .0]; the ?_urrenlt opgratobrt thergbfy €X4emonstrate that apart from the above mechanisms there ex-
ending the amount of information already oblain€d oM;qis 51 aqditional—intrinsic—frequency dispersion of the

investigations of electron transport and shot noise. Recenﬂ){urrent correlators at the scale set by the voltage drop
the first experimental study of the third current cumulant in . oss the conductor. Sinsecan vary in a wide range, this
mesoscopic tunnel junctions was reported. dependence is in general important and should be taken into
A theoretical framework which enables one to analyzeaccount while interpreting the experimental results. In par-
statistics of charge transfer in mesoscopic conductors wagcular, in the absence of interactions the third cumulant of

developed in Ref. 5. This theory of full counting statistics the current operataf, is fu||y determined by the two param-
(FCS allows to evaluate any cumulant of the current operaeters

tor in the absence of interactions and in the zero-frequency
limit. Under these conditions higher-order current cumulants

2
were investigated by a number of auth®fS.In order to zn: Ta(1=Th) En: Th(1=Ty)
include interactions and to analyze frequency dispersion of f=——, y=———, D
current fluctuations it is necessary to go beyond the FCS 2 T, 2 T,

theory and to develop a more general real time path-integral

technique>0t o _
The goal of the present paper is to address statistics JyhereT,, represents the transmission of thin conductlng.

current fluctuations at nonzero frequencies. We first present §hannel of our system. The cumulay can be expressed in

general and formally exact expression for the real time efth€ following general form:

fective action of a coherent conductor described by an arbi- o

trary energy independent scattering matrix. This expression S3=(B—2yF)e?l. 2

enables one to fully describe interaction effects in such type _

of conductors. We will then demonstrate that in a noninterHere | is the average current through the conductee

acting case this effective action provides a direct generalizastands for the electron charge, afds a universal function

tion of the FCS generating functidto nonzero frequencies. of frequencies, voltag¥ and temperaturd to be evaluated

With the aid of our technique we will analyze the frequencybelow. According to Eq(2) the frequency dispersion df;

dispersion of the third cumulant of the current operator inoriginates only from the term proportional to the parameter

mesoscopic coherent conductors. v, while the 8 term is dispersionless.
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Though negligible for tunnel junctiong—0, the fre- and the effective action Eq5) can be expressed via the
quency dispersion af; may become important in other situ- fluctuating phase fieldg; , which are in turn related to the
ations. For instance, dt—0 one findsF—1 at frequencies jumps of the fields/, , across the scatterer @‘2: e(Viio
much smaller thae'V, while in the opposite high frequency —\v, ;), whereV, g are fluctuating in time but constant in
limit one getsF =0 and, hence$;= Be?l in the latter limit.  space fields in the left and right reservoirs. We note that in
To give some numbers, for an important case of diffusivethis case the right hand side of E®) differs from the FCS
conductors one hag=1/3 andB—2y=1/15, i.e., in this generating functional introduced in Ref. 16 only by a gauge
case the quantity; changes by the factor of 5 depending on transformation.

whether relevant frequencies are below or abee For Within the above model the evolution operatars, were
conductors with3<2y even the sign ofS; will differ in  evaluated in Refs. 2 and 10. Combining these expressions
these two limits. with Eq. (5) after some algebra we find

In our analysis we will use the real time path-integral
formalism developed for the systems of interacting
fermions® After the standard Hubbard-Stratonovich decou-
pling of the interaction term in the Hamiltonian one can ex-

actly integrate out fermions and arrive at the effective action iSo=2TrIn{ asd(x—y)+ 6(t—x)6(x)
S which depends on the fluctuating fieldlg (t,r). Let us
define
. ot A o~ ety ’ -'\T'\ o .AT‘,.¢7(X)
e'So=Tr[ 7e /o9 H1(t) o Tel fodt Ha(t) ] ©) tft(ele ®W—1)  2it'r sin——

with the trace taken over the fermionic variables. Hagés

a9 (X)L -
e . . . t T3 (o _
the initial N-particle density matrix of electrons, 2ir'"tsin > tt'(e e -1

— 3t L I -
Hl,z—g fd rP (AL ,(n), po(y—xele O g
% ile™ ()= (9112 @
V2 [0 poly—x)elle e (0]
Hid)=—5-+U(n—eviAtn) (4)

are the effective Hamiltonians on the forward and backwardHere we introduced ™ = (¢;+ ¢,)/2, ¢~ = ¢, — ¢,, and
parts of the Keldysh contoul)(r) describes the static po-
tential, 7and7 are, respectively, the forward and backward
time ordering operators. Integrating out fermions in B, dE eFx
we obtainiS=iSy+iS,m,, where po(X)= f 27 1ot ®
iSo=2 Trin[1+ (U, X0y —1)po], (5)

. . Taking the trace in Eq.7) implies convolution with respect
Uy {t)=Texp(—i[(dt'Hy (t')) are the evolution operators tg internal time variablesx(andy). The total time span is

pertaining to the Hamiltonian&?), p, stands for the initial denoted byt.

single-particle density matrix and the tei®a,, accounts for Equation(7) defines a formally exact effective action for a
the electromagnetic contribution which may also include thecoherent conductor described by an arbitrary energy inde-
effect of an external circuit. pendent scattering matri%). This expression allows to fully

In order to evaluate the evolution operatars, it is nec- deterrr_line stat_istics of current qu_ctuations at arbitrary fre-
essary to specify the model of a mesoscopic conductor. Herguencies and in th_e presence of interactions. In the case of
we will adopt the standard model of(aomparatively shoyt ~ €quilibrium fluctuations the formula E¢7) represents a real
coherent conductor placed in between two bulk metallic restime analog of the effective action derived in Refs. 17 and 18
ervoirs. The electron dwell timey, is supposed to be shorter Within the Matsubara technique. A formula similar to Eg)
than any relevant time scale in our problem. Energy andVaS also -presenteql recently in Ref. 11. In adQ|t|on we note
phase relaxation times are, on the contrary, assumed to $jBat, provided the fiel¢>~ does not depend on time, EJ)
long, i.e., inelastic relaxation is allowed in the reservoirs butcoincides with the generating function considered, e.g., in
not inside the conductor. Under these assumptions electrdf® problerg1 of adiabatic pumping through mesoscopic
transport through the conductor can be described by the eonductors:

ergy independent scattering matrix Let us illustrate the relation between the effective action
Eq. (7) and the FCS generating functidror this purpose
Por we (i) disregard interactions and set" (t)=eVt and (ii)
S= ( L ) , (6) suppress fluctuations @~ and sete ™ =const. After these
tor’ simplifications from Eq(7) we obtain

235333-2



STATISTICS OF CURRENT FLUCTUATIONS IN . .. PHYSICAL REVIEW B8, 235333 (2003

: t Sin o 83S, ~
iISpcg=—Tr dEIN[1+tTtn (E)((1—ng(E))(e'¢ —1) S.=@d =3Sa(ty,ty,ts)
e L " T s (se (t)de ()|, o

13 _ —iem
THNRE) AN (E)(e T ~ 1)), ® (1))t t) — (1 (1)) Bt te) — (1 (1)) B(t1 1)

wheren_ r(E)=111+exp((E=eV/2)/T]). Equation(9) is

just the FCS generating functidmhich can be used to re- +2(1(t))(1 (t2) (1 (t3)).- (12)
cover all cumulants of the current operator in the zero4t follows immediately that in order to evaluate the third
frequency limit and in the absence of interactions. current cumulant in the absence of interactions it suffices to

The expression(7) is more general since it includes all formally expand the exact effective action Ed@) up to the
possible fluctuations of the phase fieldS. For instance, if  third order ing~,

one allows for temporal variations @f , with the aid of Eq.

(7) one can easily describe the frequency dispersion of the ISl ]=iSM[ e ]+iSP[e]+iS®[e*], (13

current correlators. Below we will illustrate this point by keeping the full nonlinearity inp* in each of these terms

directly evaluating the third cumulant of the current operator_l_he first two terms of this expansion were evaluated in R.ef
Within our model the current operator can be defined as, Being combined with Eq(11), the termS®[ ¢*] allows '

I(t)=(e/2)d(NL_(t) — Ng(t))/dt, where N (g, is the total 4 recover the well-known expression for the shot-noise
number of electrons in the leftight) lead. Combining this spectrunt Proceeding further with the expansiongn for

definition with Eq.(3), one finds the termiS® one find4®
(i(0)=—e | Do" oS¢ s (VS5 916 )= o[ drte (7 ()
e‘RJo

Similarly one can define higher moments of the current op- o
erator. Here we consider the following correlation functions: _cmy

ftd ftd ftd (1)@ (1)
3= (1(t)1(tp) +1(t2)1 (t))/2 and 3e?RJo tloo 2o 3¢ TTHE AT

X (13)f(7, 7)) (73, 72)f(71,73), (14

~ 1 . PO G TR 7
53=§{<| (L) (ZT(t)1(t3)))+ ([T ()1 (t3) 11 (t1)) where

(I ([T ()T (1) )+ ([T (1) (1) 11 (1)) Tsin(¢" (m2)—¢"(11))/2]

i . (72 T = G T (= 7]

+ +

(AW )+ A1) Let us substitute the above expressions into @& and,
(T (t)T ()T (1)) + (T (1) (t)1(tz))}. (100  after taking derivatives ovep™, sete™(7)=eVr and ¢~

—0. This is sufficient provided the time differences

The correlation functionS, is important because the sym- |ti—t|, |t;—t3| exceed the charge relaxation timgc and

metric combination of voltage¥¢™ can be viewed as a clas- providedeV<1/7gzc. Equation(12) then yields

sical, measurable, voltag® The noise is deduced from the

measurable produd?(t;)V*(t,), which is related to the

symmetric correlatorS,. Similarly, the measured product

VT (t))V*(t,) VT (ty) is related to the correlation function of

the current operatorS, defined in Eq.(10), see also Refs.

9,16, and 20. wheref(7) =T sin(eV+#/2)/sinh(@T7). Performing the Fourier

Let us now disregard interaction effects which remaintransformation

small provided either the scatterer conductancrk 1/

=(2e?/h)=, T, or that of attached external leads strongly Sa(wy,w ):J drydr, €1t 192m28 (1t — 74t — 7)

exceeds the quantum conductance wfith. In this case ST e R

fluctuations ofp™ are eﬁectiveI}/ suppregsed and, hence, o0&y arrive at the final result

should sete®(7)=eVr and ¢ (7)—0 in the end of the

(15

— 4ey
Sz=pe’l 6(t;—ty) 6(t;—tg) — Tf(tZ_tl)

X f(t3—ty) f(t —t3), (16)

calculation. Then for the noise correlator one gets Sa= B2 — 2ve?I F (v, Wy ,Wy), 17)
~ 5 : sint(v/2) (= d
Sy=(ie)? ——————¢€'% ; (11) F= w2 < . (19
S (1) dp™ (tp) o =0 4v —wx(@)x(0—wWp) x(0+Wy)

- L , = . . Here we defined =eVIT, w, ,= 2T, and
and a similar expression is obtained f&y. Of interest is the 1= o1d

irreducible part of the correlato?ﬁg, which reads x(w)=cosfw+sintt(v/4). (19

235333-3



GALAKTIONOV, GOLUBEYV, AND ZAIKIN PHYSICAL REVIEW B 68, 235333(2003
Equations(17)—(19) represent the main result of this paper.
They fully describe the third cumulant of the current operator
at voltages, temperatures, and frequencies smaller than both

1/TRC and 1/7'D .
Let us briefly analyze Eq917)—(19) in various limits.
For w; ,=0 we recover the well-known resilt

(000 _1+31—(sinhv/v)
A e
which in turn yieldsF—1 in the limit of large voltages
>1. Equation(20) also holds forw, ,<uv.

In the limit v<<1 one finds

(20

Flo<lw,0=F(v<<liw,—w)

-9 sinhw+ sinh(3w) — 12w coshw
48 sinfw

v?2 (21

and, similarly,
Flv<1w,w)

B sinh(4w) + 4 sin(2w) — 8w cosh 2w) — 4w

128 sinfw cosFw

v

(22)

These equations demonstrate that at large frequemncies
the functionF decays exponentially witlv. From Eqgs.(21)
and(22) we find Fxv?e 2Y/3 andFxv2e 4", respectively.

Finally let us turn to the most interesting limit of low

temperatures, in which case one always has, ,w,>1.
Neglecting small corrections 1/v,1Av we obtain

if 2|wig<[v], (23

W
F(v,Wy,Wy)=1—2 712

Fo,wy,Wo)=0 if 2|wy)>]v]. (24)

Here the valuew,, is defined differently depending on the

sign of the productv,w,. For w;w,>0 we havew;,=w;
+w,, while in the opposite case/;w,<0 we definew,

=max{|wy|,Jw,|]. We observe that in both cases the function
F depends linearly on frequency and vanishes as soon

|wy,y| exceedgv|/2.
At arbitrary values ob, w;, andw, the integral Eq(18)

FIG. 1. (Color onling The functionF(v,w,0)=F(v,w,—w),
see Eq(198).

of the functionF(v,w,w) is similar but—as compared to
F(v,w,0)—it demonstrates a somewhat faster decay with in-
creasing frequency.

Finally let us point out that our predictions can be experi-
mentally tested in various types of coherent mesoscopic con-
ductors, such as, e.g., break junctions, quantum point con-
tacts, or short diffusive metallic bridges/filris?? In all
these systems boty, and 7z can be small enough in order
to satisfy all the assumptions adopted here. For instance, in
diffusive sampleg"?? one finds 1fp of the order of few
Kelvins and, hence, the conditiaV<1/r, is obeyed in a
wide range of voltage¥=<0.1-0.5 mV. We also note that
the worlké? reports the experimental analysis of the frequency
dispersion of shot noisewhich is important in the same
frequency range as that of the third cumulant studied here.

In conclusion, we have presented a general approach
which allows to describe statistics of current fluctuations in
mesoscopic coherent conductors at arbitrary frequencies and
in the presence of interactions. Restricting ourselves to the
noninteracting case, we have analyzed frequency dispersion
of the third cumulant of the current operator. This dispersion
was found negligible only in the case of tunnel junctions,
while in a general case it turns out to be important in the
frequency range comparable &. Similar results are also
expected for higher-order cumulants of the current operator.
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