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Statistics of current fluctuations in mesoscopic coherent conductors at nonzero frequencies
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We formulate a general approach which describes statistics of current fluctuations in mesoscopic coherent
conductors at arbitrary frequencies and in the presence of interactions. Applying this approach to the nonin-
teracting case, we analyze frequency dispersion of the third cumulant of the current operatorS3 at frequencies
well below both the inverse charge relaxation time and the inverse electron dwell time. This dispersion turns
out to be important in the frequency range comparable to applied voltages. For comparatively transparent
conductors it may lead to the sign change ofS3.
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Investigations of current fluctuations in mesoscopic c
ductors can provide a great deal of information about pr
erties of such systems. During past years much attention
been devoted to shot noise.1 Experimental and theoretica
studies of the second moment of the current operator des
ing shot noise revealed a rich variety of properties caused
an interplay between scattering, quantum coherence
charge discreteness. Furthermore, such studies can sub
tially deepen our understanding of the role of electro
electron interactions in mesoscopic transport because
noise and interaction effects are known to be clos
related.2,3

One can also go beyond the second moment and s
higher-order correlators of the current operator thereby
tending the amount of information already obtained fro
investigations of electron transport and shot noise. Rece
the first experimental study of the third current cumulant
mesoscopic tunnel junctions was reported.4

A theoretical framework which enables one to analy
statistics of charge transfer in mesoscopic conductors
developed in Ref. 5. This theory of full counting statisti
~FCS! allows to evaluate any cumulant of the current ope
tor in the absence of interactions and in the zero-freque
limit. Under these conditions higher-order current cumula
were investigated by a number of authors.6–9 In order to
include interactions and to analyze frequency dispersion
current fluctuations it is necessary to go beyond the F
theory and to develop a more general real time path-inte
technique.2,10,11

The goal of the present paper is to address statistic
current fluctuations at nonzero frequencies. We first prese
general and formally exact expression for the real time
fective action of a coherent conductor described by an a
trary energy independent scattering matrix. This express
enables one to fully describe interaction effects in such t
of conductors. We will then demonstrate that in a nonint
acting case this effective action provides a direct general
tion of the FCS generating function5 to nonzero frequencies
With the aid of our technique we will analyze the frequen
dispersion of the third cumulant of the current operator
mesoscopic coherent conductors.
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It is worthwhile to point out that the frequency depe
dence of current correlators can be caused by various
sons. One of them is the effect of an external electromagn
environment which is important for quantitative interpret
tion of the experimentally detected behavior of high
cumulants.12 Another source of the frequency dispersion
the internal dynamics of a quantum scatterer. Here the
portant time scales are the correspondingRC time tRC and
the electron dwell timetD inside the conductor. The latte
scale was recently taken into consideration in the analysi
the second13 and the third14 current cumulants for chaotic
quantum dots.

In this paper we will address current fluctuations at f
quencies not directly related to any of such scales. We
demonstrate that apart from the above mechanisms there
ists an additional—intrinsic—frequency dispersion of t
current correlators at the scale set by the voltage droV
across the conductor. SinceV can vary in a wide range, this
dependence is in general important and should be taken
account while interpreting the experimental results. In p
ticular, in the absence of interactions the third cumulant
the current operatorS3 is fully determined by the two param
eters

b5

(
n

Tn~12Tn!

(
n

Tn

, g5

(
n

Tn
2~12Tn!

(
n

Tn

, ~1!

whereTn represents the transmission of thenth conducting
channel of our system. The cumulantS3 can be expressed in
the following general form:

S35~b22gF !e2 Ī . ~2!

Here Ī is the average current through the conductor,2e
stands for the electron charge, andF is a universal function
of frequencies, voltageV and temperatureT to be evaluated
below. According to Eq.~2! the frequency dispersion ofS3
originates only from the term proportional to the parame
g, while theb term is dispersionless.
©2003 The American Physical Society33-1
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Though negligible for tunnel junctionsg→0, the fre-
quency dispersion ofS3 may become important in other situ
ations. For instance, atT→0 one findsF→1 at frequencies
much smaller thaneV, while in the opposite high frequenc
limit one getsF50 and, hence,S35be2 Ī in the latter limit.
To give some numbers, for an important case of diffus
conductors one hasb51/3 andb22g51/15, i.e., in this
case the quantityS3 changes by the factor of 5 depending
whether relevant frequencies are below or aboveeV. For
conductors withb,2g even the sign ofS3 will differ in
these two limits.

In our analysis we will use the real time path-integ
formalism developed for the systems of interacti
fermions.15 After the standard Hubbard-Stratonovich deco
pling of the interaction term in the Hamiltonian one can e
actly integrate out fermions and arrive at the effective act
S which depends on the fluctuating fieldsV1,2(t,r). Let us
define

eiS05Tr@Te2 i *0
t dt8H1(t8)r̂0T̃ei *0

t dt8H2(t8)#, ~3!

with the trace taken over the fermionic variables. Herer̂0 is
the initial N-particle density matrix of electrons,

H1,25(
s

E d3r Ĉs
†~r!Ĥ1,2~ t !Ĉs~r!,

Ĥ1,2~ t !52
¹2

2m
1U~r!2eV1,2~ t,r! ~4!

are the effective Hamiltonians on the forward and backw
parts of the Keldysh contour,U(r) describes the static po
tential,T and T̃ are, respectively, the forward and backwa
time ordering operators. Integrating out fermions in Eq.~3!,
we obtainiS5 iS01 iSem, where

iS052 Tr ln@11~ û2
21û121!r̂0#, ~5!

û1,2(t)5T exp„2 i *0
t dt8Ĥ1,2(t8)… are the evolution operator

pertaining to the Hamiltonians~4!, r̂0 stands for the initial
single-particle density matrix and the termSem accounts for
the electromagnetic contribution which may also include
effect of an external circuit.

In order to evaluate the evolution operatorsû1,2 it is nec-
essary to specify the model of a mesoscopic conductor. H
we will adopt the standard model of a~comparatively short!
coherent conductor placed in between two bulk metallic r
ervoirs. The electron dwell timetD is supposed to be shorte
than any relevant time scale in our problem. Energy a
phase relaxation times are, on the contrary, assumed t
long, i.e., inelastic relaxation is allowed in the reservoirs
not inside the conductor. Under these assumptions elec
transport through the conductor can be described by the
ergy independent scattering matrix

Ŝ5S r̂ t̂8

t̂ r̂ 8
D , ~6!
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and the effective action Eq.~5! can be expressed via th
fluctuating phase fieldsw1,2 which are in turn related to the
jumps of the fieldsV1,2 across the scatterer asẇ1,25e(VL1,2
2VR1,2), whereVL,R are fluctuating in time but constant i
space fields in the left and right reservoirs. We note tha
this case the right hand side of Eq.~3! differs from the FCS
generating functional introduced in Ref. 16 only by a gau
transformation.

Within the above model the evolution operatorsû1,2 were
evaluated in Refs. 2 and 10. Combining these express
with Eq. ~5! after some algebra we find

iS052Tr lnH âd~x2y!1u~ t2x!u~x!

3F t̂† t̂~eiw2(x)21! 2i t̂ †r̂ 8sin
w2~x!

2

2i r̂ 8† t̂ sin
w2~x!

2
t̂8† t̂8~e2 iw2(x)21!

G
3F r0~y2x!ei [w1(x)2w1(y)]/2 0

0 r0~y2x!ei [w1(y)2w1(x)]/2GJ . ~7!

Here we introducedw15(w11w2)/2, w25w12w2, and

r0~x!5E dE

2p

eiEx

11eE/T
. ~8!

Taking the trace in Eq.~7! implies convolution with respec
to internal time variables (x and y). The total time span is
denoted byt.

Equation~7! defines a formally exact effective action for
coherent conductor described by an arbitrary energy in
pendent scattering matrix~6!. This expression allows to fully
determine statistics of current fluctuations at arbitrary f
quencies and in the presence of interactions. In the cas
equilibrium fluctuations the formula Eq.~7! represents a rea
time analog of the effective action derived in Refs. 17 and
within the Matsubara technique. A formula similar to Eq.~7!
was also presented recently in Ref. 11. In addition we n
that, provided the fieldw2 does not depend on time, Eq.~7!
coincides with the generating function considered, e.g.
the problem of adiabatic pumping through mesosco
conductors.19

Let us illustrate the relation between the effective act
Eq. ~7! and the FCS generating function.5 For this purpose
we ~i! disregard interactions and setw1(t)5eVt and ~ii !
suppress fluctuations ofw2 and setw25const. After these
simplifications from Eq.~7! we obtain
3-2
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iSFCS5
t

p
TrE dE ln@11 t̂† t̂ nL~E!„~12nR~E!…~eiw2

21!

1 t̂† t̂ nR~E!„12nL~E!…~e2 iw2
21!#, ~9!

wherenL,R(E)51/@11exp„(E6eV/2)/T#…. Equation~9! is
just the FCS generating function5 which can be used to re
cover all cumulants of the current operator in the ze
frequency limit and in the absence of interactions.

The expression~7! is more general since it includes a
possible fluctuations of the phase fieldsw6. For instance, if
one allows for temporal variations ofw2, with the aid of Eq.
~7! one can easily describe the frequency dispersion of
current correlators. Below we will illustrate this point b
directly evaluating the third cumulant of the current opera

Within our model the current operator can be defined
Î (t)5(e/2)d„N̂L(t)2N̂R(t)…/dt, where N̂L(R) is the total
number of electrons in the left~right! lead. Combining this
definition with Eq.~3!, one finds

^ Î ~ t !&52eE Dw6dS@w6#/dw2~ t !eiS[w6] .

Similarly one can define higher moments of the current
erator. Here we consider the following correlation function
S̃25^ Î (t1) Î (t2)1 Î (t2) Î (t1)&/2 and

S̃35
1

8
$^ Î ~ t1!~TÎ ~ t2! Î ~ t3!!&1^@ T̃Î ~ t2! Î ~ t3!# Î ~ t1!&

1^ Î ~ t2!@TÎ ~ t1! Î ~ t3!#&1^@ T̃Î ~ t1! Î ~ t3!#I ~ t2!&

1^ Î ~ t3!@TÎ ~ t1! Î ~ t2!#&1^@ T̃Î ~ t1! Î ~ t2!# Î ~ t3!&

1^TÎ ~ t1! Î ~ t2! Î ~ t3!&1^T̃Î ~ t1! Î ~ t2! Î ~ t3!&%. ~10!

The correlation functionS̃2 is important because the sym
metric combination of voltagesV1 can be viewed as a clas
sical, measurable, voltage.16 The noise is deduced from th
measurable productV1(t1)V1(t2), which is related to the
symmetric correlatorS̃2. Similarly, the measured produc
V1(t1)V1(t2)V1(t3) is related to the correlation function o
the current operatorsS̃3 defined in Eq.~10!, see also Refs
9,16, and 20.

Let us now disregard interaction effects which rema
small provided either the scatterer conductanceR
5(2e2/h)(nTn or that of attached external leads strong
exceeds the quantum conductance unite2/h. In this case
fluctuations ofw6 are effectively suppressed and, hence, o
should setw1(t)5eVt and w2(t)→0 in the end of the
calculation. Then for the noise correlator one gets

S̃25~ ie!2
d2

dw2~ t1!dw2~ t2!
eiS0U

w250

, ~11!

and a similar expression is obtained forS̃3. Of interest is the
irreducible part of the correlatorS̃3 which reads
23533
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S35e3
d3S0

dw2~ t1!dw2~ t2!dw2~ t3!
U

w250

5S̃3~ t1 ,t2 ,t3!

2^ Î ~ t1!&S̃~ t2 ,t3!2^ Î ~ t2!&S̃~ t1 ,t3!2^ Î ~ t3!&S̃~ t1 ,t2!

12^ Î ~ t1!&^ Î ~ t2!&^ Î ~ t3!&. ~12!

It follows immediately that in order to evaluate the thi
current cumulant in the absence of interactions it suffices
formally expand the exact effective action Eq.~7! up to the
third order inw2,

iS0@w6#5 iS(1)@w6#1 iS(2)@w6#1 iS(3)@w6#, ~13!

keeping the full nonlinearity inw1 in each of these terms
The first two terms of this expansion were evaluated in R
2. Being combined with Eq.~11!, the termS(2)@w6# allows
to recover the well-known expression for the shot-no
spectrum.1 Proceeding further with the expansion inw2 for
the termiS(3) one finds10

iS(3)@w6#5
ib

6e2R
E

0

t

dt„w2~t!…3ẇ1~t!

2
2p ig

3e2R
E

0

t

dt1E
0

t

dt2E
0

t

dt3w2~t1!w2~t2!

3w2~t3! f ~t2 ,t1! f ~t3 ,t2! f ~t1 ,t3!, ~14!

where

f ~t2 ,t1!5
T sin@„w1~t2!2w1~t1!…/2#

sinh@pT~t22t1!#
. ~15!

Let us substitute the above expressions into Eq.~12! and,
after taking derivatives overw2, set w1(t)5eVt and w2

→0. This is sufficient provided the time difference
ut12t2u, ut12t3u exceed the charge relaxation timetRC and
providedeV!1/tRC . Equation~12! then yields

S35be2 Ī d~ t12t2!d~ t12t3!2
4peg

R
f ~ t22t1!

3 f ~ t32t2! f ~ t12t3!, ~16!

wheref (t)5T sin(eVt/2)/sinh(pTt). Performing the Fourier
transformation

S3~v1 ,v2!5E dt1dt2 eiv1t11 iv2t2S3~ t1 ,t12t1 ,t12t2!

we arrive at the final result

S35be2 Ī 22ge2 Ī F~v,w1 ,w2!, ~17!

F5
sinh3~v/2!

4v E
2`

` dv

x~v!x~v2w1!x~v1w2!
. ~18!

Here we definedv5eV/T, w1,25v1,2/2T, and

x~v!5cosh2v1sinh2~v/4!. ~19!
3-3
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Equations~17!–~19! represent the main result of this pape
They fully describe the third cumulant of the current opera
at voltages, temperatures, and frequencies smaller than
1/tRC and 1/tD .

Let us briefly analyze Eqs.~17!–~19! in various limits.
For v1,250 we recover the well-known result7

F~v,0,0!5113
12~sinhv/v !

coshv21
, ~20!

which in turn yieldsF→1 in the limit of large voltagesv
@1. Equation~20! also holds forw1,2!v.

In the limit v!1 one finds

F~v!1,w,0!5F~v!1,w,2w!

5
9 sinhw1sinh~3w!212w coshw

48 sinh5w
v2 ~21!

and, similarly,

F~v!1,w,w!

5
sinh~4w!14 sinh~2w!28w cosh~2w!24w

128 sinh5w cosh3w
v2.

~22!

These equations demonstrate that at large frequenciesw@1
the functionF decays exponentially withw. From Eqs.~21!
and~22! we findF}v2e22w/3 andF}v2e24w, respectively.

Finally let us turn to the most interesting limit of low
temperatures, in which case one always hasv,w1 ,w2@1.
Neglecting small corrections;1/v,1/w we obtain

F~v,w1 ,w2!5122Uw12

v U if 2 uw12u,uvu, ~23!

F~v,w1 ,w2!50 if 2uw12u.uvu. ~24!

Here the valuew12 is defined differently depending on th
sign of the productw1w2. For w1w2.0 we havew125w1
1w2, while in the opposite casew1w2,0 we definew12
5max@uw1u,uw2u#. We observe that in both cases the functi
F depends linearly on frequency and vanishes as soo
uw12u exceedsuvu/2.

At arbitrary values ofv, w1, andw2 the integral Eq.~18!
can be evaluated numerically. The corresponding result
the functionF(v,w,0) is depicted in Fig. 1. The overall form
a,

hy

23533
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of the functionF(v,w,w) is similar but—as compared to
F(v,w,0)—it demonstrates a somewhat faster decay with
creasing frequency.

Finally let us point out that our predictions can be expe
mentally tested in various types of coherent mesoscopic c
ductors, such as, e.g., break junctions, quantum point c
tacts, or short diffusive metallic bridges/films.21,22 In all
these systems bothtD andtRC can be small enough in orde
to satisfy all the assumptions adopted here. For instance
diffusive samples21,22 one finds 1/tD of the order of few
Kelvins and, hence, the conditioneV,1/tD is obeyed in a
wide range of voltagesV&0.1–0.5 mV. We also note tha
the work22 reports the experimental analysis of the frequen
dispersion of shot noise,1 which is important in the same
frequency range as that of the third cumulant studied he

In conclusion, we have presented a general appro
which allows to describe statistics of current fluctuations
mesoscopic coherent conductors at arbitrary frequencies
in the presence of interactions. Restricting ourselves to
noninteracting case, we have analyzed frequency disper
of the third cumulant of the current operator. This dispers
was found negligible only in the case of tunnel junction
while in a general case it turns out to be important in t
frequency range comparable toeV. Similar results are also
expected for higher-order cumulants of the current opera

This work is part of the Kompetenznetz ‘‘Funktionel
Nanostructuren’’ supported by the Landestiftung Bade
Württemberg gGmbH. One of us~A.V.G.! acknowledges
support from the Alexander von Humboldt Stiftung.

FIG. 1. ~Color online! The functionF(v,w,0)5F(v,w,2w),
see Eq.~18!.
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