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Optical transitions in a single CdTe spherical quantum dot
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We discuss different aspects of the optical properties in a single CdTe spherical quantum dot after perform-
ing a systematic study of the eigenvalues, wave functions, and their dominant symmetries within the
838 k•p Kane-Weiler Hamiltonian derived from the conduction-valence band coupling and the mixing of the
valence states. The analysis of the inherent symmetries in the Hamiltonian leads to basis function sets separated
into two Hilbert subspaces. A detailed discussion of the symmetries associated with the electronic levels and
the selection rules for optical transitions are derived by considering circular polarization for the incident light.
We also calculated the optical oscillator strengths and the corresponding absorption spectra in the dipole
approximation. Also, we discuss the roles of nonparabolicity, valence-band admixture, and symmetry signa-
tures of the involved states. We compare the numerical results for the electronic dispersions in a zinc-blende
based quantum dot when the spherical or the axial approximations are used inside the 838 multiband Hamil-
tonian.
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I. INTRODUCTION

Semiconductor quantum dots are new man-made cry
line systems exhibiting electronic and optical properties t
cannot be observed in bulk materials. Due to the full qu
tization of all degrees of freedom the electronic spectrum
a single quantum dot, such as in atoms, always consists
discrete set of eigenvalues and this is where lies its g
interest from the point of view of fundamental physics a
also for their potential application in microelectronic and o
toelectronic devices such as light-emitting diodes. Much
fort has been dedicated to understand as well as to exp
the physical properties of these systems both theoretic
and experimentally. In the present work we will define
quantum dot as a microsphere of radiusR.

The quantum confined states and the optical transiti
between these quasi-zero-dimensional states have been
ied by several experimental techniques. The photolumin
cence excitation experiments permit to study the evolution
the electronic spectra with respect toR.1,2 The observation of
persistent hole burning enabled the investigation of the
dependence of these electronic levels.3 Additionally, impor-
tant experimental and theoretical results on the optical pr
erties of quantum dots have been compiled by Woggo4

Recently, new optical properties were discovered in quan
dots as, for instance, the photostimulated luminescence
served by Masumoto5 in spherical quantum dots~SQD’s!.
The understanding and interpretation of these experime
results would require a proper and precise description of
optical selection rules, a study of the dependence of the
ergy levels on the dot size and on the spatial symmetry
well as the effects of external fields on the electronic sta
of these atomiclike systems. These components are stro
affected and mutually connected by the quantum confi
ment. Therefore, an extended theoretical work is neede
explain the different aspects of the electronic transitions
symmetries of the involved states.
0163-1829/2003/68~23!/235327~9!/$20.00 68 2353
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If compared to CdS and CdSe quantum dots, the C
microcrystallites imbedded in a host matrix are better sui
for the study of the strong confinement regime, where
individual motions of electrons and holes are restricted to
size quantization region. This limit is realized when the bu
exciton Bohr radiusaB exceeds significantly the quantum d
radius and, thus, the Coulomb interaction between
electron-hole pairs can be considered as negligible.

The assignment of the electronic states based on
multiband effective-mass theory has provided strong foun
tions for description of the electronic structure in quantu
dots.1,2 The properties derived from it have helped the ana
sis of different results, such as the optical absorptio6

the resonant tunneling of holes,7 the g-factor evaluation8 in
layered heterostructures, and the Raman-scattering proce
under applied magnetic fields in bulk zinc-blend
semiconductors.9

Several versions of this theory under different approxim
tions have been formulated from bulk materials
zinc-blende10–14 and wurtzite15 based nanostructures. He
we have chosen to use the 838 k•p Kane-Weiler
model,16–18 to study all different aspects of the interactio
between theG6 , G8, andG7 bands as well as the symmetrie
imposed to the involved states in SQD’s under strong c
finement regime. Besides, the influences of these band in
actions on their optical selection rules are yet scarce an
more complete theory should be desired to provide be
understanding of their electronic structure and optical sp
tra. A remarkable effort has been done by Sercel13 and by
Efros10 to study the electronic states in SQD’s under differe
approaches. In order to achieve analytical expressions fo
radial part of the wave functions and eigenenergies, Ref
has assumed the spherical eight-band model and Refs. 11
14 have implemented a simplified block-diagonalized 434
Hamiltonian model. Several II-VI and III-V semiconducto
compounds present zinc-blende symmetry where the L
tinger parametersg1 , g2, andg3 are different. By neglecting
©2003 The American Physical Society27-1
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the warping termm5(g22g3)/2 and consideringg2Þg3
except where them terms occur, thek•p Hamiltonian is
reduced to the well-known axial approximation.18

In the present work we have implemented the 838 Kane-
Weiler Hamiltonian beyond the spherical approximation
zinc-blende based nanostructures to study the size and
parameter dependences and the general nature of the
tronic states. We present an extensive theoretical study o
eigenvalues, the dominant symmetries in the Hilbert sp
for a single CdTe SQD. In the following section we prese
results from a rigorous calculation of the electronic wa
functions and energy eigenvalues within thek•p Hamil-
tonian model. We also have derived the selection rules
calculated the interband optical oscillator strengths and
absorption coefficients for circular polarization in sing
dots. The general discussions are presented in Sec. III
finally, Sec. IV is devoted to our conclusions.

II. THEORY

A. Symmetry of k"p states of spherical quantum dots

Electron and hole states in SQD can be characterized
eigenstates of thez component of the total angular mome
tum defined by the sum of the Bloch,J, and the envelope,L ,
angular momenta, respectively. Within the 838 k•p model,
these states can be written as a linear expansion in the
of eight-component spinor functions. The Hamiltoni
model is shown in the Appendix@see Eq.~A2!#.

Several remarks should be made regarding our versio
the method when applied to SQD’s:

~i! We shall assume an infinite barrier confining mode
~ii ! As stated in Sec. I in reality we can define here tw

types ofk•p Hamiltonians to study the electronic levels
SQD’s: ~a! One is the spherical model where we assu
g25g3 in every term;~b! another is the axial model wher
we let ḡ5(2g213g3)/5 andg2Þg3 everywhere but in the
terms proportional tom which are set to zero. In the case
the axial model diagonal~A3! and off-diagonal~A4! ele-
ments in the Hamiltonian~A2! present different inversion
symmetries and the structure of operators~A2! determine an
inherent symmetry that allows the separation of the Hilb
space into two orthogonal subspaces. To satisfy the inver
symmetry of the diagonal and off-diagonal operators in
Hamiltonian, each subspace must be formed by special c
bination of even and odd states@see below Eqs.~1! and~2!#.

~iii ! In both Hamiltonian models thez component of the
orbital angular momentumLz5\M of the envelope wave
function remains as a good quantum number. The wave fu
tions for any electronic state are represented by an ei
component spinor. A complete set of eigenfunctions for
k•p Hamiltonian of the spherical QD can be expanded
terms of the product of the periodic Bloch functionsuJ,Jz& at
k50 and envelope functions. In order to take full advanta
of the above-mentioned symmetry properties, we shall
pand the eight-component spinor wave functions in each
bert subspace, in terms of the exact solutions of the diag
terms for each carrier type. Each component of the sp
has the formf n,L

M (r )5An,L j L(kn
Lr )YL

M(u,f) ~Ref. 19!, where
23532
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An,L is a normalization constant,j L(x) is the spherical Besse
function, andYL

M(u,f) the spherical harmonics. If we ne
glect the warping term, each subspace can be constru
with a special combination of even,f n,2L

M (r ), and odd,
f n,2L11

M (r )functions. The general forms of the spinor stat
are given by

uc I
M~r !&5(

n
(

L>uM u 1
Cn,2L

M f n,2L
M (r )ue1&

Cn,2L11
M21 f n,2L11

M21 (r )uhh1&

Cn,2L11
M f n,2L11

M (r )u lh1&

Cn,2L11
M f n,2L11

M (r )uso1&

Cn,2L
M11f n,2L

M11(r )ue2&

Cn,2L11
M12 f n,2L11

M12 (r )uhh2&

Cn,2L11
M11 f n,2L11

M11 (r )u lh2&

Cn,2L11
M11 f n,2L11

M11 (r )uso2&

2 ~1!

and

uc II
M~r !&5(

n
(

L>uM u 1
Cn,2L11

M f n,2L11
M (r )ue1&

Cn,2L
M21f n,2L

M21(r )uhh1&

Cn,2L
M f n,2L

M (r )u lh1&

Cn,2L
M f n,2L

M (r )uso1&

Cn,2L11
M11 f n,2L11

M11 (r )ue2&

Cn,2L
M12f n,2L

M12(r )uhh2&

Cn,2L
M11f n,2L

M11(r )u lh2&

Cn,2L
M11f n,2L

M11(r )uso2&

2 , ~2!

whereCn,L
M are constants to be determined. It is important

remark that the above states are in theL-J coupling scheme,
where the eigenstates are obtained by an expansion in a
of wave functions with well defined projection\Fz (Fz5
61/2,63/2, . . . ) of thetotal angular momentumF5L1J.
The special order of the numberM in wave functions~1! and
~2! is dictated by the constant of motionFz and following the
values of thez-component of the band-edge angular mome
tum Jz . Hence, the 838 k•p Hamiltonian can be diagonal
ized in each Hilbert subspace I, II independently in differe
M subspaces.

According to our model, states~1! and ~2! should fulfill
the boundary conditionC I,II

M (R)50 at the dot radiusR and,
therefore, the wave numbers occurring in each compon
f n,L

M (r ) are given bykn
L5mn

L/R, wheremn
L is thenth zero of

j L(x). Notice yet that each statec I
M(r ) or c II

M(r ) differs
from the usual descriptions which classify them by th
parities.10 The order imposed upon the orbital quantum nu
ber L in Eqs. ~1! and ~2! is determined by the off-diagona
elements in the Hamiltonian~A2!. The operatorsP̂6 change
the parity of angular envelope functionYL

M(u,f) while P̂z

preserves the parity of the orbital angular momentum. B
conduction-valence band coupling and the valence-b
mixing, appearing as combinations of the operatorsP̂1 ,
P̂2 , and P̂z in the off-diagonal terms of the Hamiltonian
7-2
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OPTICAL TRANSITIONS IN A SINGLE CdTe . . . PHYSICAL REVIEW B 68, 235327 ~2003!
determine how the states must be constructed. Clearly,
states cannot be classified anymore as symmetric or antis
metric, as can be done for the parabolic Hamiltonian mo
or the odd/even classification that has been used for
spherical9 and for the Pidgeon and Brown Hamiltonia
models.20 The axial approximation, whereg2Þg3, couples
all carrier componentsue6&, uhh6&, u lh6&, uso6& and this
implies that for a givenM all values of the quantum numbe
L, fulfilling the condition L>uM u, have to be taken into
account.

Finally we need to mention that the classification of t
states in the Hilbert subspaces I, II and independently
different M subspaces simplifies tremendously the calcu
tion ~the order of the matrices to be diagonalized is reduce!,
permits a precise study of the selection rules for the opt
transitions, as well as allows an unambiguous analysis of
final results.

~iv! In our matrix diagonalization scheme we have o
dered the basis sets$ f n,L

M (r )% for increasing values of the
energy eigenvaluesEi , i 51, . . . ,N. Therefore, we can re
place the sums(n,L , in expansions~1! and~2!, by (Ei

, with
fixed value ofM. This procedure permits to select only tho
most important contributions to construct a given spinor. T
total number of values ofN used can be fixed when an a
propriate convergence condition has been reached. In
approach we have diagonalized much smaller matrices
those used in the normally standard procedures, with a c
sequent gain in the computational efficiency besides disc
ing many zeros in the matrix to be diagonalized.

~v! The complete Kane-Weiler Hamiltonian~A2! used in
this work neglects only the warping terms, proportional
the parameterm5(g22g3)/2, which appear in the off-
diagonal elementW @see Eq.~A4!#. In all other components
of the Hamiltonian~A2! we have keptg2Þg3, thus preserv-
ing its axial nature as well as the type of coupling betwe
the Kramer doublets for each carrier. This asymmetry is
flected in the difference of the contributions from remo
conduction bands to the carrier effective masses,g2 andg3.
Note that this difference on the effective masses is negle
if the spherical approximation is considered.

The current growth techniques for quantum dots synt
sized in host matrices can produce samples with narrow
distributions (,5%) of nanocrystallites. Uniform shape
have also been obtained besides the high degree of repro
ibility and control already reached. Additionally to the
technological facts, at the present time, the characteriza
processes and size selective optical techniques suc
fluorescence,20 low-temperature two-photon fluorescence e
citation microscopy21 and far-field microscopy22 have per-
mitted to study the optical properties of an isolated quant
dot, confirming thed-function-like character for its densit
of states.

B. Selection rules, oscillator strengths, and optical absorption

In the framework of the Pidgeon and Brown Hamiltoni
model treating an also spherical central potential, all th
Cartesian axes become identical. Besides, any radial d
tion in the sphere can be taken as the quantization axis in
23532
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symmetry and, in principle, any optical selection rules
incident light with linear or circular polarization are equiv
lent. As we mentioned for the axial Hamiltonian model, the
will be some different effective masses along the quanti
tion direction~taken asz axis! and on the plane perpendicu
lar to this~denoted byx-y plane!. It is important since for all
crystals of interest here, theG8 valence-band states sho
different effective masses in these two non-equivalent dir
tions according to thep-type character of the hole branche
However, the other two carriers belonging toG6
(s-character! andG7 (p-character! bands are spherical sym
metric implying equal curvatures~effective masses! in any
direction. We may infer that, at least away from the spheri
interface and may be for radii not ‘‘too small,’’ the SQD
grown by any process should have a lattice with the sa
bulklike symmetry properties. Therefore, these difference
the carrier and their effective masses should be reflecte
the optical experiments. Moreover, it is implied that a prop
lattice direction should be identified in a given sample~see
for example Ref. 24!. In the following we have chosen to
assign the properz-quantization axis along the wave vect
of the incident light with circular polarization (ê1 or ê2). It
is important to remark that in colloidal or host matr
samples, to grow QD’s in a certain crystalline direction m
become experimentally difficult, depending on the dens
and on the size of the dots.24

Within the present growth progresses, our calculation
neglect the effects of non-homogeneous broadening, wh
arise from the dot size fluctuations in a sample. Thus,
absorption spectra will be calculated by considering onl
constant homogeneous broadeningG, which may be as-
signed to the presence of phonons, impurities, surface st
etc. In order to discuss the optical absorption spectrum,
probability for dipole-allowed optical transitions betwee
single electron and hole states has to be evaluated in de

Within the electrical dipole approximation, the oscillat
strength is a linear combination of the matrix elements of
optical transitions,

^c j uê•P̂uc j 8&5^ f j u f j 8&^uj uê•P̂uuj 8&1^uj uuj 8&^ f j uê•P̂u f j 8&.
~3!

Here, ê is the light polarization vector,P̂ is the momentum
operator,f j anduj are the envelope and periodic Bloch fun
tions at theG point for each involved carrierj, respectively.
The second term on the right-hand side of Eq.~3! is respon-
sible for intraband optical transitions, since^uj uuj 8&5d j j 8 .
In this case the incident light couples, in the same ba
states with different symmetries whenever the te

^ f j uê•P̂u f j 8&Þ0 for given polarization. These optical trans
tions correspond to a range of excitation laser energies,\v
~typically hundreds of meV!, smaller than the fundamenta
gapEg . In the following we will solely study the first term
of Eq. ~3! given the contributions for interband transition
i.e., in the range where\v*Eg . In CdTe the interband and
intraband optical transitions are well separated in energ
and can be studied independently. We need to remark th
narrow band-gap semiconductors are considered both te
in Eq. ~3! have to be considered in the analysis of th
7-3
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optical properties. The interband term can be separated in
integration over the fast oscillating Bloch part, which w
determine the interband selection rules between the B
states, and the integration over the smooth envelope par
termining the intensity of an allowed transition. The integ
tion over the Bloch function results in the size-independ
dipole matrix elements that will be namedP j , j 8 . In our case
the complete set of selection rules are obtained from
nonvanishing products of the matrix elemen
I e,hdLe ,Lh

Pa,a8 , whereI e,h5^ f e,au f h,a8& is the overlap inte-
gral of the electron-hole envelope functions allowed by
interband transitiona→a8. The allowed transitions betwee
states belonging to the Hilbert subspaces described
spinors~1! and ~2! are determined from the angular depe
dence of the wave functionsf n,L

M (r ). According to our choice

ẑik, the interband dipole matrix for incident light with le
circular (s2) polarization,ê25(xÀiy)/A2, is given by

P25
iP

A3 3
0 2A3 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 1 A2 0 0 0 0

0 0 0 0 2A3 0 0 0

21 0 0 0 0 0 0 0

2A2 0 0 0 0 0 0 0

4 ,

~4!

where (iP)5 i ^SuPxuX& is proportional to the Kane couplin
parameterP0. The corresponding matrix interactions1 is
obtained from the Hermitian adjointP152@P2#†.

On the grounds established by Eq.~4!, the corresponding
selection rules for each optical transition in any polarizat
can be precisely obtained. It can be seen, according to
structure of both obtained Hilbert subspaces and the dip
matrices, that only the allowed transitions are those betw
initial Mi(Hi) and finalM f(H f) levels belonging to differen
subspacesH5I, II. This is due to the difference in the an
gular momentaL ~symmetry! of electron and hole compo
nents in the subspaces. Moreover, the preservation of
projection of the total angular momentumFZ (DFZ5FZe
2FZh50) requires for the magnetic quantum number t
DM561.

For left circular polarization, the optical matrix eleme
~3! takes the form

^ce,I
Meuê2

•P̂uch,II
Mh&5 iPFNe ,Me

Nh ,Mh~ I,II !dMe ,Mh61 , ~5!

where

FNe ,Me

Nh ,Mh~ I,II !5 (
n,L>uM u

H 2An,b
e6

An,b
hh6

6
1

A3
An,b

e7 FAn,b
lh6

1
1

A2
An,b

so6G J , ~6!
23532
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with b5(2L11/271/2). In the same way the I→II transi-
tions can be obtained by interchanging 2L11/271/2 by
2L11/261/2. To right circular polarizationê1 we solely
have to substitute the signs (6) in Eqs.~5! and ~6! by (7)
and vice versa.

In order to discuss the optical absorption spectra, the
terband oscillator strengthuFu2 between single electron
(Ne ,Me) and hole (Nh ,Mh) states has to be evaluated. Th
absorption coefficient can then be written as

a~ ê2,v!5a0 (
Ne ,Nh ,M

G

p

3H uFNe ,M
Nh ,M61

~ I,II !u2

@ENe ,M~ I!2ENh ,M61~ II !2\v#21G2

1
uFNe ,M

Nh ,M71
~ II,I !u2

@ENe ,M~ II !2ENh ,M71~ I!2\v#21G2J , ~7!

wherea0 is a magnitude which includes the bulkP param-
eter, the dielectric constant, etc. As we have pointed ou
the Introduction the warping termm was neglected, provid-
ing an 838 k•p Hamiltonian with cylindrical symmetry. In
CdSeg2'g3 and the warping term contribution to the qu
siparticle energies and optical selection rules can be ruled
perturbation theory. In this case other electronic transitio
have to be added, for example to Eq.~6!. Nevertheless and
since the corresponding oscillator strength is proportiona
them parameter, these new contributions to the optical sp
trum are smaller, in comparison with those obtained throu
Eq. ~6!, in the cylindrical approximation.

III. RESULTS

The parameters for CdTe~Ref. 10! used in this calculation
are the energy band gapEg51.6069 eV, the spin-orbit en
ergy D050.953 eV. The Luttinger parametersg1

L55.37,
g2

L51.67, g3
L51.98, the nonparabolicity for the conductio

band (112F)51.24, the electron effective massme
50.091m0, and the Kane conduction-valence band coupl
Ep517.9 eV. For all calculated optical spectra in this wo
we have used a unique value for the homogeneous electr
broadening,G520 meV.

For the numerical calculation we have built eachM sub-
space using as basis all the possible electronic states
fulfill the conditionE<2.5 eV. Hence, the results we prese
can achieved using matrices of size of 8N038N0, with N0
<30.

In Fig. 1 we show the variation of the first electron an
hole energy levels as a function of 1/R2. We identify the
levels by the magnetic quantum numberM and by the index
n51,2 . . . that enumerates the ordering of levels by incre
ing values of the energy. Thus, the electron~hole! levels are
7-4
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labeled in the following way:Men(H)@Mhn(H)#, and H
5I,II representing which Hilbert subspace the carrier st
belongs to. This notation is appropriate if we consider
form in which each state function@Eqs.~1! and ~2!# is writ-
ten. Our diagonalization scheme has allowed an easy ide
fication of the levels as well as the optical transitions. T
level degeneracy is indicated in the figure by parenthe
that is, 0(21)e

1(I) meaning that the state is doubly degen
ate for the values ofM5$0,21%. Due to the full confine-
ment, the average spacing between levels increases with
creasing values ofR. The figure shows clearly the existenc
of nonparabolicity in the conduction-band levels and the
fects of the admixture between heavy and light holes res
ing in the anticrossing atR'13 Å. It will be very useful to
check the differences between the calculated electronic s
by using the spherical model or the axial approximation
direct comparison is given in Fig. 1 where the data of Ref.
are shown by square-dashed lines. The energy values of
10 are well reproduced by our calculations when the appr
mation ofg25g3 is considered and the same set of para
eters are used for CdTe.

It can be seen that the eigenenergy values for the con
tion band in both models are nearly the same. Neverthe
the difference increases as the SQD radius decreases
example the level0(21)e

1(I) in both approximations pre
sents a difference of 140 meV atR513 Å. The same we can
argue with respect to the valence band for the first t
heavy-hole states:0h1(II) and 0h2(II). A more significative
behavior~quantitative and qualitative! can be observed fo
the other hole excited states at any value of the QD rad
These differences have their origin in the Hamiltonians. I
seen that electron- and heavy-hole states are less influe

FIG. 1. Electron and hole energy spectra of a CdTe SQD
calculated in Sec. II A, plotted the inverse-mean-square ra
1/R2. Solid ~dashed! lines represent states arising from the Hilbe
subspace I~II !. Some levels have been identified considering
quantum numberM and the energy ordering indexn ~see text for
details!. Square-dashed lines indicate the same result accordin
the spherical approximation.
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~only numerically through their effective masses! by the
axial component inherent in the zinc-blende symmetry
many II-VI and III-V based semiconductor nanostructure
Thus, the energies of the first light-hole and of the oth
excited states@except the0h2(II)] in the valence band are
strongly modified by the presence of the axial compone
(g2Þg3) in comparison to those calculated with a comple
spherical QD Hamiltonian. Another interesting feature
Fig. 1 is the observed splitting in the conduction band@state

0(21)e
2(II) shown by dashed lines# and also in the valence

band @state 0(21)h
4(II) shown by dashed lines#. The main

reason for these splittings is the existing coupling betwe
electron- and light-hole states, a first-order contribution g

erated by the linear terms proportional toK̂2 in Eq. ~A2!.
Also, these matrix element coupling blocks with differe
spin orientations break their Kramer doublets degener
We can see that the same behavior is obtained in Ref. 10
the electron but complete different values for hole level e
ergy are found for the spherical model.

Figure 2 shows the calculated interband transition en
giesDE as a function of the inverse of the square of the SQ
radius. Notice that for dot sizes below 100 Å, the nonline
shape of the transition energies also reveals the strong
parabolicity and the inherent multiple band mixture effec
It is important to remark that the linear approachDE5a
1b/R2, as used in some works25 to interpret the optical
properties, can be applied only for a very limited range
dot sizes.

According to our notation, an interband transition fro
the initial hole state, characterized by quantum numb
(ni ,Mi) , to the final electron state defined by (nf ,M f) is
represented asM f

enf(Hf)←M f
hni(Hi). In this calculation, we

s
s

e

to

FIG. 2. Transition energies obtained from thek•p model forê2

polarization for a CdTe SQD. The numbers indicate the followi
transitions: 1,0(21)e

1(I)←1,(0)h
1(II); 2, 0(21)e

1(I)←1,(0)h
2(II); 3,

0(21)e
1(II) ←1,(0)h

1(I); 4, 0(21)e
1(II) ←1,(0)h

2(I); 5, 0(21)e
2(II)

←1,(0)h
1(I); 6, 0(21)e

2(II) ←1,(0)h
2(I); 7, 1(22)e

1(II)
←2,(21)h

1(I); 8, 1(22)e
1(II) ←2,(21)h

2(I). Transitions 4 and 6, 7
are labeled by dashed lines and line dots, respectively.
7-5
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have neglected any effect of temperature by assuming
the carrier Fermi occupations areF(Ec)'1 andF(Ev)'0.

In Fig. 3 we present the calculated oscillator streng

as a function ofR, in a CdTe SQD, for circularê2 polar-
ization. The involved transitions were obtained from the g
eral interband selection ruleDM561 as can be identified in
the figure.

Two qualitative characteristics can be observed in F
3:~i! The strongest contributions are transitions starting in
first hole state,~ii ! the oscillator strength presents a gene
slow variation with the dot radius. For some specific tran
tions and for well defined dot radius, the oscillator stren
shows a very sharp variation. For example, in Fig. 3 a clear
interchange of optical strengths between the transitionsc and
g can be observed at approximatelyR542 Å. For dot sizes
R,42 Å the transitiong is the dominant one while that la
beled asc is extremely weak. Just the opposite happens
R.42 Å where the transitionc becomes the dominant one
These facts can be understood by considering that the
states of the mentioned transitions are0e1(II) and 0e2(II),
or the levels that present the anticrossing effect neaR
542 Å. At this value the states are interchanging their ch
acter and, according to selection rules, the oscillator stren
will display the character of the most favored transition.

Figure 4 shows the calculated optical absorption spe
for the ê2 polarization in SQD with R530 Å and R
550 Å. Due to symmetry arguments, the shape of the
sorption profile forê1 must be exactly the same as forê2

polarization. This fact is a consequence of the spatial s
metry of the system that assures that the involved states
have degenerate energy levels with respect to quantum n
ber M. Obviously, any deviation from the present symmet
as induced by electric or magnetic fields or by shape de
mation, can break the 2L11 degeneracy ofM, producing

FIG. 3. Calculated oscillator strength as a function of the S

radius, in left circularê2 polarization. The shown transitions are
follows: 0e1(I)← 1h1(II); b, 0e1(II) ← 1h1(I); c: 21e1(II)
← 0h1(I); d, 21e1(I)← 0h1(II); e, 1e1(II) ← 2h1(I); f , 22e1(II)
← 21h1(I), g, 0e2(II) ← 1h1(I); h, 21e2(II) ← 0h1(I).
23532
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significant differences betweenê1, ê2 absorption spectra.
The overall absorption profile shown in Fig. 4 is a res

of the addition of all 16 possible contributions which a
listed in the caption of the figure. Some contributions to t
peaks 3 and 4 are slightly shifted from each other, since t
arise from very close but not degenerate energy levels, as
be seen in Figs. 1 and 2. This difference is sufficiently sm
so that when the separate contributions are added the re
ing profile ~solid line! shows only one peak due to the larg
value for the broadening used in the present calculation
resolve spectroscopically these contributions we would n
a smaller value for the phenomenological linewidthG, a pos-
sibility that could only be checked from the experimen
done in high quality samples.

It is completely clear that both mentioned Hamiltonia
models will present different characteristic behavior for t
optical properties, in particular, for those transitions invo
ing electron and hole excited states. Another experime
evidence that seems interesting is the possibility to dis
guish interband spectra from the two Hamiltonian mod
described before, a fact that would demand optical exp

FIG. 4. Absorption spectra forê2 polarization in CdTe SQD
with R530 Å and 50 Å. Peaks contributing to the optical abso
tion are as follows: 1,0e1(I)← 1h1(II), 21e1(I)← 0h1(II); 2,

0e1(I)← 1h2(II), 21e1(I)← 0h2(II); 3, 0e1(II) ← 1h1(I), 0e2(II)
← 1h1(I), 22e1(II) ← 21h1(I), 21e1(II) ← 0h1(I), 21e2(II)
← 0h1(I); 4, 0e1(II) ← 1h2(I), 0e2(II) ← 1h2(I), 1e1(II) ← 2h1(I),

1e1(II) ← 2h2(I), 22e1(II) ← 21h2(I), 21e1(II) ← 0h2(I),

21e2(II) ← 0h2(I).
7-6
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ments using different independent polarizations of incid
light on the same SQD.

IV. CONCLUSIONS

Within the framework of thek•p multiband effective-
mass approximation we have studied the main features
cerning to the electronic structure and the optical proper
for SQD’s in the regime of strong confinement. The resu
obtained in our calculation for the eigenstates and eigen
ues have shown the relevant aspects of interlevel couplin
the study of the optical and electronic properties. The Hilb
space of solutions and their symmetry properties for th
38 k•p Hamiltonian were deeply analyzed providing a d
tailed study of the optical properties and their dependence
the dot size and SQD parameters. The nonhomogeneou
fects of the size distribution have been neglected and
light-matter interaction was addressed in the dipole appr
mation. Also, we have shown that the two types ofk•p
Hamiltonians, spherical and axial models, will conduce
different hole energy dispersions and different optical tran
tions. It has been clarified that as long asg2 is not equal to
g3 both models provide different values of the electron a
hole energy spectra. Our results are the starting steps f
complete and rigorous discussion of other optical proper
in semiconductor quantum dots and possibility to obse
different polarization excitations. The present results
completely valid for any other SQD nanostructure as C
CdSe, etc.
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APPENDIX: THE 8 Ã8 k"p HAMILTONIAN

Some details of the conventionalk•p formalism used in
this work are shown. We define the basis statesuJ,Jz& in
terms of spin and orbital wave functions withs-type symme-
try for the two conduction bands (e), and those withp-type
symmetry for the six valence bands, corresponding to he
(hh), light (lh) and spin-orbit (so) holes. They are repre
sented by

ue1&5u 1
2 , 1

2 &5us↑&,

uhh1&5u 3
2 , 3

2 &52 iA1
2 u~x1 iy !↑&,

u lh1&5u 3
2 , 1

2 &52 iA1
6 @ u~x1 iy !↓&22uz↑&],

uso1&5u 1
2 , 1

2 &52 iA1
3 @ u~x1 iy !↓&1uz↑&],

ue2&5u 1
2 ,2 1

2 &5us↓&,

uhh2&5u 3
2 ,2 3

2 &52 iA1
2 u~x2 iy !↓&,

u lh2&5u 3
2 ,2 1

2 &5 iA1
6 @ u~x2 iy !↑&12uz↓&],

uso2&5u 1
2 ,2 1

2 &5 iA1
3 @ u~x2 iy !↑&2uz↓&]. ~A1!

Notice that we have used a different ordering of the ba
edge Bloch states. In the above sequence of states,
Hamiltonian matrix takes the form given below, after Kane16

and Weiler,18 and represents the kinetic energy of the ca
ers:
Hk•p5

l

D̂el 2A3K̂1 A2K̂z 2K̂z 0 0 K̂2 A2K̂2

D̂hh 2Ĝ2

1

A2
Ĝ2 0 0 2

1

2
Ŵ 2

1

A2
Ŵ

D̂lh R̂ 2K̂2

1

2
Ŵ 0 A3

2
Ĝ2

D̂so 2A2K̂2

1

A2
Ŵ 2A3

2
Ĝ2

0

D̂el 2A3K̂2 A2K̂z 2K̂z

D̂hh 2Ĝ1

1

A2
Ĝ1

D̂ lh R̂

D̂so

m
. ~A2!
7-7
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Each diagonal element is defined as

D̂el5Eg1~F11/2!P̂2,

D̂hh5D̂1 ,

D̂ lh5D̂2 , ~A3!

D̂65S g16g2

2 D P̂27
3

2
g2P̂z

2 ,

D̂so52D01
g1

2
P̂2.

The off-diagonal terms are given by

K̂65 iP0A1

6
P̂6 , ~A4!

Ĝ65A3g3P̂6P̂z ,

K̂z5 iP0A1

3
P̂z ,

Ŵ5A3~ ḡ P̂2
2 2m P̂1

2 !,

R̂5
A2

2
g2~P̂223P̂z

2!.

In the above expressions, we define the momentum op
tors asP̂65@]/]x6 i (]/]y#, P̂z5]/]z andP̂25¹2. The ad-
ditional parameters are given by

ḡ5 1
2 ~g21g3!,

m5 1
2 ~g22g3!.

The second-order parametersF, g1 , g2, andg3 take into
account the contributions of the remote bands to the cond
tion ~electron! and valence~holes! effective masses, respec
tively and are measured in units of\2/m0. Finally P0
5 i (\/m0)^supxux& is the usual first-order Kane paramet
~measured in meV Å! or Ep5(2m0 /\2)P0

2 ~meV! which sets
the strength of the conduction-valence band coupling. W
ing the operatorsP̂6 and P̂z in spherical coordinates an
using the wave functionf n,L

M (r ,V) introduced in Sec. II, the
off-diagonal matrix elements are given by

^ f n8,L8
M8 uP̂1u f n,L

M &

52kn
LdM8,M11I L8,L

n8,n
@dL8,L11bL,M2dL8,L21cL,M#,

~A5!

^ f n8,L8
M8 uP̂2u f n,L

M &52kn
LdM8,M21I L8,L

n8,n
@2cL11,M21dL8,L11

1bL21,M21dL8,L21#, ~A6!
23532
ra-
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^ f n8,L8
M8 uP̂zu f n,L

M &

52kn
LdM8,MI L8,L

n8,n
@2aL11,MdL8,L112aL,MdL8,L21#,

~A7!

^ f n8,L8
M8 uP̂2

2 u f n,L
M &52~kn

L!2dM8,M22I L8,L
n8,n

3F dL8,L12S 2L13

mn
L D cL12,M22cL11,M21

2dL8,L22S 2L21

mn
L D bL22,M22bL21,M21G ,

~A8!

^ f n8,L8
M8 uP̂1

2 u f n,L
M &52~kn

L!2dM8,M12I L8,L
n8,n

3F dL8,L12S 2L13

mn
L D bL,MbL11,M11

1dL8,L22S 2L21

mn
L D cL,McL21,M11G ,

~A9!

^ f n8,L8
M8 uP̂z

2u f n,L
M &52~kn

L!2dM8,MI L8,L
n8,n

3F dL8,L12S 2L13

mn
L D aL11,MaL12,M

2dL8,L22S 2L21

mn
L D aL21,MaL,MG ,

~A10!

^ f n8,L8
M8 uP̂1P̂zu f n,L

M &522~kn
L!2dM8,M11I L8,L

n8,n

3F dL8,L12S 2L13

mn
L D aL11,MbL11,M

1dL8,L22S 2L21

mn
L D cL21,MaL,MG ,

~A11!

^ f n8,L8
M8 uP̂2P̂zu f n,L

M &52~kn
L!2dM8,M21I L8,L

n8,n

3F dL8,L12S 2L13

mn
L D aL11,McL12,M21

1dL8,L22S 2L21

mn
L D bL22,M21

aL,MG ,

~A12!

where
7-8
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aL11,M5A~L2M11!~L1M11!

~2L11!~2L13!
,

bL,M5A~L1M12!~L1M11!

~2L11!~2L13!
, ~A13!

cL,M5A~L2M !~L2M21!

~2L21!~2L11!
,
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