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Electric field effect on the second-order nonlinear optical properties of parabolic
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By using the compact-density-matrix approach and iterative procedure, a detailed procedure for the calcu-
lation of the second-harmonic generati®HG) susceptibility tensor is given in the electric-field-biased
parabolic and semiparabolic quantum wél@N's). The simple analytical formula for the SHG susceptibility
in the systems is also deduced. By adopting the methods of envelope wave function and displacement har-
monic oscillation, the electronic states in parabolic and semi parabolic QW'’s with applied electric fields are
exactly solved. Numerical results on typical,Bla, ,Al/GaAs materials show that, for the same effective
widths, the SHG susceptibility in semiparabolic QW is larger than that in parabolic QW due to the self-
asymmetry of the semiparabolic QW, and the applied electric field can make the SHG susceptibilities in both
systems enhance remarkably. Moreover, the SHG susceptibility also sensitively depends on the relaxation rate
of the systems.
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I. INTRODUCTION absorption could be doubly resonant, leading to SHG suscep-
tibilities more than 18 times of magnitude higher than that
Recently nonlinear optical properties in semiconductorin bulk GaAs. Ahn and co-worké&r proposed to bias a sym-
guantum wells (QW'’s) systems, superlattices, and metric QW electrically to obtain this asymmetry. This has
nanostructurés?! are of considerable interest because ofbeen realized by Fejeet al,'* who obtained a SHG coeffi-
their relevance in studying practical applications and as &ient more than 70 times higher than in bulk GaAs. Recently,
probe for the electronic structure of mesoscopic mediaGuo and co-workef$!4investigated the OR and EOE in a
Much special attentions had been paid to the second-ordslymmetric parabolic QW with an applied electric field; re-
nonlinear optical properti€s;}” such as optical rectification sults reveal that both effects were enhanced significantly
(OR), second-harmonic generatigBHG), electro-optic ef-  with the increase of the magnitude of the electric field, and
fect (EOE), and so on, because the second-order nonlineaghey reach nearly one and six orders higher than those in
procedures are the simplest and the lowest-order nonlinedaulk GaAs, respectively. The huge nonlinear optical proper-
procedures, and the magnitudes of the second-order nonlities have the potential for device applications in far-infrared
ear are usually stronger than those of the higher-order nodaser amplifies, photodetector$, and high-speed electro-
linears if the quantum systems have significantoptical modulators.
asymmetry>14.18 In this paper, except for the symmetrical parabolic QW
In a symmetric QW structure, the second-order nonlineamodes, a semiparabolic QW model has been brought for-
susceptibility is usually small except for the contribution of ward. It is obvious that the semiparabolic QW system is an
the bulk susceptibilit}. Therefore, in order to obtain a strong asymmetrical quantum system, and the applied electric field
second-order optical nonlinearity, the inversion symmetry ofcan adjust the asymmetry of the potential. Therefore, com-
the quantum systems should be broRehln general, people paring with that in the symmetrical parabolic QW system,
get these asymmetries through two ways, one is by usinthe second-order nonlinear effect in semiparabolic QW can
advanced material growing technology such as moleculabe looked forward to having large enhancement. Bearing this
beam epitaxy and metal-organic chemical vapor depositioidea, we will study the influences of electric field on the
to obtain the systems with asymmetric confining SHG susceptibility in parabolic and semiparabolic QW's.
potential’~'°the other is through applying an electric field to ~ The paper is organized as follows: In Sec. II, by adopting
a symmetric system to get an asymmetric quantunthe methods of envelope wavefunction and displacement har-
system*112Gurnick and Detempfehave suggested obtain- monic oscillation, the electronic states in parabolic and semi-
ing this asymmetry by growing AGa _,As multiple QW’'s  parabolic QW’s with applied electric fields are exactly
with asymmetric composition gradients of Al in the growing solved first, then under the compact-density-matrix ap-
direction, and the authors have calculated the second-ordgroach, the simple analytical formula for the SHG suscepti-
nonlinearities for a Morse potential; the results reveal 10-bility in the systems is deduced. In Sec. lll, numerical cal-
100 times larger than in bulk materials. Khurgiand Yuh  culations on typical GaAs material are performed. The
and Wang’ later suggested using an asymmetric couple QWinfluences of the electric field on the energy level of the
and a step-QW structure, respectively. Rosencher and Boidound states in the semiparabolic QW systems are analyzed
have shown that the step QW'’s could be designed so that thend discussed first, then the SHG susceptibility as functions
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of the change in the energy eigenvalues due to an applied Using the analogous steps as in Refs. 16 and 17, we ob-
electric field, the incident photon energy, and the relaxatioriain the energy levels and corresponding wave functions in
rate of the systems are plotted, and the characteristics fdhe parabolic QW, and they take the following forms:

these curves are analyzed and compared. The results reveal
that the SHG susceptibilities are related to the strength of
applied electric field and the relaxation rate of the system. As
the energy eigenvalues decrease due to the applied electric
field becoming strong, the SHG susceptibility in both sys- 1
tems increase monotonely. Furthermore, when the effective ¢n(z):Nnex;< ——[a(z+ ,3)]2> H[a(z+8)], (9
widths of the semiparabolic and parabolic QW’'s are same, 2

the SHG susceptibility in semiparabolic QW is larger thanwith

that in parabolic QW, which means that the semiparabolic

2F2
_ , n=0123..., (8
2m* wg

En=ﬁw0 n+ -

2

QW is a model of very promising candidates for second- m* w, qF
order nonlinear optical properties. a= o BT (10
m* wg
Il. THEORY where H,(z) is the Hermite functiorté [whent is integer,

Hi(z becomes Hermite olynomigl and N
Under the effective-mass approximation, the electron (2) poy R "

e . ; S LU, =1 /7217712 is the normalization constant.
gssng'rlitggéagy()f a QW system with an applied electric field is For semiparabolic QW, the electronic energy levels and

corresponding wave functions are given as follows:

h? | 2 2 q2F2
H=- —+—+—|+V(2)+gFz 1 — il

o | a2 oz (2)+q (1) En=fiao| trt 3|~ 2 (12)
with 1

V(z)=im*wiz?, —w<z<w (2) ¢n(z)=Nnexp<—E[a(z+,8)]2>th[a(z+,8)], (12
for parabolic quantum wells, and wheret, is determined by

Imt w22 220 . H¢ (ep)=0, n=123..., (13
V(z)=
2 o, z<0 and the normalization constaNf, is determined by

for semiparabolic quantum wells. Hezeepresents the QW’s % ) ) —12
growth directionF is the strength of the applied electric field anr fo exp{—[a(z+B)]"HH; [a(z+B)]}"dz
parallel toz direction,q is the electron charge, ang, is the (14)

frequency of the parabolic confining potential of the QW.
Under the envelope wave-function approximation, the eigen- Next, the formulas of the SHG susceptibility in the two
functionsyn, (r) and eigenenergies,  are the solutions of models will be deduced. Assuming a monochromatic inci-
the Schiidinger equation foH and are given by dent field E(t) = Eexp(—iwt)+E*exp(wt) is applied to the

system. The evolution of the density matrix is given by the

Y1) = dn(2)Uc(r)expliky 1), “ time-dependent Schdinger equation
and P 1
oi
.2 0 = i [Ho=azE0).ply = Tyy(p—p®);. (19
8n,k:En+ |k//|2- (5) . L. . .
2m* For simplicity, only one value of the relaxation rate is as-

) , sumedl’;; =I"y=1/T. Equation(15) is solved using the usual
Here,k;, andr, are the wave vector and coordinate in ¥} jierative method-1t

plane andJ(r) is the periodic part of the Bloch function in
the conduction band &=0. ¢,(z) andE, are the solutions

of one-dimensional Schdinger equation P(t)zz pM(t), (16)
H,$(2)=E¢(2), (6)  with
whereH, is thez part of the HamiltoniarH, and it is given &pi(jnﬂ) _ N
by T:E{[HOvP(M—l)]ij_lﬁrijpi(jn Y}
2 d2 1
Ho= v gz TV Harz @ —7lazp @I EM). (17
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TABLE |. The calculated energy eigenvalues and their intervals in eV.

Semiparabolic QW Parabolic QW
Fx10' Vim  E; E, Es E, AE; AE, AE, E, E, = E, AE(i=12,3)
0.0 0.3554 0.8293 1.3032 1.7770 0.4739 0.4739 0.4739 0.2369 0.7108 1.1847 1.6586 0.4739
0.5 0.3432 0.8110 1.2802 1.7502 0.4676 0.4692 0.4700 0.2369 0.7108 1.1846 1.6585 0.4739
1.0 0.3315 0.7930 1.2576 1.7238 0.4615 0.4646 0.4662 0.2367 0.7106 1.1844 1.6583 0.4739
1.5 0.3201 0.7755 1.2355 1.6978 0.4554 0.4600 0.4623 0.2364 0.7102 1.1841 1.6580 0.4739
2.0 0.3091 0.7583 1.2137 1.6721 0.4492 0.4554 0.4584 0.2359 0.7098 1.1837 1.6576 0.4739
3.0 0.2883 0.7253 1.1714 1.6222 0.4371 0.4461 0.4507 0.2347 0.7085 1.1824 1.6563 0.4739
4.0 0.2689 0.6939 1.1308 1.5738 0.4250 0.4369 0.4430 0.2329 0.7068 1.1806 1.6545 0.4739
5.0 0.2510 0.6640 1.0917 1.5270 0.4130 0.4277 0.4353 0.2306 0.7045 1.1784 1.6522 0.4739
8.0 0.2058 0.5842 0.9850 1.3979 0.3784 0.4009 0.4129 0.2207 0.6946 1.1685 1.6424 0.4739
10.0 0.1822 0.5383 0.9210 1.3187 0.3561 0.3828 0.3977 0.2116 0.6855 1.1594 1.6333 0.4739

The electronic polarization of the QW will also be a seriesstates, angu;; is the off-diagonal matrix element which is
expansion as in Eq(16), and be limited to the first two given by u;;=[(¢i|z|¢;)| (i, j=1,2,3).
orders, i.e.,

P(t)=(sox)E€' '+ eox2E??“!) + c.c+ s ox (P E?, lll. NUMERICAL RESULTS AND DISCUSSION
(18 ) . _ .

D @ @) ) L It is well known that parabolic QW is a symmetrical
wherex,;’, X3, , andxg " are the linear susceptibility, SHG, guantum system, while semiparabolic QW is an asymmetri-
and OR coefficients, respectively, is the vacuum permit-  cal quantum system. So the effective width for the parabolic
tivity. The electronic polarization of theth order is given by QW can be defined as|2,|, but that for the semiparabolic

QW as|zg| (z; is the maximum size of the quantum well in
PO (t) = ETr(p(“)qz) (19) z direction. In order to compare the SHG susceptibility and
S ' the influences of electric field on the SHG susceptibility in
. . . «—» the two systems, the same effective widths and the same
whereSis the area OT the Interaction and the symbol “Tr barrier heights of the two QW’s are assumed, which implies
denotes the summation over the diagonal elements of th% 1 % 2.2 1 4 2 2\ . . I
matrix that; m* wgzp= s M* wx(22p) <. Via this relation, it is easy to
In this paper, we lay emphasis on the calculations of th _eltc;)AwaIZ_, whefr?ﬁs andw, fl_encl)te thebc?nflns\cjl po;er;;]
SHG susceptibility. By using the same compact-density-Ia requencies of the symmetrical parabolic QW an €

matrix approach and iterative procedure as Refs. 7, 11, 1§symmetr|c_al semiparabolic QW, respectively. In.the follow-
Ing discussion, we mark ,= wg/2= wq for convenience.

and 16-18, and under the condition of two-photon reso==y o™ oo lations are carried out on typical
nance, i.e.fiw~E,;~E3~% ) (From the above discussion . . .
ho~Exn~Es, ( AlxGaxAs/GaAs parabolic and semiparabolic QW’s. The

on electron states, it can be seen that the resonance conditi terial ) dooted in th " K f
in parabolic QW with applied field can obtain rigorous sat-material parameters adopted in the present work are from

isfaction, and the resonance condition in semiparabolic QV\Befs' 13 and 18m*f 0.06M, (m, is the bald electron
: P : - : onass, ps=5x107*m~2, andT=0.14 ps.
with applied field can also obtain approximate satisfactio ' Ps '

when the field is not too stroigthe SHG susceptibility per 1 Order to better visualize the QW systems under consid-
unit volume is derived, and it is given by eration, whenw, is kept at 3.6<10* s™2, the first four en-

ergy eigenvalues and their intervals for semiparabolic QW
(2)_q3M12M23M3193 a_nd parabplic QW were listed in Table I, and the first 'three
Y — eigenfunctions for the two systems were plotted in Fig. 1.
From Table I, it can be observed that, with the increask, of
1 all the energy eigenvaluds (i=1,2,3,4) in the two systems
X(Ea’l_ 2hw+1hTg)(Eg—fitihilg) (20) decrease monotonously,_b_ut the variations qf the energy in-
tervalsAE; between adjoining energy levels in the two sys-
The volume SHG susceptibility has a resonant peak value falems are obviously differenfAE; in semiparabolic QW de-

€0

hw=hQ given by creases monotonely &5 increases, while\E; in parabolic
QW is kept unchanged with the increasefoflt also can be
@) _q3p5/L12,u23/.L31 noted that, when electric field is absei=0), the energy

X2oMax™ ;2 (2D intervalsAE; in both QW systems are the same, which is not

So(hro)z : ;
occasional. It is well known that, wheR=0, the energy

wherep; is the surface density of electrons in the QRY, levels in parabolic QW can be expressed By=7%wg(n
=E;—E; is the energy interval of two different electronic +3) via Eq. (8) (Ref. 23, and the expression of the energy
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FIG. 1. The first three wave functions in semiparabolic QW and parabolic QW along with the confining potential(®afi®lsand(c)
correspond to the first three states in semiparabolic QW, respectively. Rdnées, and(f) correspond to the first three states in parabolic
QW, respectively. The solid lines denote the wave functions without electric field and the dashed lines denote the wave functions with the
electric field of F=8x10" V/m.

levels in semiparabolic QW becomes,=#%wa(2n+3) ground state, the first excited state, and the second excited
(Ref. 29 (n=0,1,2...), thus the energy intervals in the state in semiparabolic QW, while Figs(dl—1(f) are for the
two systems have the same valudsai) or wg (NOte g wave functions of the first three states in parabolic QW, re-
=2w,). Comparing the corresponding energy levels in thesapectively. In the six figures, the solid lines denote the wave
two systems, we found that the energy level in semiparabolifunctions without electric field and the dashed lines denote
QW is higher than the corresponding energy level in parathe wave functions with the electric field of =8
bolic QW, which is because the confinement for the electron< 10’ V/m. Due to the infinite barrier at=0 for semipara-
in the semiparabolic QW is stronger than that in parabolicholic QW, their wave functions are zero at the origin. The
QW. Detailed calculation denotes that, wHer-o, AE; (i applied electric field make each wave function an obvious
=1,2,3) of semiparabolic QW with applied electric field ap- right-shift, which is a reasonable result.
proachesiwy. This characteristic foAE, in semiparabolic The SHG susceptibility peak valug?) .., as functions
QW can be explained reasonably as follows. It is well knownof the eigenenergy of ground stategfor semiparabolic QW
that, in a symmetric parabolic QW with or without applied and parabolic QW are depicted in FiggaPand 2b), respec-
electric field, all the intervals of the adjoining energy levelstively. In fact, in Fig. 2, the confined potential frequensy
are fiwo.?® Therefore, it can be deduced that, whErap-  is kept at 3.&10“s !, and F varies from 0 to 1
proaches infinity, the potential function(z) + qFz of semi- ~ x10° V/m. From Fig. 2 it can be seen that both curves de-
parabolic QW more and more approaches that in symmetrigrease monotonously with the increase of the ground-state
parabolic QW, and only the symmetrical axis of semiparaenergy, which means that the SHG susceptibility increases
bolic QW with electric field moves from the positias=0 to  with the increase of the applied electric field. It can also be
|gF/m* wj|, and the potential bottom of the semiparabolicseen that, in the energy ranges of the two systems under
QW decreases from 0 te q?F?/2m* wg. Thus, the intervals consideration, the SHG susceptibility in semiparabolic QW
AE; in semiparabolic QW with strong electric fields ap- is much larger than that in parabolic QW. This feature is due
proach those in symmetrical parabolic QW, namely, the into the self-asymmetry for the semiparabolic QW, and it is
tervals approacth w. just the prospective result.

Figures 1a)—1(c) are for the wave functions of the Figures 3 and 4 depict the SHG susceptibil|i)gyézaf| as

0.80

160} @ (b)
g ’>\'\ 0.75|
,i 150 “?i ool 2FIG. 2. The SHG susceptlbll!ty peak value
= = X(za?,Max as functions of the eigenenergy of
AL 3065y ground state€; for semiparabolic QWa) and
S &5 o0k parabolic QW (b). The confined-potential fre-
— 136} — . 4 -1 .

055l quencywy is kept at 3.6<10'* s andF varies
128} from 0 to 1x 1% V/m.
0.16 0.‘20 0..24 0.I28 0.I32 0.‘36 0-50 0.2I10 0.2I15 0.2I20 0.2IZS 0.2ISO OAZISS 0.240
E, (eV) E, (eV)

235315-4



ELECTRIC FIELD EFFECT ON THE SECOND-ORDE. . . PHYSICAL REVIEW B 68, 235315(2003

3.0
1.6
25
= 12 >
£ E 20
© ©
° (=1
— — 15
g3 0.8 S
2 =
1.0
0.4
0.5
0.0 . . Toe Tl 00 : :
0.40 0.42 0.44 0.46 0.48 0.50 0.400 0405 0410 0415 0420 0425 0430 0435 0440
hw (eV) hiw (eV)

FIG. 3. The SHG susceptibility$?)| as functions of the photon FIG. 5. The SHG susceptibilit{2)| as functions of the photon
energyfw for semiparabolic QW when the confined-potential fre- €nergyf  for four different relaxation time$ =0.2 ps(solid line),
quencyw, kept at 3.6<10 s~ 1. The solid line, dashed line, and 0.15 ps(dashed ling 0.1 ps(dotted ling, and 0.08 ps(dashed-
dotted line correspond to the electric field strengths=5  dotted ling with wo=3.6x 10" s™* andF=1.5x 10" V/m in semi-
X 10" VIm, F=2x10" V/m, andF=0, respectively. parabolic QW.

functions of the photon energyw for semiparabolic QW ture is because, dSincreases, for the semiparabolic QW, the
and parabolic QW, respectively. The confined potential freintervals of adjoining energy levels become narrower and
quencywy is kept at 3.6 10 s~ . In the two figures, solid narrower, which results in the redshifts of resonant peak with
line, dashed line, and dotted line correspond to the electrithe creasing of; but for the parabolic QW, the intervals of
field strengthsF=5x10" V/m, F=2x10" V/m, and F adjoining energy levels are kept unchanged. These results
=0, respectively. It is observed that each curve of the SHEan also be deduced directly from the discussions of the elec-
susceptibility dependent on the photon energy reveals tionic states, or be observed directly from the Table I.

single resonant peak. The stronger the electric fields are, the In Fig. 5, we show the SHG susceptibili|tx(22w| as func-
sharper the resonant peak will be and the bigger the pedions of the photon energfw for four different relaxation
intensity will be. The most obvious difference between Figstimes T=0.2 ps, 0.15 ps, 0.1 ps, and 0.08 ps, with

3 and 4 is that, corresponding to the three different electric=3.6x10"*s ' and F=1.5x10’ V/m in semiparabolic
field strengths % 10" V/m, 2x 10’ V/m, and F=0, the = QW, which are shown by the solid line, dashed line, dotted
resonant peaks for semiparabolic QW appear at three diffetine, and dash-dotted line, respectively. The relaxation rate
ent values of photon energ§w=0.4204 eV, 0.4523 eV, T is the inverse of relaxation tim& From the figure, we
and 0.4739 eV, while the three resonant peaks for paraboliobserved that the relaxation tinfehas a great influence on
QW appear at the same photon energy 0.4739 eV. This feane SHG susceptibilityx(22w|, namely, with the increase of
relaxation ratd,, or the decrease of the relaxation tifig

the SHG susceptibilitie$y$?)| decrease obviously. On the
other hand, the relaxation rate is related not only to the ma-
terials constituting the QW, but also to some other factors,
such as the temperature of the system, boundary conditions,
and the electron-impurity and electron-phonon scattering in-
teractions, etc. Hence, in order to obtain a large SHG suscep-
tibility, one should reduce the influences of these factors on
the systems.

[x2] (10°mv)

IV. SUMMARY

In conclusion, by using the compact-density-matrix ap-
proach, the SHG susceptibility in a parabolic and semipara-
bolic QW with applied fields have been deduced and inves-
tigated in detail. Before studying the nonlinearity, the exact

FIG. 4. The SHG susceptibility?)| as functions of the photon @nd analytical electronic states in both QW systems with
energyfi o for parabolic QW when the confined-potential frequency a@pplied electric fields have been deduced by the methods of
wo kept at 3.6< 10" s~ 1. The solid line, dashed line and dotted line displacement harmonic oscillation. Numerical calculation on

are corresponding to the electric field strengfhs 5x 107 V/im,  the typical ALGa,_,As/GaAs QW'’s are performed; results
F=2x10" V/m, andF=0, respectively. show that the applied electric fields have an important influ-

-0.45 0.46 0.47 0.48 0.49 0.50
ho (eV)
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ence on the electronic energy levels, for example, with theo the relaxation rate. As we know, with the recent advances
increase of electric field from O to, the energy intervals of in nanofabrication technology, the manufactures of such
the adjoining energy levels in semiparabolic QW’s decreassemiconductor parabolic or semiparabolic QW’'s become
from 24 wg to fiwg, and the reason for these characters hapossible. According to our calculations, if we choose an op-
been explained. Calculation found that, for the same effectimized parabolic confinement frequency and an appropriate
tive widths of the parabolic and semiparabolic QW, the SHGelectric field, we can obtain a large SHG susceptibility.
susceptibility in semiparabolic QW is larger than that in Therefore, theoretical study may make a great contribution to
parabolic QW due to the self-asymmetry of the semiparaexperimental studies. We hope that this paper being helpful
bolic QW, which means that the semiparabolic QW is ain the study of the influence of the QW's potential shape and
model of very promising candidates for second-order nonlinelectric field on the second-order nonlinear optical properties
ear optical properties. In addition, the applied electric fieldwill stimulate more experimental work.

can make the SHG susceptibility enhance remarkably. For
example, wherF varies from 0 to 610’ V/m, the SHG
susceptibility in semiparabolic QW have 25.7% enhance-
ment for the effect of the electric field. Moreover, the result  The project was financially supported by Guangdong Pro-
calculated reveals that the SHG susceptibility is also relatestincial Natural Science Foundation of China.
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