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Magnetic field effect on the polarizability of bound polarons in quantum nanocrystallites
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We have studied the simultaneous effects of magnetic and electric fields on the ground-state energy of a
donor impurity confined in a polar CdSe quantum nanocrystallite embedded in a nonpolar matrix. Calculations
are performed in the framework of the effective-mass approximation using the Hasse´ variational approach. We
describe the effect of the quantum confinement by a finite deep potential and we take onto account the
interaction between the charge carriers~electron and ion! and the confined longitudinal optical phonons~LO
phonons!. It is found that the corrections due to the LO phonons on the binding energy, the diamagnetic
coefficient, and the polarizability are very important and cannot be neglected or ignored.
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I. INTRODUCTION

The quantum nanocrystallites~QNC’s! are nanostructure
of spherical shape which may be obtained by precipitation
either isolating1 or semiconducting matrices2 or synthesized
as colloidal suspensions in organic liquids.3,4 The tridimen-
sional nanoscale confinement of the carriers gives rise
full quantum nature to these structures. So many no
physical and optical effects appear with promising potenti
ties in finding novel applications in the nanotechnology ar
In addition, their possible design flexibility allows one
develop artificial atoms or microelectronic units which ju
tify the great technological interest and the intensive inv
tigation in basic and applied research.5

In the past decade, the understanding of the electronic
optical properties of impurities in the QNC was the subj
of many investigations. Porras-Montenegro a
Perez-Merchano6 have calculated the impurity binding en
ergy as a function of the radius and the impurity position
well as the density of impurity states in a GaAs/GaAlA
QNC. Zhu and Chen7 have reported theoretical results on t
energy levels and binding energies of an off-center dono
a spherical GaAs/GaAlAs QNC. Silva-Valencia an
Porras-Montenegro8 have studied the optical absorptio
spectra with a transition between then51 valence level and
the donor impurity band.

The effect of an applied electric field on the properties
shallow donors has also been a subject of much inter
Indeed, in a confined medium, the electric field leads t
quantum confined Stark effect9–12 characterized by a red
shift, many times greater than the electron-hole binding
ergy. In our previous works,13,14 by using a variational ap
proach and neglecting the polaronic effect, we have stud
the simultaneous effects of magnetic and electric fields
the binding energy of a donor confined in an infinite pote
tial. We have shown that the magnetic field reduces the s
tial extension of the wave function and leads to a decreas
the donor polarizability. We have also reported the calcu
tion of the polarizability of a shallow donor placed anywhe
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in a spherical quantum dot. We have shown that for a do
placed at the center of the sphere, the energy level shift
lower energies. However, for an off-center donor, the sh
depends strongly on the orientation of the electric field.

The materials commonly used in the fabrication of t
QNC’s are ionic semiconductors. These materials show
strong electron-phonon coupling leading to significati
modifications in the donor spectra due to the polaronic
fects. As pointed out by several authors,15–24, the polaronic
effects are more complicated in low dimensional semic
ductors than in bulk ones due to the occurrence of interf
and confined modes. Several theoretical studies have b
devoted to the electron and donor optical-phonon coupling
QNC’s but they were restricted to an infinitely deep poten
model. Marini et al.17,18 have determined the Huang-Rhy
factor in the model of a donorlike exciton located at t
center of a CuCl QNC. Fedorov and Baranov25 have studied
the effect of LO and surface optical~SO! phonons on the
donor energy. Fliyouet al.26 have calculated the binding en
ergy of a hydrogenic impurity in a GaAs QNC using the Le
Low, and Pines transformation27 and the variational method
In a ZnSe QNC, Xie, and Chen28 have shown that the pho
non contribution to the binding energy is dependent on
position of the donor. Their numerical results prove that
magnitude of the SO phonon contribution is quite small a
plays a relatively unimportant role in the binding energy o
Coulomb impurity.

In this paper, we study the effects of the coupling of t
charge carriers~electron and ion! with LO phonons on a
donor impurity placed at the center of a polar QNC emb
ded in a nonpolar matrix and submitted to the joint effects
magnetic and electric fields. The confinement will be d
scribed by a finite barrier, so the probability of penetration
the host material is not negligible, which leads to som
modifications of the energy behavior. In the following se
tion, we outline our theoretical approach used to determ
the state of the bound polaron in the presence of magn
and electric fields. In Sec. III we present and discuss
©2003 The American Physical Society13-1



ou

f
nt
e
n
-

NC
rg

s
Th

th
c
re

de
n

be

n
r

rst
tron
nd
ed

on-

in-
per

ib-
ly

to
di-

nd
for-

of
his

ion

on-
the
uan-

of
is

mes

i.e.,
he

E. FEDDI et al. PHYSICAL REVIEW B 68, 235313 ~2003!
numerical results by comparing them with the case with
phonons.

II. THEORY

We consider a donor impurityD0 located at the center o
a QNC with a finite potential barrier submitted to the joi
effects of electric and magnetic fields applied along thz
axis. In the frame of the effective-mass approximation a
the Fröhlich29 interaction Hamiltonian for electron-LO pho
non coupling, the Hamiltonian of the systemD0 reads

H5Hel1Hph1Hint . ~1!

The electronic Hamiltonian is given by

Hel5H01Vw1W1M , ~2!

where the unperturbed Hamiltonian reads

H05T1V52
\2

2me*
D2

e2

«`r
. ~3!

whereme* is the electron effective band mass,«` denotes the
high-frequency dielectric constant, andr is the electron po-
sition relative to the donor located at the center of the Q
of radiusR. We assume that the confinement potential ene
is modelized by a square well

Vw5H 0, r ,R

V0 , r>R.
~4!

The potential well depthV0 is equal to the conduction band
offset between the nanocrystallite and the host material.
energy due to the external electric fieldFW is given by

W52eFW •rW52eFr cosu. ~5!

In the present study, we do not take into account
possible spin-orbit coupling as well as the Zeeman effe
restricting ourselves to the diamagnetic contribution. The
fore, our results may be interpreted as ‘‘mean’’ results in
pendently of a possible energy splitting. In these conditio
the diamagnetic contributionM due to the magnetic fieldB
reads, using the Coulomb gauge,

M5
\2e2

2me* c2
B2r 2sin2u. ~6!

The Hamiltonian of the noninteracting LO phonon can
written as15,16

Hph5(
qlm

\vLO@alm
1 ~q!alm~q!11/2#, ~7!

wherealm
1 (q) and alm(q) are the creation and annihilatio

operators, respectively, of a LO phonon of wave numbeq
with quantum numbersl ,m and frequencyvLO . The
electron-LO-phonon interaction Hamiltonian writes as
23531
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Hint52(
qlm

@Vl~q! j l~qre!Ylm~u,w!alm~q!1H.c.#

1(
qlm

@Vl~q! j l~0!Ylm~u,w!alm~q!1H.c.#, ~8!

where H.c stands for the Hermitian conjugates. The fi
term describes the interaction between the confined elec
and the longitudinal-optical vibration mode. The seco
term accounts for the interaction of the positively charg
donor center with LO phonon.j l(qr) and Ylm(u,w) are
the spherical Bessel functions and the spherical harm
ics, respectively. The summations run overl 50,1,2, . . . ,̀ ;
m52 l , . . . ,1 l . q is deduced from the roots ofj l . The in-
teraction amplitudeVl(q) may be written in the form

Vl~q!52F 4pe2\vLO

j l 11
2 ~qR!R3q2G 1/2F 1

«`
2

1

«0
G1/2

, ~9!

where«0 is the static dielectric constant.
In order to separate out the static lattice deformation

duced by the positive donor center and to introduce a pro
screening of the electron-donor coulomb interaction,18,24,30

we apply to Hamiltonian~1! the Platzman transformation31

by means of the unitary operator

Up5exp2(
qlm

FVl~q!

\vLO
alm

1 ~q!2H.c.G . ~10!

The effect of this transformation is to displace the equil
rium position of the ions. So, the interaction of the positive
charged donor with LO phonons, the second term in Eq.~8!
is replaced by a screening potential

Vscr5
e2

r S 12
r

RD S 1

«`
2

1

«0
D , ~11!

which cancels forr 5R. In the limit when R becomes infi-
nite, potentialVscr added to the Coulombic potential leads
screen the electron-donor center interaction by the static
electric constant«0.

In order to separate the Hamiltonian in an electronic a
an ionic contribution, we apply a second canonical trans
mation elaborated by Pekar32 for bulk materials. This ap-
proach is expected to be well justified when the motion
the electrons is much faster than that of the heavier ions. T
may arise in the following two cases:~1! in the case of a
strong electron-phonon coupling where a self-localizat
occurs, i.e., fast electron oscillations;~2! in the case of a
microsphere with a small radius R, where the quantum c
finement produces an orbital shrinking which increases
electron speed. This situation corresponds to a strong q
tum confinement. Moreover, we remark that in the cases
applied electric or magnetic fields, the electron velocity
also increased, so that the above approximation beco
more suitable.

In the present study, we focus on the second situation,
QNC with small radius in magnetic and electric fields. In t
3-2
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case of moderate electron-phonon coupling, we expect
our method becomes less accurate for large QNC’s, th
dimensional~3D! limit.

Within the adiabatic approximation, the transform
Hamiltonian writes

HT5Hel1Vscr1^Vep&C , ~12!

where the mean value of the electron-LO phonon interac
is given by

^Vep&C522(
qlm

Vl~q!

\vLO
ur lm~q!u2. ~13!

r lm(q) is the Fourier transform of the electron charge dis
bution

r lm~q!5E
sphere

drW j l~qr !Ylm~u,w!uC~rW !u2. ~14!

It is worth mentioning that since the ground state is
spherical symmetry, only the term withl 5m50 is nonzero.
Moreover, we remark that the convergence of the summa
over q is very fast due to the strong localization of th
ground states.

The ground-state wave function of the neutral bound
laron is solution of the Schro¨dinger equation:

HTC~r !5EphC~r !. ~15!

In the following, all expressions will be given in the effectiv
units:a* 5«`\2/me* e2 for length andR* 5me* e4/2«`

2 \2 for
energy. Furthermore, we introduce the dimensionless par
eters f 5(eaD /RD)uFW u and g5\vc/2RD characterizing the
strength of the electric and magnetic fields, respectively.vc

5eB/me* c is the effective cyclotron frequency.
In order to solve numerically Eq.~15!, we use Hasse’s

variational method33 adapted to QNC’s in our previou
works.13,14The trial wave function is given by the following
expression:

C5C0@11~m1lr ! fW•rW#, ~16!

i.e.,

C5C01~C11C2! fW•rW, ~17!

whereC15mC0 and C25lrC0 , l and m are variational
parameters.C0 describes the wave function of the unpe
turbed donor confined in a QNC:

C05H A
sin~ar/R!

r
exp~2ar !, r ,R

C
exp~2br !

r
exp~2ar !, r>R.

~18!
23531
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Here a is a variational parameter,a and b are determined
through the two following equations deduced from the co
tinuity conditions forC0 andC0

8 at r 5R:

a cot a52bR

a21b25V0 . ~19!

The two normalization constantsA andC are related by

C exp~2bR!5A sina. ~20!

Thus the donor ground-state energy is obtained by minim
ing the expectation value ofHT with respect to the varia-
tional parametersl andm for a fixed value ofa:

Eph5min
^CuHTuC&

^CuC&
. ~21!

Taking into account the expressions of the transform
Hamiltonian and the wave function, the total energy redu
to

Eph5
Eph~a!1E1

ph~a! f 2

11
N2

N0
f 2

. ~22!

Eph(a), E1
ph(a), andN2 /N0 depend explicitly on the varia

tional parametersl andm. They may be expressed as fun
tions of the following integrals:

I n5E
0

R

r nsin2ar exp~22ar !dr,

Jn5E
0

R

r nsin2~ar !exp~22ar !dr,

Kn5E
R

`

r nexp22~b1a!rdr ,

Ln5E
0

R

exp22ar sin2~ar ! j 0S npr

R Ddr. ~23!

It may be verified that the ratioN2 /N0 reduces to
Eq.
N2

N0
5

m2~A2I 21C2K2!1l2~A2I 41C2K4!12ml~A2I 31C2K3!

3@A2I 01C2K0#
. ~24!

We first solve the problem without any electric field (f 50). The upper bound for the ground-state energy obtained from
~12! and Eq.~22! writes
3-3
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Eph~a!5E0
ph1g2Dph, ~25!

whereE0
ph is the bound polaron energy, without any elect

or magnetic field

E0
ph5

1

4p~A2I 01C2K0!
H 4pC2V0K0

28p@A2I 211C2K21#18pS 12
«`

«0
DA2F I 212

I 0

RG
2

32p2

R
A4N0

22S 12
«`

«0
D(

n
Ln

2J , ~26!

andDph is the diamagnetic coefficient

Dph5
A2I 21C2K2

6~A2I 01C2K0!
. ~27!

In the case of a weak electric field expression~22! becomes

Eph5Eph~a!2
pph

2
f 2, ~28!

wherep is the polarizability of the bound polaron given b

pph52FN2

N0
Eph~a!2E1

ph~a!G . ~29!

III. RESULTS AND DISCUSSION

We have done our numerical calculation for a CdSe se
conductor with a relatively high electron-phonon coupli
constant (a50.46). This value ofa does not correspond
stricktly speaking, to the strong coupling limit. So o
method becomes certainly questionable in the 3D lim
However, we expect that it will be suitable for small QNC
electric and magnetic fields.

We have used the following material parameters18 for the
electron band massme* 50.13m0, the dielectric constants
«059.56, «`56.23, and the LO-phonons energy\vLO
526, 46 meV. The effective units of length and energy
a* 525.3 Å andR* 545.55 meV respectively. We note th
since the potential depth value is finite, then the probabi
of penetration in the barrier region is not negligible.

We have first determined the influence of the phono
corrections on the binding energy of the impurity donor
the absence of the magnetic and electric fields. In orde
estimate the influence of the quantum confinement on
Coulomb correlations, we introduce the binding energ
Eb

0,ph defined as the difference between the electron grou
state energy without the Coulomb interaction and the im
rity ground-state energy. They read

Eb
05Ee

02E0
0 , ~30!

without taking into account the interaction with the phono
and

Eb
ph5Ee

ph2E0
ph , ~31!
23531
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when this interaction is taken into account. We note that
energy of the confined electron is equal toEe

05a2 andEe
ph

5a21^Vep&C0
without and with phonon interaction, respe

tively. E0
0 and E0

ph correspond to the impurity ground sta
energies without electric and magnetic with and without
phonon interaction. In Fig. 1, the binding energies are plot
versus the crystallite radiusR. We can see that with finite
barriers, the binding energy~dashed curves! increases as the
radius R decreases and reaches a maximum atRc . Before
this thresholdRc and at small values ofR,Rc discrete levels
vanish in the well and the electron wave function is extend
even outside the well. On the other hand, the shape of
curves obtained by taking into account the phonons cor
tion ~solid curves! is similar to those obtained by neglectin
the phonons effects~dashed curves!. The importance of this
contribution is more pronounced forR5Rc and for R
.2a* . Indeed, the coupling with the phonons leads to
weakening of the binding energy, which results to a sign
cative screening of the coulombic potential. This behavio
analogous to that obtained by Zhao and Liang34 by using the
Lee, Low, and Pines variational method and a parab
quantum well. In order to analyze the influence of t
phonons interaction with the charge carriers~electrons and
ions! on the ground-state energy, we draw in Fig. 2 the s
of the two terms due to this interaction, i.e.,DEph

FIG. 1. Variation of the binding energies of the impurity don
as function of QNC radiusR for f 50 and g50, and for three
barrier heightsV0(R* )52, 10 and infinity. The solid and dashe
curves represent the binding energies with (Eb

ph) and without (Eb
0)

the phonons corrections, respectively.
3-4



nt
n
s

be

ti

g
rit

s
be
ses

rgy
h-
C

m-

s

of
re
the

the
g-

lts
ion
to a

the

on-
g-

nc-

MAGNETIC FIELD EFFECT ON THE POLARIZABILITY . . . PHYSICAL REVIEW B68, 235313 ~2003!
5^Vscr&C1^Vep&C as a function of the radiusR. We remark
that in the case of a strong confinement, the phonons co
bution increases and reaches a maximum which depe
strongly on the height of the potential barrier, then decrea
at increasing radius and exhibits a minimum localized
tweenR54a* andR56a* . ForR.6a* the contribution of
the phonons increases only slightly and reaches its satura
value corresponding to the 3D limit.

In order to investigate the influence of electric and ma
netic fields on the bound polaron binding energy, we rew
the total energyEph, given in Eq.~28! taking into account
relation ~25!. It becomes, without phonons

E05E0
01g2D02

p0

2
f 2, ~32!

and with phonons

Eph5E0
ph1g2Dph2

pph

2
f 2. ~33!

Equations~32! and ~33!, valid only for low electric fields,
show that for given electric~f! and magnetic (g) fields, the
determination of the total energyEph (E0) require the
knowledge of the energy of the unperturbed systemE0

ph

(E0
0), the diamagnetic coefficientDph (D0), and the polar-

izability pph (p0).

FIG. 2. Variations of the phonons contribution (DEph

5^Vscr&C1^Vep&C) as function of radiusR and for different de-
grees of confinement.
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In Fig. 3, we plot the unperturbed total energiesE0
ph ~solid

curves! and E0
0 ~dashed curves! corresponding to the case

with and without phonon coupling, respectively. It can
seen that for small radii this energy diverges, and decrea
rapidly reaching the bulk value for large radiiR. In addition,
we remark that the phonons correction shifts the total ene
to higher values. This shift is obvious even for radii neig
boring unity and becomes important at increasing QN
sizes.

The influence of the magnetic field is estimated by co
puting the diamagnetic contributionM5g2D. In Fig. 4, the
diamagnetic coefficientD is drawn against the QNC radiu
R. We remark thatD increases at increasing radiusR and
converges asymptotically to the bulk limit for large values
R. Indeed, whenR decreases, the electronic orbital is mo
localized and becomes less sensitive to the influence of
magnetic field. The solid curves in Fig. 4 demonstrate
importance of the polaron effects which shifts up the ma
netic contribution, mainly for large QNC sizes. This resu
from the screening of the electron-donor coulomb interact
due to the interaction with the phonons. This effect leads
decrease of the correlation between the electrons and
ions.

To describe the confinement effect on the magnetic c
tribution, we present in Fig. 5 the variations of the diama
netic coefficient as a function of the radiusR for different

FIG. 3. The ground-state energy of the impurity donor as fu
tion of QNC radiusR for f 50 and g50. The solid and dashed
curves represent the total energies with (E0

ph) and without (E0
0) the

phonons corrections, respectively.
3-5
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heights of the barriers. We observe that the effect of
confinement tends to reduce the diamagnetic field, nam
for the small sizes.

Now, we discuss the dependence of the polarizability
the optical lattice polarization. Figure 6 illustrates the var
tions of the bound polaron polarizability in a polar QNC
CdSe as a function of the radiusR and for a significative
value of the magnetic field (g50.5). We analyze both case
without ~dashed lines! and with~solid lines! phonons correc-
tion. Some interesting phenomena can be observed:
dashed curve shows that the polarizability increases at
creasing crystallite volume. For small sizes, the confinem
effect is predominant in comparison with the magnetic-fi
effect. On the other hand, the influence of the magnetic fi
on the polarizability is more pronounced for large radiu
This is due to the fact that the electronic orbitals are m
extended and because the magnetic field gives rise to
additive lateral confinement leading to a reduction of
spatial extension of the electronic orbitals and therefore
increase of the binding between the electrons and the ion
donor. The solid lines show that the phonons correction te
to increase considerably the polarizability of the donor,
we expect a large shift of the polarizability in comparison
the without phonon contribution case.

In Fig. 7, the polarizability versus the dot radius for d
ferent degrees of confinement is plotted. Two main asp
can be observed:~i! the polarizability increases strongly wit
the QNC sizes if the barrier height is large. On the oth

FIG. 4. The diamagnetic coefficient of impurity donor as fun
tion of the radiusR without ~dashed curve! and with ~solid curve!
phonons contribution.
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hand, for small potential depths, it has a minimum for
particular value of the QNC and increases for small radii a
consequence of the wave function spreading in to the m
rial barrier;~ii ! the polarizability decreases when the confin
ment potential increases. This result reflects the fact that
electronic density becomes more localized in the well
height values of the confinement potential. This behavio
in good agreement with that observed in a recent work du
Seufertet al.35 in a single CdSe/ZnSe cylindrical quantu
dot.

It must be stressed that the results we obtain in the
limit ( R→`) may be less accurate in order to describe
actual situation arising in a CdSe bulk crystal, mainly b
cause its coupling constant do not correspond to a str
electron-phonon coupling. Nevertheless, we may verify
accuracy of our calculations by comparing the limit valu
we obtained for the total energy whenR→`, with that we
may deduce from the expression obtained32 using a
Coulomb-type trial wave functionED0

3D
52@11/16(«` /«0)

15/16#. Without the phonon coupling, we get the usu
valueED0

3D
521, obtained with«`5«0.

In conclusion, we have studied the effect of the coupli
of charge carriers~electron and ion! with LO phonons on a
donor impurity in polar QNC embedded in nonpolar mat
and submitted to weak uniform electric and magnetic fiel
Our calculations are performed within the effective-mass
proximation and using the Hasse variational treatment. O

FIG. 5. Variations of the diamagnetic coefficient of the bou
polaron as function of the radiusR and for different height barrier
V0(R* )52, 5, 10, and infinity.
3-6
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results show that the polaronic effects are important and c
not be neglected. As it can be shown in the different figur
the phonons corrections depend on the QNC sizes and o
potential depth of the wells. Our results show that the po
izability is underestimated when the phonons correction
not taken into account. In addition, we show that the po
izability decreases with increasing confinement poten

FIG. 6. The polarizability of the impurity donor plotted again
the crystallite radiusR without ~dashed curve! and with ~solid
curve! phonons correction for two values of magnetic fieldsg50
and 5.
.

m

v.

o

23531
n-
s,
the
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l

which is in good agreement with recent results obtained
single CdSe/ZnSe cylindrical quantum dots.35 Before closing
this paper, it must be stressed that the simplicity of our
proach constitutes an advantage owing to the fact tha
gives us the possibility to estimate the order of magnitude
the diamagnetic contribution, the stark shift, the polarizab
ity, and the binding energy for given weak magnetic a
electric fields.

FIG. 7. The polarizability of the bound polaron plotted as fun
tion of radiusR for different values of the well depthsV0(R* )
52, 5, 10, and infinity.
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