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Magnetic field effect on the polarizability of bound polarons in quantum nanocrystallites
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We have studied the simultaneous effects of magnetic and electric fields on the ground-state energy of a
donor impurity confined in a polar CdSe quantum nanocrystallite embedded in a nonpolar matrix. Calculations
are performed in the framework of the effective-mass approximation using thé tgsgonal approach. We
describe the effect of the quantum confinement by a finite deep potential and we take onto account the
interaction between the charge carriéetectron and ionand the confined longitudinal optical phonoh©
phononsg. It is found that the corrections due to the LO phonons on the binding energy, the diamagnetic
coefficient, and the polarizability are very important and cannot be neglected or ignored.
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I. INTRODUCTION in a spherical quantum dot. We have shown that for a donor
placed at the center of the sphere, the energy level shifts to
The quantum nanocrystallitdNC'’s) are nanostructures lower energies. However, for an off-center donor, the shift
of spherical shape which may be obtained by precipitation irdepends strongly on the orientation of the electric field.
either isolating or semiconducting matricé®r synthesized The materials commonly used in the fabrication of the
as colloidal suspensions in organic liquitsThe tridimen- QNC'’s are ionic semiconductors. These materials show a
sional nanoscale confinement of the carriers gives rise to strong electron-phonon coupling leading to significative
full quantum nature to these structures. So many novemodifications in the donor spectra due to the polaronic ef-
physical and optical effects appear with promising potentialifects. As pointed out by several authdts?* the polaronic
ties in finding novel applications in the nanotechnology areaeffects are more complicated in low dimensional semicon-
In addition, their possible design flexibility allows one to guctors than in bulk ones due to the occurrence of interface
develop artificial atoms or microelectronic units which jus- 3nd confined modes. Several theoretical studies have been
tify the great technological interest and the intensive invesyeyoted to the electron and donor optical-phonon coupling in
tigation in basic and applied reseafth. _ NC'’s but they were restricted to an infinitely deep potential
In the past decade, the understanding of the electronic angl e - Marini et al1”2® have determined the Huang-Rhys
optical properties of impurities in the QNC was the SUbJeafactor in the model of a donorlike exciton located at the

e eSOl ot ontenegto M center of a CuCI ONC. Fedorov and Barafiae st
purity 9 the effect of LO and surface optic@8O) phonons on the

el a5 the density of mpuriy States in a GaAs/GaAlA BONOT energy. Flyotet al?* have calculated the binding en-
QNC. Zhu and Cherhave reported theoretical results on the MY of a hydrogenic impurity in a GaAs QNC using the Lee,
energy levels and binding energies of an off-center donor i-ow, and Pines tra_nsformatl%and the variational method.
a spherical GaAs/GaAlAs QNC. Silva-Valencia and!M @ ZnSe QNC, Xie, and C_héfhhave shown that the pho-
Porras-Montenegfo have studied the optical absorption NON contribution to the binding energy is dependent on the
spectra with a transition between the= 1 valence level and position of the donor. Their numerical results prove that the
the donor impurity band. magnitude of the SO phonon contribution is quite small and
The effect of an applied electric field on the properties ofplays a relatively unimportant role in the binding energy of a
shallow donors has also been a subject of much interes€oulomb impurity.
Indeed, in a confined medium, the electric field leads to a In this paper, we study the effects of the coupling of the
quantum confined Stark efféct? characterized by a red- charge carriergelectron and iopwith LO phonons on a
shift, many times greater than the electron-hole binding eneonor impurity placed at the center of a polar QNC embed-
ergy. In our previous work§** by using a variational ap- ded in a nonpolar matrix and submitted to the joint effects of
proach and neglecting the polaronic effect, we have studiechagnetic and electric fields. The confinement will be de-
the simultaneous effects of magnetic and electric fields oscribed by a finite barrier, so the probability of penetration in
the binding energy of a donor confined in an infinite poten-the host material is not negligible, which leads to some
tial. We have shown that the magnetic field reduces the spamodifications of the energy behavior. In the following sec-
tial extension of the wave function and leads to a decrease aion, we outline our theoretical approach used to determine
the donor polarizability. We have also reported the calculathe state of the bound polaron in the presence of magnetic
tion of the polarizability of a shallow donor placed anywhereand electric fields. In Sec. Ill we present and discuss our
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numerical results by comparing them with the case without _
phonons. Hint== 22 [VI(@]1(Are)Yim( 6,)aim(e) + H.c

IIl. THEORY +§n [VI(@)]1(0)Yim( 8, @)am(a)+H.c],  (8)

We consider a donor impurit®® located at the center of
a QNC with a finite potential barrier submitted to the joint where H.c stands for the Hermitian conjugates. The first
effects of electric and magnetic fields applied along the term describes the interaction between the confined electron
axis. In the frame of the effective-mass approximation ancand the longitudinal-optical vibration mode. The second
the Frdnlich?® interaction Hamiltonian for electron-LO pho- term accounts for the interaction of the positively charged

non coupling, the Hamiltonian of the systdd reads donor center with LO phononj;(qr) and Y,(6,¢) are
the spherical Bessel functions and the spherical harmon-

H=He+Hpn+Hin. (1) ics, respectively. The summations run oVer0,1,2 . .. o;

m=—1, ...,+I|. g is deduced from the roots ¢f. The in-

The electronic Hamiltonian is given by teraction amplitude/,(q) may be written in the form
Her=Ho+ Vy+ W+ M, ) V(@) dmehoo |YT1 1)1 o
== 2 CRR2| 5. el
where the unperturbed Hamiltonian reads Jir1(dRRq €< £0
) 5 whereg, is the static dielectric constant.

Ho=T+V=— h _ & ) In order to separate out the static lattice deformation in-
0 2m} €l duced by the positive donor center and to introduce a proper

screening of the electron-donor coulomb interactfoff;*°
wherem} is the electron effective band mass, denotes the we apply to Hamiltonian(1) the Platzman transformatioh
high-frequency dielectric constant, ands the electron po- by means of the unitary operator
sition relative to the donor located at the center of the QNC
of radiusR. We assume that the confinement potential energy

is modelized by a square well Up=exp— %

Vi(a)

thoam(q)—H.c. . (10

_ 0. r<R (4) The effect of this transformation is to displace the equilib-
Vo, r=R. rium position of the ions. So, the interaction of the positively

charged donor with LO phonons, the second term in(Bp.
The potential well deptV is equal to the conduction bands s replaced by a screening potential

offset between the nanocrystallite and the host material. The

energy due to the external electric fiefdis given by e2< r ( 1 1) )
— =, 11
€ €p

Vi

Vscr:T

R

W= —eF.r=—eFrcosé. (5)

In the present study, we do not take into account theawvhich cancels for =R. In the limit when R becomes infi-
possible spin-orbit coupling as well as the Zeeman effectnite, potentiaV,., added to the Coulombic potential leads to
restricting ourselves to the diamagnetic contribution. Therescreen the electron-donor center interaction by the static di-
fore, our results may be interpreted as “mean” results inde-electric constanty,.

pendently of a possible energy splitting. In these conditions, In order to separate the Hamiltonian in an electronic and
the diamagnetic contributioM due to the magnetic fiel8  an ionic contribution, we apply a second canonical transfor-

reads, using the Coulomb gauge, mation elaborated by PeKarfor bulk materials. This ap-
- proach is expected to be well justified when the motion of
M = he B2r 2sirP0 ©) the electrons is much faster than that of the heavier ions. This

2m c2 ' may arise in the following two casesl) in the case of a

strong electron-phonon coupling where a self-localization
The Hamiltonian of the noninteracting LO phonon can beoccurs, i.e., fast electron oscillation&) in the case of a

written ag®1® microsphere with a small radius R, where the quantum con-
finement produces an orbital shrinking which increases the

Ho=> %o lat(da +1/2], 7 electron _speed. This situation corresponds to a strong quan-

ph qlzm Lol @im(@)aim(Q) | @ tum confinement. Moreover, we remark that in the cases of

applied electric or magnetic fields, the electron velocity is
wherea;,(q) anda;,(q) are the creation and annihilation also increased, so that the above approximation becomes
operators, respectively, of a LO phonon of wave numdper more suitable.
with quantum numbersl,m and frequencyw,o. The In the present study, we focus on the second situation, i.e.,
electron-LO-phonon interaction Hamiltonian writes as QNC with small radius in magnetic and electric fields. In the
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case of moderate electron-phonon coupling, we expect thaiere « is a variational parametea and b are determined
our method becomes less accurate for large QNC's, threehrough the two following equations deduced from the con-
dimensional3D) limit. o tinuity conditions for¥, and ¥, atr =R:

Within the adiabatic approximation, the transformed

Hamiltonian writes
acot a=—bR

HT:HeI+Vscr+<Vep>lI/ , (12) a’+ b2=V0. (19
where the mean value of the electron-LO phonon interaction
is given by The two normalization constanfsandC are related by
Vi(q)
(Vepw= —2% |P|m(Q)|2 (13 Cexp —bR)=Asina. (20)
g,mgq) is the Fourier transform of the electron charge dlstn—_l_hus the donor ground-state energy is obtained by minimiz-
ution . 7 ) .
ing the expectation value dfi; with respect to the varia-
le(Q)=f h drj(anYm(6,0)| W (N2 (14 tional parameters and u for a fixed value ofa:
sphere
It is worth mentioning that since the ground state is of (W|H+| W)
spherical symmetry, only the term with=m=0 is nonzero. EPP=m nW (21

Moreover, we remark that the convergence of the summation

over q is very fast due to the strong localization of the . )
Taking into account the expressions of the transformed

round states.
g The ground-state wave function of the neutral bound po Hamiltonian and the wave function, the total energy reduces
to

laron is solution of the Schringer equation:

HW (r)=EPMP(r). (15
. . . o . EP'(a) +EP"(a)f?
In the following, all expressions will be given in the effective EPh= ) (22
units: a* = £.,42/m% e for length andR* =m} e*/2s242 for 14 N_fz
energy. Furthermore, we introduce the dimensionless param- No

etersf=(eap/Rp)|F| and y=%w /2Ry characterizing the

strength of the electric and magnetic fields, respectively. E""(a), E} "(a), andN, /N, depend explicitly on the varia-

=eB/mc is the effective cyclotron frequency. tional parameters and . They may be expressed as func-
In order to solve numerically Eq15), we use Hasse's tions of the following integrals:

variational methotf adapted to QNC's in our previous

works 34 The trial wave function is given by the following

R
expression: In=f risirfar exp(—2ar)dr,
0
W=Wo[1+(u+rr)f-r], (16)
. R
€., Jn=f r"sir’(ar)exp—2ar)dr,
N 0
W= ot (W, +W,)F T, 17)
whereW,=uW¥, and¥,=rr¥,, N and u are variational %
parametersW, describes the wave function of the unper- Kn:f r"exp—2(b+a)rdr,
turbed donor confined in a QNC: R
sin(ar/R)
A————exp(—ar), r<R Ln=j exp—2ar smz(ar)JO )dr (23
Vo= exp( br) (18
C————exp(—ar), =R

It may be verified that the ratibl, /Ny reduces to

Np w2 (A2l 5+ C?Ky) + N2(A%l 4+ C?Ky) + 2uN (A%l 3+ C?K 3)
No 3[A%ly+ C%K]

We first solve the problem without any electric fielt0). The upper bound for the ground-state energy obtained from Eq.
(12) and Eq.(22) writes

(24)
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EPP(a)=E§"+ y?DP", (25) 5 . . . .
whereEgh is the bound polaron energy, without any electric o
or magnetic field V, = infinity
ER ! 47C2VoK T i
= a
O 4m(A2ly+C2Ky) oo
£or lo V,=10xR’
—sw[A2|_1+czK_l]+87r(1—8—0>A2[|_1—§} E L |
3272 € 8
- AN 1= — | X LY 26 @ ©
R €0/ n GCJ
andDP" is the diamagnetic coefficient ch» L V,=2xR 1
c
A?],+C2K S
Dph:%_ 27) GEJ
6(A?l o+ C?K,)
In the case of a weak electric field expressi@g) becomes 1k
ph
EPh=EPN(@)— p7f2' (28) CdSe
wherep is the polarizability of the bound polaron given by 0 . . .
0 2 4 6 8
pPh=2 &Eph(a)—Eph(a) (29 .
No ! ' R(a)

FIG. 1. Variation of the binding energies of the impurity donor
as function of QNC radiuRR for f=0 and y=0, and for three

We have done our numerical calculation for a CdSe semibarrier heightsVo(R*)=2, 10 and infinity. The solid and dashed
conductor with a relatively high electron-phonon coupling CUrves represent the binding energies wi§") and without €;)
constant ¢=0.46). This value ofa does not correspond, '€ Phonons corrections, respectively.
stricktly speaking, to the strong coupling limit. So our
method becomes certairjly 'questio'nable in the 3D "mit'energy of the confined electron is equaIE§=a2 and Egh
S|ce)\é\/t$i\ée;nvgeme;§r?:&éhf?et|gsv_wll be suitable for small QNC in =a2+(vep)\1,0 without and with phonon interaction, respec-

We have used the following material parametefer the  tively. E§ and ES" correspond to the impurity ground state
electron band massit =0.13m,, the dielectric constants €nergies without electric and magnetic with and without the
£0=9.56, £.,=6.23, and the LO-phonons energyw, o phonon mteractlon.. In F|g: 1, the binding energies are 'pl_otted
=26, 46 meV. The effective units of length and energy are/€"SUs the crysta_llllte radiuR. We can see that with finite
a*=25.3 A andR* =45.55 meV respectively. We note that barriers, the binding energylashed curvesncreases as the

since the potential depth value is finite, then the probability @diUS R decreases and reaches a maximuniat Before
of penetration in the barrier region is not negligible. this thresholdR, and at small values <R, discrete levels

We have first determined the influence of the phononé’a”iSh in the well and the electron wave function is extended

corrections on the binding energy of the impurity donor in€Ven out3|d¢ the well. _On _the other hand, the shape of the
the absence of the magnetic and electric fields. In order t§Urves obtained by taking into account the phonons correc-
estimate the influence of the quantum confinement on thE0n (Solid curvesis similar to those obtained by neglecting
Coulomb correlations, we introduce the binding energiedh® Phonons effectedashed curvgs The importance of this
E2P" defined as the difference between the electron groundZontribution is more pronounced foR=R; and for R

state energy without the Coulomb interaction and the impu=> 22" - Indeed, the coupling with the phonons leads to a
fity ground-state energy. They read weakening of the binding energy, which results to a signifi-

cative screening of the coulombic potential. This behavior is
EQ=E%-ES, (30  analogous to that obtained by Zhao and Ly using the _
Lee, Low, and Pines variational method and a parabolic
without taking into account the interaction with the phonons,quantum well. In order to analyze the influence of the
and phonons interaction with the charge carriée(ectrons and
oh_ =ph_ =ph ions) on the ground-state energy, we draw in Fig. 2 the sum
Ep =Ee —Ep . (3D of the two terms due to this interaction, i.eAE,,

IIl. RESULTS AND DISCUSSION

when this interaction is taken into account. We note that the
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FIG. 2. Variations of the phonons contributionAE,y,

=(Vsenwt(Vep)w) as function of radiuRR and for different de-
grees of confinement.

=(Vsepw+(Vepw as a function of the radiuR. We remark

that in the case of a strong confinement, the phonons contri-
bution increases and reaches a maximum which depends
strongly on the height of the potential barrier, then decreases
at increasing radius and exhibits a minimum localized be

tweenR=4a* andR=6a*. ForR>6a* the contribution of

the phonons increases only slightly and reaches its saturati

value corresponding to the 3D limit.

In order to investigate the influence of electric and mag
netic fields on the bound polaron binding energy, we rewrit
the total energyEP", given in Eq.(28) taking into account

relation (25). It becomes, without phonons

0

p

E=Eg+y"D O~ 512 (32
and with phonons
ph
EP"=EQ"+ »?DP"— p7f2. (33

Equations(32) and (33), valid only for low electric fields,
show that for given electri¢f) and magnetic §) fields, the
determination of the total energEP" (E®) require the
knowledge of the energy of the unperturbed syst‘éﬁﬁ‘

(ED), the diamagnetic coefficie®P" (D°), and the polar-
izability pP" (p°).

PHYSICAL REVIEW B68, 235313 (2003
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FIG. 3. The ground-state energy of the impurity donor as func-
tion of QNC radiusR for f=0 and y=0. The solid and dashed
curves represent the total energies wit§) and without E9) the
phonons corrections, respectively.

In Fig. 3, we plot the unperturbed total enerﬁ1 (solid
curves and Eg (dashed curvescorresponding to the cases
with and without phonon coupling, respectively. It can be

seen that for small radii this energy diverges, and decreases

Orﬁtpidly reaching the bulk value for large raéi In addition,

we remark that the phonons correction shifts the total energy
to higher values. This shift is obvious even for radii neigh-

boring unity and becomes important at increasing QNC

e .

zes.

The influence of the magnetic field is estimated by com-
puting the diamagnetic contributidvl = y?D. In Fig. 4, the
diamagnetic coefficienD is drawn against the QNC radius
R We remark thatD increases at increasing radiisand
converges asymptotically to the bulk limit for large values of
R. Indeed, wherR decreases, the electronic orbital is more
localized and becomes less sensitive to the influence of the
magnetic field. The solid curves in Fig. 4 demonstrate the
importance of the polaron effects which shifts up the mag-
netic contribution, mainly for large QNC sizes. This results
from the screening of the electron-donor coulomb interaction
due to the interaction with the phonons. This effect leads to a
decrease of the correlation between the electrons and the
ions.

To describe the confinement effect on the magnetic con-
tribution, we present in Fig. 5 the variations of the diamag-
netic coefficient as a function of the radigsfor different
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~ FIG. 4. The diamagnetic coefficient of impurity donor as func-  FiG. 5. Vvariations of the diamagnetic coefficient of the bound
tion of the radiusR without (dashed curveand with (solid curve  polaron as function of the raditR and for different height barrier
phonons contribution. Vo(R*)=2, 5, 10, and infinity.

heights of the barriers. We observe that the effect of th(?’land for small potential depths, it has a minimum for a

confinement tends to reduce the diamagnetic field, nameI)f)articular value of the QNC and increases for small radii as a

for the small sizes. consequence of the wave function spreading in to the mate-
Now, we discuss the dependence of the polarizability on d P 9

; ) S . . ._ rial barrier;(ii) the polarizability decreases when the confine-
the optical lattice polarization. Figure 6 illustrates the varia- S .
. 2 ment potential increases. This result reflects the fact that the
tions of the bound polaron polarizability in a polar QNC of electronic density becomes more localized in the well for
CdSe as a function of the radii® and for a significative y

value of the magnetic fieldy=0.5). We analyze both cases: height values of the confinement potential. This behavior is
. g NI y " in good agreement with that observed in a recent work due to
without (dashed linesand with(solid lineg phonons correc-

tion. Some interesting phenomena can be observed: tthtufertet al>” in a single CdSe/zZnSe cylindrical quantum

dashed curve shows that the polarizability increases at in- It must be stressed that the results we obtain in the 3D

creasing crystallite volume. For small sizes, the com‘inemerﬁmit (R—o) may be less accurate in order to describe the
effect is predominant in comparison with the magnetic-field y

effect. On the other hand, the influence of the magnetic fieltf‘Ctual situation arising in a CdSe bulk crystal, mainly be-
S .~ cause its coupling constant do not correspond to a strong

on the polarizability is more pronounced for large radlus'electron- honon coupling. Nevertheless, we may verify the
This is due to the fact that the electronic orbitals are more P ping. J y v
o . . accuracy of our calculations by comparing the limit values
extended and because the magnetic field gives rise to aWne obtained for the total eneray wh@—o . with that we
additive lateral confinement leading to a reduction of thema deduce from the ex ?Zssion obt,aﬁ?edJsin a
spatial extension of the electronic orbitals and therefore an yI b il Pre 3D _ / /g
increase of the binding between the electrons and the ionizegOulomb-type trial wave functiorEpo=—[11/16(.. /o)
donor. The solid lines show that the phonons correction tends 5/16]-3DW'th0Ut the phonon coupling, we get the usual
to increase considerably the polarizability of the donor, sovalueEgo= —1, obtained withe..= &,.
we expect a large shift of the polarizability in comparison to  In conclusion, we have studied the effect of the coupling
the without phonon contribution case. of charge carriergelectron and iopwith LO phonons on a

In Fig. 7, the polarizability versus the dot radius for dif- donor impurity in polar QNC embedded in nonpolar matrix
ferent degrees of confinement is plotted. Two main aspectgnd submitted to weak uniform electric and magnetic fields.
can be observedi) the polarizability increases strongly with Our calculations are performed within the effective-mass ap-

the QNC sizes if the barrier height is large. On the othemproximation and using the Hasse variational treatment. Our
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FIG. 6. The polarizability of the impurity donor plotted against ~ FIG. 7. The polarizability of the bound polaron plotted as func-
the crystallite radiusR without (dashed curvyeand with (solid tion of radiusR for different values of the well depthg,(R*)
curve phonons correction for two values of magnetic fielgs 0 =2, 5, 10, and infinity.
and 5.

which is in good agreement with recent results obtained in
results show that the polaronic effects are important and carsingle CdSe/zZnSe cylindrical quantum ddt&efore closing
not be neglected. As it can be shown in the different figuresthis paper, it must be stressed that the simplicity of our ap-
the phonons corrections depend on the QNC sizes and on tipgoach constitutes an advantage owing to the fact that it
potential depth of the wells. Our results show that the polargives us the possibility to estimate the order of magnitude of
izability is underestimated when the phonons correction ighe diamagnetic contribution, the stark shift, the polarizabil-
not taken into account. In addition, we show that the polarity, and the binding energy for given weak magnetic and
izability decreases with increasing confinement potentiaklectric fields.
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