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Tight-binding study of the influence of the strain on the electronic properties of InAsÕGaAs
quantum dots
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We present an atomistic investigation of the influence of strain on the electronic properties of quantum dots
~QD’s! within the empiricalsp3s* tight-binding~ETB! model with interactions up to second nearest neighbors
and spin-orbit coupling. Results for the model system of capped pyramid-shaped InAs QD’s in GaAs, with
supercells containing;105 atoms are presented and compared with previous empirical pseudopotential results.
The good agreement shows that ETB is a reliable alternative for an atomistic treatment. The strain is incor-
porated through the atomistic valence-force field model. The ETB treatment allows for the effects of bond
length and bond angle deviations from the ideal InAs and GaAs zinc-blende structure to be selectively removed
from the electronic-structure calculation, giving quantitative information on the importance of strain effects on
the bound-state energies and on the physical origin of the spatial elongation of the wave functions. Effects of
dot-dot coupling have also been examined to determine the relative weight of both strain field and wave-
function overlap.

DOI: 10.1103/PhysRevB.68.235311 PACS number~s!: 73.22.2f, 68.65.Hb, 71.15.Ap
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I. INTRODUCTION

Nanometer-size semiconductor quantum dots~QD’s! have
attracted scientific interest due to their potential applicati
in optoelectronic devices as well as because of their pecu
properties such as the self-assembly, tunability, narrow
distribution, and large Coulomb blockade effects.1 The size
and shape of the Stranski-Krastanow growth of InAs QD
on GaAs~001! reported by different authors vary, dependi
on the epitaxial method and on the growth conditions. D
ferent sizes of QD’s, pyramidal or dome shapes with s
facets oriented along different directions,2–6 truncated cone,7

and pyramids8 with nonuniform Ga incorporation in the
nominally InAs QD’s have been reported. The driving for
for the formation of such structures is the relief of the elas
energy associated with a dislocation-free, epitaxial struc
~the InAs/GaAs lattice mismatch is 7%!. The strain distribu-
tion is not uniform, so accurate electronic models sho
include the effects of such nonuniformity.

Theoretical models currently employed in the study of
electronic properties of QD’s can be generally divided in
macroscopic or microscopic. Examples of macroscopic m
els are the one-band effective-mass approximation9–11 and
the multiband k•p models.12,13 Microscopic models are
based on the empirical pseudopotential method14 and on the
empirical tight-binding ~ETB! method.15–23 Microscopic
models provide an atomistic treatment, as required fo
more realistic description of smaller heterostructures. H
the effects of inhomogeneous strain follow directly by taki
into account deviations of the atomic positions from the id
InAs and GaAs bulk structures. The empirical pseudopot
tial treatment potentially offers the most accurate descrip
of the electronic properties of QD’s. On the other hand,
ETB method may offer a faster alternative, and it is mo
transparent with respect to the analysis of results in term
0163-1829/2003/68~23!/235311~9!/$20.00 68 2353
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the modified chemical bonding present in and around qu
tum dots.

Despite their potential strength, not many ETB calcu
tions are available regarding capped strained InAs QD’s. T
only published results are obtained by modeling the dot b
spherical cluster with dangling bonds saturated
hydrogen18–21 ~this approximation is valid in the limit of
nanocrystals embedded in a material with a very wide g!
or by a pyramidal dot with uncovered surfaces.17

In this work we explore the ETB method for evaluatin
and analyzing the electronic structure of InAs QD’s. Our a
here is the following.

~1! Study the reliability of the ETB scheme for the trea
ment of semiconductor nanostructures. We conside
square-based pyramidal InAs QD with$101% side facets em-
bedded in GaAs. Since this geometry has been previo
adopted by several authors,12–14,17 the reliability of our re-
sults is assessed through comparison with previous stud

~2! Investigate how the strain affects the electronic pro
erties of QD’s. So far, such investigations have been limi
to spherical24 or elliptical25 dots. In the first case, the influ
ence of the strain was estimated by comparing free stan
with GaAs embedded quantum dots. However, the surf
dangling bonds in the free-standing dot were passivated
fictitious material with a band gap much larger than t
GaAs gap, giving rise to a much larger confining effect f
electrons and holes inside the dot. Therefore in the comp
son not only the different strain configurations played a ro
but also the different band offsets. In the second case a c
parison of results of differently strained dots was made, w
out however including any bond angle deformation. In t
present study we complement these results by exploiting
flexibility of the ETB formalism where strain effects may b
entirely removed from the model Hamiltonian~without any
structural simplifying assumption!, allowing direct compari-
©2003 The American Physical Society11-1
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R. SANTOPRETEet al. PHYSICAL REVIEW B 68, 235311 ~2003!
son of the real QD with an artificially strain-unaffecte
GaAs-embedded QD.

~3! Analyze the influence of strain field and interdot h
bridization for well separated dots. Previous studies of in
dot coupling11,26 focused on a complementary range of d
separations, namely, closely stacked dots.

We calculate the single-particle bound electron and h
states and wave functions adopting Boykin’ssp3s* param-
etrization with interactions up to second nearest neighb
and spin-orbit coupling.27 This parametrization gives ver
good fits of the important effective masses and gaps for b
GaAs and InAs. One potential problem is that it does
reproduce as well thed-bands contributions as parametriz
tions that explicitly included orbitals, as, for instance, th
one proposed by Jancuet al.,28 where asp3d5s* basis set
and first nearest-neighbor interactions were conside
Since the electron bound states in our QD come mainly fr
s and p atomic states, this does not constitute a relev
drawback. We do not consider piezoelectric effects in
model. However, as we will remark in Sec. III B, we expe
only minor corrections to our results coming from such
fects. The influence of strain on the bond lengths is ta
into account through a power-law scaling of the ETB para
eters chosen here as such as to reproduce hydrostatic
sure effects in both bulk materials, while the influence
strain on the bond angles is taken into account by a gene
ized Slater-Koster formalism.29

This paper is organized as follows. In Sec. II we pres
the formalism adopted for structural relaxation of the syst
as well as for the electronic-structure calculations, includ
the geometrical power-law scaling of the ETB paramete
Our results are given in Sec. III, and in Sec. IV we presen
summary and conclusions.

II. FORMALISM

A. Structural analysis

In order to calculate the atomic structure of an InAs qu
tum dot embedded in a GaAs matrix, i.e., the strain rel
ation, two different methods have been used in the literat
One approach is an extrapolation of continuum nonlin
elasticity ~CE! theory to the atomic scale, employing a di
cretization which is either based on the finite differences12,13

or the finite-element~FE! method.30,31 The alternative is the
valence-force field~VFF! approach, in particular, the Keatin
model.32–34 The latter approach has several advantages
accounts for internal displacements between the two sub
tices of a zinc-blende crystal, which cannot be addres
within conventional continuum elasticity theory, and gives
displacement field which obeys the correct symmetry gro
C2v .35 However, for large systems and slowly varying stra
fields, the computational effort using the VFF approach
higher than using the FE method because, in the FE calc
tion, atomic resolution is usually not required in all regio
of space. In the present study, we started from the continu
elasticity theory as implemented in the FE method~using
experimental elastic constants36! to get a first approximation
to the displacement fields. Then, by interpolation for t
atomic positions that lie between the nodes of the FE’s,
23531
r-
t

le

rs

lk
t

d.

t
r

t
-
n
-
es-
f
al-

t

g
s.
a

-
-
e.
r

it
t-
d

p

s
la-

m

e

extracted all the positions of the atoms in the supercell t
give rise to the calculated displacement field. Finally,
refined these displacements by further relaxing the ato
positions using a VFF model. Thus the positions of the ato
are eventually determined within the VFF model, there
ensuring the correctC2v symmetry of the atomic displace
ments fields.

In the VFF model, the elastic energy of a zinc-blen
lattice is expressed as a function of the atomic positions$Ri%
as

E5(
i

(
j 51

4
3a i j

16~di j
0 !2

@~Rj2Ri !
22~di j

0 !2#2

1(
i

(
j ,k. j

3b i jk

8di j
0 dik

0 @~Rj2Ri !•~Rk2Ri !

2cosu0di j
0 dik

0 #2. ~1!

Here,di j
0 denotes the bulk equilibrium bond length betwe

nearest-neighbor atomsi and j in the corresponding binary
compound, andu05cos21(21/3) is the ideal bond angle
The first term is a sum over all atomsi and its four neares
neighborsj, the second term is a sum over all atomsi and its
distinct pairs of nearest neighborsj and k. The local-
environment-dependent coefficientsa i j and b i jk are the
bond-stretching and bond-bending force constants, res
tively. We use35 for GaAs di j

0 52.448 Å, a i j 541.49
3103 dyne/cm,b i jk58.943103 dyne/cm; for InAs we use
di j

0 52.622 Å, a535.183103 dyne/cm, b i jk55.493103

dyne/cm. Across the heterointerfaces, where the speciesj and
k are different~Ga and In!, we use forb the geometrical
average of the corresponding values for pure GaAs and In

The elastic energy is minimized with respect to the atom
positions $Ri%. In the minimization process, each atom
moved along the direction of the force on it,Fi52“ iE, and
the movement is iterated until this force is smaller than 0.0
eV/Å.

We compared the elastic constants derived from the V
model to the experimental ones. The elastic constantsC11
andC12 agree with the experimental values within 6%. D
ferences are noticeable mainly inC44. The VFF model gives
theC44 about 10% too low for GaAs and about 20% too lo
for InAs. In order to estimate the error due to inaccura
elastic constants, we calculated the local strain tensor by
using both the elastic constants derived from the VFF mo
and the experimental ones. By comparing these results
verified that the absolute error in the diagonal component
strain tensor was always smaller than 0.005.

B. Electronic calculations

The electronic structure is obtained within the ETB a
proach, adopting asp3s* parametrization with interaction up
to second nearest neighbors and spin-orbit coupling,27 which
has been successfully used for III-V semiconduc
heterostructures.37,38 The wave functions are written asC
5( inscinsu in&s , where u in&s are orthogonal normalized
Ri-centered orbitals of angular typen5s,px ,py ,pz ,s* and
1-2
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TABLE I. Volume deformation potentials~in eV! for direct (av
G-G) and indirect band gaps (av

G-L and
av

G-X), absolute volume deformation potential for the conduction-band edge (av
G6c) and deformation potentials

for uniaxial strains along@001# ~b! and along@111# ~d! ~see text!. Uniaxial strains were applied starting from
the experimental~Ref. 36! lattice constants. For the uniaxial strain along@111#, the internal atomic displace
ment is calculated using the VFF method. Our ETB calculations are compared with experimental resul~Ref.
36! ~Expt.!, with DFT-LDA ~density-functional theory–local-density approximation! calculations using
pseudopotentials~PP! ~Ref. 44!, and with DFT-LDA calculations using the linearized augmented plane-w
method~LAPW! ~Ref. 45!.

GaAs InAs
Expt. PP LAPW ETB Expt. PP LAPW ETB

av
G-G 28.560.5a 28.33 28.15 28.2 26.0a 26.08 25.66 26.1

av
G-L 23.70 23.4 22.89 22.9

av
G-X 1.05 0.4 0.92 0.2

av
G6c 27.17 28.46 26.7 25.08 25.93 25.1

b 22.0 21.90 21.7 21.8 21.55 22.0
d 25.4 24.23 23.5 23.6 23.10 23.1

aReference 43.
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spins, andcins are complex expansion coefficients. Thes*
orbital was first introduced by Voglet al.39 to obtain a better
description of the conduction bands. In anN-atoms system,
the 10N310N ETB Hamiltonian matrix contains 33 inde
pendent matrix elements for bulk GaAs and 33 for bu
InAs. These matrix elements are the parameters of the m
for the present calculation, and are taken from Ref. 27. I
strained InAs/GaAs mixed material, such as the QD syst
a new parameter related to the valence-band offset also n
to be included in the model. This parameter consists in a s
of all diagonal Hamiltonian matrix elements for bulk InA
~resulting in an analogous shift of the InAs bands!, and it has
been chosen such that the energy difference between the
InAs and the bulk GaAs valence-band edge to coincide w
the bulk valence-band offsetDv .

We performed an analysis of the QD gap dependence
the specific choice ofDv , because there is a considerab
spread in the experimental values reported forDv in the
literature.40 By varying Dv in the range 52–300 meV w
obtained a QD gap variation smaller than 4%, indicating t
in this range our results are not much affected by the spe
choice of the offset. In what follows we takeDv552 meV
from Ref. 14, in order to better compare with results repor
there .

The relaxed geometry of the QD system implies chan
in bond lengths and in bond angles as compared to the i
bulk materials. Both effects are incorporated in our el
tronic model. Bond-length deviations with respect to the b
equilibrium distancesdi j

0 introduce corrections to the ETB
Hamiltonian off-diagonal elementsVkl . Note that recently a
different scheme has been proposed,41 where corrections to
the diagonal matrix elements have also been included, in
framework of the sp3d5s* first nearest-neighbor
parametrization.28 We assume a power-law scaling42 for the
off-diagonal elements :

Vkl~ uRi2Rju!5Vkl~di j
0 !S di j

0

uRi2Rju
D nkl

, ~2!
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whereuRi2Rju is the actual bond length andVkl(di j
0 ) is the

bulk matrix element taken from Ref. 27 (k and l label the
different matrix elements!. The exponentsnkl are determined
to reproduce variations of the relevant binary materials e
tronic properties under hydrostatic pressure, namely, the
ume deformation potentialsav

a ,

av
a5V

]egap
a

]V
uV0

, ~3!

for a corresponding to the direct as well as indirect (G-L and
G-X) band gaps.

In Table I we give the values forav
a for GaAs and InAs

taken from experiments,36 from a density-functional theory
~DFT! calculation using the local-density approximatio
~LDA ! and ab initio pseudopotentials~PP!,44 from a DFT-
LDA calculation with the linearized augmented plane-wa
~LAPW! method,45 and from our results~ETB!. In principle
eachnkl depends on the orbital character. However, we fi
that a single exponentnkl53.40 for all integrals and both
materials gives a satisfactory agreement with LAPW forav

G-G

and av
G-L . For av

G-X the agreement is less satisfactory. W
believe that this difference reflects the fact that the bottom
the conduction band atX has a noticeabled contribution.28

Therefore the inclusion ofd states in the parametrization an
a correspondent differentnkl value @cf. Eq. ~2!# would be
necessary. However, for InAs/GaAs QD’s at atmosphe
pressure, the confinement effect for electrons and holes
side the dot comes from the conduction- and valence-b
offsets at theG point,46 whereas theX point does not play an
important role. Therefore we do not expect this disagreem
to be relevant in our calculations. It is interesting to note t
this single exponent is very close to the valuen53.454 re-
ported for GaAs and AlAs within a different ETB
parametrization.47 In Table I we also give the absolute vo
ume deformation potential for the conduction-band ed
(av

G6c), and the deformation potentials for uniaxial strai
along @001# ~b! and along@111# (d), obtained by44
1-3
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R. SANTOPRETEet al. PHYSICAL REVIEW B 68, 235311 ~2003!
de00153b~ezz
0012exx

001!,

de11153A3dexy
111, ~4!

wherede001 andde111 are the energies of the light hole ban
with respect to the heavy hole band, in the absence of s
orbit coupling, for strains along@001# and @111#, respec-
tively, ande i j

001 ande i j
111 are components of the corresponde

strain tensors, defined as

e i j
0015eS 2

C12

C111C12
0 0

0 2
C12

C111C12
0

0 0 1

D ,

e i j
1115eS 2C44

C1112C12
1 1

1
2C44

C1112C12
1

1 1
2C44

C1112C12

D , ~5!

whereC11, C12, andC44 are the experimental36 elastic con-
stants. For the uniaxial strain along@111#, the internal atomic
displacement is calculated using the VFF method.

Figure 1 confirms the adequacy of the single-expon
scaling for the present study by comparing our ETB w
DFT-LDA results for the InAs and GaAsG-G band gaps
obtained by varying the lattice constant. The DFT-LDA c
culations were performed using scalar-relativisticab initio
pseudopotentials of the Hamann type.48 The electronic wave
functions were expanded into a plane-wave basis set wi
cutoff energy of 16 Ry. It is well known that the band gap
underestimated in LDA, but the overall behavior of the g
versus hydrostatic lattice deformation should be reliable. O

FIG. 1. Comparison between ETB and DFT-LDA results for t
InAs and GaAsG-G band gaps obtained by varying the lattice co
stant. We also report theG-X band gap calculated by ETB. Th
vertical dashed lines mark the bulk lattice constants~6.055 Å for
InAs and 5.653 Å for GaAs!.
23531
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ETB scheme yields the experimental optical band gap
the volume deformation dependence follows closely
trend obtained with the LDA for a wide range of deform
tions. On the same figure, we also reported theG-X band gap
calculated by ETB. We can observe that the band at thX
point has higher energy than at theG point, for the whole
range of lattice distortions typical in a QD@where the InAs
~GaAs! is compressed~expanded! by atmost 7%#. This be-
havior would not change if the ETB-calculatedav

G-X repro-
duced better the LAPW results~see Table I!, since the curve
representing theG-X band gap has a slope much smaller th
the G-G band-gap curve, and the crossing point betwe
them would not change its position appreciably. These c
siderations confirm that a more accurateav

G-X would not af-
fect the results presented here.

Bond angle distortions are included in the ETB Ham
tonian as suggested in the Slater-Koster formalism,29 gener-
alized to include three-center integrals for the 18 indep
dent second nearest-neighbor matrix elements.49 Note that,
different from previous studies,50 we do not assume that th
three-center integrals are independent of directional chan
induced by the strain.

The relevant eigenstates of the resulting Hamiltonian m
trix including all the strain effects,Ĥ, are obtained variation-
ally. We build the quotient

Re@w#5
^wu~Ĥ2e r Î !2uw&

^wuw&
, ~6!

wheree r is a reference energy. By minimizing Re with re
spect to the trial functionw by a steepest descent algorithm
we get the eigenvector~and the related eigenvalue! whose
energy is nearest toe r . Therefore by varyinge r we may in
principle determine all the electron and hole bound-state
ergies and wave functions.47,37,38,51

Within our ETB formalism, strain effects can be formal
removed from the electronic calculation by imposingnkl
50 in Eq. ~2! ~removal of the strain and relaxation effec
from bond lengths! and setting the direction cosines betwe
atomic orbitals equal to the corresponding bulk values~re-
moval of the strain and relaxation effects from bond angle!.
Therefore, by contrasting the bound-state energies of an
tificially strain-unaffected QD with the corresponding resu
for the strained QD, we are able to quantify the total str
impact on the electronic properties.

III. RESULTS

A. Relaxed QD geometry

Figure 2 is a schematic view of our pyramidal InAs Q
buried in a GaAs matrix. The wetting layer is modeled by
monolayer-thick InAs layer at the base of the pyramid. T
pyramid base length is 12a, the height is 6a, where a
55.653 Å is the lattice constant of bulk zinc-blende GaA
We place the InAs pyramid and wetting layer in a large Ga
box, to which periodic boundary conditions are applied. T
supercell is used in our structural and electronic calculatio
Three different supercells were considered, containing
same QD but differing by the size of the GaAs matr
1-4
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TIGHT-BINDING STUDY OF THE INFLUENCE OF THE . . . PHYSICAL REVIEW B 68, 235311 ~2003!
namely, GaAs matrices with dimensions 19a319a
314.067a ~40 432 atoms!, 25a325a317.067a ~85 000
atoms—shown in Fig. 2!, and 37a337a335.067a ~383 320
atoms!. The z-dimension is not an integer multiple ofa due
to the InAs wetting layer. Unless specified otherwise, res
presented below refer to the 85 000-atoms supercell.

In Fig. 3 we present the relative distortion of the bo
angleu from the ideal zinc-blende bond angleu0 ~obtained
by averaging over the six different bond angles around e
cation!, and the relative distortion of the bond lengthd from
the ideal InAs~inside the dot! and GaAs~outside the dot!
bond lengthsd0 ~averaging over the four bond lengths!.
These quantities are calculated along the@110# direction at
z50.4h, whereh is the QD high. We compare results o
tained from the 40 432-atoms supercell~small! and the
383 320-atoms supercell~big!. The crystallographic direc
tions are defined by starting from a zinc-blende unit c

containing a cation at the origin and an anion ata( 1
4 , 1

4 , 1
4 ).

FIG. 2. Schematic view of the pyramidal InAs QD buried in t
GaAs matrix. The wetting layer is 1 ML~monolayer! thick. The
pyramid base length is about 6.8 nm, the height is about 3.4
The supercell contains 85 000 atoms.

FIG. 3. Average relative distortion of the bond angleu from the
ideal zinc-blende bond angleu0, and average relative distortion o
the bond lengthd from the ideal GaAs and InAs bond lengthsd0.
These quantities are calculated along the@110# direction at z
50.4 h. For comparison we present results obtained from
40 432-atoms supercell~small! and the 383 320-atoms superce
~big!.
23531
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The figure shows that the thicker GaAs region allows fo
better relaxation of the bond lengths in the largest part of
supercell, while it is not as efficient in angular relaxations

B. Bound states of the relaxed QD

We have calculated electron and hole bound states,
refer to them asue1& and uh1& for the respective ground
states,ue2& and uh2& for the next excited states, and so o
For the QD supercell containing 85 000 atoms the energ
are calculated as 1405 meV (ue2& state!, 1267 meV (ue1&
state!, 74 meV (uh1& state!, and 39 meV (uh2& state! using
the top of the bulk GaAs valence band as energy zero. Th
energies are shown in Fig. 4, on the left side~column labeled
QD!. From our numerical approach, we cannot exclude
possible existence of other hole states with smaller ener
and very close (De,10215 meV) to theuh2& state.

We show in Fig. 5, on the left side~QD!, the isosurface
plots of the charge densitieseuw(r )u2 corresponding to the
electron statesue2& andue1&, and to the hole stateuh1&. The
isosurfaces are selected as 0.5 of the maximum cha
density value. The figure shows that the charge is alm
entirely confined inside the dot. The lowest electron st
(ue1&) is almosts-like ~slightly elongated along@ 1̄10#), the
next electron state (ue2&) is p-like aligned along@ 1̄10#, and
the hole state (uh1&) has an elongation perpendicular to th
ue1& state, in agreement with the work of Stieret al.13 and
Wang et al.14 In Table II we show a comparison of the en
ergy differences between the QD bound states calcula
within the empirical pseudopotential~PP! approach~whose
results are extracted from Fig. 2 of Ref. 14! and the presen
approach~ETB strained!. We can see that the agreement
good.

In larger pyramidal QD’s, an additionalp-like electron
state oriented perpendicularly toue2& is usually present.13,14

.

e

FIG. 4. QD bound-state energies~in meV! calculated by our
ETB approach. The energy zero is the bulk GaAs valence-b
maximum. Different degrees of strain are taken into account. In
first column~QD! the bound-state energies of thephysicalQD are
reported, where the strain effects have been included in the E
Hamiltonian. The second column~QD strain unaffected! gives these
energies for an artificially strain-unaffected QD, discussed in S
III C. The third column~QD strain distances! gives results when
strain is retained only in the bond-length description, while bo
angles are assumed to equal the bulk ones~discussed in Sec. III C!.
1-5
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FIG. 5. Isosurface plots of the
charge densitieseuw(r )u2 relative
to the electron statesue2& and
ue1&, and to the hole stateuh1&.
Each surface correspond to 0.5 o
the maximum charge-densit
value. The left side~QD! shows
the results obtained from the
physicalQD, while the right side
~QD strain unaffected! shows the
results obtained from the strain
unaffected dot~discussed in Sec
III C !.
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When calculated within macroscopic models, these t
p-like states are degenerate, if the piezoelectric effects
neglected.13 In our calculations we did not find this add
tional p-like state, and we observed that theue2& state lies
about 20 meV below the GaAs conduction-band edge.
the other hand, when we considered the artificial stra
unaffected QD~see the following section!, all the electron
states become deeper, and the additionalp state did appea
about 30 meV aboveue2&. This degeneracy lifting appears i
our atomistic model as a consequence of the breaking of
pyramidal C4v symmetry into the lower zinc-blendeC2v
symmetry.

We now analyze how the first electron and the first h
states are affected by the supercell size. Due to the peri
boundary conditions, different cell sizes correspond to p

TABLE II. Comparison of the QD bound-state energy diffe
ences~in meV! obtained from empirical pseudopotentials~PP! ~Ref.
14! ~see text! and the present ETB results~ETB!.

PP ETB

e ue2&2e ue1& 130 138
e ue1&2e uh1& 1150 1193
e uh1&2e uh2& 25 35
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odic three-dimensional QD arrays with different interd
separations. In each case, before performing the electr
calculation, the atomic positions are relaxed as describe
Sec. II A. Supercell-size effects are due to electronic a
elastic dot-dot interactions. Both contribute to the resu
shown in Fig. 6, where the energies for the statesue1& and
uh1& and the QD gap are shown for the three different sup
cells. The horizontal axis represents the supercell dimen
along@001#, i.e., the base-to-base interdot distance along
@001# direction. Although we have chosen to report our r
sults here and in the following section as a function of t
interdot distance along this direction, dot-dot interaction
fects in all directions in the three-dimensional QD array a
included. We note that the dot-dot coupling in the 85 00
atoms supercell makes the gap wider by about 12 meV w
respect to an isolated dot. Strictly speaking, when we br
QD’s together to form a periodic array, the bound states
the isolated dot spread into minibands whose width increa
with the dot-dot interaction.

Now a brief remark on the possible influence of the
ezoelectric effects on the results shown in Fig. 6~and in the
subsequent Fig. 7, in the following section!. Grundmann
et al.10 have shown that the piezoelectric potential inside
pyramidal InAs/GaAs QD’s has a quadrupolelike charac
in the @001# plane. Moreover, Fig. 5 shows that ourue1& and
1-6
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uh1& states are almost symmetric under rotations aroun
@001# axis passing through the tip of the pyramid. It follow
that in the framework of nondegenerate perturbation the
~where the piezoelectric potential is taken as perturbatio!,
the first-order corrections to the energiese ue1& and e uh1& al-
most vanish. We therefore expect that the inclusion of
piezoelectric effects would not strongly affect the resu
shown in Figs. 6 and 7.

C. Bound states of an artificially strain-unaffected QD

The influence of strain on the electronic properties w
studied here by comparing thephysical QD bound states
with the corresponding artificially strain-unaffected Q
states, as explained in Sec. II B. The second column in Fi
~QD strain unaffected! gives the bound-state energies for t
artificially strain-unaffected QD, which should be compar
with results from thephysicaldot ~QD!. Note that the energy
e uh2& for the strain-unaffected dot is not given, because
stateuh2& is either unbound or extremely close in energy
uh1&. We observe that strain increases the QD gap (e ue1&
2e uh1&) by about 25%, raising it from the strain-unaffecte
value 937 meV to the value 1193 meV. This behavior com
mainly from the InAs main gap increase when the struct
is compressed by the surrounding GaAs matrix,12 as can be
seen in Fig. 1 in the case of bulk InAs. The change in the
gap due to strain reported here agrees qualitatively w
effective-mass calculations in elliptic dots.25 We note that the
band-gap variation with the strain~wider or narrower gap! is

FIG. 6. Single-particle electron and hole energies (e ue1& and
e uh1& , respectively! and QD gap (e ue1&2e uh1&) as functions of the
distance between dots along@001#. The solid curves are phenom
enological exponential fits, while the horizontal dashed lines
their asymptotes.
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dominated by theue1& state position~shallower or deeper
confinement!. We observe that the strain has opposite effe
on electron and hole states: electron states become shallo
approaching the conduction-band edge, while hole states
come deeper, moving far from the valence-band edge.

The last column of Fig. 4~QD strain distances! gives
results obtained by retaining in the Hamiltonian only t
bond-length deformations, assuming bulk bond angles. T
shows that the electronic properties of the QD are mai
affected by deviations of the bond lengths from the resp
tive bulk ones. We note that the QD gap for the ‘‘partial
strained’’ system~1211 meV! is larger than for thephysical
QD. In fact the hole level actually drops with the bon
length compression, but it rises with the bond angle dis
tions resulting from the QD geometry. The angular contrib
tion dominates, leading to the smaller gap in thephysicalQD
case. We also observe that the angular strain contributio
more important foruh1& ~71 meV! than for ue1& ~53 meV!,
since the former has wave-function atomic components p
dominantlyp type, while the latter has wave-function atom
components almost purelys-like ~thus spherically symmet
ric!.

The right-hand side of Fig. 5~QD strain unaffected!
shows the isosurface plots of the charge densities of
strain-unaffected QD. By comparing with the results of t
physicaldot, we observe that the spatial orientation ofue2&
does not depend on the mesoscopicC2v symmetry~resulting
from the strain field!, but depends on the alternating interfa
structures of the four$101% facets~resulting from the micro-

e

FIG. 7. Single-particle electron and hole energies (e ue1& and
e uh1& , respectively! and QD gap (e ue1&2e uh1&) as functions of the
distance between dots along@001#, in the case of artificially strain-
unaffected QD’s. The solid curves are phenomenological expon
tial fits, while the horizontal dashed lines are their asymptotes.
serve the different vertical scale from Fig. 6.
1-7
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scopic zinc-blende structure!. On the other hand, the spati
elongations ofue1& anduh1& depend only on the mesoscop
C2v symmetry of the strain field, and not on the alternati
interface structures of the four$101% facets.

In Sec. III B we discussed the supercell-size effects on
electronic and elastic dot-dot interactions. The results sho
in Fig. 6 reflect the effects of both interactions. By repeat
now the calculation for theue1& and uh1& states in the three
strain-unaffected supercells, we were able to isolate the e
tronic interaction due to the wave-functions overlap. The
sults are shown in Fig. 7, where the solid curves are phen
enological exponential fits and the horizontal dashed li
their asymptotes. All the fits are of the forme5e01A exp
(2d/l), whered is chosen as the base-to-base interdot d
tance along@001#, e0 represents the energy of the isolated d
~given by the horizontal line!, l is the characteristic length o
the interaction along@001#, andA is a prefactor related to th
interaction. For the overlap contribution~Fig. 7!, an expo-
nential dependence is to be expected since this is the typ
behavior of the localized wave functions away from the d
For the strain field contribution, a power-law dependen
would be more realistic.1 We use exponential fits to allow
semiquantitative comparison of an overlap-only case~Fig. 7!
with a situation where both effects are present~Fig. 6!. By
considering the gap behavior, we obtainA1'300 meV and
l1'3 nm for the case considered in Fig. 6, andA2'
2500 meV andl2'2 nm for the case in Fig. 7. Figure
clearly shows the miniband broadening effect as the inte
distance is reduced, since the states here represented
strictly speaking, theue1& miniband minimum and theuh1&
miniband maximum. From the analysis of these results
come to the following conclusions regarding dots separa
by distances which are at least a factor of 2 larger than
corresponding dot dimension.

~1! The range of the strain field interaction between d
is larger than that of the wave-function overlap region.

~2! In all general trends shown here, strain effects ov
ride direct wave-function overlap effects, leading to the o
posite behavior of the calculated energy variations ver
distance. The net strain contribution toe ue1& ande uh1& would
correspond to the subtraction of the data given in Fig. 7 fr
the corresponding frames in Fig. 6. Figure 6 shows that
electron level downshifts when the interdot distance
creases, while the hole level rises. This behavior comes f
the better relaxation of the bond lengths with the thick
GaAs region, shown in Fig. 3. This gives rise to a sma
bond-length component of the strain in the ETB Ham
tonian, and then, according to Fig. 4, to a smaller elect
energy and a larger hole energy.

*Corresponding author. FAX:155-21-25627368; Email addres
rsantop@if.ufrj.br
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~3! The miniband width for both theue1& and uh1& mini-
bands is less than a few meV, consistent with the larg
island spacings considered by Pryor,26 where a rather differ-
ent dot geometry and range of distances have been inv
gated.

IV. CONCLUSIONS

We have generalized a previous ETB second near
neighbors parametrization by Boykin27 to include the lattice
distortion into the Hamiltonian. We introduced a scaling la
of the hopping Hamiltonian matrix elements with expone
n53.40. We were able to reproduce the volume deformat
potentials corresponding to the direct (G-G) and the indirect
(G-L) band gaps for both InAs and GaAs . We have used
approach to calculate the electronic structure of a squ
based pyramidal quantum dot. The comparison with previ
empirical pseudopotential calculations shows that the E
model provides accurate results for bound-state energies
corresponding wave functions.

The influence of strain on the bound-state energies is a
lyzed. For single dots we found the strain increases the m
gap by about 25%. Strain causes the electron states to
come shallower and the hole states to become deeper.
spatial orientation of the firstp state (ue2&) depends on the
alternating interface structures of the four$101% facets, while
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We have quantitatively discussed the influence of the d
dot interaction on the bound states due to both strain fi
and wave-function overlap by decoupling these two effec
For well separated dots, we have shown that the strain fi
dominates the level shifts, leading to opposite trends as
pure wave-function overlap, although at distances less t
twice the dot diameter the latter becomes noticeable. The
gap between the electron and hole states decreases a
GaAs region between dots gets thicker because this all
the bond lengths to further relax.
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