PHYSICAL REVIEW B 68, 235205 (2003

Free-energy calculations of intrinsic point defects in silicon

O. K. Al-Mushadani and R. J. Needs
TCM Group, Cavendish Laboratory, University of Cambridge, Madingley Road, Cambridge CB3 OHE, United Kingdom
(Received 21 July 2003; published 5 December 2003

We study the energetics of various point defects in silicon ualmgnitio density-functional methods. The
formation free energies are calculated from the harmonic phonon frequencies, which are determineal from
initio density-functional perturbation theory calculations. We deduce the concentrations of defects as a function
of temperature and compare them with experimental estimates. The localized vibrational modes associated
with the various defects are described.
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I. INTRODUCTION II. EQUILIBRIUM DEFECT CONCENTRATION

The total free energy of a solid,,; can be approximated
Intrinsic point defects in silicon have attracted a great dea&s the sum of the internal energy at zero temper&fuaad

of interest because of the technological importance of théhe vibrational free energF iy,
material. In particular they strongly influence the diffusion of
dopant atoms at elevated temperatures during device manu- For=E+Fuip - (1)
facture. Both experimental and theoretical techniques hav&he change in free energy on introducing a single point de-
been brought to bear on these defects but fundamental gafect is
in our understanding still exist. Unfortunately it has not been
possible to detect silicon self-interstitials directly and we Apdefect pdefect_ N+{_1’0'1}Fbulk )
must rely on theoretical techniques to elucidate their micro- ot N ot

scopic nature. In the case an neutral vacancies, €lectioynereN is the number of atoms in the perfect crystal and the
paramagnetic-resonance studieave determined unambigu-  qyantity in braces takes the valuel for an interstitial, O for
ously their symmetry to b®,4, which is consistent with a he FFCD, and-1 for the vacancy. Adding the term from

Jahn-Teller distortion. Positron—l_ifetime experiments give.athe configurational entropy of the defect gives the total for-
value for the enthalpy of formation of a neutral vacancy inmation free energy,

silicon of 3.6-0.2 eV? » ot
The self-diffusivity can be measured at high temperatures AFSON=ngAFeTee-TS o {ng], )

using radioactive isotopes as tracers, and experimental esiijhere there arey defects per unit volume. Each defect has
mates of the contributions to the self-diffusivity from self- n, degenerate configurations per lattice site, and the total

interstitials and vacancies have been matieThe self-  nymper of atoms per unit volume i . The configurational
diffusivity Dsp can be written as the sum of contributions entropy per unit volume is therefore given by

from independent mechanisni8gp=2=;f;Djny;, wheref;
are correlation factors of order unitR; is the diffusivity,
andng ; is the concentration of defegtThe situation regard-
ing the separate values Bf; andng,; for vacancy and self- Minimizing AFS°""d with respect tony and assumingng
interstitial mechanisms is very unclear, with estimates differ- . L .
: S5 . o <ngn; gives the equilibrium concentration of defects,
ing wildly.” This gap in our knowledge is important because

one requiredD; andny; separately to predict the behavior . AFE
for nonequilibrium defect concentrations, which occur dur- Ny :”snieXF{— kB_T}
ing the processing of silicon.

In this contribution we calculate the formation free ener-
gies of intrinsic point defects in silicon, including the vibra-
tional contributions, usingb initio density-functional theory We have performed zero-temperature calculations of the
(DFT) methods. From these we deduce the equilibrium conrelaxed structures and formation energies of the defects using
centration of defects as a function of temperature. We hav®FT methods within the local-density approximation
studied the neutral vacancy, the hexagonal, and(&p (LDA). We then use density-functional perturbation theory
self-interstitials, and the fourfold-coordinated def@gECD). (DFPT) (Ref. 8 to obtain phonon spectra of the defective
The FFCD has not been detected experimentallyabuini-  and perfect crystals from which we deduce the vibrational
tio calculations indicate that it has the lowest formation enfree energy. We have adopted a plane-wave pseudopotential
ergy of any intrinsic point defect in silicdhand therefore its  framework and all calculations were performed using the
properties are of interest. We also study the localized vibraABINIT code? The defects were contained within 64-atom
tional modes associated with the defects. simple cubic supercells subject to periodic boundary condi-

ng! N
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IIl. METHOD
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TABLE |. Formation energies of the defects.

Formation energyeV) )
Vacancy 3.53
Hexagonal 3.45
Split(110) 3.40
FFCD 2.80
Displaced hexagonal 3.42

tions. A plane-wave cutoff energy of 12 hartree was used for
all calculations, which provides good convergence for both
the electronic and vibrational contributions to the free ener-
gies. We used a Troullier-Marti5sLDA pseudopotential to
represent the &f ions. Unless otherwise stated, we used the
relaxed LDA cubic lattice constant of 5.387 A, which is a
little smaller than the experimental value of 5.429 A. The [, 1. Neutral vacancy defect. The first-nearest-neighbor atoms
Brillouin-zone integrations were performed using thetg the vacancy are shown in dark gray.

Monkhorst-Pack' sampling scheme with ax83x 3 grid of

k points. k-point sampling and supercell size have been resolved, the

The ground-state structures of the defects were obtaineg|ative energies of the defects are still sensitive to the treat-
by relaxing the structures until the I_-|6ellmann—Fe_ynﬁ?an ment of the electronic correlation. Studiés® using the
forces on the atoms were less thar 50 ° eV/A, whichis  yaneralized gradient approximatid®GA) to DFT give a
an extremely fine tolerance. Small, random displacementgiterent energy ordering of the candidate defects. The GGA
were applied to the atoms before relaxation to remove any,mation energies for the interstitial defects are larger than
initial symmetry which cou_ld otherwise be locked in. The yha | DA ones while the vacancy formation energy is lower,
forces were calculated using the same energy C%Jtoffs ang, that within the GGA the interstitial defects have the high-
k-point grids throughout. It has recently been reportédat ot formation energies. The FFCD remains lower in energy

this is important to ensure the correct relaxation of atomsyan the other defects. A diffusion quantum Monte Carlo
which may otherwise end up in a higher-energy local Mini-syudy?! by Leunget al2® gave even larger interstitial defect

mum. . 61314 - formation energies.
Various studie%™®!*have indicated that large supercells

are required to obtain full convergence of the formation en-
ergies, and even then the agreement between the different IV. DEFECT STRUCTURES
studies is not particularly good, with estimates of the defect Figures 1—4, produced using trEEHAKAL?? package

formation energies differing by several tenths of an eV. Inghq,\ the relaxed structures of the various defects. The num-
our tests we found that the formation energy of the FFCD iyer of degenerate configurationsof each defect per lattice

a 54-atom face-centered cubic supercell differed from thakjie can be determined from the symmetries of the structures
obtained with a 64-atom simple cubic cell by about 0.2 eV.

The formation energies of the various defects are given in
Table I. These results show that the FFCD has the lowest
formation energy. The FFCD was recently studied usibg
initio DFT methods by Goedecket al.® although in fact it
corresponds to the interstitial-vacancy defect found in earlier
tight-binding calculation$®*® This defect is low in energy
because it maintains the fourfold coordination of the bulk
crystal. The hexagonal and splifLl0) interstitials are essen-
tially degenerate in energy as found in previous stutliés?

The vacancy has a higher formation energy than the self-
interstitials within the LDA, in agreement with most recent
results®'® We have found the hexagonal interstitial to have
an unstable phonon mode, and on following the displacement
along the corresponding eigenvector we located a stable
structure with a formation energy 0.03 eV lower than the
hexagonal interstitial. The displaced hexagonal defect is de-
rived from the hexagonal defect by a displacement of the
interstitial atom, shown in black in Fig. 2, out of the hexago- FIG. 2. Hexagonal interstitial defect. The interstitial atom is
nal ring by 0.48 A. shown in black. The first-nearest-neighbor atoms are shown in dark
Even after the technical issues of plane-wave cutoffgray.
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TABLE Il. Bond lengths between the four atoms neighboring
the vacancy.

1 2 3 4 5 6

DistancesA) 3.415 3.415 3.425 3.425 3.425 3.425

ous findings for aD,q4 structure having two bonds of one
length and four of another. The present results are, however,
close toT4 symmetry as the two distinct distances are closer
in our study than in previous ones. A trlig structure would
have six identical bond lengths. The number of degenerate
states of thé,4 symmetry defect is; =3, corresponding to
the number of independent ways of choosing two pairs from
four atoms.

For the hexagonal interstitial we found a bond length of
361 A between the interstitial and each of its six nearest
neighbors, which is close to a previous reSuif 2.360 A. If

the symmetry is perfectly hexagonal we haye=2 for this

FIG. 3. Spli{110 interstitial defect. The interstitial pair of at-
oms are shown in black, the first nearest neighbors are in dark gray
and second nearest neighbors are in light gray. )

and is given in Table Ill. This information is needed to obtain ; . . . .
the total defect concentrations using ES). defect. This result disagrees with that in a previous p&per,

The silicon vacancy probably poses the greatest difficult)y\’hiCh we believe to be incorrect. The displaced hexagonal
defect ha;=4.

for ab initio studies of defects. Previous calculations have T {110 def . f i of hari
shown the energy surface near the minimum to be quite shal- € sp '(_ O defect consists of a pair of atoms sharing
n atomic site of the perfect crystal. The pair, shown in black

low. This has meant that various studies have found differen@" & : . .
minimum energy structures. Some dedicated" Fig- 3, are aligned along @L10) zigzag chain. The bond

expositiond®14232%have shown how the defect structure is length between the defect pair of 2.432 A is slightly larger

dependent on convergence parameters and how the atoﬂE?” tf;e bu][kzb;):(jl\l?ngtz (_)f 2.333 ’?‘ and E'\I{ﬁry sir_nilafr to
relaxation is carried out. The experimental picture is muctin€ value of 2. ound in an earlier stucdyThe pair o
more conclusive. Electron-paramagnetic-resonance studiedt

have shown that the vacancy Has, symmetry. The studies dinated. The neighboring atoms, colored dark gray in Fig. 3,
mentioned above also conclude that this is the case whed€ fivefold coordinated and their bonds to the defect pair are

large supercells and adequdtepoint grids are used. The 2.455 A long, which is close to the value of 2.46 A found "?
present study also gives a structure which Bag symmetry. a previous stud$® The bond distance between the defect pair

The bond dist bet the f : iahbori th@nd the light gray atoms in the zigzag chain is, however,
vac(:aancc:))r/] shlos\/verlln;ejarlf ;vrzsr}n F(ieg oluralﬁan;i\?;l]gm 'I?artlbnlg I shorter than the bulk bond length at 2.315 A. For this defect

We see that these atoms form two pairs with bond lengths df'€ Number of degenerate statesiis 6, which corresponds

3.415 A. The four bond lengths between different pairs ar%gl}?e number of ways of choosing two bond directions from

lightly | t3.425 A. This is i ith i-
slightly longer at 3.425 Is is in accordance with previ The FFCD defect consists of a pair of atoms, shown in

black in Fig. 4, that have been rotated from their normal
positions within the bulk crystal. The present calculations
give the bond length between the two defect atoms as 2.227
A, which is close to the value of 2.25 A found in a GGA-
DFT study® The other three bonds formed by the defect at-
oms are longer. There are a pair of length 2.346 A from the
black to the dark gray atoms and one of length 2.457 A to the
light gray atom. The FFCD hag=6.

V. PHONON CALCULATIONS

We calculated the phonon spectra of the same supercells
used in the ground state electronic structure calculations
within linear-response theory usirap initio DFT. For con-
sistency we used the sankepoint grids, pseudopotential,
and plane-wave cutoffs as before. We calculated the dynami-
cal matrix at thel™ point of the supercell, which was Fourier

FIG. 4. The FFCD. The interstitial pair of atoms is shown in transformed into real space to give the matrix of interatomic
black, the first nearest neighbors are in dark gray and second neardsrce constants. This was then Fourier transformed back into
neighbors are in light gray. momentum space to obtain interpolated dynamical matrices
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FIG. 5. Phonon density of states of bulk silicon. o _
FIG. 7. Solid line: phonon density of states for a 64-atom su-

o . ) ) o percell containing one sp(it10 defect, dashed line: bulk density
at any point in the Brillouin zone. Diagonalization of the f gtates.

dynamical matrices yields the phonon frequencies and corre-

sponding eigenvectors. The responses need only be calcy- : :
lated at thel” point for the defect structures as the large sizeHEfeCt as phonons which were degenerate in the bulk become

of the supercells guarantees convergence of the phonon Spenqndegenerate. Of_partlcular interest are t.he modes Wh!ch
trum. Test calculations on a smaller 54-atom face-center(e;ﬁcppear al_:)ove the h'gh?St cal_culated mode I the bulk, W.h'Ch

. . re localized modes in which the associated normalized
cubic supercell showed that the 64-atom supercell is a eigenvectors are dominated by motions of atoms close to the

equate for calculations of defect phonon specira. defect. Localized modes for point defects in silicon have

The calculated phonon densities of states for bulk silicorbeen calculated befof8 but these calculations used an em-
and the defective structures are shown in Figs. 5-10. Th irical interatomic potential which gives the highest bulk

bulk density of states shows four main groups of phonons; - o o
The first group is located between 100 and 200 &niThis phonon mode at 392 crl, which is 24% lower than the

lies just above the acoustic region in which the densit Ofexperimental value. Ouab initio DFT resuits, however, give
Jus! ) Y 913 much more accurate description of the entire phonon spec-
states increases roughly ag€. The second group has less

) i o : rumand iti ibl hiev viations from experimen-
weight and builds up slowly from a minimum just abovetu and itis possible to achieve deviations from experime

_ a . tal results of no more than a few inverse cm. An example of
1
200 cmi " to a .pe'ak at 340 cm’. The (_iensr[y of states then this is given by the agreement of the calculated optic
falls before building up to form the third group between 370moole frequencies at thé point at 517 cmi® with the
anq 460 cm". This group has roughly t.he same C.wnu""mveexperiment&l7 value of 518-8 cm L. It is hoped that re-
yvelght as the second one._FoIIowmg this the density Of.State§ults for the defects will also be very accurate. This should
g‘;sregfr'f; dsehrgrbﬁgv?(taig?}? (:Tﬁr:i?J?éumptgﬁiéﬁ:sg;??gugp;§h52 e qualified, however, as the choice of lattice constant can
e uher e deniy of stes a0 zero.  © o SO ST o e phener resencis e
From Figs. 5 to 10 we see that the densities of states f )

i 1 0,
the 64-atom supercells remain largely unchanged upon ins:a)g;i-lghest phonon frequency is reduced by 2% to a value of

. ) . : 05 cm L. This error is still much smaller than in the em-

gon of a.smgle defect. One of th_e effegt; of mtroducmg the irical potential calculations, and since we are only inter-
efects is that the van Hove singularities observed in thegey iy free-energy differences we may expect a certain
bulk phonon density of states are smeared out. The densities

of states also become more jagged upon introduction of a
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FIG. 8. Solid line: phonon density of states for a 64-atom su-

FIG. 6. Solid line: phonon density of states for a 64-atom su-percell containing one hexagonal defect, dashed line: bulk density
percell containing one FFCD, dashed line: bulk density of states. of states.
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FIG. 9. Solid line: phonon density of states for a 64-atom su- FIG. 10. Solid line: phonon density of states for a 64-atom su-
percell containing one displaced hexagonal defect, dashed line: bulkercell containing one vacancy, dashed line: bulk density of states.
density of states.

atom and the hexagonal ring of nearest neighbors as shown
amount of error cancellation. Tests showed that a cancelléby the black and gray atoms respectively in Fig. 2. There is
tion of errors does tend to occur amiF depends only also a resonant mode at 222 threntered on the interstitial
weakly on the choice of lattice constant, which also indicatesvhich gives a small peak in the density of states.
that the effect of thermal expansion @ is likely to be We found the hexagonal defect to be unstable with respect
small. to a displacement of the interstitial atom perpendicular to the

Localized modes are characterized by large componenislane of the hexagonal ring of atoms surrounding it. A single
of the normalized eigenvector being associated with atomsnaginary phonon frequency persists across the whole Bril-
close to the defect. For the 64-atom bulk supercell the largedbuin zone. The hexagonal defect is thus shown to be a
individual displacement is no greater than 0.215 compared teaddle-point configuration on the energy surface. The corre-
a value of 1.0 for a completely localized vibration. Despitesponding eigenvector at tiépoint indicates the direction of
not involving the addition or removal of silicon atoms, the the instability. We displaced the atoms along the direction of
rearrangement of atoms in the FFCD does produce a modais eigenvector and located the minimum in the energy. Fur-
above the bulk cutoff. The pair of rotated atoms forming thether structural relaxation at this point using the forces gives
defect have large motions associated with the highestthe displaced hexagonal defect. The displaced hexagonal de-
frequency mode at 530 cm. Each of the defect atoms has a fect has a low frequency resonant mode at 76 tnsee Fig.
displacement of 0.644 which is substantially above the maxi9, which is strongly localized on the displaced interstitial
mum in the bulk crystal. The four next-nearest-neighbor atatom. The eigenvector corresponds to a motion out of the
oms, shown in dark gray in Fig. 4, have the smaller displaceplane of the ring with a magnitude of 0.767, indicating a very
ments of 0.145. The displacements of the atoms falls off withstrongly localized mode. There are other resonant modes at
distance from the defect in this localized mode, although the01 and 324 cm® associated with large vibrations of the
decrease is not monotonic. Apart from this high-energy mod@eighboring atoms in the hexagonal ring. These modes do
there are also some resonant modes in the continuum of thent, however, produce such a sharp spike in the density of
density of states which have a localized character. There istates. There is a sharp peak at the top end of the density of
one mode at 407 cit which is localized on a pair of atoms states at 514 cit. This is associated with the interstitial
6.6 A away from the defect pair. Another mode at 511°¢ém and the neighboring atoms. The very highest-energy mode
seems to be localized on the atoms surrounding the defedibes not seem to be localized in nature, in contrast to the
pair, shown in light gray in Fig. 4. FFCD and split110) defects.

The split110 also has localized vibrational modes. The  The silicon vacancy shows several noticeable differences
mode with the largest atomic displacement occurs atompared with the other defects. There is a substantial soft-
255 cm ! corresponding to small but sharp peak in the pho-ening of phonons upon introduction of the defect. From Fig.
non spectrum of Fig. 7. This resonant mode is centered om0, we see that the maximum phonon frequency at 501'cm
the two atoms of the defect pair, shown in black in Fig. 3,is significantly lower than the bulk value of 517 ¢t The
with a displacement of 0.520 for each atom. There is anotheast group of phonons in the bulk above 460 ¢mhas
resonant mode at 220 ¢cm which may be seen as a small spread downwards to merge with the lower group of
spike in the phonon spectrum in Fig. 7. The highest mode gvhonons. Using the LDA lattice constant of 5.387 A we find
518 cm ! is localized with large displacements of the two that the acoustic phonons are unstable with one of the
neighbors of the defect pair colored light gray in Fig. 3. Thisphonons having an imaginary frequency over much of the
mode resides just above the maximum frequency of the bulRrillouin zone. When the larger experimental lattice constant
phonons. of 5.429 A is used the acoustic phonons become stable. Such

The hexagonal defect has localized modes at 516'cm behavior is indicative of the extremely shallow nature of the
that appear as a sharp spike in the phonon spectrum given anergy surface associated with the vacancy. As a result of the
Fig. 8. These modes are strongly localized on the interstitialinstable phonons the phonon density of states below
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100 cm ! does not have the same® dependence as the

other defects and the bulk crystal. By making comparisons
between results for the vacancy at both lattice constants we
may ensure that this phonon instability does not alter our
conclusions. Using this procedure we found that the substan-
tial phonon softening observed for the vacancy is not an
artifact caused by the instabilities but a real feature of the
phonon spectrum for this defect. This softening plays an im-

Vibrational Formation Free Energy (eV)

; Lo ) —— FFCD
portant role in the stabilization of the vacancy, as explored in Y ——— Split<110>
the following section. The vacancy shows some resonant —-—- Displaced Hexagonal

modes although there are no sharply defined peaks in the s Vacaney

density of states as in the other defects. There is a mode at ~o 500 1000 1500 2000
118 cm ! which consists mainly of motions of the four near- Temperature (K)

est neighbors of the vacancy which are shown in dark gray in
Fig. 1', Each of these atomsfhas ,a d!splacement of 0‘44%hergy(the splif110) and displaced hexagonal curves are indistin-
There is another mode at 67 chwhich is also centered on guishable.

the four nearest neighbors of the vacancy. This is slightly

less localized with the four atoms each having a displace- | . ) ) . .
ment of 0.384. which are associated with localized modes. The silicon va-

cancy has an even larger transfer of weight from high to low
frequencies as can be seen from Fig. 10. The substantial
softening of the high-frequency modes leads to a much

The vibrational contribution to the free energy of a super-Smaller zero-point energy for the vacancy compared with the

cell containingN atoms within the harmonic approximation Pulk crystal. The reduction in the formation free energy of
is the vacancy is much larger than for the other defects, espe-

cially at elevated temperatures, because of the phonon soft-

ening. By calculating the phonon spectrum of the FFCD in a
J(w)dw, (6) 54-atom face-centered cubic supercell we have been able to
estimate the error on the vibrational free energies of our de-
fects. At 2000 K we estimate the error in the FFCD free
energy to be about 0.15 eV. This error halves when moving
to the lower temperature of 1000 K. This is smaller than the
8bserved variations in formation energy seen in ground-state

FIG. 11. Vibrational contribution to the defect formation free

VI. PHONON-FREE ENERGIES

%)

Fvib:?’NkBTf |n
0

2sin

hw
kgT
where g(w) is the phonon density of states normalized to
unity. Inserting Egs(1) and(6) into Eq.(2) gives the vibra-
tional contribution to the formation free energy of a defect.
We have decided to separate the vibrational and stati di
ground-state contributions because of the uncertainty whicﬁtu 1€s. h h . h
surrounds the latter due to the approximate treatment of elec:. From Fig. 12 we see that as the temperature increases the

. : : : o difference between the vibrational energy of the defect and
tron correlation and the size of the simulation cell. It is likely

that ab initio DFT methods give a good description of the bulk crystals decreases. This is required by the law of Du-

vibrational spectra even though the treatment of electron cml—ong and Petit which ensures in the high-temperature limit

relation has a large effect on the formation energies, becau Q?I_ci';fvt\a/;erggigg?ﬁg??ﬂ?j’rs:lcznzfde ?Lé'?}:itlz?tjggtgf ;J;ZS
the vibrational properties in the harmonic approximation are 8 9y g

produced by infinitesimal displacements of the atomic posifanergy difference Is always much smaller than the difference

tions that do not involve rebonding. in vibrational formation free energies. This means that the
The vibrational contributions to the defect formation free
energies for the various defects are shown as a function of 0
temperature in Fig. 11. We see immediately that the effect of
including phonons in the calculations is to lower the defect
formation free energy at all temperatures. From &.this
lowering will lead to an increase in the concentration of all
point defects. The zero-point energy of the phonons in the
bulk is significantly larger than in the defective crystals, so
that even at zero temperature the vibrational effects increase
the concentration of defects. For the interstitial defects and
FFCD this effect arises largely from the broadening of the
high energy group of phonons between 460 and 500%cm 02 : ‘ ‘
upon the introduction of the defects. From Figs. 6—8 we see 0 500 1000 1500 2000
that this broadening is asymmetric with most of the weight Temperature ()
moving to lower frequencies just below 460 chwhere the FIG. 12. Vibrational contribution to the defect formation energy

group starts in the bulk. A smaller proportion moves to(the split110) and displaced hexagonal curves are indistinguish-
higher energies to form the sharp peaks near the bulk cutoble.

-0.05

/ —— FFCD

-0.15 ¢ ——— Split<110>

—-—- Displaced Hexagonal
----- Vacancy

Vibrational Formation Energy (eV)
|
=}
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0.0015

~__FrcD TABLE Ill. Number of degenerate configurations of the defects

¥ ——— Split<110> per atomic site.
> —-—- Displaced Hexagonal
O s Vacancy
& 0001 e n;
£ 00011 USRS ]
] -
5 / Vacancy 3
k| 3 Hexagonal 2
£ ] )
S 00005 [ _ X Split{110) 6
g ',’ /// FFCD 6
k5 1y Displaced hexagonal 4
s |

0 500 1000 1500 2000

Temperature (K) split(110 and displaced hexagonal defects are not the most

FIG. 13. Vibrational contribution to the defect formation en- €Nergetically stable at any temperature. At low temperatures
tropy (the split110) and displaced hexagonal curves are indistin-the FFCD is the most stable and above 1049 K the vacancy
guishablg. becomes the most stable. The vacancy will always dominate

at high temperatures because of the larger size of its forma-

continual decrease in defect formation free energy with inion entropy. The formation free energy for the vacancy is in

creasing temperature observed in Fig. 11 must be due to tﬁ:goad agreement with the values obtained in a previus

effects of the vibrational entropy. Figure 13 shows the vibra—Inltlo study*® although the latter had a higher value which

tional formation entropy of the defects as a function of tem-M&Y be explained by uncertainties in the formation energy.

: ; The previous stud¥ gave a zero-temperature formation en-
rature. At very high temperatures the formation entr .
perature. At very high temperatures the formation entropy rgy of 4.1 eV for the vacancy which appears to be on the

converges to a positive constant value so that the formatiofi. . ; g .
free engergy of tFr)]e defects decreases linearly with temper ligh side for a LDA-DFT calculation. Thls |s.most I|I§ely due
ture. The vibrational entropies of the defective crystals ard® the smaller plane-wave cutoff akepoint g”d_ used in that
greater than the entropy of the bulk solid. Such behavior hag?uc_ly. The calculated values for the fo_rmanon entropy are
been observed for vacancies beféftalVe see that the va- _S|m|Iar although our Stl.de produces a higher v_alue which is
cancy has by far the largest formation entropy of the defect portant for §t§p|llzat|qn of.the vacancy at high tempera-
examined. This leads to the stabilization of vacancies witf"'®S: Bothab |'n|t|o studies give estlmates of the change in
respect to the other defects as temperature is increased. e energy with temperature Wh'.Ch are very much Iarger
high temperatures the harmonic approximation that we hav an thoses obtained in earlier empirical potential
used is believed to break down due to an increase in thgalculatlonsz. . .

formation entrop$f so that a fully anharmonic study is re- _We now use the total formation f_ree energies together
quired. The primary effect of this is expected to be to furtherWlth Fhe ngmbers of degenerate conflgura'ltlo.ns forgac;h de-
lower the defect formation free energies at higher temperaf-eCt listed in Table 1l 10 calcglate the mtrms;c qumbnum
tures. concentrations from Ed5), takingng=5.1x 10?2 cm™ 3. We

Having obtained the vibrational contribution to the forma- plot t.he Qquilibrium concentrations against _inverse tempera-
tion free energy of the defects we now calculate the totaFurg ;:nFEII% 15. we sele 'E[hattthe contcentra:ctliggooLvac_?r?(ilk?s
formation free energy of the defects and their associated" “bs arg eq_uat_a a temh_pe;]ra u;e 0 : » Wi q the
equilibrium concentrations. Combining the results for theVacancies predominating at nhigher temperatures an €

formation energies in Table | with the vibrational free ener—FFC.:D defects_at lower ones. Eaglesﬁagwes a roug_h_ ex
gies given in Fig. 11 we obtain the total formation free en-Perimental estimate of the concentrations of interstitials and

ergies shown in Fig. 14. We see immediately that theacancies at 1073 K of 810" cm™*. At this temperature

20
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—— FFCD 10 | ——= Splitt10> AN
1.5 - ——— Split<110> NS —-—- Displaced Hexagonal NG
—-—- Displaced Hexagonal P Vacancy N
N Vacancy 0.0004 0.0008 0.0012 0.0016 0.002
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FIG. 15. Equilibrium defect concentrations as a function of in-

FIG. 14. Total defect formation free energies. verse temperature.
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our estimates for the spit10) and displaced hexagonal de- VII. CONCLUSIONS

fects are approximately #em™® which agrees quite well At high temperatures the vibrational free energy associ-
W'th experiment. For the vacancy we have a h|gher_ conCengted with a point defect in silicon is of order 1 eV, which is
tration of 1% cm™* which is greater than the experimental 5 sybstantial contribution given that typical formation ener-
value but is still consistent given the experimental uncertaingies are a few eV. This stabilization is especially large for the
ties. Faheyet al?® give experimental estimates of the defectvacancy which, because of its large formation entropy, is
concentration at the higher temperatures in the region ofredicted to predominate at high temperatures. At the tem-
1500 K for both interstitials and vacancies. Their results giveperature range of 1000-1100 K where silicon devices are
concentrations of about bcm 2 for interstitials and thermally processed we see that both interstitials and vacan-
10"-10' cm~2 for vacancies. The sp(it10 and displaced cies exist in roughly equal measure which agrees with cur-
hexagonal defects again agree with the interstitial value atent opinion. The FFCD is more stable than both the
approximately 18 cm2. The FFCD has a slightly higher splif110 and displaced hexagonal defects up to very high
concentration at 76 cm™3. The vacancy comes in at the top temperatures, because of its lower formation energy. The
of the range of estimated values at a concentration opexagonal d_efect |_s_unstable W|_th respect to a small (_Jllsplace-
10'6 cm~3. Overall our results are broadly consistent with ment of the interstitial atom which Iowers_ the formation en-
the available experimental estimas which, however, €9y, The phonon spectra of the defective crystals exhibit
vary greatly. localized vibrational modes.

The present study has ignored the effects of electronic
excitations which also contribute to the free energy of solids.
The greatest contribution is expected to occur for the silicon Financial support was provided by the Engineering and
vacancy which has defect states within the band gap. ThiPhysical Sciences Research CoutEiPSRG, UK. Compu-
leads to a contribution to the formation entropy which hastational facilities were provided by the High Performance
been estimatéd to be about 1-Xg or approximately 10% Computing Facility at the University of Cambridge, and the
of the vibrational contribution. This will further increase the Computer Services for Academic Resear@@SAR) in
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