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We use a variational quantum Monte Carlo realization of the adiabatic connection technique to calculate the
most relevant quantities in Hohenberg-Kohn-Sham density functional theory for several strongly inhomoge-
neous electron-gas systems. Results for the coupling-constant dependence of the exchange-correlation energy,
the pair-correlation function, the exchange-correlation hole, and the exchange and correlation energy densities
are presented. Comparisons are made with the interaction strength interp@tjapproximation, the local
density approximatiolLDA ), the gradient expansion approximati@EA), the generalized gradient approxi-
mation (GGA), and the weighted density approximatio?WDA). The coupling-constant dependence of the
exchange-correlation energy is accurately described by an ISI model that incorporates information on the
strong-interaction limit. Unlike either the LDA or GEA, the WDA is successful in describing the nonlocal
structure of the exchange-correlation hole. The LDA errors in the exchange-correlation energy density show a
remarkable correlation with the Laplacian of the density. The GGA worsens the error in the integrated
exchange-correlation energy as the inhomogeneity of the systems increases. This failure is shared by current
meta-GGA functionals and is shown to be caused by the inability of these functionals to describe the LDA
overestimatior(in absolute valueof the exchange energy density around density maxima. It is suggested that
this effect could be taken into account by including Laplacian terms in semilocal density functionals.
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[. INTRODUCTION and assuming that,.([n],r), the exchange-correlation en-

Given any system of interacting electrons, density func-ergy density at the point, is the same as in a homogeneous
tional theory'? (DFT) shows that there exists a functional electron gas with uniform densitgy=n(r). The LDA has
E[n] of the electron densityn(r) that is minimized and proved to be far more accurate than expectgutiori and its
equal to the ground-state energy whe(r) is equal to the computational simplicity has made it possible to obtain ac-
ground-state density. In the Kohn-Sham formulafidghese ~ curate estimates for the ground-state energies and structural
striking results are turned into a computational scheme byroperties of many solids. However, applications to surface
mapping the many-electron system onto a fictitious systenfh€mistry, quantum chemistry, and computational biology re-
of noninteracting electrons moving in an effective one-duire the calculatl_on of total energies to a precision at least
electron potential that produces the density). The only an order of magnitude better than the LDA can provide.

contribution toE[ n] that cannot be calculated exactly within Many attempts_have bgen made to develop approximate
. ! . exchange-correlation functionals that are more accurate than
this approach is the exchange-correlation enefgy n],

. . . . the LDA. These efforts fall into three main categorida.the
which is known to be a universal and unique functional of

. . . . so-called semilocal approaches, one all@yg[n],r) to de-
n(r). The exchange-correlation functional provides the I|nkpend on the electron density at the paintas in the LDA,

between the ground-state energy of the real many-electrofy ¢ yarious gradients of the electron densityratin the

s_ystem and 'Fhat of the Kohn-Sham electrons, and it§ funcru"y nonlocal approaches, an approximation &g([n],r)
tional derivativev,(r) = 5Ey./on(r) is part of the effective ;g sought by modeling the exchange-correlation hole
potential through which these fictitious electrons move. Thehxc(r,r’) or the pair-correlation functio,.(r,r’) nearr.

core problem in the application of DFT is to find increasingly inally, a number of authors have attempted to approximate
accurate and yet computationally tractable approximations tg,e coupling-constant dependenceyf.. The generalized

the unknown functionak,n]. _ _ gradient approximatidh’ (GGA) and extensions therdbf
_The local density approximatidr(LDA) is obtained by fall into the first category, the average density
writing approximatiorl and the weighted density approximatidse-

long to the second category, and the so-called hybrid
scheme¥ are in the last category.

Although better than the LDA in many situations, current
GGA's are not able to improve upon the LDA consistently.

Exdn]= f dr e, ([n],r) (1)
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Moreover, despite much effort spent in optimizing their pa- The state-of-the-art computational approach to the
rameters, they seem unable to achieve the very high accuragyound-state many-body problem of extended systems is the
of ~0.1 eV required to study, e.g., the majority of interestingquantum Monte Carlo method, which comes in two versions.
chemical reactions. Most of the fully nonlocal approachesThe (essentially exact but computationally rather expensive
were formulated before the appearance of the GGA, but thefixed-node diffusion Monte CarldDMC) method and the
proved difficult to implement and unable to match the accudess accurate but computationally more affordable variational
racy of the GGA consistently. The use of nonlocal function-Monte Carlo(VMC) method. In the DMC method, the anal-
als is now computationally practical, however, and this haogy between the imaginary-time many-electron Sdhrger
led to a renewal of interest. equation and a diffusion plus branching equation is used to
The quest for improved approximations Eg [ n] is the  sample the exact ground-state many-body wave function via
subject of much current research. Several directions are be random walk in the configuration space of the electfns.
ing investigated, but progress has been hampered by the ladkhe VMC method is based on an explicitly parameterized
of highly accurate results for the key quantities in densitytrial ground-state wave function. Expectation values are
functional theory,E,., Ny, Uyc, ande,., in systems with evaluated by the Metropolis Monte Carlo technigti@nd
strong density inhomogeneities. Such data are needed to prthe parameters in the trial wave function are varied in order
vide points of reference and for testing new functionals. Théo minimize either the energy expectation value or the fluc-
integrated exchange-correlation energies of such systems ctuations of the local enerdy:'®> The quality of any VMC
be obtained from accurate many-body calculations of thealculation depends on the choice of the trial wave function,
ground state using, e.g., the configuration interactich but previous work has shown that most VMC calculations
method in atoms and molecules or quantum Monte Carldor extended systems recover 85%—-95% of the correlation
methods in extended systems. The exchange-correlation eanergy*®
ergy delivered by an approximate functional is not, however, As discussed above, realization of the adiabatic connec-
the ultimate probe of its quality; the total exchange-tion procedure requires self-consistent computation of both
correlation energy is obtained by integrating the exchange¥ and the unknown potenti®* for a range of values of.
correlation energy density over the system, and a very acciPerforming self-consistent DMC calculations for strongly in-
rate E, could be obtained from an erroneogig because of homogeneous systems is currently beyond reach because of
fortuitous error cancellations. A more stringent test is prothe high computational cost and the difficulty in formulating
vided by a point-by-point comparison between the forms ofy self-consistent DMC approach. Recently, however, we de-
Nyc ande,; assumed in the density functional and the results;iseq a VMC-based methodology for realizing the adiabatic
of high-quality many-body calculations. Unfortunately, connection procedure. Our approach is based on a con-
evaluatingny andey. requires performing the computation- grained variance reduction procedure that providesvhile
ally demanding coupling-constant integration that appears ig;m ianeously optimizing the trial many-body wave func-
the adiabatic connection formulaee below; and few such tion ¥*, followed by Monte Carlo Metropolis integration of

results are available at present. oo . . . . .

X . . . the multi-dimensional integrals involved in the evaluation of

In the adiabatic connection, an exact expression is ob-, N 16

tained forE,. by scaling the electron-electron interaction by Ny ande_xc.
a factorx and varying\ between 0 and 1, while keeping the " this paper, we use our methodology to calculate
electron density fixed at the ground-state dens{s) of the ~ Mxc» Oxc» €xc» @and thex dependence d, for three differ-
fully interacting (\=1) system. The exchange-correlation €Nt €lectron-gas systems with strong, roughly sinusoidal,
energy densityper electron at pointr is then expressed as density modulations in one direction. A brief summary of our
the electrostatic interaction between the reference electron §ndings has already been publishédreliminary results for
r and its A\-averaged exchange-correlation hotgy(r,r') one of our systems were also discussed in Ref. 16, although
= [dx nl(r,r). In many-body wave function approaches these had rather large systematic and finite-size errors. Here
such as quantum Monte Cafl@MC) and CI,n’_ is obtained ~We present new results and analysis, along with a more com-
directly from the ground-state many-body wave functish  Pleté description of our methodology.
of the Hamiltonian associated with.'' However, this The rest of this paper is organized as follows. In Sec. II
Hamiltonian contains aa priori unknown\-dependent po- We outline the adiabatic connection approach used to obtain
tential V* which ensures that the electron density is fixed atthe forms ofn, ande,. relevant in DFT. We also review our
n(r) as\ varies. The presence of this unknown potentialcomputational scheme for realizing the adiabatic connection
renders adiabatic connection calculations computationallyvithin variational quantum Monte Carlo. Section Il de-
more complex and expensive than conventional ground-statcribes the systems studied and the details of the computa-
calculations, since in principle botff* and V* need to be tions carried out. In Sec. IV we present and analyze our
determined self-consistently. In atoms and small moleculegesults for the adiabatic curves, pair-correlation functions,
Cl calculations can be adapted to perform the adiabatic corand exchange-correlation holes. This is followed by an
nection procedure. A few such calculations have been carriednalysis of the performance of the LDA and GGA in describ-
out for two- and four-electron systen’s™® but Cl calcula- ing exchange-correlation energy densities, considering ex-
tions are not feasible in extended systems because of thathange and correlation contributions separately. Section V
unfavorable scaling with the number of electrons. concludes this paper.
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Il. METHODOLOGY is the diagonal part of the two-particle density matrix at cou-
pling constanf\. The exchange-correlation hole at coupling

_ _ _ _ constani\ is defined via
Consider a system dfl interacting electrons in the pres-

ence of an external potential. In the Hohenberg-Kohn-Sham n‘(r,r’)=n(r)n(r’)+n(r)n§c(r,r’) 9
formulation of DFT, the ground-state energy of this system is d h
the minimum value of the total energy functional and, hence,

A. Adiabatic connection

1 . n(rny(r,r’)
E[n]=Ts[n]+f dr Ve(1)n(r)+Ex[n]+E,n]. Exc[n]=§f drf dr W, (10
)
HereT{ n] is the kinetic energy of a fictitious noninteracting
system ofN electrons having the same electron density)

1
ry — A ’
as the interacting systenV,,(r) is the externally applied Nye(r,r")= fo dN ng(r,r’)
one-electron potential, and

where

(11)

is the coupling-constant-averaged exchange-correlation

1 n(rn(r’) hole®
Enln]= Ef dr f dr | () Equation(10) may be written as
is the Hartree(electrostatic energy. (Note that Hartree E _ J' d 12
atomic units are used throughout this paper: charges are mea- xd 1] r ellnln), (12

sured in units of the fundamental chargemasses in units
of the electron mass, distances in Bohr radii, and energies
in hartrees, where 1 hartre Ry<~27.2eV) The 1 N(r)N,(F, )
exchange-correlation energy functioig) [ n] is usually de- e([n],r)= —J drm ——— "~ (13
fined by Eq.(2) and contains all the many-body contribu- 2 Ir—r’|

tions not included in the other terms. is the exchange-correlation energy density derived from the

An exact expressidfi for Ex[n] may be obtained by qiabatic connection procedure. Expressing the energy den-
scaling the electron-electron interaction by a factoand sity as a coupling-constant integral

varying A between 1(the real systefnand O(a noninteract-

ing system, while simultaneously adjusting the external po- 1

tential to keep the electron density equal n¢r). The ec([n].r)= fo d\ ek ([n],r), (14)
exchange-correlation functional is then given by

here

J'l we obtain
Exc[n]: d\ Wic[n]! (4) N N
1 S(r—r,
’ llnlN=(V\|52 > ”_—,”l\m
where 24 itz Ir fJ|
WA n = (W d W)~ Eylnl, (5) 1 j grr MO 15
’ =

andW is the antisymmetric ground state of the Hamiltonian
For future reference, we note thét*=° is the Slater deter-
AM=T+ AVt VA (6)  minant of the exact Kohn-Sham orbitals corresponding to the

. . density n(r). Furthermore, nfgczo is the exactdensity-
associated with coupling constant HereT andV,c are the  functional exchange holen, corresponding to the density-
operators for the kinetic and electron-electron interaction enfynctional exchange energy density=e)-°. The correla-
ergies, andV*= 3, V\(r;) is the one-electron potential tion energy density is defined Br=e .—e,.
needed to hold the electron dengiy(r) associated withw*
equal ton(r) for all values of\ between 0 and 1. B. Quantum Monte Carlo realization

The expectation value from E¢5) may be rewritten as ) ) . )
Given an interacting many-body system with ground-state

A 1 nNr,r’) densityn(r), the main ingredient required to evaluaig,
(\If"|vee|\1f”)=§f dr f dr’ ’ e (7) ande, is the many-body wave functio#* at a range of
Ir—r’| different values of the coupling constaxt Since¥? is an
where eigenfunction ofd?, it follows that the local energy
N N TN\
H*PMR)

M) =(PN X X S(r—r)a(r’ )| (8 ENR)=——— (16)

T i Y(R)
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is equal to a constant, the eigenvalEg, at all pointsR until the variational coefficients reach convergence. Once the
=(ry,r, ...ry) in the 3N-dimensional configuration optimal ¥} has been obtained, we evalualg andej, with
space of electron coordinates. In conventional variationah set of long VMC runs. Finallye,. andn,. are obtained by
Monte Carlo calculation®’ this property is used to find an performing the coupling-constant integration using six

The procedure is to determine the paramefessin the trial

function W}(R,{a}) by minimizing the variancer? of the

local energy: Ill. SYSTEM AND COMPUTATIONAL DETAILS
AMPM(R) 2 A. Systems
2 _ oY A A 2
7 j dR { WA(R) W] (RS (D) All calculations carried out were for spin-unpolarized

electron gases in finite simulation cells subject to periodic

whereE[\If#] is the expectation value &f* with wave func-  boundary conditions. In order to reduce finite-size effects, it
tion 1. is helpful to choose a simulation cell that may be periodi-

The above optimization cannot be applied to the case ofally repeated_to form an .infinite Iatti_ce and yet remains as
coupling-constant integration because the Hamiltonian conclose to spherical as possible. For this reason we choose the
tains the unknown potenti&* = =, VA(r,). In their pioneer- Wigner-Seitz(primitive) cell of a face-centered-cubic lattice,
ing VMC study of bulk silicor?! Hood et al. circumvented ~ Which fulfills this requirement rather well. The exact inter-
this problem by using an LDA approximation faf\(r). acting ground-state density(r) was choser priori, and the
This works well in systems where the LDA effective poten- constrained minimization scheme was then used to find, at
tial is accurate(such as Si but might be problematic in €achA, the gxatﬂ(wﬂhm VMC) wave function'?* and ex-
other situations. Our approaCthas been to introduce a trial ternal potentiaV corrhespc_mdlng to that density. At full cou-
potentialV}(r) and to treaboth W(R) andVA(r) variation-  Pling (\=1), whenV?(r) is the exact external potential of
ally, determining the variational parameters by simulta-(N€ many-electron system with ground-state denaity),
neously minimizing the variance of the local enemgydthe  thiS procedure might be viewed as a VMC realization of
error in the densityn’(r) obtained from¥A(R). This is Hohenberg and Kohn's first theoremgiven the exact
achieved by expanding both#(r) and the target density ground-state density, we find the corresponding ground-state

n(r) in a flexible orthonormal set dfly basis functions and many—quy wave f‘!r.‘c“"” and external potential. .
/. e : The input densitiesn(r) were generated by solving,
defining a modified penalty function,

within the LDA, the Kohn-Sham equations for an external

Ny potential of the formV,cos Q-r), whereV, was fixed at
p2=a2+ WY [ne— n%]z, (18) 2.08? and gg ios the Fesrmi energy corresponding to the av-
s=1 erage densityn”=23/4xr . The advantages of this approach

are that the input electron density is guaranteed to be nonin-
1Feractingu—representable and that the Slater determinant of
single-particle orbitals is by construction the exact many-
body wave function corresponding to=0. The (density-
‘qunctiona) exchange contributions t®,., n,., andE,. ob-
tained from this Slater determinant are therefore also éfact.
The three simulation cells studied had all the same aver-
: o= VT S age electron densityn°=3/(47rr§), where rg=2 a.u.
corresponding exact potenti®*. Hence, minimization of (roughly the same as for alumingmbut slightly different
w2 will in principle result in thesimultaneousietermination numbers of electrondy =64, 78, and 68and hence slightly
of ,‘Pk and V*. In practice, Fhe constrained search is re-jgoren volumes The wave vectoq of the cosine potential
stricted to a subset of potezntlals and many-body wave funcy, gach simulation cell was aligned with the third of the three
t!ons,)\and minimization Of‘h yields an approximate poten- gqymmetry-equivalent primitive reciprocal lattice vectors
tial V* and wave functionl®. B,, B,, and B; of the cells and was set aj=nBg, n
s o e Y e i ) gy a3, TSpRY, T et gt o e
. T -
VA, A set of statistically independent configuratioff; :i l’iv\jie\:e vectors (?r:e 1'12‘3%'1/13'556( - and 2.17%, respec
y, with kg=(37°n")*". The reason for choosing

= 1x N '2'M } (we usedM~100 000) is then sampled from slightly different numbers of electrons for these systems was
|¥7R)|* using the Metropolis algorithm. Next, the Monte 4 ensyre that the highest occupied shell of degenerate LDA
Carlo estimators ofr” and the expansion coefficients orbitals corresponding to each system was always com-
are evaluated, enabling the current value of the penalty fungletely occupied; this is common practice in quantum Monte
tion x? to be obtained. The variational parameter®hand  Carlo calculations for extended systems and helps to mitigate
V} are then modifietf and the estimators recalculatéaer finite-size effects. Ay varies, the structure of the LDA en-
the same set of configurationentil 2 is minimized. For  ergy spectrum changes and it is necessary to change the
each value of\, this procedure is repeated several timesnumber of electrons to satisfy this condition.

whereW is a weighting factor, the magnitude of which de-
termines the emphasis laid on the fixed-density constrain
andng and n#,s are the expansion coefficients ofr) and
n.(r), respectively. The above penalty function reaches it
lower bound of zero if and only ii) ‘If# is the exact many-
body wave functionV, satisfying the fixed-density con-
straint (within the accuracy set bjly) and (i) V} is the
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B. Many-body wave functions and interaction Hamiltonian wave function¥®,” " of a uniform electron gas with coupling
r
; AL y .
We used the following Slater-Jastrow foftior W3 : constant\=1 and density parametef=Ar as follows:
N AN =1
\P#:DTDleXF{_Z uﬁ,a](rlj)*—z X)\(rl) , (19) "*I,rs(rl,rz, ...,I’N)—C \I]ré ()\rl,)\rz, ...,7\I’N),
s i (24)

wherer;; =|r;—r;| andD' andD' are Slater determinants of \areCh is a normalization constant. If we impose this con-
spin-up and spin-down exact 7I§ohn—Sham orbitals corregyition on the Slater-Jastrow wave function of a uniform elec-
sponding to density(r), with ¥3~°=D'D!. The two-body {0 gas(for which, of coursey=0), we obtain

functionsuf‘,i .+, » Which depend on the spirg ando; of the

electrons involved, correlate the motion of pairs of electrons.
For simplicity, it is assumed that’;i o is a function of the

interelectronic distance;; only, as would be the case in a
uniform system. This is less than ideal, but previous Wbrk
has shown that the resulting errors are extremely small i
the systems of interest her@espite the fact that these
systems are strongly inhomogenepubhe one-body func-
tions x*, which are absent in the homogeneous electron ga
are crucial for a satisfactory description of systems with
inhomogeneity*2°

N A)\ —r/FM —r2/L2
up(r)=—(1-e""M)e "I, (25

where A*=)\12At and F*=\"Y4F1. Since theu functions
Hsed in this work are homogeneous, it is reasonable to insist
that they too satisfy this scaling relation. We note that with
the above choice foA* and F*, the \-dependent cusp
é:onditioné4 are automatically satisfied.

" The electron-electron interaction Hamiltonian used in
these simulations has the fotfn

Following Williamsonet al.,?° we set
Hee= 2 omi(ri=r;)
uMN(r)=ud(r)+A(r), (20) 5 b
Wh_ere_uo(r) |s_a_f|xed function d_es_crlbed belqw antyr) is n E f drn(n)| —— —om(ri—n|, (26
optimized variationally. The variational pait is equal to i ri—r|
L Ny B wherev (1) is @ minimum-image-truncated Coulomb inter-
B)\<TWS+'. (Lws—)2+13(Lye—r)? Z aﬁTn(r) a_ction, _equal to /if r is inside_ the Wi_gn_er-Seit; cell of the_
n=0 simulation cell or zero otherwise. This interaction results in

(21)  smaller Coulomb finite-size effects than the standard Ewald
interaction when finite simulation cells and periodic bound-
ary conditions are used to simulate infinitely extended
systems® In most calculations, the ground-state density
n(r) appearing in the above equation has to be obtained
self-consistently(in practice it normally suffices to use the
(22) LDA density. In the present work, however, since the
Lws ground-state density is definedpriori, no self-consistency
loop is required.

if r<Lygor zero otherwise. HerB* and o), are adjustable
parametersT, is the nth Chebyshev polynomial; is an
integer constanin our caseNt=9), and

- 2I’—LWS
r=———0.

In the last two equationd, s is the radius of the sphere
centered on the origin that just touches the Wigner-Seitz cell

of the simulation cell. C. Calculation details
At full coupling (\=1), the fixed part ofu* takes the The electron density is modulated only in tBg direc-
short-ranged Yukawa fortf tion, and hence both the one-body part of the Jastrow factor
AL X" and the effective potential® may be expanded as one-
ué(r)z T(l—e*”Fl)e*rz’Lg, (23) dimensional Fourier series:
M
where Alzllwg is related to the plasma frequen@y’?J XM= mZ:l X} cos(mBs-r), (27)

= J4mn® of a uniform electron gas of density. The cusp
conditiong**® then imply thatF},i’gJ:\/ZAI for parallel "
spins andF;, o= VAT for antiparallel spins. The remaining VA= 3 VA cos(mBs-r). (28)
parametet g is set equal to 0.45,5, ensuring thatig(Ly9 m=1

Is practically zero. The electron density is expanded in a similar wayth the

To determineug for other values ofa, we note that & j,cjysion of them=0 term. The one-dimensional nature of
scaling argumen(se_e Appendix A shows that the wave he inhomogeneity also greatly reduces the number of Fou-
function W, of a uniform electron gas with coupling con- rier coefficients needed to represent the diagonal part of the
stant\ and density parameter, may be obtained from the density matrix:
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NN \ Ki(r—t') aimBar aim/ Bt the combine_d finite—_size and systematic_ errorse’t_n are

n(r,r')= ; Ny mm € I ertel el e, ~ 15% of this quantity. The above errorséy are typically

I less than 5% of the calculated energy density differences
29  e;”"—e, while the above errors ig, are less than 30% of
_ . e:Ph—e.. To further reduce the remaining errors in these
whereK=n;B; +n,B, andn, andn; are integers. Asimilar  gjfferences, we used our finite-size VMC parametrization as
representation is used fog (r,r'). _input for the evaluation 0&-°* ande-P*. This parametri-

N Ateach\, we used a total of 20 variational parameters inzation was also used in the evaluation of the total LDA and
u? and up to 7 coefficients in the plane-wave expansions of5GA (Ref. 4 exchange and correlation energies, a procedure
x" andV*. The cutoffs in the Fourier expansionsrof(r,r’) that we assume mitigates the errors Eﬂ]cDA— E;/CMC and
andn} (r,r’) were increased until a satisfactory description EGGA_ E:(/g\/IC_

of the zero-coupling X=0) exact exchange results, as ob- ¢
tained from the Slater determinant of Kohn-Sham orbitals,
was achieved.

The optimization of the parameters i* and V* was A. Adiabatic curves
performed using 96 000 statistically uncorrelated electron
configurations. This was sufficient to reduce the root-mean
square deviation oh™(r) from n(r) to less than 0.5% of
n(r) for all values of A and all systems. The expectation
values were calculated using®lididependent configurations
of all electrons.

m,m’

IV. RESULTS

The formal properties and coupling-constant dependence
of the integrand\V} [ n] from Eq. (4) have been the subject
of several numerical and analytical studies. Hagtdal?!
evaluated W} [n] for bulk silicon using the variational
Monte Carlo method. Joubert and Srivastawand Colonna
and Savif® calculatedE} [n], the exchange-correlation en-
ergy associated with., for several two- and four-electron
systems and a range of valueshobetween 0 and 2. Gling
There are three sources of error in our calculatigits: and Lewy?® and Savii® developed a perturbation expansion
statistical errors(ii) finite-size errors caused by the fact that of the correlation contribution to this quantity,
we are modeling a supposedly infinite system by a simula- \ N
tion cell containing a finite number of electrons, afiii) Weln]=W,n]—En], (30
Vl\){IC errors, which result from the approximate nature of
v,
With 10 configurations used in sampling all physical

D. Analysis of statistical, finite-size, and systematic errors

around\ =0. Ernzerhot® developed models for the change
in the A dependence oE}. in molecules upon atomization,

. o - aking use of information on the exdges and the general-
quantities, we found statistical errors to be negligible excepl, .4 gradient approximation ... Finally, the limiting be-
in the tails of the exchange-correlation holes and pairy - vior of WA [n] asA—s was investigated in a series of
correlation functions in the low-density regions of our sys- xc

; 31-33 :
tems. By evaluating the exchange hole both directly and b)zggerns gya?:(talltﬂ:rzll Some of the key properties that are
Monte Carlo sampling and assuming that the errors,jfor wh exactly

A #0 were similar to those fox =0, we verified that these WAS9[n]=E,[n]<0 (31)
errors were much smaller that the differences betwegn xe X '
and n)IZEA . nd[n]

The remaining errors are caused by the finite size of the
system and the approximate naturef. The use of the
minimum-image-truncated interaction instead of the standard ) N e o
Ewald interaction greatly reduces finite-size errorsejn :'”:CWXC[”]_ch[n] is finite. (33)
However, the remaining finite-size and systematic errors -
combine such that, even in a homogeneous electron gas

VMC LDA
eXC ;éeXC

ax <0(A=0), (32

" In Fig. 1 we display our VMC results fon (per elec-

. " tron) as a function of. It can be seen thatv} decreases
In order to estimate and mitigate these errors, we per:

o . smoothly and monotonically as increases, in agreement
formed _add|t|onal_ vMC gal_lculatlons of the exchange andwith theoretical predictions and previous numerical calcula-
correlation energies of finite homogeneous electron gas

with N=64 andr.—0.8, 1, 2, 3, 4, 5. 8, and 10. This en Sfons. In order to obtain further insight into the behavior of

7> = this quantity, we fitted our data to the quadratic form
abled us to construct a Perdew-Zunger parametriztion g y q

thg VMC exchange-correlation energy per glectrqn of a finite W>C\,q: aN+b\2, (34)
uniform electron gas wittN=64. By comparing this VMC-

based finite-size parametrization with the exact results for thand the Padérm

homogeneous electron gas, we were able to obtain local den-

sity estimates of the systematic errorsépande.. These Ap BAZ+ 2\

estimates showed that the finite-size errorg,infwhich are We''=—a m (35
the only errors becauss is obtained from the exact Kohn-

Sham orbitalsare no more than 0.5% of this quantity, while which were examined in Ref. 12, and to the Yukawa form
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FIG. 1. The VMC results (circles for Wé in the q
=1.10&?, q=1.556&?, andg=2.17%? systems. The curves cor-
responding to the=1.556 andq=2.17X? systems have been
offset, respectively, by-0.01 and—0.02 a.u. along thg axis. Also
shown are the corresponding quadratiotted line$, Pade(solid
lines), and Yukawa(dashed linesfits.

FIG. 2. The VMC resultgcircles for Wé in the range &\
<1 are compared with the curves obtained from the I1SI-PC model
for the q:l.556<,(3 system in the range 9A<2. The ISI-PC
curves were computed using the vaIuesW;‘f/'0 obtained from the
Pade(solid line) and Yukawa(dashed ling fits to the VMC data
combined with the gradient-corrected PC modelgf andw, .
1—exp(—d\) The ISI-PC curve obtgined without the inclusion of gradient terms
— d|. (36) s also showr(dotted ling.

The resulting fits are displayed in Fig. 1. It can be seen thatPC) approximatior” for Wy, and W,.”, these authors ar-
all three forms provide a good description of our data in theived at a new correlation functiorfdlthat incorporates in-
range GsA<1. We found, however, that the Padad formation on only the weak-couplingh\&=0) and strong-
Yukawa forms produce the smallest root-mean-square errorsoupling (\ =) limits. The PC approximations are

Furthermore, the quadratic form is only reasonable over a

WAY=c

finite range of\, while both the Padand Yukawa forms e wa. ol VN(N[?

yield fits for W}, that satisfy Eqs(32) and (33) and are W™= f dr| An(r) +BW (38)
reasonable for & A <. The rather good fit of our data to a

quadratic indicates that any interpolation scheme that giveand

the correct valudi.e., zerg and derivative ONV;} atA=0

and the correct value at one other point in the range\O PG s, ~IVN(N)?

<1 should work well in our systems. Wie ™ 7= f dr{ Cn(r) +DW : (39

The asymptotic behavior oV}, in the limit \—= has
been a subject of considerable interest. Just as the so-call@ghere A, B, C, and D are constant®? In both the above
hybrid scheméd make use of information aboW}: ' in  expressions, the first term is a local density approximation
the construction of approximations fW(X’f*Sl, it has been and the second a gradient correction.
suggested that information abolty,” may be used to In the ISI model, the derivativaV, ? is obtained using
boost the accuracy of approximate functionals. RecentlyGorling-Levy perturbation theoR} around\=0 and is ex-
Seidl, Perdew, and Kurth proposed the following pressed in terms of the occupied and unoccupied Kohn-Sham
interaction-strength interpolatioSI) model for Wy, : orbitals. Here, however, in order to examine the accuracy of
the PC part of the ISI-PC approximation, we comme;iﬁ,’QO
directly from the above fit§both Padeand Yukawa forms

N IST
Wae ™ =W \/m+z’ (37 were used, resulting in slightly different values Mr)’('co).
The PC approximation was then used to compig and
where W,.”. Figure 2 shows the resulting curves fow's'
xy? X2y? xy? =W,!S'—E, in the q=1.556& system over the range<O\
X=—"", Y=""1  ZzZ=—"—1, <2. Also shown are our VMC resulffor 0s<A<1). It can
2 zt z be seen that the ISI-PC model describes our VMC data with
Y= _ZW;E:O, y=W.", Z:Wgc—ch, great accuracy, a success that is repeated in the other two

systems. The ISI-PC correlation energies are also very accu-
and the primes denote derivatives with respecktocCom-  rate, underestimatingn absolute valuethe VMC correla-
bining the ISI model with the point-charge-plus-continuumtion energies by less than 2%. This is in line with previous
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findings regarding the performance of the ISI model in atomsyy the probability of finding an electron at without this
and two-electron systenis,although we note that a more constraint. The pair-correlation function satisfies several con-
consistent comparison of the ISI-PC model with our VMC ditions, including

results would require evaluatin&j\/xrc'O directly from the
Gorling-Levy expression. The agreement between the ISI-PC Oxc(r,r")=0 (43
model and our results becomes less satisfactory if the gradi-
ent terms in Eq(38) and(39) are omitted, as can be seen in &"
Fig. 2. This indicates that the inclusion of these terms is
important for the success of the ISI-PC model in our sys-
tems.
Before closing this subsection, we make some observatiofthe | DA exchange-correlation hole is given by
regarding the analytic behavior wf; atA=0. In a three-
dimensional homogeneous electron gw{, is known to n;EA(r,r’)=n(r)[gQC(lr’—r|,n(r))—1], (45)
have an infinite slope at=0, but the slope is finite in atoms
and in the infinitely extended two-dimensional electronwhere g (|r'—r|,n) is the pair-correlation function of a
gas® The above fits to our VMC data indicate thaf has a  uniform electron gas with density.
finite slope in our systems as well. These results suggest that To provide a detailed visualization of the behavior of the
the analytical behavior oV} at A=0 is system dependent exchange-correlation hole and pair-correlation function in a
and is possibly determined by the analytical struct@@® a  strongly inhomogeneous system, we produced an animation
function of energy of the single-particle Green’s function showinggy ¢ and n}© around an electron that moves in
associated with the Kohn-Sham electrons. theq=1.10& simulation cell along a line parallel @ (the
direction of maximum inhomogeneijtyrom a density maxi-
B. Pair-correlation functions and exchange-correlation holes ~ Mum to the neighboring density minimum. Since this system
, i . resembles a periodic array of thin metallic slabs separated by
The exchange-correlation hole is a key quantity in DFT\30,um gaps, our results are relevant to understanding the

and provides a simple visualization of the electronic correlayanavior ofn.. and g, at and in the vicinity of metallic
XC XC

tions in inhomogeneous systems. The explicit relation be'surfaces. Figure 3 shows snapshots of the animatiog,far

tweenny, and E,; has also provided the impetus behind to hair_correlation function is displayed as a function ‘of
many of the proposed corrections to the LDA. The averageound a fixed electron at with r’ ranging in a plane par-

den5|ty_ appr%oxmatlo"n (ADA) _a_nd Welght_ed dgnsﬂy allel to g. Also shown are the corresponding LDA pair-
approximation (WDA) make explicit use of this relation to ., oo functiong:>* and a schematic electron density
construct nonlocal approximate density functionals. The fil xc
GGAs most popular in solid-state applicatiéfishave as P o . . o .

their starting point the gradient expansiomgf for a weakl The LDA pair-correlation function is spherically symmet-
inhomo eng(?us electrg(])n as P m Y ric around the electron and its spatial extent is controlled by

9 gas. " the local Fermi wave vectdse(r) ~*=[372n(r)]~ 2. This
The exchange-correlation hole(r,r’) is the average

. : _is in sharp contrast to the behavior observed in our VMC
over the coupling constant of the change in electron dens'tgimulations At the density maximurfiop panel, g"MC is
atr’ caused by the presence of an electron @iy definition, ' y P b » Gxe

this density change excludes thdunction corresponding to strongly anisotropic and greatly elongated in the direction of

the electron at itself). When there is an electron atthere the inhomogeneity. In fac, "~ extends almost twice as far
must be one fewer electron in the rest of the system, an

in the direction of the inhomogeneity as in the perpendicular
hence the exchange-correlation hole satisfies the sum rule

lim  gy.(r.,r")=1. (44)

[r=r"|—o

irection. As the electron moves away from the density
maximum to a point on the slopémiddle pane), gyM°¢
maintains its boxlike shape but becomes asymmetric, bulg-
J dr’ ny(r,r'y=-1. (40 ing out in the direction of increasing electron density. Con-
sequently, the most important contributions to the exchange-
The exchange part of, satisfies the above sum rule as well COrrelation hole at this point come from the high-density
as the negativity conditidf regions on one side of the probe (_alectron. At the df—:nsny
minimum, both the VMC and LDA pair-correlation functions
ny(r,r')=<0. (41) have very large spatial extents. However, unligb?A,
which extends isotropically in all directiong, " is more

The density-functional pair-correlation functigg.(r,r’) is  extended in the direction of the density inhomogeneity than

related ton,, through the following equation: in the perpendicular direction. Given the similarity of our
system to a stack of metallic slabs, we would expect the
Nye(r,r")=n(r")[gyr,r')—1]. (42)  pair-correlation function of an electron sitting in the vacuum

region between two such slabs to show a similar channel-like
In physical terms, the pair-correlation function is the shape. Thus, our results may be relevant to understanding the
coupling-constant average of the probability of finding anorigin of the image potential, which results from long-ranged
electron at point’ provided there is one at poinf divided  correlation outside metal surfaces.
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when the density varies strongly in all directions, they should
be observable in systems such as surfatesyasi-two-
dimensional electron gasé&sand the Airy gas® all of which
have strong one-dimensional density modulations.

We now turn to our results for the exchange-correlation
hole. These were discussed briefly in Ref. 17 but are further
analyzed here in the light of our findings fe{M°. We refer
the reader to Fig. 1 of Ref. 17 for snapshots of the hole in the

g=1.10&? system. At the density maximum, boti},"©
and nt>* are centered on the electron. However, unlike

ni>A, which is always spherically symmetrio) is con-

tracted in the direction of the inhomogeneity. As the electron
moves away from the density maximum to a point on the
slope, the nonlocal nature ol *® becomes manifest. While
niOA is still centered on the electron and is rather diffuse,
nyMC lags behind near the density maximum and is much
more compact. This nonlocality occurs because of the exten-
sion of the pair-correlation function in the direction of in-
creasing density, which encompasses the density maximum.

The nonlocal behavior afiy'® becomes remarkable at the

density minimum. Hera“ has two strong minima, each

centered at a density maximum. The LDA hole, by contrast,
is spread over the whole system in order to satisfy the
exchange-correlation sum rule, E0). Once again, the
nonlocal behavior ohy M is a consequence of the extension
of the pair-correlation function in the direction of the inho-
mogeneity, which now encompasses two density maxima.
The LDA pair-correlation function is also very long ranged
at this point, but since the LDA exchange-correlation hole is
obtained by multiplying the LDA pair-correlation function
by n(r) instead ofn(r’), the LDA hole is not strongly en-
hanced around the density maxima.

Very recently, Rushtoet a3 used our VMC resuls to
investigate the performance of the WDA in three strongly
inhomogeneous systems with density distributions very close
to those studied here. The nonlocality wf.°* at density
minima, the behavior o&\*"#, and the resulting trends in
EWVPA were all found to be very similar to the results de-
scribed above. This indicates that fully nonlocal WDA func-
tionals are capable of providing accurate descriptiom,Qf
in some strongly inhomogeneous systems.

It is also of interest to examine whether semilocal func-

FIG. 3. The VMC and LDA pair-correlation functiong(r,r’)  tionals are able to capture some of the structune,ef Since
for the strongly inhomogeneoug=1.10&2 system. The pair- Semilocal models for the-averaged correlation hole are not
correlation function is plotted for at a density maximurttop), on ~ currently available, we focus here on examining semilocal
the slope(middle), and at a density minimuntottom), with r’  models ofn,. The exchange hole, may be expressed in
ranging in a plane parallel i (the direction of maximum inhomo- terms of the Kohn-Sham orbitals and is thus a functional of
geneity. The electron density is shown schematically, with thethe electron density. By performing a second-order gradient
pointr indicated by a white bullet. expansion of this functiondf Perdew® derived a gradient

expansion approximatiofGEA) nSEArr’—r,n(r),vn(r),

The stretching of the pair-correlation function in the di- ;Vjn(r)) of the exchange hole. To impose the conditions
rection of the inhomogeneity and its asymmetric shape irexpressed in Eq$40) and(41), which are not obeyed by the
regions of high density gradient were also seen in the othe®EA hole, Perdew then applied a real-space cutoff. The re-
two systems we considered. Clearly, such behavior cannot &ult was a “meta-GGA” holen}! ©©* that contained both first
modeled by a spherically symmetric ansatz g¢, as is and second derivatives of the electron density. Subsequently,
attempted in the construction of the ADA and WDA Perdew and Warigderived a GGA model for the exchange

functionals’ Although such effects may be less pronouncedhole by integrating the expression 8f = in terms ofnS&4
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by parts, thus eliminating the second-order derivative terms,
and then cutting off the resulting hole in real space. Thus,
while the GEA hole and meta-GGA hole are directly compa- — o

rable with the exach,, the integration by parts invalidates 3
. . L L.GGA ——0.01+

any direct comparison with,’~". We chose to compare our &
results with a GEA hole that had the unphysical positive tail ©-0.02
removed. The additional real-space cutoff required to obtain 5_003,
the meta-GGA hole was not applied, but this does not affect 2
the qualitative behavior discussed below. 8-004-

Energetically, the most significant points in our systems 3_005
are near the density maxima. In Fig. 4 we have plotted the © ~~ =
exact exchange hole for thg= 1.108(2 system around a
probe electron at a density maximum. At this poin, is
centered at the probe electron, just likt®*, but is con-
tracted in the direction of the inhomogeneity. This behavior
becomes more pronounced in the two other systems we stud-
ied and should also be observable in quasi-two-dimensional o

electron gases. By construction, the LDA is unable to de- 5
scribe any deformation of the hole from a spherically sym- © 0.
metric shape. The truncated GEA hole is nonspherical at this @
point, but is extended rather than contracted in the direction 2-992
of the inhomogeneity. 0 003-
In Fig. 5 we have plotted the exact exchange hole for the =
q=1.108<(,§ system around a probe electron at a density §
minimum. Also shown are the corresponding LDA and trun- % -005-. S
cated GEA holes. At this poiniy, shows a strongly nonlocal 5 e L
behavior similar to that observed previouglyor n,., hav- 0‘\ 5
ing two large nonlocal minima at the adjacent density T == R
maxima. Neithen;°* nor nS&* is capable of capturing this
behavior. The LDA hole is spread over the whole system and
has its minimum value at the position of the probe elctron.
The GEA hole, on the other hand, has a saddle point pre- —
cisely at the position of the probe electron and large spurious 3
positive tails further outwhich have been truncated as ex- 8 001-
plained above We note that the exact exchange hole satis- %-00217
fiesn,(r,r)=—n(r)/2, a condition which is also satisfied by £
the LDA and GEA holes. 2,-003.
The above results show that the meta-GGA functional %_004__
form is unable to describe the structure of the exchange hole g
in strongly inhomogeneous systems such as ours, despite theg —0-05--_
fact that it makes use of both the gradient and the Laplacian 5 ™~ -
of the electron density. We note also that the resulting meta- 0 e =
GGA exchange energy density depends linearly on the La- g Sl
placian of the electron density while our previous restilts
indicated a nonlinear dependenceeyfon this quantity in
our systems.

~0.04-

FIG. 4. The exact, LDA, and truncated GEA exchange holes
n,(r,r+R) for the strongly inhomogeneoug= 1.108(2 system
plotted forr at a density maximum anB ranging in a plane par-

C. Exchange-correlation energy densities allel to g. Distances are in atomic units.

We now turn to our results for exchange-correlation en-
ergy densities. The LDA for the exchange-correlation energy
of a spin-unpolarized system is

Exof{n]= f dr n(r) €(n(r))FSSA(s(r)), (47)

E"DAn=Jdrnr unif(n(r)), 46
o L] (1) & (0(r) (49 whereFSC4(s) is the GGA enhancement factor and
unif

whereeg. (n(r)) is the exchange-correlation energy per par-
ticle of a uniform electron gas with density=n(r). The

GGA incorporates information on the density gradient as
follows:

235108-10
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FIG. 6. The upper graph shoveg?*—eYM® (heavy ling and
eSCA—eyMC (light line) along a direction parallel tq (we call this
y) for the q=2.172<2 system. The lower graph shows the corre-
sponding electron densitflight line) and Laplaciantheavy ling.
Distances are in units of the Fermi wavelength=2/k? corre-

sponding to the average density.
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lated from the coupling-constant integral, E@4). For ex-
ample, as discussed in the previous subsection, the GGA for
exchange introduced by Perdew and co-workgris ob-
tained by cutting off the spurious long-ranged part of the
second-order gradient expansion of an exchange hole derived
from nSFA by performing an integration by parts. The inte-
gration alters the exchange energy density and thus invali-
dates any comparison with the exchange energy density de-
rived directly fromn,

Figure 6 showse:>A([n],r)—e/M<([n],r) for the q
=2.172<CF’ system. Results for the two other systems can be
seen in Fig. 3 of Ref. 17. Here and in the following para-
graphs,e:>#([n],r) is calculated using the exact ground-
state density(r). The results are plotted along a line paral-
lel to g (we call this directiorny). Also shown aren(r) and
V2n(r) plotted along the same line. As mentioned above,
eSS* does not correspond to the, obtained from the
coupling-constant integration. Nevertheless, we consider it
interesting to display the difference”—eYM on the
Ssame plot.

It is apparent that the shape, magnitude, and sign of the
LDA errors ine,. closely follow the shape, magnitude, and
sign of V2n(r). The LDA errors ine, are large and negative

. . 2 . .
is a dimensionless density gradient. By analogy with Eq/n régions wherév“n(r) is large and negativéaround den-

(12), one may define a GGA exchange-correlation energy'y Maxima and large and positive in regions whérén(r)
densitye®®A as Is large and positive. This is a direct consequence of the fact
XC

that the LDA overestimates the depth and underestimates the
eS‘CGA([n],r)= n(r) e;’g"(n(r))FfCGA(s(r)). (49) §ize of the_(spherically averaged:-;xchange-co_rrelation hole
in the regions around the density maxima in our systems,
In general, however, since only the integralegf([n],r) is  while it underestimates the depth and overestimates the size
defined uniquely, the above quantity need not corresponth the tail regions® Similar behavior has been observed pre-
directly to the exchange-correlation energy density calcuviously in the silicon atof? and in moleculeé! In these

ge Iholel(a.u.)

5

exchan
IS

FIG. 5. The exact, LDA, and truncated GEA exchange hole
n,(r,r+R) for the strongly inhomogeneoug= 1.108(2 system
plotted forr at a density minimum ani ranging in a plane parallel
to g. Distances are in atomic units.
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Y/ The results are shown in Fig. 8. For the 1.108(2 system,
LDA,cum; . PP P
FIG. 7. The differencest®—e™C (solid line and €% Ae, is positive everywhere, indicating that the positive

—eYMC (dashed linesare shown along a direction parallel ddor LDA errors in thg tail regltL)Dn/f dominate. Agincreases, how-
(from top to bottory the q=1.108C, q=15562, and q  €Ver the oscillations ite, """ become more pronounced
=2.174? systems. and both positive and negative regions can be seenynear
. . ~ =0. For theq=2.174{ system,Ae-°A ™ fluctuates be-
systems, the negative LDA errors around the density maximgyeen positive and negative values, resulting in an almost

are overcompens_ated _by positive errors in other regions, anghfect cancellation of errors in the integratégd. By con-
the GGA corrections improve the LDA value of the total trast, Ae|C_DA,cum is always negative and does not change

exchange-correlation ener . In our systems, by con- L. : ;
trast, th% LDA errors irExcgg)](gnge sign f?lom positi\);(afor qual!tatlvely as the electron density becomes more rapidly
the g=1.10&? system to negative(for the two other sys- varying.

tems asq increases and the negative contributions Our results for the total exchange energy are shown in
(3] H
which occur wheré?2n(r)<0, become dominart. Table | (results forE,. can be found in Table | of Ref. 17

: : LDA GGA
In the construction of approximate functionals, the ex_along with ihe difierences B, andAE,™". These results

changee, and correlatione, contributions toe,. are often refIEaDcAE CUEL‘e behavior seen above fake > and _
treated separately. Next we investigate the performance c¥€ - the error " the integrated exchange energy is
the LDA for these quantitiesPreliminary results for theg ~ largest in theg=1.10&g system and reduces almost to zero
—1.10& system were discussed in Ref. 16. The treatment the q=2.17X¢ system because of the real-space cancel-
of finite-size and systematic errors has improved greatlyation of errors. The GGA corrections ®;°" are by con-
since then, however, and the calculations reported here are sffuction always negative; they improve the LDA value for
least an order of magnitude more accupalée differences the q=1.108<2 system but worsen it for the two other sys-
Ae=ePA—e/MC andAe.=e P —eMC are shown in Fig. tems.

7. It can be seen thate,<0 everywhere and in all systems

and that the spatial variations in this quantity roughly follow D. Exchange enhancement factors

the variations in the electron density. The exchange energy ) )
differences Ae, show a more complicated structure and If the eIeptron density has a convergent Taylor expansion
roughly follow the variations of the Laplacian of the density 2P0ut & point, knowledge ofn and all its gradients at is
(although not as closely as doAg,.); they are positive in .

the tail regions but change sign and become negative around TABLE 1. Exchange energieghartrees per electrorand the

the density maxima. In thg=1.10&? systemAe, andAe, DA and GGAexchange-energy erotsk, ™ =E, ™ —E,™~ and

GGA_ eGGA_ gVMC H
partially cancel each other, but this cancellation of errorg" Ex Ex B, for the three different values of the wave

becomes less effective as the electron density becomes mo\f%Ctorq'

rapidly varying. In fact, in the two other systems, one can se(a/ko gVMC AELDA AEGCA
« H n H H F X X X

a ‘“conspiracy of errors” occurring around the density

maxima. 1.108 —0.2930 +0.0111 —0.0037
To further investigate the performance of the LDA in 1.556 —0.2756 +0.0046 —0.0161

these systems, we calculated the cumulative LDA errors i 172 —0.2534 +0.0000 —0.0228

the exchange and correlation energy densities:
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sufficient to construct the electron density everywhere within Tree,,

the radius of convergence. If we assume that the radius o ™ i T,
convergence is greater than the length scale of the electroni o
correlations, the exchange-correlation energy density;;
e.([n],r), which is a functional of the form of the electron 2
density within that length scale, may be written as 1‘6

4 T,
e

Exc[n]:f dr exc([nl,r) !

= f dr e,(n(r),Vin(r),viyjn(r), ...), (51)

wheree,. is now a simple functiortnot a functional of the
density and all its derivatives at In the case of the ex-
change energ¥,, this expression may be combinésee
Appendix B with symmetry arguments and the scaling ;o4
property?

Ed ¥’n(y)]=yEdn(r)]  (y>0) (52
to deduce that

FIG. 9. The values of the exact enhancement faEtoare plot-
against the values of the reduced density gradiesmhd the

reduced Laplaciaih for theq=1.108<2 system(plus sign$, theq
=1.556 system(crosses and theq=2.17X? system(stars.

each of our systems and plotted the results against the values
of sand| at those points. The resulting scatter mapFQf
E,= f dr e (r,[n])= f dr ePA(n(r)) Fy(sl,...), against 6,1) is shown in Fig. 9. It can be seen that, for our
(53) systemsF, appears to be a single-valued function efl§.
] ) ) ) o However, any attempt to regail, as a function ofs or |
wheres(r) is the dimensionless density gradient introducedyjgne, equivalent to a projection of Fig. 9 onto either the

in Eq. (48), (s,Fy) or the (,F,) plane, results in a loss of uniqueness
2 (see also Fig. 3 in Ref. 17In particular, if one tries to regard
ven(r) :
S F, as a function of but notl, most values o§ correspond to
I(r)=— (54) : ; ; :
4kg(r)n(r) two very different values of,. This effect is especially

striking nears=0, where the exacE, attains values both
larger (exchange enhancemegmind smallefexchange deen-
gancemer)tthan unity. A projection onto the (F,) plane is

find energetically accurate “projections” @, onto a finite mhore Sl;]ccessfulk:n our systems a;}nd is E;l]b|e to desctzlbe both
space spanned by(r) and a few derivatives af atr. In the the exchange enhancement and the exchange deenhancement

case of the GGA exchange functional, where only the firsf'€ars=0. In fact, for each individual system, there is a
derivative is considered, is approximated as a function of Unique mapping from to position and from there to all
s only. This makes sense when all higher dimensionless ddligher derivatives of the density. For any one system, it is
rivatives of the density are small. In general, however, th¢herefore possible to obtain an exact representation of the
exactF, need not be a single-valued function flone: a  enhancement factor that depends loanly. Unfortunately,
strongly inhomogeneous system may contain many pointthe exactl-dependent enhancement factors obtained for the
with the same value of but different values of,. More-  three different systems are not quite the same, showing that
over, even when a single-valued representation is possibléaere is no “universally” accurate fornjeven in our very

for one system, there is no guarantee that the same represeaestricted sample space

tation will work in other systems. Arecent extension of the GGA is the meta-GGAGGA)

In atoms and a few other cases, the electron density prdunctional, in which the exchange enhancement factor is
file is such that there is a one-to-one mapping fotm | and  written as a function of the reduced density gradient, the
all higher-order gradients: i.d.==1(s). The higher order gra- Laplacian of the density, and the orbital kinetic energy den-
dients can therefore be eliminated and an exact singlesity. Several versions of the MGGA have been suggested, but
variable enhancement factér,(s) defined, which may be here we consider only the form introduced by Perdew, Kurth,
accurately approximated using a GGA form. Such an enZupan, and Blaha(PKZB).® One feature of the PKZB
hancement factor will not in general be transferable to otheMGGA exchange enhancement factor is that it is always
systems, but its existence might explain why the GGA is sareater than or equal to unity, implying that the PKZB
successful in atoms. MGGA exchange energy is always lower than the LDA ex-

A step beyond the GGA would be to projg€f onto the  change energy. This form of the MGGA therefore suffers
space spanned byandl. In order to see how well such a from the same deficiency as the GGA in systems such as
projection might work, we have calculated the exact ex-ours, where the exchange deenhancement effect is important
change enhancement factor at many points onythges of  or dominant.

is a dimensionless Laplacian, aifd, is the so-called ex-
change enhancement factor.
Semilocal approximations may be viewed as attempts t
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V. CONCLUSIONS AND OUTLOOK evaluateF, for many different systems, each representing a
. o ._different class of electron densities. In this way, a complete
We used a variational Monte Carlo realization of the ad_'f"‘"‘scatter map” of F, against 6,1, ...) could be obtained

. . ) : f\Nithin the physically relevant ranges of these paramegters
appearing in Hohenberg-Kohn-Sham  density-functionalrye scatter map could then be used to find an energetically

theory for three strongly inhomogeneous electron gas SySyccyrate fit ofF, as a function of the chosen set of param-
tems. The strong density modulations in these systems wegggq(g.
one dimensional and periodic, with roughly sinusoidal pro- \e note that a recent numerical study of the analytical
files. The simplicity of the density profiles allowed us to strycture of the exchange energy per elecffoperformed
perform a detailed analysis of the effect of inhomogeneity orfor the so-called Matthieu gas, suggests that the Laplacian
the behavior ofn,, g,., ande,. and the performance of coefficient in an expansion of the form
various approximations to these quantities.
The ISI model forW},, combined with the gradient- e (r,[n])=ePA(1+as’+bl+---) (55)
corrected PC approximation for the strong interaction limit,
was found to describe the adiabatic VMC curves with re-is not well defined. This indicates that such an expansion
markable accuracy in our systems. The pair-correlation funcwould not be a suitable starting point for fitting the above-
tions were stretched in the direction of the inhomogeneitynentioned scatter maps Bbf, .
and had a strongly asymmetric shape in regions of high den- Our work has made available the key quantities in
sity gradient. This behavior, together with the strong varia-density-functional theory for a few relatively simple but
tion of n(r) on the scale of the inverse local Fermi wave strongly inhomogeneous systems. We hope that the simplic-
vectorke(r) “t=[372n(r)]~ Y3 resulted in a strikingly non- ity of these systems will encourage the use of our data in the
local behavior ofn,.. Our examination of the second-order design and testing of new functionals. Since we provide re-
GEA showed that it was unable to capture the strongly nonsults for both integrated and local quantities, tests of new
local behavior of the exchange hole around the densitfunctionals can now be made on a point-by-point basis.
minima; it was also unable to describe the energetically im- Our variational Monte Carlo approach based on accurate
portant contraction of the exchange hole in the direction ofnany-electron wave functions provides a computationally
the inhomogeneity at the density maxima. affordable methodology for extracting the main pointwise
The LDA errors ine,. were found to have a dominant and quantities that must be approximated in density-functional
energetically significant component, the magnitude, shapé&alculations of extended systems. To investigate the perfor-
and sign of which are controlled by the semilocal quantitymance of current approximate functionals more fully and to
V2n(r). Because it depends only orand|Vn|, the GGA is guide the construction of bette.r functionals, it would be use-
unable to correct the LDA errors i, resulting from this ~ ful to carry out similar calculations for many other systems,
component adequately and worsens the LDA in two of ourncluding surfaces and the quasi-two-dimensional electron
three systems. When the LDA errors in the exchange an@las. The techniques developed here may also be extended to
correlation contributions te, . were considered separately, it investigate spin-polarized DFf.
was found that the Laplacian component is mainly due to
exchange. The pointwise cancellation b_etween the LDA er- ACKNOWLEDGMENTS
rors ine, and e, was found to be effective for the system
with the slowest density modulations, but became less effec- We thank Stefan Kurth for useful discussions regarding
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where. Current GGA functionals are constructed such that
their exchange enhancement factsC®*(s) is always
greater than or equal to unity. To improve upon the LDA in
systems such as ours, however, it is clear thatmust be We consider a uniform electron gas consisting\Noélec-
allowed to take on values smaller than urigxchange deen- trons in a simulation cell. We require that the corresponding
hancement This cannot be achieved with the limited func- ground-state wave function satisfies periodic boundary con-
tional form FSCA(s). ditions within this cell. For simplicity, we assume that the
Taken as a whole, our results suggest that accurate esimulation cell is a cube with sideand volumeQ=L23. Our
hancement factors are likely to depend on bstand| (at  results, however, are equally valid for other periodic simula-
leas). In order to find a “universal” form, one would have to tion cells. The electron density of this systemnis N/L3,
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corresponding to= (3/4w)*N 3. The electron-electron of N electrons interacting at full\=1) coupling and satis-
interactionV(r) we consider is either the standard periodicfying periodic boundary conditions in a simulation cell of
Ewald interaction or the interaction given by E@6). In  SideAL:

both cases it can be shown théie(r) satisfies the scaling

relation WA, o N =CM Ty, L i) (AB)
w The electron density in the simulation cell of side corre-

Vedr)=aVeg(ar), (A1) sponds tar,=\rg and thus
wherer is any point in the simulation cell of sideand V<5 RPN, ) =CM Y ). (AB)

is the electron-electron interaction associated with a simul
tion cell of sideaL. The many-body wave functioi} for a
si.mulation.cell of sideL coptqiningN electrons interacting \pi\s(rl, o JN)ZCW’QT:(ML UMY, (A7)
with coupling constank satisfies

a\-/\/hen reexpressed in terms gf=r{/\, this becomes

N
1
2 —SVi Y v;e(rij)}\pﬁ(rl, TN APPENDIX B
~ “~
I - Symmetry considerations require that the exchange en-
=E}MWNry, ... 0N, (A2) ergy density at must be a function ofi(r) and its rotation-
_ _ o _ , ally invariant derivatives such d§n(r)| andV2n(r). This
where the pointg;, i=1,... N, all lie in the simulation

X | : : ) ) ensures that all rotations of the entire density about the point
Eiltlzo(:;esslde L. Using the scaling relation witle=N\, this |eave the value 0&,(r) invariant. We thus write

. E,[n]= f dr elPA(N(N)F(n(r),|Vn(r)|,V2n(r), ...)
Wi(ry, ...y

N
1
{ Zl - EViZ‘H\Z 2 Vglé()\rij)

i>]
=C f dr n*3r)F,(n(r),|Vn(r)|,v2n(r), ...),
=EMPNry, ... ), (A3) X X | |
and thus, making the substitutioh=\r;, we obtain: (B1)
where C,=-3(37%)Y47.  Substitution of n.(r)

=v3n(yr) into the above equation yields

N
1
{Z —EV?,+ I§>)l VAS(E) [WR(rLIN, Lo N

=1
x En,1=C, [ dr yn“i(yn
Sy IN) (Ad)
=—Wr(ry/N, ... 1N,
az N XF,(7n(y0). |V (Pn(y0)) VEn(y)), ..,
This shows that¥}(r;/X, ... r{/\) is proportional to the (B2)
ground-state wave functio® (r;, ... ry) of a system or, puttingr’=yr,

Ex[ny]=yCXj dr’ n*3(r")

XF(7°n(r), 7|V (Pn(r DLV 2(%n(r), ). (B3)

Finally, relabelingr’ asr, we obtain
VCXJ dr n*3(r)F,(¥°n(r),»*|Vn(r)|,y°V?n(r), . ..)

Ex[”v]:“YCXf dr () ='yCXf dr n¥(n)F,(n(r),Vn(r),v2n(r), ...)

X Fy(¥3n(r), »*Vn(r)],y°v2n(r), ...). (B5)
(B4)
for any arbitrary scaling factoy>0. This condition is ful-

The homogeneous scaling property Bf, Eq. (52), then filled for an arbitraryv-representable density if and only if
requires that the enhancement factor satisfies the equation
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Fe(¥*n(r),¥Vn(r)|,%°V?n(r), ...) __{1vn(n)] V2n(r)
—F,(n(r),Vn(r),v2n(r), ...). (B6) X n®3r) sy )

Furthermore, when all gradients are zero, we should, ofvhich may also be written in terms of the reduced gradient
course, havd=,=1. Both requirements may be fulfilled si- s(r)=|Vn(r)|/[2ke(r)n(r)], the reduced Laplaciar(r)

(B7)

multaneously by choosing, to be of the following form: =V2n(r)/[4kZ(r)n(r)], and so on.
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