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Quantum Monte Carlo investigations of density functional theory
of the strongly inhomogeneous electron gas
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We use a variational quantum Monte Carlo realization of the adiabatic connection technique to calculate the
most relevant quantities in Hohenberg-Kohn-Sham density functional theory for several strongly inhomoge-
neous electron-gas systems. Results for the coupling-constant dependence of the exchange-correlation energy,
the pair-correlation function, the exchange-correlation hole, and the exchange and correlation energy densities
are presented. Comparisons are made with the interaction strength interpolation~ISI! approximation, the local
density approximation~LDA !, the gradient expansion approximation~GEA!, the generalized gradient approxi-
mation ~GGA!, and the weighted density approximation~WDA!. The coupling-constant dependence of the
exchange-correlation energy is accurately described by an ISI model that incorporates information on the
strong-interaction limit. Unlike either the LDA or GEA, the WDA is successful in describing the nonlocal
structure of the exchange-correlation hole. The LDA errors in the exchange-correlation energy density show a
remarkable correlation with the Laplacian of the density. The GGA worsens the error in the integrated
exchange-correlation energy as the inhomogeneity of the systems increases. This failure is shared by current
meta-GGA functionals and is shown to be caused by the inability of these functionals to describe the LDA
overestimation~in absolute value! of the exchange energy density around density maxima. It is suggested that
this effect could be taken into account by including Laplacian terms in semilocal density functionals.
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I. INTRODUCTION

Given any system of interacting electrons, density fu
tional theory1,2 ~DFT! shows that there exists a function
E@n# of the electron densityn(r ) that is minimized and
equal to the ground-state energy whenn(r ) is equal to the
ground-state density. In the Kohn-Sham formulation,3 these
striking results are turned into a computational scheme
mapping the many-electron system onto a fictitious sys
of noninteracting electrons moving in an effective on
electron potential that produces the densityn(r ). The only
contribution toE@n# that cannot be calculated exactly with
this approach is the exchange-correlation energyExc@n#,
which is known to be a universal and unique functional
n(r ). The exchange-correlation functional provides the li
between the ground-state energy of the real many-elec
system and that of the Kohn-Sham electrons, and its fu
tional derivativevxc(r )5dExc /dn(r ) is part of the effective
potential through which these fictitious electrons move. T
core problem in the application of DFT is to find increasing
accurate and yet computationally tractable approximation
the unknown functionalExc@n#.

The local density approximation3 ~LDA ! is obtained by
writing

Exc@n#5 E dr exc~@n#,r ! ~1!
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and assuming thatexc(@n#,r ), the exchange-correlation en
ergy density at the pointr , is the same as in a homogeneo
electron gas with uniform densityn5n(r ). The LDA has
proved to be far more accurate than expecteda priori and its
computational simplicity has made it possible to obtain
curate estimates for the ground-state energies and struc
properties of many solids. However, applications to surfa
chemistry, quantum chemistry, and computational biology
quire the calculation of total energies to a precision at le
an order of magnitude better than the LDA can provide.

Many attempts have been made to develop approxim
exchange-correlation functionals that are more accurate
the LDA. These efforts fall into three main categories.2 In the
so-called semilocal approaches, one allowsexc(@n#,r ) to de-
pend on the electron density at the pointr , as in the LDA,
plus various gradients of the electron density atr . In the
fully nonlocal approaches, an approximation forexc(@n#,r )
is sought by modeling the exchange-correlation h
nxc(r ,r 8) or the pair-correlation functiongxc(r ,r 8) near r .
Finally, a number of authors have attempted to approxim
the coupling-constant dependence ofExc . The generalized
gradient approximation4–7 ~GGA! and extensions thereof8

fall into the first category, the average dens
approximation9 and the weighted density approximation9 be-
long to the second category, and the so-called hyb
schemes10 are in the last category.

Although better than the LDA in many situations, curre
GGA’s are not able to improve upon the LDA consistent
©2003 The American Physical Society08-1
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Moreover, despite much effort spent in optimizing their p
rameters, they seem unable to achieve the very high accu
of ;0.1 eV required to study, e.g., the majority of interesti
chemical reactions. Most of the fully nonlocal approach
were formulated before the appearance of the GGA, but t
proved difficult to implement and unable to match the ac
racy of the GGA consistently. The use of nonlocal functio
als is now computationally practical, however, and this h
led to a renewal of interest.

The quest for improved approximations toExc@n# is the
subject of much current research. Several directions are
ing investigated, but progress has been hampered by the
of highly accurate results for the key quantities in dens
functional theory,Exc , nxc , gxc , and exc , in systems with
strong density inhomogeneities. Such data are needed to
vide points of reference and for testing new functionals. T
integrated exchange-correlation energies of such systems
be obtained from accurate many-body calculations of
ground state using, e.g., the configuration interaction~CI!
method in atoms and molecules or quantum Monte Ca
methods in extended systems. The exchange-correlation
ergy delivered by an approximate functional is not, howev
the ultimate probe of its quality; the total exchang
correlation energy is obtained by integrating the exchan
correlation energy density over the system, and a very a
rateExc could be obtained from an erroneousexc because of
fortuitous error cancellations. A more stringent test is p
vided by a point-by-point comparison between the forms
nxc andexc assumed in the density functional and the resu
of high-quality many-body calculations. Unfortunate
evaluatingnxc andexc requires performing the computation
ally demanding coupling-constant integration that appear
the adiabatic connection formula~see below!, and few such
results are available at present.

In the adiabatic connection, an exact expression is
tained forExc by scaling the electron-electron interaction
a factorl and varyingl between 0 and 1, while keeping th
electron density fixed at the ground-state densityn(r ) of the
fully interacting (l51) system. The exchange-correlatio
energy density~per electron! at point r is then expressed a
the electrostatic interaction between the reference electro
r and its l-averaged exchange-correlation hole:nxc(r ,r 8)
5 * dl nxc

l (r ,r 8). In many-body wave function approache
such as quantum Monte Carlo~QMC! and CI,nxc

l is obtained
directly from the ground-state many-body wave functionCl

of the Hamiltonian associated withl.11 However, this
Hamiltonian contains ana priori unknownl-dependent po-
tential Vl which ensures that the electron density is fixed
n(r ) as l varies. The presence of this unknown potent
renders adiabatic connection calculations computation
more complex and expensive than conventional ground-s
calculations, since in principle bothCl and Vl need to be
determined self-consistently. In atoms and small molecu
CI calculations can be adapted to perform the adiabatic c
nection procedure. A few such calculations have been car
out for two- and four-electron systems,12,13 but CI calcula-
tions are not feasible in extended systems because of
unfavorable scaling with the number of electrons.
23510
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The state-of-the-art computational approach to
ground-state many-body problem of extended systems is
quantum Monte Carlo method, which comes in two versio
The ~essentially! exact but computationally rather expensi
fixed-node diffusion Monte Carlo~DMC! method and the
less accurate but computationally more affordable variatio
Monte Carlo~VMC! method. In the DMC method, the ana
ogy between the imaginary-time many-electron Schro¨dinger
equation and a diffusion plus branching equation is used
sample the exact ground-state many-body wave function
a random walk in the configuration space of the electron14

The VMC method is based on an explicitly parameteriz
trial ground-state wave function. Expectation values
evaluated by the Metropolis Monte Carlo technique,14 and
the parameters in the trial wave function are varied in or
to minimize either the energy expectation value or the fl
tuations of the local energy.14,15 The quality of any VMC
calculation depends on the choice of the trial wave functi
but previous work has shown that most VMC calculatio
for extended systems recover 85% –95% of the correla
energy.15

As discussed above, realization of the adiabatic conn
tion procedure requires self-consistent computation of b
Cl and the unknown potentialVl for a range of values ofl.
Performing self-consistent DMC calculations for strongly i
homogeneous systems is currently beyond reach becau
the high computational cost and the difficulty in formulatin
a self-consistent DMC approach. Recently, however, we
vised a VMC-based methodology for realizing the adiaba
connection procedure. Our approach is based on a c
strained variance reduction procedure that providesVl while
simultaneously optimizing the trial many-body wave fun
tion Cl, followed by Monte Carlo Metropolis integration o
the multi-dimensional integrals involved in the evaluation
nx

l andexc
l .16

In this paper, we use our methodology to calcula
nxc , gxc , exc , and thel dependence ofExc for three differ-
ent electron-gas systems with strong, roughly sinusoi
density modulations in one direction. A brief summary of o
findings has already been published.17 Preliminary results for
one of our systems were also discussed in Ref. 16, altho
these had rather large systematic and finite-size errors. H
we present new results and analysis, along with a more c
plete description of our methodology.

The rest of this paper is organized as follows. In Sec
we outline the adiabatic connection approach used to ob
the forms ofnxc andexc relevant in DFT. We also review ou
computational scheme for realizing the adiabatic connec
within variational quantum Monte Carlo. Section III de
scribes the systems studied and the details of the comp
tions carried out. In Sec. IV we present and analyze
results for the adiabatic curves, pair-correlation functio
and exchange-correlation holes. This is followed by
analysis of the performance of the LDA and GGA in descr
ing exchange-correlation energy densities, considering
change and correlation contributions separately. Sectio
concludes this paper.
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II. METHODOLOGY

A. Adiabatic connection

Consider a system ofN interacting electrons in the pres
ence of an external potential. In the Hohenberg-Kohn-Sh
formulation of DFT, the ground-state energy of this system
the minimum value of the total energy functional

E@n#5Ts@n#1 E dr Vext~r !n~r !1EH@n#1Exc@n#.

~2!

HereTs@n# is the kinetic energy of a fictitious noninteractin
system ofN electrons having the same electron densityn(r )
as the interacting system,Vext(r ) is the externally applied
one-electron potential, and

EH@n#5
1

2 E dr E dr 8
n~r !n~r 8!

ur2r 8u
~3!

is the Hartree~electrostatic! energy. ~Note that Hartree
atomic units are used throughout this paper: charges are
sured in units of the fundamental chargee, masses in units
of the electron massm, distances in Bohr radii, and energie
in hartrees, where 1 hartree52 Ry,'27.2 eV.! The
exchange-correlation energy functionalExc@n# is usually de-
fined by Eq.~2! and contains all the many-body contrib
tions not included in the other terms.

An exact expression18 for Exc@n# may be obtained by
scaling the electron-electron interaction by a factorl and
varying l between 1~the real system! and 0~a noninteract-
ing system!, while simultaneously adjusting the external p
tential to keep the electron density equal ton(r ). The
exchange-correlation functional is then given by

Exc@n#5 E
0

1

dl Wxc
l @n#, ~4!

where

Wxc
l @n#5^CluV̂eeuCl&2EH@n#, ~5!

andCl is the antisymmetric ground state of the Hamiltoni

Ĥl5T̂1lV̂ee1V̂l ~6!

associated with coupling constantl. HereT̂ andV̂ee are the
operators for the kinetic and electron-electron interaction
ergies, andV̂l5 ( i Vl(r i) is the one-electron potentia
needed to hold the electron densitynl(r ) associated withCl

equal ton(r ) for all values ofl between 0 and 1.
The expectation value from Eq.~5! may be rewritten as

^CluV̂eeuCl&5
1

2 E dr E dr 8
nl~r ,r 8!

ur2r 8u
, ~7!

where

nl~r ,r 8!5^Clu (
i

N

(
j (Þ i )

N

d~r2r i !d~r 82r j !uCl& ~8!
23510
m
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is the diagonal part of the two-particle density matrix at co
pling constantl. The exchange-correlation hole at couplin
constantl is defined via

nl~r ,r 8!5n~r !n~r 8!1n~r !nxc
l ~r ,r 8! ~9!

and, hence,

Exc@n#5
1

2 E dr E dr 8
n~r !nxc~r ,r 8!

ur2r 8u
, ~10!

where

nxc~r ,r 8!5 E
0

1

dl nxc
l ~r ,r 8! ~11!

is the coupling-constant-averaged exchange-correla
hole.18

Equation~10! may be written as

Exc@n#5 E dr exc~@n#,r !, ~12!

where

exc~@n#,r !5
1

2 E dr 8
n~r !nxc~r ,r 8!

ur2r 8u
~13!

is the exchange-correlation energy density derived from
adiabatic connection procedure. Expressing the energy
sity as a coupling-constant integral,

exc~@n#,r !5 E
0

1

dl exc
l ~@n#,r !, ~14!

we obtain

exc
l ~@n#,r !5^Clu

1

2 (
i

N

(
j (Þ i )

N
d~r2r i !

ur2r j u
uCl&

2
1

2 E dr 8
n~r !n~r 8!

ur2r 8u
. ~15!

For future reference, we note thatCl50 is the Slater deter-
minant of the exact Kohn-Sham orbitals corresponding to
density n(r ). Furthermore, nxc

l50 is the exact density-
functional exchange holenx corresponding to the density
functional exchange energy densityex5exc

l50 . The correla-
tion energy density is defined byec5exc2ex .

B. Quantum Monte Carlo realization

Given an interacting many-body system with ground-st
density n(r ), the main ingredient required to evaluatenxc
and exc is the many-body wave functionCl at a range of
different values of the coupling constantl. SinceCl is an
eigenfunction ofĤl, it follows that the local energy

EL
l~R!5

ĤlCl~R!

Cl~R!
~16!
8-3
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is equal to a constant, the eigenvalueEl, at all pointsR
5(r1 ,r2 , . . . ,rN) in the 3N-dimensional configuration
space of electron coordinates. In conventional variatio
Monte Carlo calculations,15 this property is used to find a
overall fit to Cl using a variance-reduction technique.14,19,20

The procedure is to determine the parameters$a% in the trial
function CT

l(R,$a%) by minimizing the variances2 of the
local energy:

s25 E dR F ĤlCT
l~R!

CT
l~R!

2E@CT
l#G 2

uCT
l~R!u2, ~17!

whereE@CT
l# is the expectation value ofĤl with wave func-

tion CT
l .

The above optimization cannot be applied to the case
coupling-constant integration because the Hamiltonian c
tains the unknown potentialV̂l5 ( i Vl(r i). In their pioneer-
ing VMC study of bulk silicon,21 Hood et al. circumvented
this problem by using an LDA approximation forVl(r ).
This works well in systems where the LDA effective pote
tial is accurate~such as Si!, but might be problematic in
other situations. Our approach16 has been to introduce a tria
potentialVT

l(r ) and to treatbothCT
l(R) andVT

l(r ) variation-
ally, determining the variational parameters by simul
neously minimizing the variance of the local energyand the
error in the densitynT

l(r ) obtained fromCT
l(R). This is

achieved by expanding bothnT
l(r ) and the target density

n(r ) in a flexible orthonormal set ofNd basis functions and
defining a modified penalty function,

m25s21W(
s51

Nd

@ns2nT,s
l #2, ~18!

whereW is a weighting factor, the magnitude of which d
termines the emphasis laid on the fixed-density constra
and ns and nT,s

l are the expansion coefficients ofn(r ) and
nT(r ), respectively. The above penalty function reaches
lower bound of zero if and only if~i! CT

l is the exact many-
body wave functionCl satisfying the fixed-density con
straint ~within the accuracy set byNd) and ~ii ! VT

l is the
corresponding exact potentialVl. Hence, minimization of
m2 will in principle result in thesimultaneousdetermination
of Cl and Vl. In practice, the constrained search is
stricted to a subset of potentials and many-body wave fu
tions, and minimization ofm2 yields an approximate poten
tial Vl and wave functionCl.

Our numerical implementation of the above sche
works as follows. We start with initial guesses forCT

l and
VT

l . A set of statistically independent configurations$Ri : i
51, . . . ,M % ~we usedM;100 000) is then sampled from
uCT

lR)u2 using the Metropolis algorithm. Next, the Mon
Carlo estimators ofs2 and the expansion coefficientsnT,s

l

are evaluated, enabling the current value of the penalty fu
tion m2 to be obtained. The variational parameters inCT

l and
VT

l are then modified22 and the estimators recalculated~over
the same set of configurations! until m2 is minimized. For
each value ofl, this procedure is repeated several tim
23510
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until the variational coefficients reach convergence. Once
optimalCT

l has been obtained, we evaluatenxc
l andexc

l with
a set of long VMC runs. Finally,exc andnxc are obtained by
performing the coupling-constant integration using s
equally spaced values ofl between 0 and 1 inclusive.23

III. SYSTEM AND COMPUTATIONAL DETAILS

A. Systems

All calculations carried out were for spin-unpolarize
electron gases in finite simulation cells subject to perio
boundary conditions. In order to reduce finite-size effects
is helpful to choose a simulation cell that may be perio
cally repeated to form an infinite lattice and yet remains
close to spherical as possible. For this reason we choose
Wigner-Seitz~primitive! cell of a face-centered-cubic lattice
which fulfills this requirement rather well. The exact inte
acting ground-state densityn(r ) was chosena priori, and the
constrained minimization scheme was then used to find
eachl, the exact~within VMC! wave functionCl and ex-
ternal potentialVl corresponding to that density. At full cou
pling (l51), whenVl(r ) is the exact external potential o
the many-electron system with ground-state densityn(r ),
this procedure might be viewed as a VMC realization
Hohenberg and Kohn’s first theorem:1 given the exact
ground-state density, we find the corresponding ground-s
many-body wave function and external potential.

The input densitiesn(r ) were generated by solving
within the LDA, the Kohn-Sham equations for an extern
potential of the formVq cos (q•r ), whereVq was fixed at
2.08eF

0 andeF
0 is the Fermi energy corresponding to the a

erage densityn053/4pr s
3 . The advantages of this approac

are that the input electron density is guaranteed to be no
teractingv-representable and that the Slater determinan
single-particle orbitals is by construction the exact man
body wave function corresponding tol50. The ~density-
functional! exchange contributions toexc , nxc , andExc ob-
tained from this Slater determinant are therefore also exa16

The three simulation cells studied had all the same av
age electron densityn053/(4pr s

3), where r s52 a.u.
~roughly the same as for aluminum!, but slightly different
numbers of electrons:N564, 78, and 68~and hence slightly
different volumes!. The wave vectorq of the cosine potentia
in each simulation cell was aligned with the third of the thr
symmetry-equivalent primitive reciprocal lattice vecto
B1 , B2, and B3 of the cells and was set atq5nB3 , n
52,3,4, respectively. The resulting magnitudes of the
wave vectors are 1.108kF

0 , 1.556kF
0 , and 2.172kF

0 , respec-
tively, with kF

05(3p2n0)1/3. The reason for choosing
slightly different numbers of electrons for these systems w
to ensure that the highest occupied shell of degenerate L
orbitals corresponding to each system was always c
pletely occupied; this is common practice in quantum Mo
Carlo calculations for extended systems and helps to mitig
finite-size effects. Asq varies, the structure of the LDA en
ergy spectrum changes and it is necessary to change
number of electrons to satisfy this condition.
8-4
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B. Many-body wave functions and interaction Hamiltonian

We used the following Slater-Jastrow form15 for CT
l :

CT
l5D↑D↓expF2 (

i . j
us i ,s j

l ~r i j !1 (
i

xl~r i !G , ~19!

wherer i j 5ur i2r j u andD↑ andD↓ are Slater determinants o
spin-up and spin-down exact Kohn-Sham orbitals cor
sponding to densityn(r ), with CT

l505D↑D↓. The two-body
functionsus i ,s j

l , which depend on the spinss i ands j of the

electrons involved, correlate the motion of pairs of electro
For simplicity, it is assumed thatus i ,s j

l is a function of the

interelectronic distancer i j only, as would be the case in
uniform system. This is less than ideal, but previous wor24

has shown that the resulting errors are extremely sma
the systems of interest here~despite the fact that thes
systems are strongly inhomogeneous!. The one-body func-
tionsxl, which are absent in the homogeneous electron
are crucial for a satisfactory description of systems w
inhomogeneity.24,25

Following Williamsonet al.,20 we set

ul~r !5u0
l~r !1 f l~r !, ~20!

whereu0
l(r ) is a fixed function described below andf l(r ) is

optimized variationally. The variational partf l is equal to

BlS LWS

2
1r D ~LWS2r !21r 2~LWS2r !2 (

n50

NT

an
lTn~r !

~21!

if r<LWS or zero otherwise. HereBl andan
l are adjustable

parameters,Tn is the nth Chebyshev polynomial,NT is an
integer constant~in our caseNT59), and

r 5
2r 2LWS

LWS
. ~22!

In the last two equations,LWS is the radius of the spher
centered on the origin that just touches the Wigner-Seitz
of the simulation cell.

At full coupling (l51), the fixed part oful takes the
short-ranged Yukawa form20

u0
1~r !5

A1

r
~12e2r /F1

!e2r 2/L0
2
, ~23!

where A151/vp
0 is related to the plasma frequencyvp

0

5A4pn0 of a uniform electron gas of densityn0. The cusp
conditions14,15 then imply that Fs i ,s j

1 5A2A1 for parallel

spins andFs i ,s j

1 5AA1 for antiparallel spins. The remainin

parameterL0 is set equal to 0.25LWS, ensuring thatu0(LWS)
is practically zero.

To determineu0
l for other values ofl, we note that a

scaling argument~see Appendix A! shows that the wave
function C r s

l of a uniform electron gas with coupling con

stantl and density parameterr s may be obtained from the
23510
-

.

in

s,

ll

wave functionC r
s8

l51
of a uniform electron gas with coupling

constantl51 and density parameterr s85lr s as follows:

C r s

l ~r1 ,r2 , . . . ,rN!5ClC r
s8

l51
~lr1 ,lr2 , . . . ,lrN!,

~24!

whereCl is a normalization constant. If we impose this co
dition on the Slater-Jastrow wave function of a uniform ele
tron gas~for which, of course,x50), we obtain

u0
l~r !5

Al

r
~12e2r /Fl

!e2r 2/L0
2
, ~25!

whereAl5l1/2A1 and Fl5l21/4F1. Since theu functions
used in this work are homogeneous, it is reasonable to in
that they too satisfy this scaling relation. We note that w
the above choice forAl and Fl, the l-dependent cusp
conditions14 are automatically satisfied.

The electron-electron interaction Hamiltonian used
these simulations has the form26

Ĥee5 (
i . j

vMI~r i2r j !

1 (
i

E drn~r !F 1

ur i2r u
2vMI~r i2r !G , ~26!

wherevMI(r ) is a minimum-image-truncated Coulomb inte
action, equal to 1/r if r is inside the Wigner-Seitz cell of the
simulation cell or zero otherwise. This interaction results
smaller Coulomb finite-size effects than the standard Ew
interaction when finite simulation cells and periodic boun
ary conditions are used to simulate infinitely extend
systems.26 In most calculations, the ground-state dens
n(r ) appearing in the above equation has to be obtai
self-consistently~in practice it normally suffices to use th
LDA density!. In the present work, however, since th
ground-state density is defineda priori, no self-consistency
loop is required.

C. Calculation details

The electron density is modulated only in theB3 direc-
tion, and hence both the one-body part of the Jastrow fa
xl and the effective potentialVl may be expanded as one
dimensional Fourier series:

xl~r !5 (
m51

M

xm
l cos~mB3•r !, ~27!

Vl~r !5 (
m51

M

Vm
l cos~mB3•r !. ~28!

The electron density is expanded in a similar way~with the
inclusion of them50 term!. The one-dimensional nature o
the inhomogeneity also greatly reduces the number of F
rier coefficients needed to represent the diagonal part of
density matrix:
8-5
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nl~r ,r 8!5 (
K i

m,m8

nK i ,m,m8
l eiK i•(r2r8) eimB3•r eim8B3•r8,

~29!

whereK i5n1B11n2B2 andn1 andn2 are integers. A similar
representation is used fornxc

l (r ,r 8).
At eachl, we used a total of 20 variational parameters

ul and up to 7 coefficients in the plane-wave expansions
xl andVl. The cutoffs in the Fourier expansions ofnl(r ,r 8)
andnxc

l (r ,r 8) were increased until a satisfactory descripti
of the zero-coupling (l50) exact exchange results, as o
tained from the Slater determinant of Kohn-Sham orbita
was achieved.

The optimization of the parameters inCl and Vl was
performed using 96 000 statistically uncorrelated elect
configurations. This was sufficient to reduce the root-me
square deviation ofnl(r ) from n(r ) to less than 0.5% of
n(r ) for all values ofl and all systems. The expectatio
values were calculated using 106 independent configuration
of all electrons.

D. Analysis of statistical, finite-size, and systematic errors

There are three sources of error in our calculations:~i!
statistical errors,~ii ! finite-size errors caused by the fact th
we are modeling a supposedly infinite system by a simu
tion cell containing a finite number of electrons, and~iii !
VMC errors, which result from the approximate nature
Cl.

With 106 configurations used in sampling all physic
quantities, we found statistical errors to be negligible exc
in the tails of the exchange-correlation holes and p
correlation functions in the low-density regions of our sy
tems. By evaluating the exchange hole both directly and
Monte Carlo sampling and assuming that the errors innxc for
lÞ0 were similar to those forl50, we verified that these
errors were much smaller that the differences betweennxc

andnxc
LDA .

The remaining errors are caused by the finite size of
system and the approximate nature ofCl. The use of the
minimum-image-truncated interaction instead of the stand
Ewald interaction greatly reduces finite-size errors inex .
However, the remaining finite-size and systematic err
combine such that, even in a homogeneous electron
exc

VMC Þexc
LDA .

In order to estimate and mitigate these errors, we p
formed additional VMC calculations of the exchange a
correlation energies of finite homogeneous electron ga
with N564 and r s50.8, 1, 2, 3, 4, 5, 8, and 10. This en
abled us to construct a Perdew-Zunger parametrization27 of
the VMC exchange-correlation energy per electron of a fin
uniform electron gas withN564. By comparing this VMC-
based finite-size parametrization with the exact results for
homogeneous electron gas, we were able to obtain local
sity estimates of the systematic errors inex and ec . These
estimates showed that the finite-size errors inex ~which are
the only errors becauseex is obtained from the exact Kohn
Sham orbitals! are no more than 0.5% of this quantity, whi
23510
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the combined finite-size and systematic errors inec are
; 15% of this quantity. The above errors inex are typically
less than 5% of the calculated energy density differen
ex

LDA2ex while the above errors inec are less than 30% o
ec

LDA2ec . To further reduce the remaining errors in the
differences, we used our finite-size VMC parametrization
input for the evaluation ofec

LDA and ex
LDA . This parametri-

zation was also used in the evaluation of the total LDA a
GGA ~Ref. 4! exchange and correlation energies, a proced
that we assume mitigates the errors inExc

LDA2Exc
VMC and

Exc
GGA2Exc

VMC .

IV. RESULTS

A. Adiabatic curves

The formal properties and coupling-constant depende
of the integrandWxc

l @n# from Eq. ~4! have been the subjec
of several numerical and analytical studies. Hoodet al.21

evaluatedWxc
l @n# for bulk silicon using the variationa

Monte Carlo method. Joubert and Srivastava12 and Colonna
and Savin13 calculatedExc

l @n#, the exchange-correlation en
ergy associated withl, for several two- and four-electron
systems and a range of values ofl between 0 and 2. Go¨rling
and Levy28 and Savin29 developed a perturbation expansio
of the correlation contribution to this quantity,

Wc
l@n#5Wxc

l @n#2Ex@n#, ~30!

aroundl50. Ernzerhof30 developed models for the chang
in the l dependence ofExc

l in molecules upon atomization
making use of information on the exactEx and the general-
ized gradient approximation toExc . Finally, the limiting be-
havior of Wxc

l @n# as l→` was investigated in a series o
papers by Seidlet al.31–33Some of the key properties that a
known exactly are

Wxc
l50@n#5Ex@n#,0, ~31!

dWxc
l @n#

dl
,0~l>0!, ~32!

lim
l→`

Wxc
l @n#5Wxc

` @n# is finite. ~33!

In Fig. 1 we display our VMC results forWc
l ~per elec-

tron! as a function ofl. It can be seen thatWc
l decreases

smoothly and monotonically asl increases, in agreemen
with theoretical predictions and previous numerical calcu
tions. In order to obtain further insight into the behavior
this quantity, we fitted our data to the quadratic form

Wc
l,q5al1bl2, ~34!

and the Pade´ form

Wc
l,p52a

bl212l

~11bl!2
, ~35!

which were examined in Ref. 12, and to the Yukawa form
8-6
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QUANTUM MONTE CARLO INVESTIGATIONS OF . . . PHYSICAL REVIEW B 68, 235108 ~2003!
Wc
l,y5cS 12exp~2dl!

l
2dD . ~36!

The resulting fits are displayed in Fig. 1. It can be seen
all three forms provide a good description of our data in
range 0<l<1. We found, however, that the Pade´ and
Yukawa forms produce the smallest root-mean-square er
Furthermore, the quadratic form is only reasonable ove
finite range ofl, while both the Pade´ and Yukawa forms
yield fits for Wxc

l that satisfy Eqs.~32! and ~33! and are
reasonable for 0<l<`. The rather good fit of our data to
quadratic indicates that any interpolation scheme that g
the correct value~i.e., zero! and derivative ofWc

l at l50
and the correct value at one other point in the range 0,l
<1 should work well in our systems.

The asymptotic behavior ofWxc
l in the limit l→` has

been a subject of considerable interest. Just as the so-c
hybrid schemes10 make use of information aboutWxc

l51 in
the construction of approximations forWxc

0<l<1 , it has been
suggested that information aboutWxc

l→` may be used to
boost the accuracy of approximate functionals. Recen
Seidl, Perdew, and Kurth33 proposed the following
interaction-strength interpolation~ISI! model forWxc

l :

Wxc
l,ISI5Wxc

` 1
X

A11lY1Z
, ~37!

where

X5
xy2

z2
, Y5

x2y2

z4
, Z5

xy2

z3
21,

x522Wxc8
,0 , y5Wxc8

,` , z5Wxc
0 2Wxc

` ,

and the primes denote derivatives with respect tol. Com-
bining the ISI model with the point-charge-plus-continuu

FIG. 1. The VMC results ~circles! for Wc
l in the q

51.108kF
0 , q51.556kF

0 , andq52.172kF
0 systems. The curves cor

responding to theq51.556kF
0 andq52.172KF

0 systems have bee
offset, respectively, by20.01 and20.02 a.u. along they axis. Also
shown are the corresponding quadratic~dotted lines!, Pade´ ~solid
lines!, and Yukawa~dashed lines! fits.
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~PC! approximation32 for Wxc
` and Wxc8

,` , these authors ar
rived at a new correlation functional33 that incorporates in-
formation on only the weak-coupling (l50) and strong-
coupling (l5`) limits. The PC approximations are

Wxc
`,PC5 E drFAn~r !4/31B

u¹n~r !u2

n~r !4/3 G ~38!

and

Wxc8
,`,PC5 E drFCn~r !3/21D

u¹n~r !u2

n~r !7/6 G , ~39!

where A, B, C, and D are constants.32 In both the above
expressions, the first term is a local density approximat
and the second a gradient correction.

In the ISI model, the derivativeWxc
8,0 is obtained using

Görling-Levy perturbation theory28 aroundl50 and is ex-
pressed in terms of the occupied and unoccupied Kohn-S
orbitals. Here, however, in order to examine the accuracy
the PC part of the ISI-PC approximation, we computedWxc8

,0

directly from the above fits~both Pade´ and Yukawa forms
were used, resulting in slightly different values forWxc8

,0).
The PC approximation was then used to computeWxc

` and

Wxc
8,` . Figure 2 shows the resulting curves forWc

l,ISI

5Wxc
l,ISI2Ex in the q51.556kF

0 system over the range 0,l
<2. Also shown are our VMC results~for 0<l<1). It can
be seen that the ISI-PC model describes our VMC data w
great accuracy, a success that is repeated in the other
systems. The ISI-PC correlation energies are also very a
rate, underestimating~in absolute value! the VMC correla-
tion energies by less than 2%. This is in line with previo

FIG. 2. The VMC results~circles! for Wc
l in the range 0<l

<1 are compared with the curves obtained from the ISI-PC mo
for the q51.556kF

0 system in the range 0<l<2. The ISI-PC

curves were computed using the values ofWc
8,0 obtained from the

Padé~solid line! and Yukawa~dashed line! fits to the VMC data

combined with the gradient-corrected PC model forWc
` andWc

8,` .
The ISI-PC curve obtained without the inclusion of gradient ter
is also shown~dotted line!.
8-7
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MAZIAR NEKOVEE, W. M. C. FOULKES, AND R. J. NEEDS PHYSICAL REVIEW B68, 235108 ~2003!
findings regarding the performance of the ISI model in ato
and two-electron systems,33 although we note that a mor
consistent comparison of the ISI-PC model with our VM

results would require evaluatingWxc
8,0 directly from the

Görling-Levy expression. The agreement between the ISI-
model and our results becomes less satisfactory if the gr
ent terms in Eqs.~38! and~39! are omitted, as can be seen
Fig. 2. This indicates that the inclusion of these terms
important for the success of the ISI-PC model in our s
tems.

Before closing this subsection, we make some observa
regarding the analytic behavior ofWc

l at l50. In a three-
dimensional homogeneous electron gas,Wc

l is known to
have an infinite slope atl50, but the slope is finite in atom
and in the infinitely extended two-dimensional electr
gas.33 The above fits to our VMC data indicate thatWc

l has a
finite slope in our systems as well. These results suggest
the analytical behavior ofWc

l at l50 is system dependen
and is possibly determined by the analytical structure~as a
function of energy! of the single-particle Green’s functio
associated with the Kohn-Sham electrons.

B. Pair-correlation functions and exchange-correlation holes

The exchange-correlation hole is a key quantity in D
and provides a simple visualization of the electronic corre
tions in inhomogeneous systems. The explicit relation
tween nxc and Exc has also provided the impetus behin
many of the proposed corrections to the LDA. The avera
density approximation9 ~ADA ! and weighted density
approximation9 ~WDA! make explicit use of this relation to
construct nonlocal approximate density functionals. T
GGA’s most popular in solid-state applications4,5 have as
their starting point the gradient expansion ofnxc for a weakly
inhomogeneous electron gas.

The exchange-correlation holenxc(r ,r 8) is the average
over the coupling constant of the change in electron den
at r 8 caused by the presence of an electron atr ~by definition,
this density change excludes thed function corresponding to
the electron atr itself!. When there is an electron atr there
must be one fewer electron in the rest of the system,
hence the exchange-correlation hole satisfies the sum ru

E dr 8 nxc~r ,r 8!521. ~40!

The exchange part ofnxc satisfies the above sum rule as w
as the negativity condition18

nx~r ,r 8!<0. ~41!

The density-functional pair-correlation functiongxc(r ,r 8) is
related tonxc through the following equation:

nxc~r ,r 8!5n~r 8!@gxc~r ,r 8!21#. ~42!

In physical terms, the pair-correlation function is th
coupling-constant average of the probability of finding
electron at pointr 8 provided there is one at pointr , divided
23510
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by the probability of finding an electron atr 8 without this
constraint. The pair-correlation function satisfies several c
ditions, including

gxc~r ,r 8!>0 ~43!

and

lim
ur2r8u→`

gxc~r ,r 8!51. ~44!

The LDA exchange-correlation hole is given by

nxc
LDA~r ,r 8!5n~r !@gxc

h
„ur 82r u,n~r !…21#, ~45!

where gxc
h (ur 82r u,n) is the pair-correlation function of a

uniform electron gas with densityn.
To provide a detailed visualization of the behavior of t

exchange-correlation hole and pair-correlation function in
strongly inhomogeneous system, we produced an anima
showinggxc

VMC and nxc
VMC around an electron that moves

theq51.108kF
0 simulation cell along a line parallel toq ~the

direction of maximum inhomogeneity! from a density maxi-
mum to the neighboring density minimum. Since this syst
resembles a periodic array of thin metallic slabs separate
vacuum gaps, our results are relevant to understanding
behavior ofnxc and gxc at and in the vicinity of metallic
surfaces. Figure 3 shows snapshots of the animation forgxc .
The pair-correlation function is displayed as a function ofr 8
around a fixed electron atr , with r 8 ranging in a plane par-
allel to q. Also shown are the corresponding LDA pai
correlation functiongxc

LDA and a schematic electron densi
profile.

The LDA pair-correlation function is spherically symme
ric around the electron and its spatial extent is controlled
the local Fermi wave vectorkF(r )215@3p2n(r )#21/3. This
is in sharp contrast to the behavior observed in our VM
simulations. At the density maximum~top panel!, gxc

VMC is
strongly anisotropic and greatly elongated in the direction
the inhomogeneity. In fact,gxc

VMC extends almost twice as fa
in the direction of the inhomogeneity as in the perpendicu
direction. As the electron moves away from the dens
maximum to a point on the slope~middle panel!, gxc

VMC

maintains its boxlike shape but becomes asymmetric, b
ing out in the direction of increasing electron density. Co
sequently, the most important contributions to the exchan
correlation hole at this point come from the high-dens
regions on one side of the probe electron. At the den
minimum, both the VMC and LDA pair-correlation function
have very large spatial extents. However, unlikegxc

LDA ,
which extends isotropically in all directions,gxc

VMC is more
extended in the direction of the density inhomogeneity th
in the perpendicular direction. Given the similarity of o
system to a stack of metallic slabs, we would expect
pair-correlation function of an electron sitting in the vacuu
region between two such slabs to show a similar channel-
shape. Thus, our results may be relevant to understanding
origin of the image potential, which results from long-rang
correlation outside metal surfaces.
8-8
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QUANTUM MONTE CARLO INVESTIGATIONS OF . . . PHYSICAL REVIEW B 68, 235108 ~2003!
The stretching of the pair-correlation function in the d
rection of the inhomogeneity and its asymmetric shape
regions of high density gradient were also seen in the o
two systems we considered. Clearly, such behavior canno
modeled by a spherically symmetric ansatz forgxc , as is
attempted in the construction of the ADA and WD
functionals.9 Although such effects may be less pronounc

FIG. 3. The VMC and LDA pair-correlation functionsgxc(r ,r 8)
for the strongly inhomogeneousq51.108kF

0 system. The pair-
correlation function is plotted forr at a density maximum~top!, on
the slope~middle!, and at a density minimum~bottom!, with r 8
ranging in a plane parallel toq ~the direction of maximum inhomo
geneity!. The electron density is shown schematically, with t
point r indicated by a white bullet.
23510
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when the density varies strongly in all directions, they sho
be observable in systems such as surfaces,34 quasi-two-
dimensional electron gases,35 and the Airy gas,36 all of which
have strong one-dimensional density modulations.

We now turn to our results for the exchange-correlat
hole. These were discussed briefly in Ref. 17 but are furt
analyzed here in the light of our findings forgxc

VMC . We refer
the reader to Fig. 1 of Ref. 17 for snapshots of the hole in
q51.108kF

0 system. At the density maximum, bothnxc
VMC

and nxc
LDA are centered on the electron. However, unli

nxc
LDA , which is always spherically symmetric,nxc

VMC is con-
tracted in the direction of the inhomogeneity. As the electr
moves away from the density maximum to a point on t
slope, the nonlocal nature ofnxc

VMC becomes manifest. While
nxc

LDA is still centered on the electron and is rather diffus
nxc

VMC lags behind near the density maximum and is mu
more compact. This nonlocality occurs because of the ex
sion of the pair-correlation function in the direction of in
creasing density, which encompasses the density maxim
The nonlocal behavior ofnxc

VMC becomes remarkable at th
density minimum. Herenxc

VMC has two strong minima, eac
centered at a density maximum. The LDA hole, by contra
is spread over the whole system in order to satisfy
exchange-correlation sum rule, Eq.~40!. Once again, the
nonlocal behavior ofnxc

VMC is a consequence of the extensio
of the pair-correlation function in the direction of the inh
mogeneity, which now encompasses two density maxi
The LDA pair-correlation function is also very long range
at this point, but since the LDA exchange-correlation hole
obtained by multiplying the LDA pair-correlation functio
by n(r ) instead ofn(r 8), the LDA hole is not strongly en-
hanced around the density maxima.

Very recently, Rushtonet al.37 used our VMC results17 to
investigate the performance of the WDA in three strong
inhomogeneous systems with density distributions very cl
to those studied here. The nonlocality ofnxc

WDA at density
minima, the behavior ofexc

WDA , and the resulting trends in
Exc

WDA , were all found to be very similar to the results d
scribed above. This indicates that fully nonlocal WDA fun
tionals are capable of providing accurate description ofnxc
in some strongly inhomogeneous systems.

It is also of interest to examine whether semilocal fun
tionals are able to capture some of the structure ofnxc . Since
semilocal models for thel-averaged correlation hole are n
currently available, we focus here on examining semilo
models ofnx . The exchange holenx may be expressed in
terms of the Kohn-Sham orbitals and is thus a functiona
the electron density. By performing a second-order grad
expansion of this functional,38 Perdew39 derived a gradient
expansion approximation~GEA! nx

GEA
„r 82r ,n(r ),¹n(r ),

¹i¹jn(r )… of the exchange hole. To impose the conditio
expressed in Eqs.~40! and~41!, which are not obeyed by the
GEA hole, Perdew then applied a real-space cutoff. The
sult was a ‘‘meta-GGA’’ holenx

MGGA that contained both firs
and second derivatives of the electron density. Subseque
Perdew and Wang5 derived a GGA model for the exchang
hole by integrating the expression forEx

GEA in terms ofnx
GEA
8-9
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MAZIAR NEKOVEE, W. M. C. FOULKES, AND R. J. NEEDS PHYSICAL REVIEW B68, 235108 ~2003!
by parts, thus eliminating the second-order derivative ter
and then cutting off the resulting hole in real space. Th
while the GEA hole and meta-GGA hole are directly comp
rable with the exactnx , the integration by parts invalidate
any direct comparison withnx

GGA . We chose to compare ou
results with a GEA hole that had the unphysical positive
removed. The additional real-space cutoff required to ob
the meta-GGA hole was not applied, but this does not af
the qualitative behavior discussed below.

Energetically, the most significant points in our syste
are near the density maxima. In Fig. 4 we have plotted
exact exchange hole for theq51.108kF

0 system around a
probe electron at a density maximum. At this point,nx is
centered at the probe electron, just likenx

LDA , but is con-
tracted in the direction of the inhomogeneity. This behav
becomes more pronounced in the two other systems we s
ied and should also be observable in quasi-two-dimensio
electron gases. By construction, the LDA is unable to
scribe any deformation of the hole from a spherically sy
metric shape. The truncated GEA hole is nonspherical at
point, but is extended rather than contracted in the direc
of the inhomogeneity.

In Fig. 5 we have plotted the exact exchange hole for
q51.108kF

0 system around a probe electron at a dens
minimum. Also shown are the corresponding LDA and tru
cated GEA holes. At this point,nx shows a strongly nonloca
behavior similar to that observed previously17 for nxc , hav-
ing two large nonlocal minima at the adjacent dens
maxima. Neithernx

LDA nor nx
GEA is capable of capturing this

behavior. The LDA hole is spread over the whole system
has its minimum value at the position of the probe elctr
The GEA hole, on the other hand, has a saddle point
cisely at the position of the probe electron and large spuri
positive tails further out~which have been truncated as e
plained above!. We note that the exact exchange hole sa
fiesnx(r ,r )52n(r )/2, a condition which is also satisfied b
the LDA and GEA holes.

The above results show that the meta-GGA functio
form is unable to describe the structure of the exchange
in strongly inhomogeneous systems such as ours, despit
fact that it makes use of both the gradient and the Laplac
of the electron density. We note also that the resulting m
GGA exchange energy density depends linearly on the
placian of the electron density while our previous result17

indicated a nonlinear dependence ofex on this quantity in
our systems.

C. Exchange-correlation energy densities

We now turn to our results for exchange-correlation e
ergy densities. The LDA for the exchange-correlation ene
of a spin-unpolarized system is

Exc
LDA@n#5 E dr n~r ! exc

unif
„n~r !…, ~46!

whereexc
unif

„n(r )… is the exchange-correlation energy per p
ticle of a uniform electron gas with densityn5n(r ). The
GGA incorporates information on the density gradient atr as
follows:
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Exc
GGA@n#5 E dr n~r ! exc

unif
„n~r !…Fxc

GGA
„s~r !…, ~47!

whereFxc
GGA(s) is the GGA enhancement factor and

s~r !5
u¹n~r !u

2kF~r !n~r !
~48!

FIG. 4. The exact, LDA, and truncated GEA exchange ho
nx(r ,r1R) for the strongly inhomogeneousq51.108kF

0 system
plotted for r at a density maximum andR ranging in a plane par-
allel to q. Distances are in atomic units.
8-10
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QUANTUM MONTE CARLO INVESTIGATIONS OF . . . PHYSICAL REVIEW B 68, 235108 ~2003!
is a dimensionless density gradient. By analogy with E
~12!, one may define a GGA exchange-correlation ene
densityexc

GGA as

exc
GGA~@n#,r !5n~r ! exc

unif
„n~r !…Fxc

GGA
„s~r !…. ~49!

In general, however, since only the integral ofexc(@n#,r ) is
defined uniquely, the above quantity need not corresp
directly to the exchange-correlation energy density cal

FIG. 5. The exact, LDA, and truncated GEA exchange ho
nx(r ,r1R) for the strongly inhomogeneousq51.108kF

0 system
plotted forr at a density minimum andR ranging in a plane paralle
to q. Distances are in atomic units.
23510
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lated from the coupling-constant integral, Eq.~14!. For ex-
ample, as discussed in the previous subsection, the GGA
exchange introduced by Perdew and co-workers4,5 is ob-
tained by cutting off the spurious long-ranged part of t
second-order gradient expansion of an exchange hole der
from nx

GEA by performing an integration by parts. The int
gration alters the exchange energy density and thus inv
dates any comparison with the exchange energy density
rived directly fromnx

Figure 6 showsexc
LDA(@n#,r )2exc

VMC(@n#,r ) for the q
52.172kF

0 system. Results for the two other systems can
seen in Fig. 3 of Ref. 17. Here and in the following par
graphs,exc

LDA(@n#,r ) is calculated using the exact groun
state densityn(r ). The results are plotted along a line para
lel to q ~we call this directiony). Also shown aren(r ) and
¹2n(r ) plotted along the same line. As mentioned abo
exc

GGA does not correspond to theexc obtained from the
coupling-constant integration. Nevertheless, we conside
interesting to display the differenceexc

GGA2exc
VMC on the

same plot.
It is apparent that the shape, magnitude, and sign of

LDA errors in exc closely follow the shape, magnitude, an
sign of¹2n(r ). The LDA errors inexc are large and negative
in regions where¹2n(r ) is large and negative~around den-
sity maxima! and large and positive in regions where¹2n(r )
is large and positive. This is a direct consequence of the
that the LDA overestimates the depth and underestimates
size of the~spherically averaged! exchange-correlation hole
in the regions around the density maxima in our syste
while it underestimates the depth and overestimates the
in the tail regions.16 Similar behavior has been observed pr
viously in the silicon atom40 and in molecules.41 In these

s

FIG. 6. The upper graph showsexc
LDA2exc

VMC ~heavy line! and
exc

GGA2exc
VMC ~light line! along a direction parallel toq ~we call this

y) for the q52.172kF
0 system. The lower graph shows the corr

sponding electron density~light line! and Laplacian~heavy line!.
Distances are in units of the Fermi wavelengthlF

052p/kF
0 corre-

sponding to the average density.
8-11
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systems, the negative LDA errors around the density max
are overcompensated by positive errors in other regions,
the GGA corrections improve the LDA value of the tot
exchange-correlation energyExc . In our systems, by con
trast, the LDA errors inExc change sign from positive~for
the q51.108kF

0 system! to negative~for the two other sys-
tems! asq increases and the negative contributions toDexc ,
which occur where¹2n(r ),0, become dominant.17

In the construction of approximate functionals, the e
changeex and correlationec contributions toexc are often
treated separately. Next we investigate the performanc
the LDA for these quantities.~Preliminary results for theq
51.108kF

0 system were discussed in Ref. 16. The treatm
of finite-size and systematic errors has improved gre
since then, however, and the calculations reported here a
least an order of magnitude more accurate.! The differences
Dex5ex

LDA2ex
VMC andDec5ec

LDA2ec
VMC are shown in Fig.

7. It can be seen thatDec<0 everywhere and in all system
and that the spatial variations in this quantity roughly follo
the variations in the electron density. The exchange ene
differencesDex show a more complicated structure a
roughly follow the variations of the Laplacian of the dens
~although not as closely as doesDexc); they are positive in
the tail regions but change sign and become negative aro
the density maxima. In theq51.108kF

0 system,Dex andDec

partially cancel each other, but this cancellation of err
becomes less effective as the electron density becomes
rapidly varying. In fact, in the two other systems, one can
a ‘‘conspiracy of errors’’ occurring around the densi
maxima.

To further investigate the performance of the LDA
these systems, we calculated the cumulative LDA errors
the exchange and correlation energy densities:

FIG. 7. The differencesex
LDA2ex

VMC ~solid lines! and ec
LDA

2ec
VMC ~dashed lines! are shown along a direction parallel toq for

~from top to bottom! the q51.108kF
0 , q51.556kF

0 , and q
52.172kF

0 systems.
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Dex,c
LDA,cum~y!5 E

0

y

dy1 Dex,c
LDA~y1!. ~50!

The results are shown in Fig. 8. For theq51.108kF
0 system,

Dex
LDA,cum is positive everywhere, indicating that the positiv

LDA errors in the tail regions dominate. Asq increases, how-
ever, the oscillations inDex

LDA,cum become more pronounce
and both positive and negative regions can be seen ney
50. For theq52.172kF

0 system,Dex
LDA,cum fluctuates be-

tween positive and negative values, resulting in an alm
perfect cancellation of errors in the integratedEx . By con-
trast, Dec

LDA,cum is always negative and does not chan
qualitatively as the electron density becomes more rap
varying.

Our results for the total exchange energy are shown
Table I ~results forExc can be found in Table I of Ref. 17!,
along with the differencesDEx

LDA andDEx
GGA . These results

reflect the behavior seen above forDex
LDA,cum and

Dec
LDA,cum: the error in the integrated exchange energy

largest in theq51.108kF
0 system and reduces almost to ze

in the q52.172kF
0 system because of the real-space canc

lation of errors. The GGA corrections toEx
LDA are by con-

struction always negative; they improve the LDA value f
the q51.108kF

0 system but worsen it for the two other sy
tems.

D. Exchange enhancement factors

If the electron density has a convergent Taylor expans
about a pointr , knowledge ofn and all its gradients atr is

FIG. 8. The cumulative LDA errors in the exchange~the three
upper curves! and correlation~the three lower curves! energy den-
sities as functions ofy.

TABLE I. Exchange energies~hartrees per electron! and the
LDA and GGA exchange-energy errors,DEx

LDA5Ex
LDA2Ex

VMC and
DEx

GGA5Ex
GGA2Ex

VMC , for the three different values of the wav
vectorq.

q/kF
0 Ex

VMC DEx
LDA DEx

GGA

1.108 20.2930 10.0111 20.0037
1.556 20.2756 10.0046 20.0161
2.172 20.2534 10.0000 20.0228
8-12
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QUANTUM MONTE CARLO INVESTIGATIONS OF . . . PHYSICAL REVIEW B 68, 235108 ~2003!
sufficient to construct the electron density everywhere wit
the radius of convergence. If we assume that the radiu
convergence is greater than the length scale of the electr
correlations, the exchange-correlation energy den
exc(@n#,r ), which is a functional of the form of the electro
density within that length scale, may be written as

Exc@n#5 E dr exc~@n#,r !

5 E dr exc„n~r !,¹in~r !,¹i¹jn~r !, . . . …, ~51!

whereexc is now a simple function~not a functional! of the
density and all its derivatives atr . In the case of the ex
change energyEx , this expression may be combined~see
Appendix B! with symmetry arguments and the scalin
property42

Ex@g3n~gr !#5gEx@n~r !# ~g.0! ~52!

to deduce that

Ex5 E dr ex~r ,@n# !5 E dr ex
LDA

„n~r !… Fx~s,l , . . . !,

~53!

wheres(r ) is the dimensionless density gradient introduc
in Eq. ~48!,

l ~r !5
¹2n~r !

4kF
2~r !n~r !

~54!

is a dimensionless Laplacian, andFx is the so-called ex-
change enhancement factor.

Semilocal approximations may be viewed as attempts
find energetically accurate ‘‘projections’’ ofexc onto a finite
space spanned byn(r ) and a few derivatives ofn at r . In the
case of the GGA exchange functional, where only the fi
derivative is considered,Fx is approximated as a function o
s only. This makes sense when all higher dimensionless
rivatives of the density are small. In general, however,
exactFx need not be a single-valued function ofs alone: a
strongly inhomogeneous system may contain many po
with the same value ofs but different values ofFx . More-
over, even when a single-valued representation is poss
for one system, there is no guarantee that the same repre
tation will work in other systems.

In atoms and a few other cases, the electron density
file is such that there is a one-to-one mapping froms to l and
all higher-order gradients: i.e.,l 5 l (s). The higher order gra-
dients can therefore be eliminated and an exact sin
variable enhancement factorF̃x(s) defined, which may be
accurately approximated using a GGA form. Such an
hancement factor will not in general be transferable to ot
systems, but its existence might explain why the GGA is
successful in atoms.

A step beyond the GGA would be to projectFx onto the
space spanned bys and l. In order to see how well such
projection might work, we have calculated the exact e
change enhancement factor at many points on they axes of
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each of our systems and plotted the results against the va
of s and l at those points. The resulting scatter map ofFx

against (s,l ) is shown in Fig. 9. It can be seen that, for o
systems,Fx appears to be a single-valued function of (s,l ).
However, any attempt to regardFx as a function ofs or l
alone, equivalent to a projection of Fig. 9 onto either t
(s,Fx) or the (l ,Fx) plane, results in a loss of uniquene
~see also Fig. 3 in Ref. 17!. In particular, if one tries to regard
Fx as a function ofs but notl, most values ofs correspond to
two very different values ofFx . This effect is especially
striking nears50, where the exactFx attains values both
larger~exchange enhancement! and smaller~exchange deen
hancement! than unity. A projection onto the (l ,Fx) plane is
more successful in our systems and is able to describe
the exchange enhancement and the exchange deenhanc
near s50. In fact, for each individual system, there is
unique mapping froml to position and from there to al
higher derivatives of the density. For any one system, i
therefore possible to obtain an exact representation of
enhancement factor that depends onl only. Unfortunately,
the exactl-dependent enhancement factors obtained for
three different systems are not quite the same, showing
there is no ‘‘universally’’ accurate form~even in our very
restricted sample space!.

A recent extension of the GGA is the meta-GGA~MGGA!
functional, in which the exchange enhancement factor
written as a function of the reduced density gradient,
Laplacian of the density, and the orbital kinetic energy de
sity. Several versions of the MGGA have been suggested,
here we consider only the form introduced by Perdew, Ku
Zupan, and Blaha~PKZB!.8 One feature of the PKZB
MGGA exchange enhancement factor is that it is alwa
greater than or equal to unity, implying that the PKZ
MGGA exchange energy is always lower than the LDA e
change energy. This form of the MGGA therefore suffe
from the same deficiency as the GGA in systems such
ours, where the exchange deenhancement effect is impo
or dominant.

FIG. 9. The values of the exact enhancement factorFx are plot-
ted against the values of the reduced density gradients and the
reduced Laplacianl for the q51.108kF

0 system~plus signs!, the q
51.556kF

0 system~crosses!, and theq52.172kF
0 system~stars!.
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V. CONCLUSIONS AND OUTLOOK

We used a variational Monte Carlo realization of the ad
batic connection method to investigate the central quant
appearing in Hohenberg-Kohn-Sham density-functio
theory for three strongly inhomogeneous electron gas
tems. The strong density modulations in these systems w
one dimensional and periodic, with roughly sinusoidal p
files. The simplicity of the density profiles allowed us
perform a detailed analysis of the effect of inhomogeneity
the behavior ofnxc , gxc , and exc and the performance o
various approximations to these quantities.

The ISI model for Wxc
l , combined with the gradient

corrected PC approximation for the strong interaction lim
was found to describe the adiabatic VMC curves with
markable accuracy in our systems. The pair-correlation fu
tions were stretched in the direction of the inhomogene
and had a strongly asymmetric shape in regions of high d
sity gradient. This behavior, together with the strong var
tion of n(r ) on the scale of the inverse local Fermi wa
vectorkF(r )215@3p2n(r )#21/3, resulted in a strikingly non-
local behavior ofnxc . Our examination of the second-ord
GEA showed that it was unable to capture the strongly n
local behavior of the exchange hole around the den
minima; it was also unable to describe the energetically
portant contraction of the exchange hole in the direction
the inhomogeneity at the density maxima.

The LDA errors inexc were found to have a dominant an
energetically significant component, the magnitude, sha
and sign of which are controlled by the semilocal quan
¹2n(r ). Because it depends only onn andu¹nu, the GGA is
unable to correct the LDA errors inExc resulting from this
component adequately and worsens the LDA in two of
three systems. When the LDA errors in the exchange
correlation contributions toexc were considered separately,
was found that the Laplacian component is mainly due
exchange. The pointwise cancellation between the LDA
rors in ex and ec was found to be effective for the syste
with the slowest density modulations, but became less ef
tive in the other two systems. In particular, we found a co
spiracy of the LDA errors inex and ec occurring in the
regions around density maxima.

One of the problems with current GGA and meta-GG
functionals is that their improvement upon the LDA is sy
tem dependent. Our investigations have shed new ligh
the reasons behind this inconsistent behavior. In particu
we have seen that the GGA will always fail to describe s
tems in which the LDA overestimation ofexc around density
maxima dominates the underestimation of this quantity e
where. Current GGA functionals are constructed such
their exchange enhancement factorFx

GGA(s) is always
greater than or equal to unity. To improve upon the LDA
systems such as ours, however, it is clear thatFx must be
allowed to take on values smaller than unity~exchange deen
hancement!. This cannot be achieved with the limited fun
tional form Fx

GGA(s).
Taken as a whole, our results suggest that accurate

hancement factors are likely to depend on boths and l ~at
least!. In order to find a ‘‘universal’’ form, one would have t
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evaluateFx for many different systems, each representing
different class of electron densities. In this way, a compl
‘‘scatter map’’ of Fx against (s,l , . . . ) could be obtained
~within the physically relevant ranges of these paramete!.
The scatter map could then be used to find an energetic
accurate fit ofFx as a function of the chosen set of param
eters.

We note that a recent numerical study of the analyti
structure of the exchange energy per electron,43 performed
for the so-called Matthieu gas, suggests that the Laplac
coefficient in an expansion of the form

ex~r ,@n# !5ex
LDA~11as21bl1••• ! ~55!

is not well defined. This indicates that such an expans
would not be a suitable starting point for fitting the abov
mentioned scatter maps ofFx .

Our work has made available the key quantities
density-functional theory for a few relatively simple b
strongly inhomogeneous systems. We hope that the simp
ity of these systems will encourage the use of our data in
design and testing of new functionals. Since we provide
sults for both integrated and local quantities, tests of n
functionals can now be made on a point-by-point basis.

Our variational Monte Carlo approach based on accu
many-electron wave functions provides a computationa
affordable methodology for extracting the main pointwi
quantities that must be approximated in density-functio
calculations of extended systems. To investigate the per
mance of current approximate functionals more fully and
guide the construction of better functionals, it would be u
ful to carry out similar calculations for many other system
including surfaces and the quasi-two-dimensional elect
gas. The techniques developed here may also be extend
investigate spin-polarized DFT.44
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APPENDIX A

We consider a uniform electron gas consisting ofN elec-
trons in a simulation cell. We require that the correspond
ground-state wave function satisfies periodic boundary c
ditions within this cell. For simplicity, we assume that th
simulation cell is a cube with sideL and volumeV5L3. Our
results, however, are equally valid for other periodic simu
tion cells. The electron density of this system isn5N/L3,
8-14
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corresponding tor s5(3/4p)1/3N21/3L. The electron-electron
interactionVee

L (r ) we consider is either the standard period
Ewald interaction or the interaction given by Eq.~26!. In
both cases it can be shown thatVee

L (r ) satisfies the scaling
relation

Vee
L ~r !5aVee

aL~ar !, ~A1!

wherer is any point in the simulation cell of sideL andVee
aL

is the electron-electron interaction associated with a sim
tion cell of sideaL. The many-body wave functionCL

l for a
simulation cell of sideL containingN electrons interacting
with coupling constantl satisfies

F (
i 51

N

2
1

2
¹ i

21l (
i . j

Vee
L ~r i j !GCL

l~r1 , . . . ,rN!

5EL
lCL

l~r1 , . . . ,rN!, ~A2!

where the pointsr i , i 51, . . . ,N, all lie in the simulation
cell of side L. Using the scaling relation witha5l, this
becomes

F (
i 51

N

2
1

2
¹ i

21l2 (
i . j

Vee
lL~lr i j !GCL

l~r1 , . . . ,rN!

5EL
lCL

l~r1 , . . . ,rN!, ~A3!

and thus, making the substitutionr i85lr i , we obtain:

F (
i 51

N

2
1

2
¹ i 8

2
1 (

i . j
Vee

lL~r i j8 !GCL
l~r18/l, . . . ,rN8 /l!

5
EL

l

l2
CL

l~r18/l, . . . ,rN8 /l!. ~A4!

This shows thatCL
l(r18/l, . . . ,rN8 /l) is proportional to the

ground-state wave functionClL
l51(r18 , . . . ,rN8 ) of a system
23510
a-

of N electrons interacting at full (l51) coupling and satis-
fying periodic boundary conditions in a simulation cell
sidelL:

CL
l~r18/l, . . . ,rN8 /l!5ClClL

l51~r18 , . . . ,rN8 !. ~A5!

The electron density in the simulation cell of sidelL corre-
sponds tor s85lr s and thus

C r s

l ~r18/l, . . . ,rN8 /l!5ClClr s

l51~r18 , . . . ,rN8 !. ~A6!

When reexpressed in terms ofr i5r i8/l, this becomes

C r s

l ~r1 , . . . ,rN!5ClClr s

l51~lr1 , . . . ,lrN!. ~A7!

APPENDIX B

Symmetry considerations require that the exchange
ergy density atr must be a function ofn(r ) and its rotation-
ally invariant derivatives such asu¹n(r )u and¹2n(r ). This
ensures that all rotations of the entire density about the p
r leave the value ofexc(r ) invariant. We thus write

Ex@n#5 E dr ex
LDA

„n~r !…Fx„n~r !,u¹n~r !u,¹2n~r !, . . . …

5Cx E dr n4/3~r !Fx„n~r !,u¹n~r !u,¹2n~r !, . . . …,

~B1!

where Cx523(3p2)1/3/4p. Substitution of ng(r )
5g3n(gr ) into the above equation yields

Ex@ng#5Cx E dr g4n4/3~gr !

3Fx~g3n~gr !,u¹„g3n~gr !…u,¹2
„g3n~gr !…, . . . !,

~B2!

or, puttingr 85gr ,
Ex@ng#5gCx E dr 8 n4/3~r 8!

3Fx~g3n~r 8!,gu¹8„g3n~r 8!…u,g2¹82
„g3n~r 8!…, . . . !. ~B3!
if
Finally, relabelingr 8 as r , we obtain

Ex@ng#5gCx E dr n4/3~r !

3Fx„g
3n~r !,g4u¹n~r !u,g5¹2n~r !, . . . ….

~B4!

The homogeneous scaling property ofEx , Eq. ~52!, then
requires that
gCx E dr n4/3~r !Fx„g
3n~r !,g4u¹n~r !u,g5¹2n~r !, . . . …

5gCx E dr n4/3~r !Fx„n~r !,¹n~r !,¹2n~r !, . . . …

~B5!

for any arbitrary scaling factorg.0. This condition is ful-
filled for an arbitraryv-representable density if and only
the enhancement factor satisfies the equation
8-15
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Fx„g
3n~r !,g4u¹n~r !u,g5¹2n~r !, . . . …

5Fx„n~r !,¹n~r !,¹2n~r !, . . . …. ~B6!

Furthermore, when all gradients are zero, we should,
course, haveFx51. Both requirements may be fulfilled s
multaneously by choosingFx to be of the following form:
h
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23510
f

Fx5FxS u¹n~r !u

n4/3~r !
,
¹2n~r !

n5/3~r !
, . . . D , ~B7!

which may also be written in terms of the reduced gradi
s(r )5u¹n(r )u/@2kF(r )n(r )#, the reduced Laplacianl (r )
5¹2n(r )/@4kF

2(r )n(r )#, and so on.
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