
PHYSICAL REVIEW B 68, 235107 ~2003!
Wavelet-basis calculation of Wannier functions

Stephen D. Clow and Bruce R. Johnson
Department of Chemistry and Rice Quantum Institute, MS 600, Rice University, Houston, Texas 77005-1892, USA

~Received 31 July 2003; published 15 December 2003!

Wannier functions for a one-dimensional quantum system with a generic periodic potential are calculated
directly using orthogonal compact support multiwavelets in conjunction with a sparse iterative method. This
allows systematic elimination of error from scales both shorter and longer than the basic period. The converged
values of the Wannier function and the associated energy Fourier components are analyzed, yielding improved
formulas for their behavior in the important regions that are not fully asymptotic.
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I. INTRODUCTION

In systems with periodic potentials, the Bloch-Floqu
wave functions may be expanded in a Fourier series of W
nier functions, each of which is centered around a particu
site.1,2 The Wannier functions possess greater localizat
and can form useful alternative quantum bases for the
scription of, e.g., electrons in insulating crystals,1 crystal
defects,3 surfaces,4 wave propagation in photonic crystals5

and properties of optically trapped Bose-Einste
condensates6,7 ~from which bright matter-wave soliton train
have now been created and observed8!. It has long been
known that Wannier functions for systems with a nonze
gap exhibit exponential decay exp(2huR2R0u) with distance
from their central sites in either one2 or higher9 dimensions.
It is only very recently, however, that He and Vanderbil10

have discovered power-law prefactor corrections to t
simple asymptotic behavior for the Wannier functions, e
ergy Fourier series, and density matrix for a one-dimensio
~1D! model potential. Taraskinet al.11 have since character
ized the density matrix corrections for a tight-binding mod
on simple cubic lattices in 1D, 2D, and 3D. Electronic stru
ture calculations of Wannier functions for realistic crysta
are also of strong current focus,12–16 particularly from the
standpoint of linear scaling methods.17 Analysis of the
asymptotic behavior of the latter results can be complica
by their multidimensional character, by possible limitatio
of the atomic/molecular basis sets, by possible limitatio
from truncation of the number of unit cells included, and,
now know, by expected modifications to simple exponen
falloff in the incompletely asymptotic regime relevant to l
cal numerical calculations. This last aspect is pursued qu
titatively here for the simplest case of a 1D simple ba
using the results of He and Vanderbilt,10 who also point out
the existence of higher-order corrections to the prefact
One can define a fully asymptotic distance regime in wh
all such higher-order corrections are negligible to within
chosen numerical threshold. At shorter distance is an in
mediate regime in which the asymptotic expansion a
mented by higher-order corrections provides a reliable
scription of the Wannier functions. At the shortest distan
~generally one to several unit cells!, the correction terms do
not even exhibit limited convergence, and so numerical co
putations are required. This paper examines the quantita
improvement of the asymptotic expansion obtained in
0163-1829/2003/68~23!/235107~9!/$20.00 68 2351
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intermediate distance regime by explicitly including the ne
leading orders in the prefactor. Going further, analytical f
mulas are derived for the energy Fourier components
Wannier functions that have improved accuracy at interm
diate distances.

The results are judged by numerical calculation of t
Wannier function in a way that can systematically redu
both basis set and truncation error. While one can use
indirect method of Fourier transforming the Bloch functio
~Brillouin zone integration!, direct methods using localize
basis functions to calculate the localized Wannier function
real space were long ago advocated by Kohn18 and undergo
continued development. Wavelet bases possessing orth
nality are of interest in this context, especially since in ma
cases they share the Wannier function motif: neighbor
functions are orthogonal even though they overlap spatia
In fact, the Wannier functionsare particular types of wave-
lets in the limit that the potential vanishes.19 Wavelets with
orthogonality and compact support20 have already formed
the basis for a wide variety of digital applications in sign
and image processing.21 It has been a goal of more rece
investigations to establish that orthogonal compact sup
wavelets can be used with high accuracy in prototypi
quantum problems, e.g., a deep double-well potential,22,23the
particle in a box,24 the hydrogen atom24,25 and the hydrogen
molecular ion.26 ~Other types of wavelets have been utilize
in quantum applications as well.27–29! In the case of Wannier
functions, which satisfy a well-known differential equatio
derived by Parzen30 and Koster,31 an orthogonal wavelet ba
sis provides a representation with matrices of a particu
sparse character. This suggests the use of methods re
upon efficient matrix-times-vector multiplication operation
In the following, an iterative method is developed for whic
the central computational step scales linearly with basis
N. It is expected that this direct numerical procedure w
generalize to more complicated scenarios than the 1D sim
band ~e.g., realistic crystals, entangled bands, multidime
sional optical trapping!, although the latter is the focus of th
present investigation. In this case one can quantify to h
short a distance the asymptotic expansions provide a us
description of the Wannier function and energy compone
From a practical standpoint of postanalysis of numerical c
culations, it is to be hoped that more detailed descriptio
can be developed of the closer regions where Wannier fu
©2003 The American Physical Society07-1



e

e

ns
-
x

d

gr

l
nc

ts

y

p-

the
its,

or
ic
,
by

ier
by

ec-
ed
et,
ys-
es-
s,
atic
ula-
er

ed
h as
iz-
or-

ier

al-
ell-

ther
t.

se a
of
er

all
an
up
n-
now

he

t-
e
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tions are usually calculated and joined to the asymptotic
pansions.

II. WANNIER FUNCTIONS

For a simple energy band of a 1D HamiltonianĤ with a
periodic potential, the Bloch/Floquet eigenfunctionbk(x) is
spread over the entire lattice. For simplicity, it is assum
that the cells have unit spacing. The functionbk(x) may be
expanded in a Fourier series

bk~x!5~2p!21/2 (
n52`

`

eiknw~x2n!, ~1!

with Wannier functions as components,

w~x2n!5~2p!21/2E
2p

p

e2 iknbk~x!dk. ~2!

The functionw(x2n) is centered around siten, decays in
magnitude with increasing distance fromx5n, and is or-
thogonal to those centered around other sitesn8Þn. Simi-
larly, the Bloch eigenvalueEk can be expanded as

Ek5 (
n52`

`

eikn«n , ~3!

«n5~2p!21E
2p

p

e2 iknEkdk. ~4!

As discussed by Parzen30 and Koster,31 the Wannier func-
tions satisfy the differential equation

Ĥw~x!5(
n

«nw~x2n!5(
n

«nD̂nw~x!, ~5!

whereD̂n is a displacement operator corresponding to tra
lation by n unit cells. From the orthonormality of the differ
ent w(x2n), the energy Fourier components can be e
pressed as

«n5E w* ~x!Ĥw~x2n!dx. ~6!

In the limit of strongly bound levels, the«n for nÞ0 are very
small, w(x) is confined to then50 cell, and «0 is an
‘‘atomic’’ eigenvalue. More generally, we may still regar
Eq. ~5! as an eigenvalue equation for«0 , while the other«n
serve as Lagrange multipliers whose values affect the de
of orthogonality between a calculatedw(x) and its translated
copies.

The analysis by Kohn2 for a 1D centrosymmetric crysta
with a periodic potential established that the Wannier fu
tion decays ase2huxu for large uxu, where the value of
the constanth is determined by the location of branch poin
of the Bloch energy in the complexk plane. The energy
components«n correspondingly decay ase2hunu with the
same constanth. He and Vanderbilt10 have now estab-
lished more precise behaviors,w(x);uxu23/4e2huxu and
«n;unu23/2e2hunu, with the prefactors determined b
23510
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the behaviors ofbk(x) and Ek near the branch points. A
periodic Gaussian potentialSnV(x2n) where V(x)
5(V0 /bAp)e2x2/b2

was used as a particular example to re
resent the general case~no analytical solutions are available!.
The present numerical wavelet methods are tested on
same potential, adopting the earlier choices of atomic un
potential parametersV05210, b50.3, and focus on the
lowest-energy band, leading to a decay parameterh
51.288 69.

Calculations of Wannier functions, usually performed f
crystals, frequently start with exponentially localized atom
or bond orbitals as trial functions. As described by Kohn18

these may be orthonormalized among neighboring cells
the methods of des Cloizeaux9 or Löwdin32 while maintain-
ing identical shapes from one site to the next. The Wann
functions are then obtained from the orthonormal basis
variation of the orbital parameters to find a stationary exp
tation value forĤ.3,33 There is usually some error associat
with incompleteness of the atomic or molecular basis s
although this is generally difficult to precisely assess or s
tematically reduce. Further errors may come from the nec
sity of using a finite number of cells in the calculation
although this truncation error is more amenable to system
study. These same issues may apply to the need for calc
tion of Wannier functions for general periodic systems oth
than crystals.7 Systematic studies can be implement
through plane wave methods, although local methods suc
finite elements or wavelets offer the possibility of custom
able resolution. Wavelets offer the additional choice of
thogonal bases~a convenience though not a necessity! and so
an exploration into their use for calculation of a Wann
function is undertaken here.

III. MULTIWAVELET BASIS

A compact support wavelet basis consists of strictly loc
ized functions indexed by location and scale. The most w
known families are those due to Daubechies20 in which all
functions are shifted and scaled duplicates of a single fa
wavelet ~or scaling function! and a single mother wavele
Such families necessarily have skewed shapes20 which intro-
duce an inconvenient left-versus-right bias. We instead u
multiwavelet family derived by Chui and Lian, consisting
symmetric and antisymmetric pairs of father and moth
wavelets orthogonal on the interval@0,3#.34 The scaling func-
tions and their shifted neighbors are shown in Fig. 1,
functions shown being mutually orthogonal and providing
exact expansion basis for piecewise polynomial functions
to quadratic order. While multiwavelet applications to qua
tum mechanics are still rare, some demonstrations have
appeared.24,26,35

The multiscaling functions on different octaves have t
simple unit-normalized forms

f jka~x!52 j /2fa~2 j x2k! ~7!

for integerj andk, with a51 corresponding to the symme
ric functions anda52 to the antisymmetric functions. Th
f jka(x) are nonzero only on the support intervalsk22 j<x
7-2
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WAVELET-BASIS CALCULATION OF WANNIER FUNCTIONS PHYSICAL REVIEW B68, 235107 ~2003!
<(k13)22j. For a single fixedj, the Wannier function may
be approximated as a finite orthonormal expansion

w~x!> (
k5kmin

kmax

(
a51

2

ujkaf jka~x!, ~8!

where j controls the resolution and$kmin ,kmax% control the
range. These are to be determined, respectively, by the
namical variation and effective extent ofw(x), the latter
being correlated with the decay parameterh. One may also
use the equivalent multiresolution basis consisting of coa
scaling functions and the associated mother wavelets acro
number of different scales, although this is not a prima
issue in the current investigation.

The solution of Eq.~5! via this basis requires efficien
methods for the evaluation of matrix elements. For differ
choices ofj, the basis functions are~by construction! related
via two-scale relations34

f jka~x!5221/2 (
k850

3

(
a851

2

ck8aa8f j 11,2k1k8,a8~x!, ~9!

where theck8 are 232 constant matrices. These relatio
may be used in reducing the calculation of matrix eleme
of 2(d/dx)2/2 to the solution of simple linear equations.24,36

In practice, a regularized form of the kinetic energy mat
has been found to offer superior performance,24 in loose
analogy with the use of higher-order formulas in finite d
ference calculations, and is adopted here.

Matrix elements ofxn can be evaluated similarly and the
used to develop numerical quadrature formulas for ma
elements of general potentials, the maximum absolute e
decreasing exponentially with increasing resolutionj.24,37

Using uniformly spaced samples of the potential, the num
of potential evaluations is kept essentially linear in the nu
ber of basis functions, providing high efficiency. Accura
can be controlled by performing the quadrature on fi

FIG. 1. Symmetric and antisymmetric Chui-Lian multiscalin
functions orthogonal on the interval@0,3# ~solid lines! and translated
copies~dashed lines!.
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scalesJ. j and using the two-scale relations in Eq.~9! on
both bra and ket functions in the integrals to provide exp
nentially refined estimates at levelj. The starting levelJ can
be systematically increased until convergence to any p
specified level is obtained. To eliminate any possible iss
of errors in potential matrix elements, these were calcula
once in MATHEMATICA ~Wolfram Research! using extended
precision and stored, all desired matrix elements being c
verged to better than one part in 1018.

Due to the localized nature of the basis, the Hamilton
matrix H takes a symmetric banded form with five subdiag
nals and five superdiagonals when the basis functions
organized in a 1D array...,f jk1 ,f jk2 ,f j ,k11,1,f j ,k11,2,... .
The translation operators on the right-hand side of Eq.~5!
require intercell overlap integrals which are exceedin
simple for the wavelet basis

E f j l b~x!D̂nf jka~x!dx5E f j l b~x!f j ,k12 j n,a~x!dx

5d l ,k12 j ndba . ~10!

Thus the additional terms lead only to multiples ofDn , a unit
off-diagonal matrix separated by 2j 11n from the main diag-
onal. SinceE2k5Ek in the symmetric example under con
sideration, we also have from Eq.~3! that «2n5«n . The
matrix of interest is therefore the symmetric matrix

H̄5H2 (
n.0

nmax

«n~D2n1Dn!, ~11!

for which an efficient matrix-vector multiply algorithm ca
be constructed using the matrixH stored in packed form and
simple shift operations for the extra terms. The lowest eig
value«0 and its associated eigenvector can be sought u
sparse matrix techniques, but only if one has knowledge
the other«n .

IV. ITERATIVE WANNIER FUNCTION CALCULATION

To determine the Lagrange multipliers«n , n.0, simulta-
neously with«0 andw(x), a suitable iterative procedure ha
been developed which allows resolution to be increased
stages. For a fixed initial levelj 0 ~which may be zero!, one
starts with a trial vectoru0 symmetrically localized around
the central cell and with all«n for n.0 set to zero. The step
are then as follows.~i! A vector u15(u01bH̄•u0)/iu0

1bH̄•u0i is calculated withb chosen to minimizeu1
T
•H̄

•u1 . ~ii ! The Löwdin symmetric orthogonalization process32

is iterated starting fromu1 , producing a new symmetric vec
tor u2 orthogonal to its translationsu2,n5Dn•u2 . ~iii ! The
latter vectors are used to calculate improved estimates«n

5u2
T
•H•u2,n according to Eq.~6!. Then u0 is overwritten

with u2 and steps~i!–~iii ! are repeated with the updated«n .
The range of basis functions included is chosen so thatnmax
unit cells are spanned on either side,nmax being determined
according to the falloff found in the calculations. All«n pa-
rameters for the target number of unit cells are determine
one time, each individual cell being treated with a degree
7-3
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S. D. CLOW AND B. R. JOHNSON PHYSICAL REVIEW B68, 235107 ~2003!
resolution determined by the fineness of the basis used. It
be recognized that stepi above is basically a lowest-orde
restarted Lanczos procedure, suggesting possible refinem
of the method to be explored in the future.

Figure 2 demonstrates convergence of the coefficients
ter 10, 20, 30, and 40 iterations usingj 50 and nmax520.
The apparent slight asymmetry is due to the use of the s
ordering ~symmetric before antisymmetric! for basis func-
tions on both left and right. Convergence is rapid and
converged coefficients decay approximately exponentially
magnitude with distance from the central cell. Timings ha
been determined for 50 iteration steps withnmax520, using
MATHEMATICA in 30-digit precision on an 850 MHz linux
machine. The initial resolution was varied over the ran
j 050 – 6 and the corresponding basis sizes were chose
be 8432 j 0 for simplicity of comparison. The CPU times fo
successivej 0 were found to be 35, 68, 139, 279, 581, 122
and 2922 s. Except for the largest bases~which may be af-
fected by, e.g., cache dependency! the basic iteration step
scale linearly with basis size.

With increasing basis size, of course, the calculatedw(x)
and«n converge more slowly. This can be partially compe
sated by starting from low resolution where convergence
rapid and proceeding to higher resolution in steps~similar to
multigrid philosophy!. The two-scale recursions in Eq.~9!
are used to express the levelj basis functions in terms o
those from levelj 11, providing a well-adapted starting vec
tor for the latter and expediting the iteration process. T
scale refinement was carried out toj 56 to ensure conver
gence with respect to intracell detail and tonmax532 to en-
sure elimination of truncation error for all but the most d
tant cells.

In view of the large dynamic range of the Wannier fun
tion, the graphs in Fig. 3 factor the dominant asympto
behavior10 w(x)}x23/4e2hx(x.0) from the numerical re-
sults. It is seen in Fig. 3~a! that this indeed yields a continu
ous sequence of nearly uniform oscillations. The segme

FIG. 2. Convergence of the magnitudes of the Wannier func
coefficients in the Chui-Lianj 50 scaling function basis with num
ber of iteration steps. There are two coefficients per unit cell on
scale.
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on each intervaln<x<n11 ~multiplied by 21 for n even!
are shown overlapped in Fig. 3~b!. These figures are no
sensitive to use of thej 55 Wannier function or to smal
changes in the value ofh.

The values of the«n are given in Table I for bothj 55
and 6 withnmax532 and for j 56 with nmax533. One finds
scale convergence to;10 significant figures forn50. For
n530, scale convergence is to;5 significant figures, but
nmax convergence is only to;4. Comparison of the result
for n531 and 32 demonstrates the general result that the«n
for the highest pair of values ofn are always the most sen
sitive to change ofnmax and incompletely converged. Figur
4 factors out the dominant asymptotic behavioru«nu
}n23/2e2hn, showing that even the energy components
somewhat slow in reaching their asymptotic forms.

From the results of He and Vanderbilt, it is expected th
w(x) and«n possess higher-order subdominant correctio

w~x!5W0~x!x23/4e2hx1W1~x!x25/4e2hx

1W2~x!x27/4e2hx1¯ , ~12!

«n5a0n23/2e2hn1a1n25/2e2hn1¯ , ~13!

in terms of bounded functionsWi(x) and constantsai . Not-
ing the alternation in sign of the«n , least squares fits ex
cluding the first few values were made to the corrected fo

«n'~21!nC~n23/21gn25/2!e2hn, ~14!

with C51.451 17,h51.288 69, andg50.276 22. This value
of h agrees with that of He and Vanderbilt, although the l

n

is

FIG. 3. ~a! Wannier functionw(x) timesx3/2ehx; ~b! overlay of
w(x) times (21)n11x3/2ehx in the various intervalsn<x<n11,
n,30.
7-4
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TABLE I. Convergence of«n as calculated via wavelet iteration with increasing resolution. Number
brackets indicate powers of 10.

n j55, nmax532 j 56, nmax532 j 56, nmax533

0 210.719133737 210.719133742 210.719133742
1 24.964710109@21# 24.964710102@21# 24.964710102@21#

2 4.403635305@22# 4.403635295@22# 4.403635295@22#

3 26.368236336@23# 26.368236315@23# 26.368236315@23#

4 1.117802084@23# 1.117802079@23# 1.117802079@23#

5 22.177573562@24# 22.177573549@24# 22.177573550@24#

6 4.527573596@25# 4.527573558@25# 4.527573562@25#

7 29.842592752@26# 29.842592636@26# 29.842592651@26#

8 2.210171168@26# 2.210171131@26# 2.210171137@26#

9 25.086700132@27# 25.086700003@27# 25.086700029@27#

10 1.193569301@27# 1.193569255@27# 1.193569266@27#

11 22.844680672@28# 22.844680503@28# 22.844680545@28#

12 6.867483317@29# 6.867482690@29# 6.867482856@29#

13 21.675848583@29# 21.675848351@29# 21.675848415@29#

14 4.127086684@210# 4.127085826@210# 4.127086067@210#

15 21.024399810@210# 21.024399496@210# 21.024399586@210#

16 2.560156079@211# 2.560154938@211# 2.560155268@211#

17 26.436805265@212# 26.436801165@212# 26.436802360@212#

18 1.626972535@212# 1.626971076@212# 1.626971504@212#

19 24.131846864@213# 24.131841725@213# 24.131843236@213#

20 1.053779264@213# 1.053777471@213# 1.053777999@213#

21 22.697833770@214# 22.697827573@214# 22.697828999@214#

22 6.930786231@215# 6.930804721@215# 6.930810981@215#

23 21.786175571@215# 21.786168370@215# 21.786170494@215#

24 4.616523541@216# 4.616499312@216# 4.616506460@216#

25 21.196339942@216# 21.196331859@216# 21.196334242@216#

26 3.107791374@217# 3.107764627@217# 3.107772515@217#

27 28.091447128@218# 28.091359357@218# 28.091385461@218#

28 2.111084371@218# 2.111055981@218# 2.111065568@218#

29 25.518497377@219# 25.518415674@219# 25.518502963@219#

30 1.444795380@219# 1.444822518@219# 1.445175000@219#

31 23.762851456@220# 23.766394864@220# 23.790320580@220#

32 6.849229839@221# 7.197616212@221# 9.910638518@221#

33 22.047015812@221#
nt
-
on-
he
te

be
e.

ed

t
FIG. 4. Magnitudes of the«n after factoring out the dominan
asymptotic behavior with and without ann25/2 correction.
23510
digit is slightly dependent on the exact choice of the«n used.
The quality of the latter fit is evident from the near-consta
nature of the«n after factoring of then dependence, as dis
played in Fig. 4. The correction terms are therefore c
cluded to be significant in the quantitative analysis of t
numerical results, particularly in the region of intermedia
n.

V. HIGHER-ORDER CORRECTIONS

The corrections beyond those of leading order can
evaluated by extension of Kohn’s analysis for the 1D cas2

Two fundamental solutionsc1(x,E) and c2(x,E) to the
Schrödinger equation for the periodic potential are defin
by the boundary conditionsc1(0,E)51, c18(0,E)50 and
c2(0,E)50, c28(0,E)51 for general complexE. A central
role is played by the quantitym(E)5c1(1,E), an entire
function of E whose derivativedm/dE vanishes at real val-
7-5
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S. D. CLOW AND B. R. JOHNSON PHYSICAL REVIEW B68, 235107 ~2003!
uesE5Em , m50,1,..., outside the allowed ranges ofE. For
the ground state (m50), we havem0,21 and, forE close
to E0 ,

m~E!5m01a0~E2E0!21b0~E2E0!31g0~E2E0!4

1¯ . ~15!

Inversion of the series yields

E5E06a0
21/2~m2m0!1/22b0a0

22~m2m0!

6
1

8
~5b0

224a0g0!a0
27/2~m2m0!3/21¯ , ~16!

the lower sign being taken here. With the identificatio2

m5cos(k), one has an expression forE as a function ofk
which may be used in the Fourier integral of Eq.~4! to obtain
the «n . It is immediately evident that the constant terms
Eq. ~16! contribute only forn50 and the term linear inm
contributes only forn561. Analogously, if terms in (m
2m0)2 were retained, these would contribute only forunu
<2, etc.

The nonvanishing contributions to«n for higher n come
from the radical terms. These may be evaluated using a
tour deformation in the complexk plane introduced by He
and Vanderbilt. As functions of complexE, m, andk, each of
the radicals has two-sheeted branch points at valuesk05p
6 ih0 ~as well as others!. The distance from the realk axis is
h05cosh21(2m0).0 ~the decay parameterh discussed ear
lier!. Focusing on the upper branch point and introduc
Dk5k2k0 , complex trigonometric identities give

m2m05m0~cosDk21!1 i ~m0
221!1/2sinDk. ~17!

In the limit of small Dk, we find E2E0}(k2k0)1/2 as de-
scribed by Kohn. Deforming to a contourC1 starting atp
1 i` on one Riemann sheet, running around the branch p
k05p1 ih0 , and ending atp1 i` on the other sheet, Fou
rier integrals of (k2k0)n are mapped exactly into produc
of gamma functions and factorsn212n as exhibited in Eq.
~13!.10

This same contour deformation can be used to advan
even if one does not make a smallDk approximation in Eq.
~17!. One finds forn.n that

R
C1

~m2m0!neikndk522eik0nI n~n!, ~18!

I n~n!5sin~pn!E
0

`

@2m0~coshk21!

1~m0
221!1/2sinhk#e2kndk, ~19!

using the change of variablesk2k05 ik. Truncating the ex-
pansion in Eq.~16!, we therefore obtain

«n'
1

p
eik0nFa0

21/2I 1/2~n!1
1

8
~5b0

224a0g0!a0
27/2I 3/2~n!G ,

~20!
23510
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where the prefactoreik0n5(21)ne2h0n contains both the
sign alternation and the exponential decay withn. For n
<n, the integral in Eq.~19! fails to converge, indicating tha
the expansion in Eq.~16! is then an inappropriate means
evaluating«n . All results below apply only ton greater than
the maximum power ofm2m0 retained in the truncation.

Using the fact that

2m06~m0
221!1/25e6h0, ~21!

the integral in Eq.~19! can be evaluated analytically fo
21,n,n in terms of beta and hypergeometric functions38

I n~n!5sin~pn!2nE
0

`FsinhS k

2D sinhS k

2
1h0D Gn

e2kndk

5sin~pn!22neh0nB~n2n,n11! 2F1~n2n,2n,n

11,e22h0!. ~22!

Different regimes of behavior for the«n are contained in this
result. Forh0 not close to zero (m0Þ21) andn@1, the beta
function ;G(n11)n212n and the hypergeometric functio
;(12e22h0)n, leading to the previous result,

I n~n!'sin~pn!~m0
221!n/2G~n11!n212n. ~23!

This is also obtainable by taking coshk→1 and sinhk→k in
Eq. ~19!, recognizing that only small values ofk contribute
to the integration for largen. For smalln and largeh0 , the
hypergeometric function is close to unity, and then depen-
dence of Eq.~22! is dominantly given by the ratioG(n
2n)/n!

In the weak-binding limit, we havem0'21, h0'0 and
e22h0'1, leading to

I n~n!'sin~pn!22neh0nB~n2n,n11!

3
G~n11!G~112n!

G~11n!G~n111n!

'sin~pn!22nB~n2n,2n11!, ~24!

which decays approximately asn22n21. The asymptotic fall-
off of «n is thene2h0nn22, with the n22 behavior~the be-
havior expected for a free particle! dominating for n
,1/h0 .

Moving somewhat away from the weak-binding limit, th
hyperbolic trigonometric functions may be expanded up
quadratic terms in Eq.~19! to obtain another approximat
analytic description of the integrals,

I n~n!'sin~pn!E
0

`

@2m0k21~m0
221!1/2k#exp~2kn!dk

5sin~pn!~2/p!1/2G~n11!

3~2m0!n~u/n!n11/2eunKn11/2~un!. ~25!

The linear term always dominates in the integration ifu
5(m0

221)1/2/um0u@1/n, leading again to terms behaving a
n2n21, n2n22, etc., as may be verified by asymptotics of t
Bessel function. Forn51/2 and lown, one also finds from
7-6
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WAVELET-BASIS CALCULATION OF WANNIER FUNCTIONS PHYSICAL REVIEW B68, 235107 ~2003!
this expression a dominant behaviorn22, although there are
some errors in the coefficients since higher ranges ofk con-
tribute significantly to the integration and the effects of t
truncation inside the integrand are more strongly felt. F
intermediaten, there is a crossover region between the t
behaviors, consistent with the observation by He a
Vanderbilt10 of a crossover region in the Wannier functio
betweenx21 falloff at low x andx23/4e2h0x falloff at largex.
This crossover region was found to move to largerx as the
binding weakened, in agreement with the movement of
«n crossover region to largern asu decreases.

In order to assess the above approximations, the Sc¨-
dinger equation for the fundamental solutionc1(x,E) was
integrated by the Runge-Kutta method fromx50 to x51.
The energyE was varied untilm5c1(1,E) reached its ex-
tremum m0 , leading to the accurate valueh0
51.288 667 130 49.~This value differs slightly from the re
sults of He and Vanderbilt and our own approximate
above, so the extended-precision result was double che
for procedure and convergence.! Numerical differentiation
then yielded for the constants in Eq.~15! the valuesa0
50.063 445 354 69, b050.006 066 649 65, and g0
50.000 253 868 90. Figure 5 shows«̃n /«n where«n is cal-
culated via the iterative wavelet algorithm and«̃n is calcu-
lated under different approximations: the asympto

FIG. 5. Ratios of different approximations«̃n to converged val-
ues of«n .
f
s
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n23/2e2h0n form from Eq.~23!, the analytical formula of Eq.
~22! with and withoutI 3/2, and the Bessel approximation o
Eq. ~25! with and withoutI 3/2. It is clear that inclusion of
I 3/2 dramatically improves the accuracy over all but the lo
est values ofn and that the simple Bessel approximation
only marginally worse than the hypergeometric expressi
The residual errors at lown are expected to arise chiefl
from the limitations of using the truncated asymptotic expa
sion in Eq. ~16! to represent the inverted functionE(m).
Nevertheless, Fig. 5 makes it clear that the above results
higher-order corrections~and no adjustable parameters! pro-
vide significantly improved approximations over the rest
the range ofn.

The integrals above are also useful in description of
Wannier function, although the higher-order corrections
more complicated. The Bloch function as described by Ko
takes the form

b~x,E!5N~E!21/2@x1~x,E!1x2~x,E!#5N~E!21/2x~x,E!,
~26!

x1~x,E!5c2~1,E!c1~x,E!, ~27!

x2~x,E!5~m221!1/2c2~x,E!. ~28!

The normalization constant is an analytic function of co
plex E defined by

N~E!52pE
0

1

@x1~x,E!1x2~x,E!#@x1~x,E!2x2~x,E!#dx

522pc2~1,E!
dm

dE
, ~29!

which vanishes atE5E0 in the forbidden energy region
@The last form differs from that derived by Kohn by a fact
of 1/2 due to the choice of21/2(d/dx)2 rather than
2(d/dx)2 in the Schro¨dinger equation.# The precise behav
ior of the wave function around this branch point depends
the local behaviors of bothN(E) and x(x,E). Exceptional
cases in whichc2(1,E) vanishes lead to compensating b
havior in x(x,E), as discussed in detail by Kohn.

Expanding bothN and x through two orders of nonvan
ishing terms,
b~x,E!>@N8~E0!DE1N9~E0!DE2/2#21/2Fx~x,E0!1
]x

]E
~x,E0!DEG>@2a0

21/2N8~E0!#21/2~m2m0!21/4x~x,E0!

1@2a0
21/2N8~E0!#21/2F b0

2a0
3/21

N9~E0!

4a0
1/2N8~E0!G~m2m0!1/4x~x,E0!

2@2a0
21/2N8~E0!#21/2~m2m0!1/4Fa0

21/2]x

]E
~x,E0!G . ~30!
n

All of the dependence onn in the Fourier transformation o
this expression arises through the integrals over power
m2m0 given above. Knowledge ofx(x,E0) and its energy
of
derivative on the interval 0<x<1 combined with values of
I n(n) for n561/4 therefore allows approximate evaluatio
of w(x) on the intervaln<x<n11. Figure 6 shows the ratio
7-7
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S. D. CLOW AND B. R. JOHNSON PHYSICAL REVIEW B68, 235107 ~2003!
of the asymptoticI n(n) from Eq. ~23! to the exactI n(n)
from Eq. ~22!. The latter form is used in the Wannier fun
tion examples of Fig. 7 forn55 and 10. It is seen that use o
the (m2m0)21/4 term already gives reasonably good agre
ment, but that inclusion of the (m2m0)1/4 term improves
agreement over all regions except right at the peaks.
agreement in the mid-n ranges of Fig. 7 is quite reasonab
and, again, is obtained without any adjustable paramete

The convergence with powers ofn is naturally expected to
be slower for the Wannier function than for the energy co
ponents since the powers increase only by 1/2 at each
Higher-order corrections were therefore examined by ca
ing the expansions ton53/4 and 5/4 powers ofm2m0 , but
herein lies a problem. While these two contributions partia

FIG. 6. Ratio of integralsI v calculated by the asymptotic Eq
~23! to the exact results of Eq.~22!.

FIG. 7. Comparison of intermediate-n branches of the Wannie
function calculated by wavelet methods~thick solid line! and by
Fourier integration of the Bloch function in Eq.~30! using the (m
2m0)21/4 term ~dashed line! and both the (m2m0)21/4 and (m
2m0)1/4 terms~thin solid line!.
23510
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cancel in the Wannier function expression, they are individ
ally intermediate in magnitude between then561/4 contri-
butions atn55, and become larger much faster as one g
to lowern. Even atn530, where they are much smaller, the
are still relatively large compared to the residual error us
the n561/4 terms. This behavior is in keeping with th
nature of asymptotic expansions, where one is usually for
to just truncate at the smallest term. Unfortunately, this p
vents us from analyzing the crossover region inw(x) dis-
cussed by He and Vanderbilt in any quantitative detail.
take this situation as having hit the limit of value of th
asymptotic expansion forw(x), at least as far as we hav
carried it out~fourth-order energy expansion form!. It is our
belief at present that further quantitative improvements
agreement of the 1D theory ofw(x) with accurate computa
tion would require refinements in the inversion of the fun
tion m(E) and analytic continuation ofE(m).

VI. SUMMARY AND DISCUSSION

A wavelet method for calculation of Wannier function
has been introduced and applied to a model Gaussian-b
periodic potential. This method is direct and calculates
Wannier functionw(x) and the associated energy comp
nents «n simultaneously through a low-order restarte
Lanczos-type procedure. The locality and orthogonality
vantages of compact support wavelets allow sparse ma
vector multiplications, and the individual iteration steps sc
linearly with basis size. The flexibility of the wavelet bas
has also allowed systematic pursuit of convergence with
spect to both intercell truncation errors~also possible with
less flexible bases! and intracell basis set refinement. Th
converged results have been checked against the re
asymptotic analyses recently provided by He a
Vanderbilt,10 prompting a detailed analysis of yet highe
order corrections that contribute in the incomplete
asymptotic distance regimes. Analytical formulas are deriv
and analyzed for these higher-order corrections and c
pared with the accurate results from the numerical wav
calculations.

Other methods can of course be used for the calculatio
the Wannier function of a 1D model potential, e.g., numeri
Fourier transformation of the Bloch function calculated v
standard methods. The present iterative method can be
tended to higher dimensions using product wavelet ba
while still retaining the capability of sparse matrix-vect
multiplications, however, and preliminary investigations a
being carried out in 2D. This is relevant, for example,
crossed-beam optical trapping of alkali-metal atom Bo
Einstein condensates.39 Nevertheless, by far the strongest i
terest in calculation of Wannier or Wannier-like function
lies in the electronic structure community, and so the qu
tion naturally arises as to the suitability of wavelet bases
quantum chemistry calculations. While it must be emph
sized that this is not a central question of the current inv
tigation, there is already a certain body of research on
topic. Calculations using nonorthogonal Mexican h
wavelets,27 interpolets40,41 Daubechies wavelets,42,43 Alpert
multiwavelets,35 lifted wavelets,28 etc., have appeared ove
7-8
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WAVELET-BASIS CALCULATION OF WANNIER FUNCTIONS PHYSICAL REVIEW B68, 235107 ~2003!
the last ten years and research is still continuing.44 Use of the
Alpert multiwavelets to systematically control basis set er
in quantum chemistry calculations is, in fact, in active dev
opment at this time at Oak Ridge National Laboratory.45 It is
therefore at least fair to assume that the answer to this q
tion will become clearer over the course of time.

It is also reasonable to ask what relevance the correct
to simple exponential decay has forab initio Wannier func-
tions for real systems such as 3D semiconductors and i
lators. Just as the exponential decay was found to appl
higher dimensions,9 it is to be expected that corrections ex
as well. ~A trivial example would be a multidimensiona
crystal with a potential allowing separation of variables,46 for
which the 1D results immediately apply to each coordina!
The precise nature of these corrections for different lat
geometries, connected bands, bond hybridization, and o
complications remains to be determined, but alrea
Taraskinet al.11 have results in 1D, 2D, and 3D for a tigh
binding insulator model on a simple cubic lattice. They fi
that the single-particle density matrix~which can be ex-
let
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panded in Wannier functions! decays with distance a
r 2D/2e2hr, agreeing in 1D with the results of He and Vande
bilt. In any event, it is reasonable to expect that the import
regions in physical applications ~e.g., insulator
polarization47! will not be those in which the Wannier func
tions have decayed by 10–20 orders of magnitude, and th
fore that there will be value in forcing future highe
dimensional asymptotic analyses to shorter distances~or at
least to know the limiting factors in such pursuits!. As men-
tioned in the Introduction, the much larger ideal goal w
regard toab initio calculations for real systems would see
to be a more global theory of Wannier functions which cou
aid in postanalysis of numerical results.
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