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Wavelet-basis calculation of Wannier functions
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Wannier functions for a one-dimensional quantum system with a generic periodic potential are calculated
directly using orthogonal compact support multiwavelets in conjunction with a sparse iterative method. This
allows systematic elimination of error from scales both shorter and longer than the basic period. The converged
values of the Wannier function and the associated energy Fourier components are analyzed, yielding improved
formulas for their behavior in the important regions that are not fully asymptotic.
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[. INTRODUCTION intermediate distance regime by explicitly including the next
leading orders in the prefactor. Going further, analytical for-
In systems with periodic potentials, the Bloch-Floquetmulas are derived for the energy Fourier components and
wave functions may be expanded in a Fourier series of WarWannier functions that have improved accuracy at interme-
nier functions, each of which is centered around a particuladiate distances.
site}> The Wannier functions possess greater localization The results are judged by numerical calculation of the
and can form useful alternative quantum bases for the dea/annier function in a way that can systematically reduce
scription of, e.g., electrons in insulating crystalsrystal  both basis set and truncation error. While one can use the
defects} surfaces, wave propagation in photonic crystals, indirect method of Fourier transforming the Bloch function
and properties of optically trapped Bose-Einstein(grillouin zone integration direct methods using localized
condensatés (from which bright matter-wave soliton trains pasis functions to calculate the localized Wannier function in
have now been created and obsefyedt has long been (e space were long ago advocated by K8tand undergo
known that Wannier functions for systems with a nonzeroyqntinyed development. Wavelet bases possessing orthogo-
gap exh|_b|t exponer_wtlal _dec_ay explR— .R0|) W't_h d|sta_1nce nality are of interest in this context, especially since in many
from their central sites in either ofier highef dimensions. cases they share the Wannier function motif: neighboring

It is only very recently, however, that He and Vandeifit functions are orthogonal even though they overlap spatially.

h_ave d|scovereq power-_IaW prefactor cqrrectlon_s 0 thISIn fact, the Wannier functionare particular types of wave-
simple asymptotic behavior for the Wannier functions, en-

ergy Fourier series, and density matrix for a one-dimensiongfs " the .I|m|t that the potential vanishEswavelets with
(1D) model potential. Taraskiet al* have since character- orthogonality and compact supp%?rthave already formed

ized the density matrix corrections for a tight-binding modelthe basis for a wide variety of digital applications in signal
on simple cubic lattices in 1D, 2D, and 3D. Electronic struc-and image processu‘?@.!t has been a goal of more recent
ture calculations of Wannier functions for realistic crystalsinvestigations to establish that orthogonal compact support
are also of strong current foci;*® particularly from the ~Wavelets can be used with high accuracy in prototypical
standpoint of linear scaling methols.Analysis of the guantum problems, e.g., a deep double-well poteftidithe
asymptotic behavior of the latter results can be complicate@article in a boX;* the hydrogen atofi*>and the hydrogen

by their multidimensional character, by possible limitationsmolecular iort® (Other types of wavelets have been utilized
of the atomic/molecular basis sets, by possible limitationgn quantum applications as wéli-?) In the case of Wannier
from truncation of the number of unit cells included, and, wefunctions, which satisfy a well-known differential equation
now know, by expected modifications to simple exponentialderived by Parzefl and Kostef! an orthogonal wavelet ba-
falloff in the incompletely asymptotic regime relevant to lo- sis provides a representation with matrices of a particular
cal numerical calculations. This last aspect is pursued quarsparse character. This suggests the use of methods relying
titatively here for the simplest case of a 1D simple bandupon efficient matrix-times-vector multiplication operations.
using the results of He and VanderBfltwho also point out In the following, an iterative method is developed for which
the existence of higher-order corrections to the prefactorghe central computational step scales linearly with basis size
One can define a fully asymptotic distance regime in whichN. It is expected that this direct numerical procedure will
all such higher-order corrections are negligible to within ageneralize to more complicated scenarios than the 1D simple
chosen numerical threshold. At shorter distance is an inteband (e.g., realistic crystals, entangled bands, multidimen-
mediate regime in which the asymptotic expansion augsional optical trapping although the latter is the focus of the
mented by higher-order corrections provides a reliable depresent investigation. In this case one can quantify to how
scription of the Wannier functions. At the shortest distanceshort a distance the asymptotic expansions provide a useful
(generally one to several unit cellshe correction terms do description of the Wannier function and energy components.
not even exhibit limited convergence, and so numerical comFrom a practical standpoint of postanalysis of numerical cal-
putations are required. This paper examines the quantitativeulations, it is to be hoped that more detailed descriptions
improvement of the asymptotic expansion obtained in thecan be developed of the closer regions where Wannier func-
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tions are usually calculated and joined to the asymptotic exthe behaviors ot,(x) and E; near the branch points. A

pansions.

II. WANNIER FUNCTIONS

For a simple energy band of a 1D HamiltoniBnwith a
periodic potential, the Bloch/Floquet eigenfunctibg(x) is

periodic Gaussian potentialX ,V(x—n) where V(x)

= (Vo /bym)e ¥ was used as a particular example to rep-
resent the general cag®o analytical solutions are availalple
The present numerical wavelet methods are tested on the
same potential, adopting the earlier choices of atomic units,
otential parameter¥,=—10, b=0.3, and focus on the

spread over the entire lattice. For simplicity, it is assume owest-energy band, leading to a decay parameier

that the cells have unit spacing. The functiog{x) may be
expanded in a Fourier series

bi(x)=(2m) 2 2, e w(x—n), )

with Wannier functions as components,

W(x—n)=(2w)’1’2f e *"b,(x)dk. 2
The functionw(x—n) is centered around site, decays in
magnitude with increasing distance froxsn, and is or-
thogonal to those centered around other sitegn. Simi-
larly, the Bloch eigenvalu&, can be expanded as

E,= > €*g,, (3)

n=—ow

sn=(277)_1fﬂ e NE, dk. @)

-

As discussed by Parz&hand Koster! the Wannier func-
tions satisfy the differential equation

Aw(x)=> ew(x—n)=>, e,D,w(x), (5)

=1.28869.

Calculations of Wannier functions, usually performed for
crystals, frequently start with exponentially localized atomic
or bond orbitals as trial functions. As described by Kdfn,
these may be orthonormalized among neighboring cells by
the methods of des Cloizealmr Lowdin®? while maintain-
ing identical shapes from one site to the next. The Wannier
functions are then obtained from the orthonormal basis by
variation of the orbital parameters to find a stationary expec-

tation value forH.3% There is usually some error associated
with incompleteness of the atomic or molecular basis set,
although this is generally difficult to precisely assess or sys-
tematically reduce. Further errors may come from the neces-
sity of using a finite humber of cells in the calculations,
although this truncation error is more amenable to systematic
study. These same issues may apply to the need for calcula-
tion of Wannier functions for general periodic systems other
than crystald. Systematic studies can be implemented
through plane wave methods, although local methods such as
finite elements or wavelets offer the possibility of customiz-
able resolution. Wavelets offer the additional choice of or-
thogonal base&@ convenience though not a necegsind so

an exploration into their use for calculation of a Wannier
function is undertaken here.

IIl. MULTIWAVELET BASIS

whereD, is a displacement operator corresponding to trans- A compact support wavelet basis consists of strictly local-
lation by n unit cells. From the orthonormality of the differ- 1Z€d functions indexed by location and scale. The most well-

ent w(x—n), the energy Fourier components can be ex-known families are those due to Daubechidéa which all

pressed as

sn=jw*(x)li|w(x—n)dx. (6)

In the limit of strongly bound levels, the, for n#0 are very
small, w(x) is confined to then=0 cell, andeq is an

functions are shifted and scaled duplicates of a single father
wavelet (or scaling function and a single mother wavelet.
Such families necessarily have skewed sh#hehich intro-
duce an inconvenient left-versus-right bias. We instead use a
multiwavelet family derived by Chui and Lian, consisting of
symmetric and antisymmetric pairs of father and mother
wavelets orthogonal on the intenf@,3].3* The scaling func-

“atomic” eigenvalue. More generally, we may still regard tions and their shifted neighbors are shown in Fig. 1, all

Eq. (5) as an eigenvalue equation fog, while the others,

functions shown being mutually orthogonal and providing an

serve as Lagrange multipliers whose values affect the degregact expansion basis for piecewise polynomial functions up

of orthogonality between a calculatedqx) and its translated

copies.

to quadratic order. While multiwavelet applications to quan-
tum mechanics are still rare, some demonstrations have now

The analysis by Kohfor a 1D centrosymmetric crystal appeared*263

with a periodic potential established that the Wannier func-

The multiscaling functions on different octaves have the

tion decays ase "X for large |x|, where the value of simple unit-normalized forms

the constanh is determined by the location of branch points
of the Bloch energy in the complek plane. The energy

componentse,, correspondingly decay as~ "l with the

same constanh. He and Vanderbit’ have now estab-

lished more precise behaviorsy(x)~|x|~3%e~"™ and

bika(X)=212¢,(2x—K) )

for integerj andk, with «=1 corresponding to the symmet-
ric functions ande=2 to the antisymmetric functions. The

en~|n|~%% "N with the prefactors determined by ¢jc.(x) are nonzero only on the support interva® 1<x
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o+ 6,0 ¢, (x-1) scalesJ>| and using the two-scale relations in H§) on
.- .- both bra and ket functions in the integrals to provide expo-
nentially refined estimates at levielThe starting level can
be systematically increased until convergence to any pre-
specified level is obtained. To eliminate any possible issues
- of errors in potential matrix elements, these were calculated
O,(x+1)  0,(x)  O,(x-1) once iNMATHEMATICA (Wolfram Researchusing extended
precision and stored, all desired matrix elements being con-
verged to better than one part in'80
Due to the localized nature of the basis, the Hamiltonian
matrix H takes a symmetric banded form with five subdiago-
nals and five superdiagonals when the basis functions are
organized in a 1D array.., k1, Pjk2: Pj k+ 1.1, Pj k+1,25+ -+ -
The translation operators on the right-hand side of &4.
require intercell overlap integrals which are exceedingly
simple for the wavelet basis

X

f d’jlﬂ(x)f)n(;bjka(x)dxzf ®ii g(X) b k4 2in,o( X)X

FIG. 1. Symmetric and antisymmetric Chui-Lian multiscaling
functions orthogonal on the intervid, 3] (solid line9 and translated =5 5 (10)
copies(dashed lines Lk+2In®ga-

. Thus the additional terms lead only to multipled®f, a unit
<(k+3)27). For a single fixed, the Wannier function may off-diagonal matrix separated by 2'n from the main diag-
be approximated as a finite orthonormal expansion onal. SinceE_,=E, in the symmetric example under con-

sideration, we also have from E3) that s _,,=¢,. The

Kmax 2 : ; X ; i
matrix of interest is therefore the symmetric matrix
W)= > D Upabika(X), (8)
K=Kmin a=1 oo
wherej controls the resolution an{ki,.Knad control the H=H- 2 en(D_,+Dy,), (11
n>0

range. These are to be determined, respectively, by the dy-

namical variation and effective extent @f(x), the latter o which an efficient matrix-vector multiply algorithm can
being correlated with the decay parametieOne may also  pe constructed using the matiik stored in packed form and
use the equivalent multiresolution basis consisting of coarsefimple shift operations for the extra terms. The lowest eigen-
scaling functions and the associated mother wavelets acros§/glue e, and its associated eigenvector can be sought using

number of different scales, although this is not a primarygparse matrix techniques, but only if one has knowledge of
issue in the current investigation. the othere,, .

The solution of Eq.(5) via this basis requires efficient
methods for the evaluation of matrix elements. For different
choices ofj, the basis functions ar@y construction related

via two-scale relatiori$ To determine the Lagrange multipliess, n>0, simulta-
3 2 neously withe ; andw(x), a suitable iterative procedure has
L (x)=2"12 Cor b (), (9 been developed which allows resolution to be increased in
PikalX) 20 a,2=1 <aa' $i+12kar (X, (9) stages. For a fixed initial leval (which may be zerp one
starts with a trial vectouy, symmetrically localized around

where thec, are 2<2 constant matrices. These relations e cenira| cell and with aH, for n>0 set to zero. The steps
may be used in reducing the calculation of matrix elements

of — (d/dx)?/2 to the solution of simple linear equatioffs® ~ a'€ then as follows(i) A vector u1=(u0+_ﬂH~_uo)/T\|l£

In practice, a regularized form of the kinetic energy matrix +/8H Ul is calculated with3 chosen to minimizeu; - H

has been found to offer superior performaften loose -Ui. (i) The Lowdin symmetric orthogonalization procéés

analogy with the use of higher-order formulas in finite dif- is iterated starting fron;, producing a new symmetric vec-

ference calculations, and is adopted here. tor u, orthogonal to its translations, ,= Dy U,. (iii) The
Matrix elements ok” can be evaluated similarly and then latter vectors are used to calculate improved estimates

used to develop numerical quadrature formulas for matrix= u;H-uz,n according to Eq.(6). Thenu, is overwritten

elements of general potentials, the maximum absolute errowith u, and stepsi)—(iii ) are repeated with the updateg.

decreasing exponentially with increasing resolutjo?i®’  The range of basis functions included is chosen sorpat

Using uniformly spaced samples of the potential, the numbeunit cells are spanned on either side,,, being determined

of potential evaluations is kept essentially linear in the num-according to the falloff found in the calculations. Al}, pa-

ber of basis functions, providing high efficiency. Accuracy rameters for the target number of unit cells are determined at

can be controlled by performing the quadrature on finerone time, each individual cell being treated with a degree of

IV. ITERATIVE WANNIER FUNCTION CALCULATION
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FIG. 2. Convergence of the magnitudes of the Wannier function
coefficients in the Chui-Lian= 0 scaling function basis with num-
ber of iteration steps. There are two coefficients per unit cell on this
scale.

resolution determined by the fineness of the basis used. It can 0

be recognized that stepabove is basically a lowest-order

restarted Lanczos procedure, suggesting possible refinementsriG. 3. (a) Wannier functionw(x) timesx®%"™; (b) overlay of

of the method to be explored in the future. w(x) times (—1)"*1x%¥%" in the various intervalsi<x<n+1,
Figure 2 demonstrates convergence of the coefficients af+<30.

ter 10, 20, 30, and 40 iterations usifg 0 and n,4=20.

The apparent slight asymmetry is due to the use of the samgn each intervah<x=<n+ 1 (multiplied by —1 for n even

ordering (symmetric before antisymmetyidor basis func-  are shown overlapped in Fig.(i8. These figures are not

tions on both left and right. Convergence is rapid and thesensitive to use of th¢=5 Wannier function or to small
converged coefficients decay approximately exponentially inthanges in the value df

magnitude with distance from the central cell. Timings have The values of thes,, are given in Table | for botj=5

been determined for 50 iteration steps with,=20, USING  and 6 withn,,,=32 and forj =6 with n,=33. One finds
MATHEMATICA in 30-digit precision on an 850 MHz linux scale convergence to10 significant figures fon=0. For
machine. The initial resolution was varied over the range, — 30, scale convergence is te5 significant figures, but
Jo=0-6 and the corresponding basis sizes were chosen {9 convergence is only te-4. Comparison of the results
be 84x< 2/ for simplicity of comparison. The CPU times for o-n—31 and 32 demonstrates the general result that fhe
successivg, were found to be 35, 68, 139, 279, 581, 1228,fq; the highest pair of values of are always the most sen-
and 2922 s. Except for the largest basebich may be af-  itive to change o, and incompletely converged. Figure
fected by, e.g., cache dependentye basic iteration steps 4 factors out the dominant asymptotic behavip,|

scale linearly with basis size. «n~%%e~"" showing that even the energy components are

With increasing basis size, of course, the calculat€d)  somewhat slow in reaching their asymptotic forms.
ande, converge more slowly. This can be partially compen-  rrom the results of He and Vanderbilt, it is expected that

sated by starting from low resolution where convergence igy(x) ande,, possess higher-order subdominant corrections,
rapid and proceeding to higher resolution in stépsilar to

xX-n 1

multigrid philosophy. The two-scale recursions in E¢P) W(X)=Wq(x)x %™+ W, (x)x e hx

are used to express the leyjebasis functions in terms of

those from levej + 1, providing a well-adapted starting vec- FWo()x™ MM (12
tor for the latter and expediting the iteration process. The

scale refinement was carried out jte 6 to ensure conver- en=aon ¥ "M+an e M+ (13

gence with respect to intracell detail andrtg,,=32 to en-

sure elimination of truncation error for all but the most dis- " &™MS of bounded functioni#;(x) and constanta; . Not-

ing the alternation in sign of the,, least squares fits ex-

tant ce_lls. . . cluding the first few values were made to the corrected form
In view of the large dynamic range of the Wannier func-
tion, the graphs in Fig. 3 factor the dominant asymptotic £,~(—1)"C(n~ 2+ yn~52)ghn, (14)

behaviot® w(x)o<x34e~"(x>0) from the numerical re-
sults. It is seen in Fig. (@) that this indeed yields a continu- with C=1.45117h=1.28869, andy=0.276 22. This value
ous sequence of nearly uniform oscillations. The segmentsf h agrees with that of He and Vanderbilt, although the last

235107-4



WAVELET-BASIS CALCULATION OF WANNIER FUNCTIONS PHYSICAL REVIEW B68, 235107 (2003

TABLE |. Convergence ot as calculated via wavelet iteration with increasing resolution. Numbers in
brackets indicate powers of 10.

n j=5, Npax—=32 j=6, Npa=32 =6, NHax=33
0 —10.719133737 —10.719133742 —10.719133742
1 —4.964710100-1] —4.96471010p-1] —4.96471010p-1]
2 4.403635305-2] 4.403635295-2] 4.403635295-2]
3 —6.368236336- 3] —6.368236315-3] —6.368236315-3]
4 1.117802084- 3] 1.11780207p-3] 1.11780207Pp-3]
5 —2.17757356p—-4] —2.17757354p-4] —2.177573550-4]
6 4.52757359%-5] 4.52757355B8-5] 4.52757356-5]
7 —9.84259275p-6] —9.84259263p-6] —9.84259265[1-6]
8 2.210171168-6] 2.210171130-6] 2.21017113[7-6]
9 —5.08670013p-7] —5.08670000B-7] —5.08670002p-7]
10 1.19356930t 7] 1.193569255-7] 1.19356926p-7]
11 —2.84468067p-8] —2.84468050B-8] —2.844680545-8]
12 6.8674833179] 6.867482690-9] 6.867482856-9]
13 —1.67584858B3-9] —1.67584835(—-9] —1.675848415-9]
14 4.127086684-10] 4.127085826-10] 4.12708606[—10]
15 —1.02439981p-10] —1.024399496-10] —1.024399586-10]
16 2.560156079-11] 2.560154938-11] 2.560155268-11]
17 —6.436805265-12] —6.436801165-12] —6.436802360-12]
18 1.626972535-12] 1.62697107p-12] 1.62697150¢—12]
19 —4.131846860—13] —4.131841725-13] —4.13184323p6-13]
20 1.053779264-13] 1.053777470-13] 1.053777990-13]
21 —2.69783377D-14] —2.69782757B-14] —2.69782899P-14]
22 6.930786231-15] 6.9308047201-15] 6.93081098[-15]
23 —1.78617557(~-15] —1.78616837D-15] —1.78617049%-15]
24 4.616523541-16] 4.61649931p-16] 4.616506460-16]
25 —1.19633994p-16] —1.19633185p-16] —1.19633424p-16]
26 3.107791374-17] 3.10776462[-17] 3.107772515-17]
27 —8.091447128-18] —8.09135935[7— 18] —8.09138546[1-18]
28 2.111084371-18] 2.11105598[-18] 2.11106556B-18]
29 —5.51849737[7-19] —5.51841567f—19] —5.51850296B-19]
30 1.444795380-19] 1.444822518-19] 1.44517500D-19]
31 —3.762851456-20] —3.76639486(-20] —3.79032058D-20]
32 6.849229839-21] 7.19761621p-21] 9.91063851B-21]
33 —2.04701581p-21]
digit is slightly dependent on the exact choice of fheused.
The quality of the latter fit is evident from the near-constant
nature of thee,, after factoring of then dependence, as dis-
t o g |/n e played in Fig. 4. The correction terms are therefore con-
o e |/ ay ) et cluded to be significant in the quantitative analysis of the
L55— " numerical results, particularly in the region of intermediate
. n.
*
1.50 - ‘e, V. HIGHER-ORDER CORRECTIONS
*
Ce *%4000q The corrections beyond those of leading order can be
0400000400 evaluated by extension of Kohn’s analysis for the 1D case.
145 g eeeeccccessscsscccnccccccece Two fundamental solutionss;(x,E) and #,(x,E) to the
| | | Schralinger equation for the periodic potential are defined
10 20 30 by the boundary conditiong/,(0,E)=1, ;(0,E)=0 and

i >(0,E)=0, ,(0,E)=1 for general complexE. A central

FIG. 4. Magnitudes of the,, after factoring out the dominant role is played by the quantity.(E)=¢4(1,E), an entire
asymptotic behavior with and without an %2 correction. function of E whose derivatived u/dE vanishes at real val-
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uese=E,,, m=0,1,..., outside the allowed ranges®fFor
the ground stateni=0), we havew,<—1 and, forE close
to Eq,

w(E)= po+ ag(E—Eg)?+ Bo(E—Eg) 3+ yo(E—Eg)*
+... . (15)

Inversion of the series yields

E=Eo* ag "1~ o) ">~ Boag (11— o)

1 _
=5 (583—4aoyo)ag " u—po)**++-,  (16)

the lower sign being taken here. With the identification

pn=cosk), one has an expression f& as a function ofk
which may be used in the Fourier integral of E4). to obtain

the g,,. It is immediately evident that the constant terms in

Eq. (16) contribute only forn=0 and the term linear in
contributes only forn==1. Analogously, if terms in 4
— o)? were retained, these would contribute only foif
<2, etc.

The nonvanishing contributions tg, for highern come

from the radical terms. These may be evaluated using a con-

tour deformation in the complek plane introduced by He
and Vanderbilt. As functions of compléx u, andk, each of
the radicals has two-sheeted branch points at vatgesr
+ihy (as well as otheys The distance from the re&laxis is
ho=cosh {(—up)>0 (the decay parametdr discussed ear-

PHYSICAL REVIEW B8, 235107 (2003

where the prefactoe'*o"=(—1)"e Mo" contains both the
sign alternation and the exponential decay withFor n
<, the integral in Eq(19) fails to converge, indicating that
the expansion in Eq.16) is then an inappropriate means of
evaluatinge,, . All results below apply only ta greater than
the maximum power oft— u retained in the truncation.
Using the fact that
V2 g*ho.

—pot(us—1) (21)

the integral in Eq.(19) can be evaluated analytically for
—1<w<n in terms of beta and hypergeometric functidfs,

- K - K
sin Esm §+h°

=sin(7w)2"’eh0VB(n— v,v+1) ;Fi(n—v,—v,N
(22)

Different regimes of behavior for the, are contained in this
result. Forhy not close to zerogy# —1) andn>1, the beta

function ~I'(v+1)n~ 1" and the hypergeometric function
~(1—e?M)”, leading to the previous result,

14

e “dk

[’

|V(n):Sin(7TV)2VJ

0

+1,e7 2Ny,

L(n)=sin(7v)(ua—1)"T'(v+1)n~ 17" (23

This is also obtainable by taking cosh-1 and sinhk—« in
Eq. (19), recognizing that only small values afcontribute
to the integration for large. For smalln and largeh,, the
hypergeometric function is close to unity, and thelepen-

lier). Focusing on the upper branch point and introducingdence of Eq.(22) is dominantly given by the ratid’(n

Ak=k—Kky, complex trigopnometric identities give

7

In the limit of small Ak, we find E—Eqx(k—ko)'? as de-
scribed by Kohn. Deforming to a conto@; starting atr

w— o= po(CosAk—1)+i(u5—1)*2sinAk.

+i% on one Riemann sheet, running around the branch point
ko= m+ihg, and ending atr+i~ on the other sheet, Fou-
rier integrals of kK—Kkg)” are mapped exactly into products

of gamma functions and factors 1~ as exhibited in Eq.
(13).%°

—v)/n!
In the weak-binding limit, we have,~—1, hy~0 and
e 2Mo~1, leading to
I (n)~sin(7v)2~"e"B(n—v,v+1)

T(n+1)T(1+2v)
T+ )T (n+1+2)

~sin(7v)2”"B(n—v,2v+1), (24

which decays approximately as 2. The asymptotic fall-

This same contour deformation can be used to advantagsf of ¢, is thene "o"n~2 with the n~2 behavior(the be-

even if one does not make a smalk approximation in Eg.
(17). One finds fom> v that

§ (u-poyeiak=—2ekon, (), (19
I,,(n)=sin(7rv)fw[—,uo(coshx—l)
0
+(ud—1)Ysinhk]e” “"dk, (19

using the change of variabl&s-ky=i«. Truncating the ex-
pansion in Eq(16), we therefore obtain

ikon

- 1 N
ag 21 (n)+ 3 (5B5—4agyo) ag " 3/2(”)} ,
(20)

1
ep~—g
"o

havior expected for a free partigledominating for n
<1/hg.

Moving somewhat away from the weak-binding limit, the
hyperbolic trigonometric functions may be expanded up to
quadratic terms in Eq(19) to obtain another approximate
analytic description of the integrals,

|V(n)%Sin(WV)Jw[—,u,okz-i-(,u,g—l)llzk]exﬁ— xkn)dk
0

=sin(7v)(2/m) YT (v+1)

X (= po)"(u/n) "+ M2, p(un).

(29

The linear term always dominates in the integratioruif
=(u5—1)Y%| uo|>1/n, leading again to terms behaving as
n~*"1 n"*"2 etc., as may be verified by asymptotics of the
Bessel function. Fow=1/2 and lown, one also finds from
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. n—3%2e~Mo" form from Eq.(23), the analytical formula of Eq.
104w ®,  Besel | (22) with and withoutl 5;,, and the Bessel approximation of
" O DLy Bessel Eq. (25 with and withoutls,. It is clear that inclusion of
2% A Iy Asymptotic a . . 3/2
1.02 - "iis, . | 3> dramatically improves the accuracy over all but the low-
oF L T YT Y PP fanna est values oh and that the simple Bessel approximation is
2} 1.00 - c00gQREAAEBEEAR0AAEADONMY only marginally worse than the hypergeometric expression.
°gt YY) The residual errors at lom are expected to arise chiefl
098 °° aassstt from the limitations of sing the truncated totic expan
98 - LAk = rom the limitations of using the truncated asymptotic expan-
° ‘A“ o Ip Analytical sion in Eq.(16) to represent the inverted functidB(u).
09610 & O lip Iy, Analytical | Nevertheless, Fig. 5 makes it clear that the above results with
& . 9.2 .
L | L L l higher-order correctionnd no adjgstable parametepso-
5 o 15 20 25 30 vide significantly improved approximations over the rest of
n the range of. _ o
The integrals above are also useful in description of the

FIG. 5. Ratios of different approximatiofs, to converged val- - ) - b
ues ofs, . Wannier function, although the higher-order corrections are

more complicated. The Bloch function as described by Kohn

takes the form
this expression a dominant behavior?, although there are

some errors in the coefficients since higher rangeg odn-  b(X,E)=N(E) " { x1(X,E) + x2(x,E) = N(E) ~¥?x(x,E),
tribute significantly to the integration and the effects of the (26)
truncation inside the integrand are more strongly felt. For B
intermediaten, there is a crossover region between the two X1(X%B) = o(1E) (X, B), 27)
behavior_s,o consistent with the qbservation .by He .and Ya(X,E)= (2~ Y) Y2y, (X, E). (28)
Vanderbilt® of a crossover region in the Wannier function o _ _ )
betweerx ! falloff at low x andx ~3e~"o* falloff at largex. The normgllzatlon constant is an analytic function of com-
This crossover region was found to move to largeas the  Plex E defined by
binding weakened, in agreement with the movement of the 1
&, crossover region to larger asu decreases. N(E)=27-rf [x10GE) + x2(OGE) T x1(OGE) — xo(X,E) JdX

In order to assess the above approximations, the Schro 0
dinger equation for the fundamental solutignR(x,E) was du
integrated by the Runge-Kutta method froms0 to x=1. = —277:,02(1,E)E, (29
The energyE was varied untilu= ¢,(1,E) reached its ex-
tremum pug, leading to the accurate valuehg which vanishes aE=E, in the forbidden energy region.
=1.288 667 13049(This value differs slightly from the re- [The last form differs from that derived by Kohn by a factor
sults of He and Vanderbilt and our own approximate fitof 1/2 due to the choice of-1/2(d/dx)? rather than
above, so the extended-precision result was double checkee(d/dx)? in the Schrdinger equatiorj.The precise behav-
for procedure and convergenceNumerical differentiation ior of the wave function around this branch point depends on
then yielded for the constants in E(L5 the valuesay  the local behaviors of botN(E) and x(x,E). Exceptional
=0.06344535469, B,=0.00606664965, and 7y, cases in which/,(1,E) vanishes lead to compensating be-
=0.000253 868 90. Figure 5 showg/e, wheree, is cal-  havior in y(x,E), as discussed in detail by Kohn.
culated via the iterative wavelet algorithm aBgl is calcu- Expanding bothN and y through two orders of nonvan-
lated under different approximations: the asymptoticishing terms,

b(x,E>z[N'<Eo>AE+N"(EO>AE2/2]1’2[x<x,Eo>+ j—)é(x,EomE}s[—ao”"N'(Eo)]W(u—uo)1’4x<x,Eo>

Bo N N"(Eo)
203° " 4ad’N'(Ep)

+[_a01/2N'(E0)]1/2[ }w—ml"‘x(xfo)

—[—aal’ZN'(Eon—”zw—w““[ aal’zj—Q‘(x.Eo)] (30

All of the dependence on in the Fourier transformation of derivative on the interval €x<1 combined with values of
this expression arises through the integrals over powers df,(n) for v=*1/4 therefore allows approximate evaluation
m— o given above. Knowledge of(x,Ey) and its energy of w(x) on the intervah=x=<n+ 1. Figure 6 shows the ratio
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1.o4— — cancel in the Wannier function expression, they are individu-
. ally intermediate in magnitude between the + 1/4 contri-

1.02 S ‘e, v=—1/4 — butions atn=5, and become larger much faster as one goes
j’ -..,“.""“"“""" to lowern. Even ain= 30, where they are much smaller, they
~, 100 e are still relatively large compared to the residual error using
_Z _...--....------- the v=*1/4 terms. This behavior is in keeping with the

0.98 — L v=1/4 B nature of asymptotic expansions, where one is usually forced

0.96 - to just truncate at the smallest term. Unfortunately, this pre-

vents us from analyzing the crossover regiomi(x) dis-

5 10 15 20 25 30 cussed by He and Vanderbilt in any quantitative detail. We
n take this situation as having hit the limit of value of the
asymptotic expansion fow(x), at least as far as we have
carried it out(fourth-order energy expansion fai). It is our
belief at present that further quantitative improvements in
of the asymptotic ,(n) from Eq. (23) to the exactl ,(n) agreement of th_e 1D Fheory W()_() With_ accurate computa-
from Eq. (22). The latter form is used in the Wannier func- t!on would require re.fmeme_nts in the inversion of the func-
tion examples of Fig. 7 fon=5 and 10. It is seen that use of tion #(E) and analytic continuation d&(w).
the (u— o) Y4 term already gives reasonably good agree-
ment, but that inclusion of theu(— uo)** term improves
agreement over all regions except right at the peaks. The
agreement in the mid-ranges of Fig. 7 is quite reasonable A wavelet method for calculation of Wannier functions
and, again, is obtained without any adjustable parameters. has been introduced and applied to a model Gaussian-based
The convergence with powers pfs naturally expected to  periodic potential. This method is direct and calculates the
be slower for the Wannier function than for the energy com-Wannier functionw(x) and the associated energy compo-
ponents since the powers increase only by 1/2 at each stepents e, simultaneously through a low-order restarted-
Higher-order corrections were therefore examined by carryLanczos-type procedure. The locality and orthogonality ad-
ing the expansions to=3/4 and 5/4 powers of.— uq, but ~ vantages of compact support wavelets allow sparse matrix-

herein lies a problem. While these two contributions partiallyvector multiplications, and the individual iteration steps scale
linearly with basis size. The flexibility of the wavelet basis

has also allowed systematic pursuit of convergence with re-
spect to both intercell truncation errofalso possible with
less flexible basesand intracell basis set refinement. The
converged results have been checked against the refined
asymptotic analyses recently provided by He and
Vanderbilt!® prompting a detailed analysis of yet higher-
order corrections that contribute in the incompletely
asymptotic distance regimes. Analytical formulas are derived
and analyzed for these higher-order corrections and com-
pared with the accurate results from the numerical wavelet
calculations.

Other methods can of course be used for the calculation of
the Wannier function of a 1D model potential, e.g., numerical
Fourier transformation of the Bloch function calculated via
standard methods. The present iterative method can be ex-
tended to higher dimensions using product wavelet bases
while still retaining the capability of sparse matrix-vector

FIG. 6. Ratio of integrald, calculated by the asymptotic Eq.
(23) to the exact results of Eq22).

VI. SUMMARY AND DISCUSSION

0.5 1.0x10™

w(x)

0.0

0.5 1.0x107

—w(x)

0.0

multiplications, however, and preliminary investigations are
being carried out in 2D. This is relevant, for example, to
crossed-beam optical trapping of alkali-metal atom Bose-

Einstein condensatés Nevertheless, by far the strongest in-
terest in calculation of Wannier or Wannier-like functions
lies in the electronic structure community, and so the ques-
tion naturally arises as to the suitability of wavelet bases for
quantum chemistry calculations. While it must be empha-
sized that this is not a central question of the current inves-
tigation, there is already a certain body of research on the
topic. Calculations using nonorthogonal Mexican hat
wavelets?’ interpoletd®#! Daubechies wavelefé:*® Alpert
multivavelets® lifted wavelets?® etc., have appeared over

0.0 0.5 1.0
x—10

FIG. 7. Comparison of intermediatebranches of the Wannier
function calculated by wavelet methodhick solid line and by
Fourier integration of the Bloch function in E¢BO0) using the
— o) "Y4 term (dashed ling and both the — uo) ™ ¥* and (u
— o) Y4 terms(thin solid line.
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the last ten years and research is still contindhgse of the  panded in Wannier functionsdecays with distance as
Alpert multiwavelets to systematically control basis set error ~P/?e™"", agreeing in 1D with the results of He and Vander-
in quantum chemistry calculations is, in fact, in active devel-bilt. In any event, it is reasonable to expect that the important

opment at this time at Oak Ridge National LaborafSrit.is  regions in  physical applications (e.g., insulator
therefore at least fair to assume that the answer to this quepelarizatiod”) will not be those in which the Wannier func-
tion will become clearer over the course of time. tions have decayed by 10—20 orders of magnitude, and there-

It is also reasonable to ask what relevance the correction®re that there will be value in forcing future higher-
to simple exponential decay has fab initio Wannier func-  dimensional asymptotic analyses to shorter distarioest
tions for real systems such as 3D semiconductors and insleast to know the limiting factors in such pursyitAs men-
lators. Just as the exponential decay was found to apply itioned in the Introduction, the much larger ideal goal with
higher dimensiondit is to be expected that corrections exist regard toab initio calculations for real systems would seem
as well. (A trivial example would be a multidimensional to be a more global theory of Wannier functions which could
crystal with a potential allowing separation of variabfegor ~ aid in postanalysis of numerical results.
which the 1D results immediately apply to each coordinate.

The precise nature of these corrections for different lattice ACKNOWLEDGMENTS
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