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Ehrenfest-time-dependent suppression of weak localization
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The Ehrenfest time dependence of the suppression of the weak localization correction to the conductance of
a clean chaotic cavity is calculated. Unlike in earlier work, no impurity scattering is invoked to imitate
diffraction effects. The calculation extends the semiclassical theory of Richter and Bélysr Rev. Lett89,
206801(2002] to include the effect of a finite Ehrenfest time.
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The average conductivity of a disordered metal is reduced Following Richter and Sieber, we consider a two-
with respect to the classical value by quantum interferencedimensional ballistic quantum dot to which two leads of
This phenomenon, known as weak localization, has been unwidth w andw’ are attached. We assume that the classical
derstood long ago?in terms of the constructive interference dynamics of this dot is chaotic, with Lyapunov exponant
of time-reversed diffusive trajectories. Weak localization ex-The Landauer formula for the conductance is given by
ists also in quantum dots, which are so small and clean that
impurity scattering can be neglectéth such ballistic cavi- g2 N N
ties, quantum interference effects develop only after a time GZZF Z 2 |taml?, 1)
scale on which a minimal wave packet has spread to cover n=tm=t
the entire cavity. This time scale, known as the Ehrenfesivheret,,, is the transmission amplitude between incoming
time,” is of orderre=X\"tInkL, with \ the Lyapunov expo- and outgoing channets andn at the Fermi energ§e, and
nent of the chaotic dynamickg the Fermi wave vector, and N(N’) is the number of channels of widtia(w’). The semi-

L the linear size of the cavity. The time scatg becomes classical expression fdr,, is given as a sum over classical
important if it is larger than the mean dwell timg, of an  trajectoriesy joining two leads,*?
electron in the quantum dot, coupled via two-point-contacts

to electron reservoirs. oh exp((i/7)S,) ®
Suppression of weak localization in the Ehrenfest regime thm=— - Z_ j ” 17/2. (2
o<7e was first proposed and studied by Aleiner and 2WW'y(nm) | COSTCOL M3

Larkin.® Their calculation played a seminal role in the devel- L= L= , —
opment of the subject, but it was unsatisfactory in one key €€ Sh=nm/kew and_simn=mm/kw’, n==n and m
aspect: A small amount of impurity scattering was introduced™ =M, and &, =sgn(m)sgn()exp(i m(my/w—ny’/w’

by hand to imitate the effects of diffraction in a ballistic —#,/2+1/4)). The termS, is the classical actiorM, is an
system. The main aim of our work is to provide a derivationelement of the monodromy matrix, and, is the Maslov

of the weak localization correction in the Ehrenfest regimeindex. The trajectoryy starts at transverse coordinatén
without recourse to impurity scattering. To our knowledge noleadw with an angleg;; and ends at the transverse coordinate

such derivation exists. y' in leadw’ with_ angle 6;,. . .
The theoretical framework that we shall adopt is the semi- When calculatindt,,|? the double sum over trajectories
classical theory of Richter and SieHewhich is a well- 7y andy’ is approximated to leading order by the diagonal

understood and controlled approximation scheme. In Ref. Approximationy= y' .13 The first-order quantum correction

the effects of finiterg were not considered, so there the weakto the transmission amplitud¢gesponsible for the weak lo-

localization correction was given by the value known fromcalization effect)) is due to Richter-Sieber paltsy is expo-

random matrix theor§® We find that the absence of interfer- nentially close toy’ everywhere except in the vicinity of a

ing trajectories whenrp< 7 leads to the exponential sup- crossing point ofy where y’ avoids that crossing. This is

pression of the weak localization correctioncexp illustrated in Fig. 1. The action difference betwegrmand y’

(=7/7p), in agreement with Ref. 6. is AS=Er€?/\, wheree is the angle at the crossing. In the
Apart from the setting of weak localization, effects of a diagonal approximation, the sum over trajectories can be

finite Ehrenfest time have received much attention recentlyevaluated via the sum rule

The excitation gap in an Andreev billidftias well as the

shot noisé&! of a ballistic cavity are predicted to be sup- o(T—-T,) cosf,cody,

pressed whemz> . The latter effect has received experi- | & My 2mmA dydy p(T), (3

mental support? For these problems, there now exist semi- ¥ % ¥:fm 21

classical theories, which do not invoke impurity scattering.where the sum is over all trajectories that begin in interval

However, all these theories deal only with leading-order ef-dy’ aroundy and end in intervally aroundy, p(T)xexp

fects. Quantum corrections such as weak localization are bg-T/7,) is the dwell time distribution, and

yond their reach. That is why in this work we follow an

altogether different approach. o=MA/R(N+N") 4
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where T'(x) is the Gamma function and 7¢
=(1/\)In(ER/\R) is the Ehrenfest time of this problem. In
the relevant regima rp>1, we have

2

ﬁTD e TE/TD_ (8)

mA

5|tnm|2:<

Finally, using Eq.4) and the Landauer formula, we find the
weak localization correction to the conductance

s 25 NN o= 1ol 7o) ©)
i exp — ,
h (N+N)? TelTD

in agreement with Ref. 6.

Up to this point we have rederived a known result. Now
we shall apply this technology to the magnetic-field depen-
FIG. 1. The Richter-Sieber pair. The weak localization correc-den.Ce of t_he_ weak Io_callzatlon Corfectlon in the Ehfe”TE‘S‘

regime. This is done via the calculation of the magnetic-field

tion to the transmission amplitudes comes from self-crossing anglea d f the d itv of self ¥a dinal
e<\A/Eg. The characteristic time of such orbits is the Ehrenfest ependence of the density of self-crossingeccordingly,

time e= (L/\)IN(Ex/\A). Eq. (5) is modified as follows:

is the mean dwell time. We denote bythe effective elec- 4Ech TZB

f def dTcog Er€?/\%)sine
0 Te

2_
tron mass, byA the area of the cavity, and bW Ol tam|“= TM2A2
=kgw/a, N’ =kgw’/7r the number of channels in the two
leads. The weak localization correction from Richter-Sieber T Ty T-T,
pairs is given by’ xe 1| gTeDime—1+ ) (10

where 5= ¢3/(87?BB?) is the magnetic timeg, is the
flux quantum,B is the magnetic field, an@ is a system-
dependent parametEY’ As before, we first evaluate tHE

X cog Er€?/\11)sine, (5) integral exactly and then evaluate taéntegral in stationary

phase approximation. This produces B@&ependent trans-
whereT.=—(2/\)Ine. The lower bound in the integral over mission matrix  elements 8|t,m(B)|%= 8|t,m(0)|3(1
T signifies that there are no orbits shorter thBnwith a  + 7;/75) ~1. Finally, summing over all channels we obtain
self-crossing angle. the magnetic-field dependence of the weak localization cor-
So far we have followed the calculation of Richter andrection to the conductance,

Sieber’ Now we depart from it. We first evaluate tHe
integral,

2E|:ﬁ ™ %
Sltaml?= fd f dTe "™(T-T,)?
|nm| 7Tm2A2 0 € TE ( )

6G(B)= 2¢% NN e e 11
AEh 7 [ B W NN Y
5|tnm|2=—22Df de e Te/™coq Epe?/\1) sine. o _
TM-A° Jo We see that the Lorentzian line shape of the weak localiza-

(6)  tion peak is preserved in the Ehrenfest regime, while its size

. . _ . is exponentially suppressed.
In the semiclassical limit, owing to the presence of the rap- |," conclusion. we have presented a derivation of the

idly oscillating factor cosfre?/\i) in the integrand, the main - £enfest time dependence of the weak localization correc-

contribution to this integral comes froe= JA/Eg<1. N jon in a two-dimensional chaotic billiard. All interference

order to evaluate this integral asymptotically, we may ap-ffects are fully accounted for within the framework of a

proximate sie~e and extend the upper limit of the integral controlled semiclassical approximatibnyithout requiring

to infinity. The result is the artificial inclusion of impurity scatterirfjinteresting ex-
tensions include the appearance of a second Lyapunov expo-

) AEeh 4 (= Lo ) nent in three dimensions and the coexistence of chaotic and
8t :m Dfo de € PCOg Ere/AR) mixed regions of phase space. It would also be of interest to
extend the method to describe universal conductance fluctua-
hrp\?2N1p [ 1 tions in the Ehrenfest regime.
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