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Ehrenfest-time-dependent suppression of weak localization
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The Ehrenfest time dependence of the suppression of the weak localization correction to the conductance of
a clean chaotic cavity is calculated. Unlike in earlier work, no impurity scattering is invoked to imitate
diffraction effects. The calculation extends the semiclassical theory of Richter and Sieber@Phys. Rev. Lett.89,
206801~2002!# to include the effect of a finite Ehrenfest time.
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The average conductivity of a disordered metal is redu
with respect to the classical value by quantum interferen
This phenomenon, known as weak localization, has been
derstood long ago1–3 in terms of the constructive interferenc
of time-reversed diffusive trajectories. Weak localization e
ists also in quantum dots, which are so small and clean
impurity scattering can be neglected.4 In such ballistic cavi-
ties, quantum interference effects develop only after a t
scale on which a minimal wave packet has spread to co
the entire cavity. This time scale, known as the Ehren
time,5 is of ordertE5l21lnkFL, with l the Lyapunov expo-
nent of the chaotic dynamics,kF the Fermi wave vector, and
L the linear size of the cavity. The time scaletE becomes
important if it is larger than the mean dwell timetD of an
electron in the quantum dot, coupled via two-point-conta
to electron reservoirs.

Suppression of weak localization in the Ehrenfest regi
tD,tE was first proposed and studied by Aleiner a
Larkin.6 Their calculation played a seminal role in the dev
opment of the subject, but it was unsatisfactory in one k
aspect: A small amount of impurity scattering was introduc
by hand to imitate the effects of diffraction in a ballist
system. The main aim of our work is to provide a derivati
of the weak localization correction in the Ehrenfest regi
without recourse to impurity scattering. To our knowledge
such derivation exists.

The theoretical framework that we shall adopt is the se
classical theory of Richter and Sieber,7 which is a well-
understood and controlled approximation scheme. In Re
the effects of finitetE were not considered, so there the we
localization correction was given by the value known fro
random matrix theory.8,9 We find that the absence of interfe
ing trajectories whentD,tE leads to the exponential sup
pression of the weak localization correction}exp
(2tE/tD), in agreement with Ref. 6.

Apart from the setting of weak localization, effects of
finite Ehrenfest time have received much attention recen
The excitation gap in an Andreev billiard10 as well as the
shot noise11 of a ballistic cavity are predicted to be su
pressed whentE.tD . The latter effect has received expe
mental support.12 For these problems, there now exist sem
classical theories, which do not invoke impurity scatterin
However, all these theories deal only with leading-order
fects. Quantum corrections such as weak localization are
yond their reach. That is why in this work we follow a
altogether different approach.
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Following Richter and Sieber, we consider a tw
dimensional ballistic quantum dot to which two leads
width w and w8 are attached. We assume that the class
dynamics of this dot is chaotic, with Lyapunov exponentl.
The Landauer formula for the conductance is given by

G52
e2

h (
n51

N

(
m51

N8

utnmu2, ~1!

where tnm is the transmission amplitude between incomi
and outgoing channelsm andn at the Fermi energyEF , and
N(N8) is the number of channels of widthw(w8). The semi-
classical expression fortnm is given as a sum over classic
trajectoriesg joining two leads,7,13

tnm52A p\

2ww8
(

g(n̄,m̄)

exp„~ i /\!Sg… Fg

ucosu n̄cosum̄M21
g u1/2

. ~2!

Here sinun̄5n̄p/kFw and sinum̄5m̄p/kFw8, n̄56n and m̄

56m, and Fg5sgn(m̄)sgn(n̄)exp„ip(m̄y/w2n̄y8/w8
2mg/211/4)…. The termSg is the classical action,M21

g is an
element of the monodromy matrix, andmg is the Maslov
index. The trajectoryg starts at transverse coordinatey in
leadw with an angleu n̄ and ends at the transverse coordina
y8 in leadw8 with angleum̄ .

When calculatingutnmu2 the double sum over trajectorie
g and g8 is approximated to leading order by the diagon
approximationg5g8.13 The first-order quantum correctio
to the transmission amplitudes~responsible for the weak lo
calization effect14! is due to Richter-Sieber pairs7: g is expo-
nentially close tog8 everywhere except in the vicinity of a
crossing point ofg whereg8 avoids that crossing. This is
illustrated in Fig. 1. The action difference betweeng andg8
is DS5EFe2/l, wheree is the angle at the crossing. In th
diagonal approximation, the sum over trajectories can
evaluated via the sum rule7

(
g(y8,un ;y,um)

d~T2Tg!

uM21
g u

5
cosuncosum

2pmA
dydy8 r~T!, ~3!

where the sum is over all trajectories that begin in inter
dy8 aroundy and end in intervaldy aroundy, r(T)}exp
(2T/tD) is the dwell time distribution, and

tD5mA/\~N1N8! ~4!
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is the mean dwell time. We denote bym the effective elec-
tron mass, by A the area of the cavity, and byN
5kFw/p, N85kFw8/p the number of channels in the tw
leads. The weak localization correction from Richter-Sie
pairs is given by15

dutnmu25
2EF\

pm2A2E0

p

deE
Te

`

dTe2T/tD~T2Te!
2

3cos~EFe2/l\!sine, ~5!

whereTe52(2/l)lne. The lower bound in the integral ove
T signifies that there are no orbits shorter thanTe with a
self-crossing anglee.

So far we have followed the calculation of Richter a
Sieber.7 Now we depart from it. We first evaluate theT
integral,

dutnmu25
4EF\tD

3

pm2A2 E0

p

de e2Te /tDcos~EFe2/l\! sine.

~6!

In the semiclassical limit, owing to the presence of the r
idly oscillating factor cos(EFe2/l\) in the integrand, the main
contribution to this integral comes frome&Al\/EF!1. In
order to evaluate this integral asymptotically, we may a
proximate sine'e and extend the upper limit of the integr
to infinity. The result is

dutnmu25
4EF\

pm2A2
tD

3E
0

`

de e112/ltDcos~EFe2/l\!

52S \tD

mAD 2 2ltD

p
sinS p

2ltD
DGS 11

1

ltD
D

3exp~2tE/tD!, ~7!

FIG. 1. The Richter-Sieber pair. The weak localization corr
tion to the transmission amplitudes comes from self-crossing an
e&Al\/EF. The characteristic time of such orbits is the Ehrenf
time tE5(1/l)ln(EF /l\).
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where G(x) is the Gamma function and tE
5(1/l)ln(EF /l\) is the Ehrenfest time of this problem. I
the relevant regimeltD@1, we have

dutnmu2.S \tD

mAD 2

e2tE /tD. ~8!

Finally, using Eq.~4! and the Landauer formula, we find th
weak localization correction to the conductance

dG52
2e2

h

NN8

~N1N8!2
exp~2tE/tD!, ~9!

in agreement with Ref. 6.
Up to this point we have rederived a known result. No

we shall apply this technology to the magnetic-field dep
dence of the weak localization correction in the Ehrenf
regime. This is done via the calculation of the magnetic-fi
dependence of the density of self-crossings.7 Accordingly,
Eq. ~5! is modified as follows:

dutnmu25
4EF\tB

2

pm2A2 E0

p

deE
Te

`

dTcos~EFe2/l\!sine

3e2T/tDS e(Te2T)/tB211
T2Te

tB
D , ~10!

where tB5f0
2/(8p2bB2) is the magnetic time,f0 is the

flux quantum,B is the magnetic field, andb is a system-
dependent parameter.13,7 As before, we first evaluate theT
integral exactly and then evaluate thee integral in stationary
phase approximation. This produces theB-dependent trans
mission matrix elements dutnm(B)u25dutnm(0)u2(1
1tD /tB)21. Finally, summing over all channels we obta
the magnetic-field dependence of the weak localization c
rection to the conductance,

dG~B!52
2e2

h

NN8

~N1N8!2

e2tE /tD

11tD /tB
. ~11!

We see that the Lorentzian line shape of the weak local
tion peak is preserved in the Ehrenfest regime, while its s
is exponentially suppressed.

In conclusion, we have presented a derivation of
Ehrenfest time dependence of the weak localization cor
tion in a two-dimensional chaotic billiard. All interferenc
effects are fully accounted for within the framework of
controlled semiclassical approximation,7 without requiring
the artificial inclusion of impurity scattering.6 Interesting ex-
tensions include the appearance of a second Lyapunov e
nent in three dimensions and the coexistence of chaotic
mixed regions of phase space. It would also be of interes
extend the method to describe universal conductance fluc
tions in the Ehrenfest regime.

This work was supported by the Dutch Science Foun
tion NWO/FOM. We thank C.W.J. Beenakker and J. Tworz
dlo for helpful discussions.
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