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Implicit purification for temperature-dependent density matrices
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~Received 25 August 2003; published 30 December 2003!

An implicit purification scheme is proposed for calculation of the temperature-dependent, grand canonical
single-particle density matrix, given as a Fermi-Dirac operator expansion in terms of the Hamiltonian. The
computational complexity is shown to scale with the logarithm of the polynomial order of the expansion, or
equivalently, with the logarithm of the inverse temperature. The system of linear equations that arise in each
implicit purification iteration is solved efficiently by a conjugate gradient solver. The scheme is particularly
useful in connection with linear scaling electronic structure theory based on sparse matrix algebra. The effi-
ciency of the implicit temperature expansion technique is analyzed and compared to some explicit purification
methods for the zero temperature density matrix.
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Linear scaling electronic structure theory in combinati
with tight-binding, self-consistent Hartree-Fock or densi
functional theory has become a very powerful tool for stud
ing complex large material systems.1,2 There are severa
ways to achieve a computational cost that scales line
with system size. Here we focus on methods based on
single-particle density matrix for band-gap materials, the m
trix elements of which decay exponentially with overlap d
tance. For large systems the number of matrix eleme
above some numerical threshold therefore scales asO(N). In
these schemes the two major steps are the construction o
tight-binding, Fockian or Kohn-Sham HamiltonianH(r ,r 8)
and the calculation of the density matrixr(r ,r 8). The
present article concerns aspects of the second problem
construction of the density matrix.

The relation between the density matrix atT50 and the
Hamiltonian is given by the Heaviside step function3

r5u~mI 2H !. ~1!

In density-matrix schemes this relation is approximated
constructingr from H using sparse matrix algebra, whe
each major operation computationally scales linearly w
the system size, thanks toO(N) matrix sparsity. This can be
achieved through constrained minimization schemes,4,5 spec-
tral projections or purification methods,6–12 or by an expan-
sion of the temperature dependent Fermi-Dirac function
similar step function approximations.13–18 Contour integral
representations of the Fermi distribution with Pade´ polyno-
mials as resolvents, that can be calculated with linear sca
effort31 as well as combinations of various approaches h
also been explored.19–24

The quadratically convergent purification techniques h
turned out to be some of the most efficient approaches for
construction of the density matrix, both in memory a
speed,8,11,12,24with a computational complexity, in terms o
number of matrix-matrix multiplications necessary to rea
convergence that scales linearly with the logarithm of
inverse band gap and the degree of expansion, and w
numerical error that scales linearly with the threshold.11,12

The Fermi-Dirac operator expansion methods based on C
bychev expansion techniques are generally much slo
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with the computational cost scaling at best with the squ
root of the degree of expansion.25,18However, these method
have an important advantage; they can account for a fi
temperature distribution of the density matrix. Here we p
pose an expansion scheme that combines the low logarith
complexity and quadratic convergence of the purificat
schemes with the finite temperature Fermi-Dirac distributi
We show how this can be accomplished by an implicit pu
fication scheme, based on a Pade´ approximation of the res-
caled Fermi-Dirac function, with a computational complex
that scales logarithmically with the expansion order,
equivalently, the inverse temperature.

The Fermi-Dirac distribution,3

FFD~«,m,b!5
1

eb(«2m)11
, ~2!

occurs in statistical mechanics as the occupational distr
tion of fermions at finite temperatures. It converges to a s
function with the step formed at the chemical potentialm
when T→0. The temperature-dependent grand canon
density matrix is formally given by the operator relation

r~b!5FFD~H,m,b!. ~3!

The single-particle energy of a fermion system at a fin
temperature is given by

Es5Tr@Hr~b!#5(
i , j

^f i uHuf j&^f j ur~b!uf i&, ~4!

in some set of basis functionsf i . In this formulation the
expression forr(b) does not have to be calculated expli
itly; instead the Fermi-Dirac function can be expanded
Chebychev polynomials. The Chebychev expansion te
nique is one of the most efficient ways of approximating
function and the Chebychev functionsTn(x) obey a simple
two-step recurrence formula (T051, T15x),

Tn11~x!52xTn~x!2Tn21~x!. ~5!

The productsFFD(H,m,b)uf i& can be calculated efficiently
using the two-step recurrence formula using only matr
©2003 The American Physical Society04-1
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vector multiplications.13–17 The Chebychev expansion tec
nique has many advantages: for example, the costly ma
matrix multiplications are avoided, and error accumulation
small. However, compared to linear scaling purification te
niques it is fairly inefficient.24 The problem is the slow linea
increase in polynomial order as a function of iterations in
two-step recurrence formula. To improve the efficiency,
ang et al.18 recently suggested an alternative approa
where the expansion polynomials are not calculated by
two-step formula, but by a direct expansion. This can
achieved with a computational complexity that scales w
the square root of the polynomial order of the expans
O(An). This limit is optimal for a general polynomial.25

However, by choosing the expansion with a particular se
Padé polynomials, we will show how the computation
complexity can be reduced even further, scaling only linea
with the logarithm of the polynomial orderO(ln n) or the
inverse temperatureO(ln b).

There are at least 19 different ways to calculate ma
exponentials.26 Here we use one particular technique bas
on a Pade´ approximation. Consider the exponential functi

ex5~ex/n!n5S ex/(2n)

e2x/(2n)D n

. ~6!

A Taylor expansion to first order gives

ex5 lim
n→`

S 2n1x

2n2xD n

. ~7!

This Pade´ approximation can be used in the Fermi-Dir
function and for the rescaled chemical potential and inve
temperature,3 m851/2 andb854n,

FFD~x, 1
2 ,4n!'

~12x!n

xn1~12x!n
. ~8!

At higher values ofn the approximation becomes increa
ingly better. The choicem851/2 is made to center the step
the Fermi-Dirac function atx51/2. In the interval@0,1# the
approximation is a continuously decreasing function with
maximum of 1 atx50 and a minimum of 0 atx51. This is
the interval in which the temperature-dependent density
trix has its eigenvalues and it is the interval where the Fer
Dirac distribution is well approximated already at fairly hig
temperatures. It is therefore the interval around which
chose to perform the expansion. This choice requires an
tial rescaling of the Hamiltonian spectra around the inter
@0,1#. Let

Gn~x!5
xn

xn1~12x!n
. ~9!

The Fermi-Dirac function form851/2 andb854n in the
interval @0,1# is approximated by

FFD~x, 1
2 ,4n!5@e4n(x21/2)11#21'12Gn~x!. ~10!

The polynomial ordern of the Pade´ approximation is propor-
tional to the inverse temperature sincen5b8/4. This means
23310
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that the lower the temperature the better the approximat
In practice, however, the approximation at the normaliz
energy interval@0,1# is already very good at orders as low
n'5. An example given in Fig. 1, which shows the Pa´
approximation 12G5(x), is virtually identical to the corre-
sponding Fermi-Dirac function withb8520 andm851/2.
The inset shows the error. With the interval@0,1# equal to 1
Ry this example corresponds to a temperature of 7894 K
lower temperatures the approximation becomes increasi
better. The Pade´ approximation in Eq.~10! is only one alter-
native, but, as will be shown below, it turns out to be p
ticularly simple and efficient.

A major advantage with the Pade´ approximation in Eq.
~10! is how efficiently we can calculate high orders ofGn .
The computational complexity is very low, thanks to the
erative relation

Gk3 l~x!5Gk@Gl~x!#. ~11!

In an operator expansion this corresponds to purificatio
projecting the eigenvalues towards 0 and 1. In contrast
more general polynomial expansion such as the Chebyc
expansion, which computationally scales at best with
square root of the polynomial order,O(An),18,25 or asO(n)
if the two-step recurrence formula is used, the iterative re
tion above makes it possible to reach the same order of
pansion in onlyO(ln n) steps. The same low logarithmi
complexity is found generally in purification expansio
schemes that are based on iterative spectral projections.
Padéapproximation of the Fermi-Dirac distribution can thu
be used in a highly efficient purification scheme which c
culates the finite temperature density matrixr(b) at a set of
normalized inverse temperaturesb854n. The purification
algorithm can be described by

X15F~H,m!,

Xi 115Gm~Xi !, i 51,2, . . . , logm~n!, ~12!

r~b!5I 2Xi 11 .

FIG. 1. The Fermi-Dirac distribution~dashed line! compared to
the approximation 12G5(x) ~circles! in Eq. ~10!. The inset shows
the error, Error31035(FFD(x,1/2,20)2@12G5(x)#)3103.
4-2
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The expansion ordern and thus the normalized inverse tem
peratureb8 must be chosen so that the number of iteratio
logm(n), is an integer. The function

F~H,m!5a~H2mI !10.5I ~13!

is a normalization function that rescales all the eigenval
of H to the interval@0,1#, with the chemical potentialm
shifted to m851/2. The chemical potential and spectr
bound must thus be known in advance. The normaliza
factor

a' 1
2 min@~m2Hmin!

21,~Hmax2m!21#, ~14!

rescales the spectra and sets the temperature scale. Th
plicit purification scheme converges to the zero-tempera
density matrix for any value ofa, but the convergence i
faster and the approximation is more accurate at higher t
peratures ifa is chosen to normalize the spectra arou
@0,1#. The spectral boundsHmax andHmin can be estimated
by for example, Lanczos’ algorithm or Gersgorin circle
Generally we have that the temperature3 T51/(akB4n),
wheren is the accumulated expansion order in Eq.~12!.

Because of the rational form ofGm(Xi) the purification
scheme is implicit. Assuming a finite orthogonal basis rep
sentation, a set of linear equations in Eq.~12! has to be
solved in each step fori 51,2 . . . , logm(n),

@Xi
m1~ I 2Xi !

m#Xi 115Xi
m , ~15!

which is given from the second step in Eq.~12! and from the
definition of G in Eq. ~9! along with its nested iterative ex
pansion property given in Eq.~11!. Here we find another
major advantage with our particular choice of Pade´ approxi-
mation. The left side system matrixAi5@Xi

m1(I 2Xi)
m# is

symmetric and positive definite for symmetricXi ’s with their
spectra belonging to@0,1#. In fact, with increasingi, the
system matrixAi converges to the identity matrixI. The
implicit equations are therefore very well suited for solutio
with the linear conjugate gradient method,27 that in turn, can
efficiently exploit the close approximation ofXi to the un-
known columns ofXi 11, which becomes increasingly mor
accurate and efficient towards the last iterations. Anot
possibly efficient alternative is the application of the spa
approximate inverse~AINV ! ~Refs. 28,19! that can be ex-
pected to work well for this particular problem. Howeve
this approach has not been explored in the present stud

Alternative implicit purification schemes can also be d
rived from various sign matrix expansions.29,30 Sign matrix
expansions are equivalent to purification. The only differen
is that spectral projections are performed in the interv
@21,1# instead of@0,1#, as in the case of purification.

To analyze the efficiency of the algorithm compared w
explicit purification schemes, we have chosen anN3N
model Hamiltonian withN random diagonal elements. Th
overlap elements decay exponentially as a function of
separation on a randomly distorted simple cubic lattice. T
model represents a Hamiltonian of an insulator that mi
occur, for example, with a Gaussian basis set in dens
functional theory or in various tight-binding schemes. T
convergence is mainly determined by the occupation and
23310
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band gap. The test Hamiltonian was therefore modified s
that allN eigenvalues were uniformly distributed on@0,1#. In
this case the band gapDg51/N, independent of the frac
tional occupationf occ5Ne /N. This simplifies the analysis
and comparison of the different methods, which otherw
are hard to perform for a less idealized set of material s
tems. After each iteration a numerical thresholdt51.0
31027 was applied and convergence was determined w
the error in energyuEapprox2Eexactu,1.031025.3 The con-
vergence criterion corresponds in practice toT50. A com-
parison atT'0 is necessary since the explicit purificatio
schemes used in the comparison only give the ze
temperature density matrix. At room temperature the com
tational effort with the implicit purification scheme is onl
slightly reduced because of the rapid convergence. The c
putational complexity was measured in number of matr
matrix multiplications, whereN conjugate gradient steps
i.e., N matrix-vector multiplications, are counted as o
matrix-matrix multiplication.

Figure 2 shows the computational cost for various oc
pation factors. The implicit purification scheme of order tw
IP, i.e., withm52 in Eq.~15!, usingXi as initial approxima-
tions to Xi 11, is compared to the trace correcting schem
with second-order polynomials~TC2! by Niklasson,11 the
trace resetting asymmetric fourth-order method~TRS4! by
Niklassonet al.,12 the grand canonical scheme with fourt
order projections~GC4! by Niklasson,11 the grand canonica
McWeeny purification scheme~McW! ~Refs. 6,8!, and fi-
nally the canonical scheme~PM! by Palser and
Manolopolous.8 The grand canonical schemes that requ
prior knowledge of the chemical potential are indicated
the figure by bold italics.

For small band gaps, i.e., high values ofN, and with prior
knowledge ofm, the asymmetric GC4 method is the mo
efficient technique. The best performing schemes that req
no prior knowledge ofm are the TC2 and TRS4 scheme

FIG. 2. Computational cost for various schemes atT'0. Grand
canonical schemes requiring prior knowledge ofm are written with
bold italics. TheN eigenvalues are uniformly distributed in@0,1#
and the band gaps are thereforeDg51/N independent of the frac-
tional occupationf occ5Ne /N.
4-3
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The TC2 scheme is more memory efficient since it o
needs to calculate a second-order polynomial in each it
tion and intermediate storage needed in higher-order ex
sions is avoided. However, it cannot deal with degener
and fractional occupancy, which are addressed with
TRS4 scheme.12 At low occupation the PM scheme becom
very inefficient. This sensitivity is not seen for any of th
other schemes. The proposed implicit purification schem
slower than the alternative explicit purification schemes
cept for the PM scheme at low occupancies. However, i
the only method that, for only a slightly increased compu
tional cost, correctly gives the temperature-dependent Fe
Dirac distribution of the single-particle eigenstates. The i
plicit purification scheme scales with the logarithm of t
expansion order. This is an important improvement over p
vious Fermi-Dirac operator expansion methods. Wherea
general, a polynomial can be calculated with a computatio
is

a
-

m
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cost scaling at best with the square root of the order of
polynomial,25 we restrict the polynomial approximation to
nested formf ( f „ . . . f (x) . . . …). In this case a high orde
can be reached much more efficiently than for the gen
form. This is the key idea behind purification expansions

In summary, we have proposed an implicit purificatio
scheme for the calculation of the temperature-depend
single-particle density matrix given as a Fermi-Dirac ope
tor expansion in terms of the Hamiltonian. The method
useful in connection with linear scaling electronic structu
theory and it has a computational complexity that scales w
the logarithm of the inverse temperatureO(ln b) or as the
logarithm of the polynomial expansion orderO(ln n).

Discussions with Matt Challacombe, Eric Chisolm, Sio
han Corish, Stefan Goedecker, C. J. Tymczak, and John W
are gratefully acknowledged.
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