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Implicit purification for temperature-dependent density matrices
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An implicit purification scheme is proposed for calculation of the temperature-dependent, grand canonical
single-particle density matrix, given as a Fermi-Dirac operator expansion in terms of the Hamiltonian. The
computational complexity is shown to scale with the logarithm of the polynomial order of the expansion, or
equivalently, with the logarithm of the inverse temperature. The system of linear equations that arise in each
implicit purification iteration is solved efficiently by a conjugate gradient solver. The scheme is particularly
useful in connection with linear scaling electronic structure theory based on sparse matrix algebra. The effi-
ciency of the implicit temperature expansion technique is analyzed and compared to some explicit purification
methods for the zero temperature density matrix.
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Linear scaling electronic structure theory in combinationwith the computational cost scaling at best with the square
with tight-binding, self-consistent Hartree-Fock or density-root of the degree of expansién*® However, these methods
functional theory has become a very powerful tool for study-have an important advantage; they can account for a finite
ing complex large material systerh$.There are several temperature distribution of the density matrix. Here we pro-
ways to achieve a computational cost that scales linearlpose an expansion scheme that combines the low logarithmic
with system size. Here we focus on methods based on theomplexity and quadratic convergence of the purification
single-particle density matrix for band-gap materials, the maschemes with the finite temperature Fermi-Dirac distribution.
trix elements of which decay exponentially with overlap dis-We show how this can be accomplished by an implicit puri-
tance. For large systems the number of matrix elementfication scheme, based on a Pagroximation of the res-
above some numerical threshold therefore scal€(&§. In  caled Fermi-Dirac function, with a computational complexity
these schemes the two major steps are the construction of ttieat scales logarithmically with the expansion order, or
tight-binding, Fockian or Kohn-Sham Hamiltonidh(r,r") equivalently, the inverse temperature.
and the calculation of the density matrix(r,r’). The The Fermi-Dirac distribution,
present article concerns aspects of the second problem, the
construction of the density matrix.

The relation between the density matrixTa:0 and the Peple,u,B)=
Hamiltonian is given by the Heaviside step function

Fen T @

occurs in statistical mechanics as the occupational distribu-
p=0(ul—H). (1)  tion of fermions at finite temperatures. It converges to a step
function with the step formed at the chemical potenjial
In density-matrix schemes this relation is approximated byvhen T—0. The temperature-dependent grand canonical
constructingp from H using sparse matrix algebra, where density matrix is formally given by the operator relation
each major operation computationally scales linearly with
the system size, thanks @(N) matrix sparsity. This can be p(B)=Pep(H,1,B). ()]
achieved through constrained minimization schefriespec- ) , ) .
tral projections or purification metho@s!2 or by an expan- The smgle_-pa_mcle energy of a fermion system at a finite
sion of the temperature dependent Fermi-Dirac function of€MPerature is given by
similar step function approximatiortd-* Contour integral
re_presentations of the Fermi distribution with Pgttﬂyno- _ ES:Tr[Hp(ﬁ)]ZE (dilHi) (dilp(B) i), (D
mials as resolvents, that can be calculated with linear scaling i
effort®? as well as combinations of various approaches haVﬁq some set of basis functions; . In this formulation the

—-24
also been explprejd’. e : expression fop(B) does not have to be calculated explic-
The quadratically convergent purification techniques havqﬂy_ instead the Fermi-Dirac function can be expanded in

turned out to be some of the most efficient approaches for th&hebychev polynomials. The Chebychev expansion tech-
construction of the density matrix, both in memory andnique is one of the most efficient ways of approximating a

Speeo%’llylz’mwn.h a computatior_nal gomplexity, in terms of function and the Chebychev functioiig(x) obey a simple
number of matrix-matrix multiplications necessary to reacht

convergence that scales linearly with the logarithm of theWO_Step recurrence formuldg=1, T,=x),

inverse band gap and the degree of expansion, and with a T )= 2XT(X) =T x 5
numerical error that scales linearly with the threshgit: n+1(X) )~ Tn-2()- ©
The Fermi-Dirac operator expansion methods based on Chdhe productsbp(H,«,8)| #;) can be calculated efficiently
bychev expansion techniques are generally much slowegsing the two-step recurrence formula using only matrix-
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vector multiplications2~1" The Chebychev expansion tech- N B

nigue has many advantages: for example, the costly matrix 1<393890EJ@EBEJGGEJ@@EJEQq g ?Ei}if_e ) 1
matrix multiplications are avoujed, and error ac_c_umglatmn is 3 . Fermi_DiraZ: B =20, " =0.5]]
small. However, compared to linear scaling purification tech- ;¢ | ® o
niques it is fairly inefficient* The problem is the slow linear | ®
increase in polynomial order as a function of iterations in the ®
two-step recurrence formula. To improve the efficiency, Li- = *° . T maey N ]
ang et all® recently suggested an alternative approach,™ | 5 o ] & I
where the expansion polynomials are not calculated by the 04 - \ ol ! N H
two-step formula, but by a direct expansion. This can be L o AR, |
achieved with a computational complexity that scales with ® =T ' ]

. . 02 . H
the square root of the polynomial order of the expansion 23@*“. !

P I T
O(4/n). This limit is optimal for a general polynomiat. I Oc% 02 0406 08
However, by choosing the expansion with a particular set of 00 ' 0'2 ' 0'4 ' 0'6 e d
Pade polynomials, we will show how the computational ’ R '
complexity can be reduced even further, scaling only linearly o o .
with the logarithm of the polynomial orde®(Inn) or the FIG. 1. _The.Ferml-Dlrac d!strlbutlo(dashed Ilnﬁcpmpared to
inverse temperatur®(In g). the approximation + Gs(x) (circles in Eq. (10). The inset shows

There are at least 19 different ways to calculate matriX"€ €ror, Ermox 10°=(Pep(x,1/2,20)-[1 - Gs(x)]) X 10°.

exponential$® Here we use one particular technique basedh he | h he b h L
on a Padepproximation. Consider the exponential function that the lower the temperature the better the approximation.
In practice, however, the approximation at the normalized

ex/(2n) \ N energy interval 0,1] is already very good at orders as low as
e=(e¥MN= @ (6) n~5. An example given in Fig. 1, which shows the Pade
€ approximation + Gs(x), is virtually identical to the corre-
The inset shows the error. With the intery@l,1] equal to 1
«_ v [2n+X n Ry this example corresponds to a temperature of 7894 K. At
e'= lim 2n—x (7) " lower temperatures the approximation becomes increasingly
n—o

better. The Padapproximation in Eq(10) is only one alter-
This Padeapproximation can be used in the Fermi-Dirac native, but, as will be shown below, it turns out to be par-
function and for the rescaled chemical potential and inverséicularly simple and efficient.

temperaturé, u’ =1/2 andB’ = 4n, A major advantage with the Padgproximation in Eq.
. (10) is how efficiently we can calculate high orders @f,.
Bpo(x, L 4n)~ (1-x) ®) The computational complexity is very low, thanks to the it-
FD 2 XN (1—x)" erative relation

At higher values ofn the approximation becomes increas- Gix1(X)=G[G(X)]. (11

ingly better. The choicg.’ = 1/2 is made to center the step of ) , L
the Fermi-Dirac function at=1/2. In the interva[0,1] the In an operator expansion this corresponds to purifications,

approximation is a continuously decreasing function with aPrOI€cting the eigenvalues towards 0 and 1. In contrast to a
maximum of 1 ak=0 and a minimum of 0 at=1. Thisis  Mmore general polynomial expansion such as the Chebychev
the interval in which the temperature-dependent density maEXPanston, which computa_monally scaleig 2ast best with the
trix has its eigenvalues and it is the interval where the FermiSauare root of the polynomial orde®(yn), **or asO(n)
Dirac distribution is well approximated already at fairly high If the two-step recurrence formula is used, the iterative rela-
temperatures. It is therefore the interval around which wéion above makes it possible to reach the same order of ex-
chose to perform the expansion. This choice requires an inRPansion in onlyO(Inn) steps. The same low logarithmic
tial rescaling of the Hamiltonian spectra around the intervafOmPplexity is found generally in purification expansion

[0,1]. Let schemes that are based on iterative spectral projections. The
Padeapproximation of the Fermi-Dirac distribution can thus
n be used in a highly efficient purification scheme which cal-
G,(x)= - - 9 culates the finite temperature density mapg) at a set of
X'+ (1-x) normalized inverse temperaturgs =4n. The purification

The Fermi-Dirac function foru’=1/2 and8’=4n in the  @lgorithm can be described by
interval[ 0,1] is approximated by

X1=F(H,u),
Dep(x,3,40)=[e"" V21 1]71~1-G(x). (10 .
Fol%, 2,40 = A ). (10 Xii1=Gn(X), i=12,...log(n), (12
The polynomial orden of the Padeapproximation is propor-
tional to the inverse temperature sinte B8'/4. This means p(B)=1—Xi;q.
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The expansion order and thus the normalized inverse tem- I I I I I I

! H 1 (— e
Iperature_,B must be cfjrohse? so that the number of iterations 70 =l =050 N=5
00,(n), is an integer. The function 2 " oot =050.N = 100 d
o 60 [ occe _
F(H,u)=a(H—pul)+0.5 (13 2 B = 0.25, N =100
. L . . S [ |AAf _=0.10,N=100 A
is a normalization function that rescales all the eigenvaluesg, 591 f°°°=005 N = 100 7y o
of H to the interval[0,1], with the chemical potentiak = | O e ’IA
. , . . E oof =025N=200 7

shifted to u'=1/2. The chemical potential and spectral = a0l focc_()l _ , |

bound must thus be known in advance. The normallzation,é dok = 0-10,N=300 ,:,,0
factor =N %]
) U Sy S i - 1
a~3min[(uw—Hmin) L (Hma— ) "1, (14 % | CEEEZIETTSAT i "
rescales the spectra and sets the temperature scale. The it 20|~ n

| | | | |

plicit purification scheme converges to the zero-temperature

density matrix for any value ofr, but the convergence is

faster and the approximation is more accurate at higher tem Methods

Fgrﬁtu'ﬁlz I;ge::s'trglhgil?letso no{;:nmdaluzeT ?aen SbF()eegtsr?mzzrt%ljjnd FIG_. 2. Computationa_l cost f_or various scheme§atp. Gra_nd
i , max = min S canonical schemes requiring prior knowledgeuoére written with

by for example, Lanczos’ algorithm or Gersgorin CIrCIes'bold italics. TheN eigenvalues are uniformly distributed [i9,1]

GeneraIIy we have that the temPeraﬁIﬂE‘I :_L/(akBA'n)' and the band gaps are therefadrg=1/N independent of the frac-
wheren is the accumulated expansion order in ELp). tional occupatiorf o= N, /N.

Because of the rational form d,(X;) the purification

scheme is implicit. A;suming a finite orthogonal basis rePrehand gap. The test Hamiltonian was therefore modified such
sentation, a set of linear equations in EG2) has to be :

: e that allN eigenvalues were uniformly distributed pd,1]. In
solved in each step far=1,2.. . .., logy(n), this case the band gapg=1/N, independent of the frac-
[XM (1= X)X 5 1= X, (15) tional occup_ationfoccz Ne/_N. This simplifies the analysig
and comparison of the different methods, which otherwise
which is given from the second step in E2) and from the are hard to perform for a less idealized set of material sys-
definition of G in Eq. (9) along with its nested iterative ex- tems. After each iteration a numerical threshate:1.0
pansion property given in Eq11). Here we find another x10 7 was applied and convergence was determined when
major advantage with our particular choice of Pag@roxi-  the error in energyEpprox Eexact <1.0X 1075.3 The con-
mation. The left side system matr=[X"+(1—X;)™] is  vergence criterion corresponds in practiceTts 0. A com-
symmetric and positive definite for symmetK¢s with their ~ parison atT~0 is necessary since the explicit purification
spectra belonging t¢0,1]. In fact, with increasing, the = schemes used in the comparison only give the zero-
system matrixA; converges to the identity matrik The  temperature density matrix. At room temperature the compu-
implicit equations are therefore very well suited for solutionstational effort with the implicit purification scheme is only
with the linear conjugate gradient meth@ahat in turn, can  slightly reduced because of the rapid convergence. The com-
efficiently exploit the close approximation & to the un-  putational complexity was measured in number of matrix-
known columns ofX; , ;, which becomes increasingly more matrix multiplications, whereN conjugate gradient steps,
accurate and efficient towards the last iterations. Anothet.e., N matrix-vector multiplications, are counted as one
possibly efficient alternative is the application of the sparsenatrix-matrix multiplication.
approximate invers¢AINV) (Refs. 28,19 that can be ex- Figure 2 shows the computational cost for various occu-
pected to work well for this particular problem. However, pation factors. The implicit purification scheme of order two
this approach has not been explored in the present study. IP, i.e., withm=2 in Eq.(15), usingX; as initial approxima-
Alternative implicit purification schemes can also be de-tions to X, 1, is compared to the trace correcting scheme
rived from various sign matrix expansioffs>’ Sign matrix ~ with second-order polynomial§TC2) by Niklasson:! the
expansions are equivalent to purification. The only differencdrace resetting asymmetric fourth-order metH@dRS4 by
is that spectral projections are performed in the interval Niklassonet al,'? the grand canonical scheme with fourth-
[—1,1] instead off 0,1], as in the case of purification. order projection§GC4 by Niklasson:! the grand canonical
To analyze the efficiency of the algorithm compared withMcWeeny purification scheméMcW) (Refs. 6,8, and fi-
explicit purification schemes, we have chosen M N nally the canonical scheme(PM) by Palser and
model Hamiltonian withN random diagonal elements. The Manolopolou$ The grand canonical schemes that require
overlap elements decay exponentially as a function of sitgrior knowledge of the chemical potential are indicated in
separation on a randomly distorted simple cubic lattice. Thighe figure by bold italics.
model represents a Hamiltonian of an insulator that might For small band gaps, i.e., high valuesNyfand with prior
occur, for example, with a Gaussian basis set in densityknowledge ofu, the asymmetric GC4 method is the most
functional theory or in various tight-binding schemes. Theefficient technique. The best performing schemes that require
convergence is mainly determined by the occupation and theo prior knowledge ofu are the TC2 and TRS4 schemes.

|
TC2 TRS4 GC4 1P Mcw PM
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The TC2 scheme is more memory efficient since it onlycost scaling at best with the square root of the order of the
needs to calculate a second-order polynomial in each iterasolynomial?® we restrict the polynomial approximation to a
tion and intermediate storage needed in higher-order expamested formf(f(...f(x)...)). In this case a high order
sions is avoided. However, it cannot deal with degeneracgan be reached much more efficiently than for the general
and fractional occupancy, which are addressed with theorm. This is the key idea behind purification expansions.
TRS4 schemé? At low occupation the PM scheme becomes |, summary, we have proposed an implicit purification
very inefficient. This sensitivity is not seen for any of the scheme for the calculation of the temperature-dependent
other schemes. The proposed implicit purification scheme i§ingle-particle density matrix given as a Fermi-Dirac opera-
slower than the alternative explicit purification schemes ex;,, expansion in terms of the Hamiltonian. The method is

cept for the PM scheme at low occupancies. However, It Ig,sefy| in connection with linear scaling electronic structure
the only method that, for only a slightly increased computa-,

. . theory and it has a computational complexity that scales with
tional cost, correctly gives the temperature-dependent Ferm y P plexity

; Co . : . "Mihe logarithm of the inverse temperatu@&In 8) or as the
Dirac distribution of the single-particle eigenstates. The 'm'logarithm of the polynomial expansion orde(In n).

plicit purification scheme scales with the logarithm of the
expansion order. This is an important improvement over pre- Discussions with Matt Challacombe, Eric Chisolm, Siob-
vious Fermi-Dirac operator expansion methods. Whereas ihan Corish, Stefan Goedecker, C. J. Tymczak, and John Wills
general, a polynomial can be calculated with a computationadre gratefully acknowledged.
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