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We present a general method for studying coupled qubits driven by adiabatically changing external
parameters. Extended calculations are provided for a two-bit Hamiltonian whose eigenstates can be used
as logical states for a quanturnoT gate. From a numerical analysis of the stationary Stihger equation we
find a set of parameters suitable for representingot, while from a time-dependent study
the conditions for adiabatic evolution are determined. Specializing to a concrete physical system involving
superconducting quantum interference devi@&3UID'’s), we determine reasonable parameters for experimen-
tal purposes. The dissipation for SQUID’s is discussed by fitting experimental data. The low dissipation
obtained supports the idea that adiabatic operations could be performed on a time scale shorter than
the decoherence time.
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[. INTRODUCTION into a quantum Hamiltonigncan potentially be solved by
adiabatic quantum computation. General problems have been
The basic elements for processing quantum informationreated numerically, and studies of a set of exact cover in-
(e.g., to perform quantum computatfdrare quantum bits stances designed to be hard have shown polynomial behavior
(qubits, namely, two-level systems exhibiting quantum co-out to instances containing as many as 20 Yit&/hereas a
herence between the states, quantum regisieays of qu- conventional quantum algorithm is implemented as a se-
bits), and quantum gatésComputations are performed by quence of discrete unitary transformations that form a quan-
the creation of quantum superpositions of the qubits and byum circuit involving many energy levels of the computer,
controlled entanglement of the information on the qubits. the adiabatic algorithm works by keeping the state of the
The main goal of any physical implementation of a quantumguantum computer close to the instantaneous ground state of
information-processing device is therefore to control systemg Hamiltonian that varies continuously in time. Therefore, an
of coupled qubit with a phase-coherence time long enough tfmperfect quantum computer implementing a conventional
permit the necessary manipulations. Various physical sysguantum algorithm might experience different sorts of errors
tems have been proposed for the physical implementation @han an imperfect adiabatic quantum computer. In fact, an
qubits, including photons,trapped ions, spins in nuclear adiabatic quantum computer has an inherent robustness
magnetic resonand®MR),’ electrodynamics caviti€sand  against errors that might enhance the usefulness of the adia-
semiconductor quantum ddtgp mention some of the most patic approach® Local operations on single qubitsuch as
popular. Other experiments and proposals focus on supercooT'% or two coupled qubits(such as the adiabatically
ducting Josephson devices, where almost macroscape  controlledcNoT gate we shall discus'd are also possible,
soscopi¢ devices such as Josephson junctidrssipercon-  \here adiabatic operations take place as a sequence of dis-
ducting quantum interference deviceSQUID'S),"® or  crete transformations acting on a few qubits at a time. In this
Cooper pair boxeS; that is, devices fabricated in condensed-|ine it is important to study a possible tradeoff between the

matter physics, are brought to behave quantum mechanicallydvantages of error reduction due to adiabatic evolution and
These devices promise certain advantages such as large-scg{g |onger times required for gate operations.

integration and fabrication as well as ease of integration with | this paper we will explain some general principles for
conventional electronics. To manipulate qubits quantumsyydying adiabatic SQUID qubit operations focusing particu-
gates are necessary, that is, logic devices capable of opergérly on acnoT gate, and present numerical calculations rel-

ing on linear combinations of input states. _ evant to the behavior and design of such systems.
Among the possible mechanisms for manipulating

coupled qubits, adiabatic procedureare of special interest.

Quantum adiabatic evolution provides a natural framework Il. COUPLED-QUBIT HAMILTONIAN
for solving combinatorial search problems on quantum '
computers Any problem which can be recast as the mini- In discussing coherence properties of the SQUID under

mization of an energy functio(which can then be converted adiabatic inversion, we have suggested its interest for the
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elements of the “quantum computet> The single-bitNoT 20 )
operation can be realized by adiabatic inversion. The next - L (D — DY, —1F sin®j—-=Ci®; (9
most complicated operation is the two-bit operatiomoT, . 0
with which a computer may, in principle, be constructed.inat can be written as
CNOT is a two-qubit operation and we will try to represent it
by two interacting double-potential well systems. Qualita- U
tively, we will use the procedure of performing an adiabatic -——=
NOT on the first qubit while trying to influence its behavior IP;
by the state of the second. We will find a region of parameteby introducing the potential
space where this works.

In the one-dimensional or one SQUID problem one has a
Schralinger equation in the variab® with a kinetic term U=->, L (D — DX, (D — DY),
and the potential term, 2 7k

C;d; (6)

[N

(O—PY2 D —(% PO cos@-z—w (7)
U= _ 21 I Jq)o'

0
oL om vOiZ’TTCI)/q)o), (1)

. . G Finally, switching to the reduced dimensionless flux vari-
which for small® yields a double-well potential.® and L able b= d(27/d,) the last two equations become
are the Josephson critical current and the inductance of the o q

superconducting ring, respectively, whife&®*! is an applied

2

external flux. Whend®*! is swept slowly as a function of — ﬂz(&) Cid: 8
time, as explained in Ref. 16, an adiabatic inversion or level dg; \2m| 1TV
crossing can be induced, amounting to a realization of the
NOT operation. If the state is originally in the left potential dy\ %21 . ox oxt
well it is transferred to the right well and vice versa, imply- :(ﬂ> > % Lix (= % u(Pp— ¢,
ing a reversal of the current direction in the superconducting ’
ring. 0 .

We now wish to investigate this idea of quantum gates |5 217 cosg; . 9

generated by adiabatic transformations to systems of more
than one variable, in particular for the two variakdeoT

operation. Although we are only concerned here with tWOLacent practice and introduce the shiffs— ¢+, ¢

SQUID’s, we briefly indicate a method valid for many qu- —. ¢+ 7, which move the maximum of the cdsterm to

bits. The equation for an array of underdamped flux-linked rf¢:0_1g This does not affect the quadratic term, but it must

To make this situation look more symmetric, we follow

SQUID's is be kept in mind thaip®*'=0 now corresponds to a nonzero
s applied field. We thus have finally
O—-P=L, (2
. . . P ?1 -1 X X
In this equation® andi are meant as column vectors U—-U=|-—| 5 > Lix (= % u(p— ¢,
representing all the fluxe®; and currentd; in the jth rf Lk
SQUID loop,®**is the column vector corresponding to the d,
external fluxes, whild is a matrix representing the self and + E)Ejlfcosdq , (10

mutual inductances. The currantin jth ring is expressed in

terms of the capacitand®; and the superconducting Joseph-\yhere henceforth we use the shifted variables.
son current; :
]

A. Two variables

. 1 2
ij=—Cj®;— ﬁcpj—'jcSin‘bj(}T, 3 We now specialize to two SQUID’s, called 1 and 2, with
0 variables¢,, ¢,. In the absence of mutual inductance, each
where ®,=hc/2e=2x10"7 Gen? is the superconducting ©N€ €an be thought of as a qubit, whose dynamics is de-
flux quantum andRis the effective resistance of the junction. Scribed by a double-well potential. FanOT we shall think
An important property ot by the reciprocity of mutual Of @1 a@s the target bit ane, as the control bit. We shall

inductances, is that is a symmetric matrix. As we neédor ~ apply a sweeping flux$** and would like that this sweeping

the linear homogeneous system of E8), we invertL: flux induce an adiabatic inversion if the control bit |ik)
(e.g., current flowing clockwise in SQUID)2and not induce
i=L"Y(d— e, (4) this inversion if the control bit i$0) (current flowing in the

opposite direction in SQUID )2

: : L1 Lyo
SinceL is symmetric,L "1 is also symmetric. Neglecting ~ FOr the two-variable system the mattix=(_ “") can be

the dissipative term, we now have E) as inverted, giving
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1

Lt
Lilo—L%,

(1D

L, _L12>
—Lip Ly )

L1,, the mutual inductance between the two rings, could
be controlled experimentally by a further device with Jo-
sephson junctiorf8 and switched off for convenience in per-
forming other operations.

Writing out U we obtain

@0)21 1
U:( - L _gext 2+L ( _gexty2
20 2 Lle—Liz[ 2(¢1 1 1 ¢2 2

— 2L p1— iXt)(ﬁf’z_ gm)]"‘

)
E‘;)I‘i COS¢h,
FIG. 1. (Color onling Potential as in Eq22), with its four

b, . wells. The coordinate); (target bi} runs horizontally andp, (con-
| 5|15 cosey. (12 trol bit) vertically.
Let us first look at this potential with the®* zero, and i y=Hy (16)

imagine varyinge, at fixed ¢,. ForL,,=0, we would sim-

ply have the usual symmetric double-potential well &by. with Hamiltonian

Now asLy, is turned on, a tilt is introduced into thig, q 72 1 P

potential. A coupling term~L,¢,¢, is added providing a H=————s——+ 5 —+U (17)
bias in the potential fors;, so that the double well is asym- 2c (@) de1 e (ﬁ) I3

metric even thoughp$*'=0. The direction of this bias de- N2 2\ 27

pends on whetheg, is positive or negative.

If we think of ¢, as essentially fixed, and now suppose
sweeping#$*', we see that this sweep will either increase N~
the asymmetry present in the double well, or decrease it. If C=VCiCo (18)
the wells are caused to be further separated, we have ras the typical capacitance, and defining the energy scale
inversion, if the wells are brought together and cross, we will
have an inversion and aNoT.” Which case occurs will de- Eo=1//LC (19
pend on the sign ofb,. The condition forcNOT is accom-
plished: according to the state ¢§, an inversion takes place
or does not take place in thg, variable.

The discussion is more convenient if we introduce dimen- H=EH, (20)
sionless parameters

Introducing

‘H can be cast in the form of an energy times a dimensionless
Hamiltonian

/ Her P 21 oy (1)
L |—1L2_L§2 (DO CI>0 with
(13
: : : 1
as well as the dimensionless inductances V=VO[§[I1(¢1— (th)z‘Hz((ﬁz_ SXt)2—2|12( ¢2_¢gxt)
| :i | :i | :i (14) t
' N 2 N 2 N X(¢1_¢§X)]+ﬁ1003¢1+ﬁ2005¢2]a (22
We may then write Eq(12) as and the dimensionless parameters
o)21(1 B @) 2 B ®y) 2
U= e E[E['l(d’l_ T2+ 1o(ho— 65) =21 1A h2 #1=C1Eo 27’ m2=C2Eo 27’
ext ext CDO 2
— ¢ ) (p1—d1)]+ By COShy+ B, COSh, 1. (15) Vo= +CI/L o (23

With this potential the Schainger equation for the wave Figure 1 shows the equipotential contours\tic, , ¢»),
function (¢4, p,,t) is with its four potential wells.
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We use natural unitsh=1, c=1, e?/hc=1/137, thus are adjusted to give the first four energy eigenstates localized
®y=hc/l2e=7137, and (,/27)?>=137/4=34.3; also in the four different minima of Fig. 1. Then, we search for a

Jfarad/henry=30. Using these values final Hamiltonian where another set op{*', #5*) gives the
tableau on the right of Eq26). In this procedure we need
[[Cq 17z C./pF only to study thestationary Schralinger equation at first.
pm1~1030 (C_z) L/pH’ After having determined some suitable parameter sets, we

shall also study the full time-dependent Satinger equation

C,\72C,IpF CIpF to determine what sweep speed is “slow” in order to guar-
uo~1030/ (C_) C/oH" Vo~ 1030\/m. antee adiabatic behavior.
1 P P (24) For the present paper we defer a detailed discussion of the

phases the states acquire during the time evolution. These
Note that these parameters are not all independent, as tRgases contain dynamic and geometric contribuffbasd

following relation exists: they themselves can be used for quantum information
processeé’ For a given set of parameters and sweep condi-
Vi o= Vo. (25)  tions the phases can of course be calculated explicitly and in
no way affect the general applicability of the results and
That is, the three basic dimensional quantit@®s, C,, procedures presented here. Calculations of phases will be
and L have been exchanged for two dimensionless parameported upon in future work.
eters and the overall energy scélg. We obtairf® the switching behavior according to E@6)
by fixing the control biasp$* at a relatively high value,
lll. CNOT BY ADIABATIC INVERSION while an adiabatic sweep of the target bis&" occurs. This

i ) ] is a generalization of HOT (Ref. 16 on ¢,. The presence of
With SQUID qubits, the logical states are the flux statesy,q I, coupling produces an extra bias on the target bit

of the superconducting ringwith one qubit0) or|1), with  \yhich “helps or hinders” thenoT operation. The relatively
two qubits[0)[1), |1)[1), and so forth, whereas the Hamil- |3rge bias ong, comes from conditior(A): we attempt to
tonian eigenstates are in general a linear combination ofiymopilize” the control bit despite the perturbations com-
the_m. In case of two com_JpIed qubits to foranoT, each ., nicated by the sweep dﬁxt vial,,. We therefore inves-
logical state of the gate will be represented by a wave funcfigate the regio¢=<| %M. If ¢, is indeed successfully

tion localized in one of the four distinct minima of the po- . o L : : . .
. immobilized, it will be fixed in one of its two potential wells
tential of Eq.(22). The four states can be labeled as 1,2,3, and can have only the valuég~= 1. As seen byb,, these

and pIaceq n atablea_u o_f the km@ é)’ where the_ I_ocat|ons two states amount to an extra bias which is added or sub-
refer to Fig. 1. That is, in the tableau the positions of the, ext gext

I . ; . ) . “tracted togS**. To linear or ince we take al
numbers indicate in which well of Fig 1 the state is localized acted tog, ™. To linear order(s ce we lake alipy”, 4,
: - ) -~ “small compared to 1 andéq, ¢, are in the neighborhood of
while the numbers themselves indicate which energy eigen ext ext

state is meant. The lowest-energy eigenstate is “1,” and the apd mtrodgcmg _the notation, e (= ¢; 112/, the po-
highest of the four first states “4.” tential terms involvinges; in Eq. (22) become

A CNOT operation is defined by the following conditions:

(A) the control bit does not change its state &Bgthe target ext . ext, 112

bit is reversed or not reversed, according to whether the con- 2111”2l 1opa(£1)= = 2l1¢| $7 iH

trol bit is |1) or |0). In the tableau representation, a physical oxt

embodiment oftnoT would be =—2l1¢1¢1 ess, (27)
4 3 4 3 so that there is an effective shift in the external biaserby
1 217l 1) (26 (+1,,/1,). According to Eq.(27) the bias condition for

switching from one tableau to another is given ;"]

Condition (A) on the stability of the control bit is exhib- =112/1;.
ited in that no states move between the top and bottom row. By a numerical study where we find essentially exact so-
Condition B is realized in that the top row remains un- lutions of the Schiddinger equation for our potential, we
changed while the bottom row is “flipped.” find that there is indeed a region @f*', S plane where

Realization of operations such as EB6) can be accom- the eigenstates of Eq21) are well defined and behave as in
plished by using adiabatic processes, thanks to the “no levehis description. These regions are shown in the gray areas of
crossing” behavior of adiabatic evolution. The no-crossingFigs. 2a and 2b). By well defined we mean that the expec-
property assures that a state initially in the first, or second, otation values ok, , ¢, are at the location of one of the wells
third, ... energy level will end up in the first, or second, or ~(*=1,=1), that only one of the first four levels is so local-
third, . . . energy level after the adiabatic evolution, while atized, and finally that the dispersion of each coordinate
the same time the logical state associated with the level may/( $?) —(¢)? is small compared to the expectation value of
be changing. ¢, which itself is in the neighborhood of 1. For the cases we

One can proceed as follows. We first search for an initiapresent here, the ratio of the dispersion to the expectation
Hamiltonian whose variable external parameteb§{, 5*") value was in the vicinity of 0.3.
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0 12700005 Tadiab™ 6wt_ufmelz 67550! (29
-0.0025 _ . N
s where € is the asymmetry of the potential and, ;e
’ = 75sc the inverse tunneling energy or oscillation time be-
ez —0. 005 tween the two states. Since here we also perform a kind of
-0.01 NOT, we expect a similar relation to hold, whe#g,ne OF
oo is the smallest level splitting during the adiabatic pas-
-0.0125 )
sage and may be read off as the energy shift of the wells at
-0.015 the beginning and end of our sweep. A set of reasonable
-0.01 _ -0.005 0 0.005 0.01 SQUID parameters forcNnoT are L;=300pH, L,
(@) ext =280 pH, Ly,=1.8 pH, C;=C,=0.1pF, and I{=15
=1.45 uA. Since in frequency units Eg
112=0. 005 ~[1/JL/pH C/pF 1000 GHz these values giveE,
~185 GHz andr,4i,p~2.7x 10" ° s. Preliminary results are
-0.006 . . . . : :
in agreement with this estimat®and the question will be
-0.008 studied in more detail in further numerical work.
oSt -0.01
IV. IMPLEMENTATION
-0.012
A. Dissipation
-0.014 As with all discussions of quantum computation, the im-
I T > TG 501 portant open questions concern dissipative effects. These in-

) ext clude the decoherence timg,., or its inverse the decoher-
ence ratd, as well as relaxation processes, represented by a
FIG. 2. (a) A region of the¢$*", 5! plane with a well-defined  time T gjax-
set of wave functions as explained in the text. The coupling param- These will affect adiabatic processes as we can see by
eter isl,,=0.0005, The other parameters dre=1,=1, 8=, examining the inversion oKOT process for a single qubit.
=1.19, u1=u,=V,=16.3. (b) As in (a) with coupling parameter ~With an increasing loss of phase coherence as caus&] by
112=0.005. we expect the situation to become more and more “classi-
cal” and finally, whenD is very large, the inversion is
We find that the three different gray areas of Figg2and  inhibited® Furthermore, after the inversion is completed

2(b) have well-defined tableaux as follows: there will be some tendency of the upper-energy state to
relax to the lower-energy state.
3 4 4 3 4 3 We illustrate these effects in Fig. 3 where we show the
1 2/ \1 2" {2 1) (28) probablity for an inversion as a function of sweep time

Tsweeep NOte that the times involved are much longer than
for the intermediate gray regiofleft), the darkest region the above estimate for the adiabatic time of>210° s, so
(centey, and the light gray regiorright), respectively. On the adiabatic condition should be satisfied. Starting at the
the order of 10—20 points were used to determine the boundeft, we see that the probability of inversion is one until
aries in the figures. These tableaux fit with the descriptionr,,..,approachese.. For 7syeepmuch longer tharrge, it
arrived at in the “immobilization” model, where either the falls to 0.5, the “decohered” limit. For longer times, as
top or bottom row inverts as we go from the central region tor,,..,approaches and passgg.x, the final result depends
large | #5*. Hence a sweep from the central region to theon which state we started with. Evidently in this limit we
right region will produce the desired mapping of E@6).  will always end up in the ground state, so the inversion prob-
Similarly sweeping from the right region to the center andability is one if we started with the ground stasolid line)
from the left region to the central region and vice versa carand zero if we started in the excited stéatotted line.
also serve as realizations, differing simply in the assignment The times used werey..=0.2 us and 7,¢),x=0.2 ms.
of (0,1 for the bits or the named,2) for the SQUID’s. Note  The early part of the curve was found using the plots in Fig.
that the switch between tableaux occurs quite close t® of the second part of Ref. 16 with this valuemf.., while
|#$¥=|11,/14], as predicted by Eq27). the relaxation effects were found from the calculations

Concerning the time-dependent problem, the importanshown in Fig. 7 of this reference. The valug,. used was
time scale in the present contextigyiss. the shortest time based on the estimat® =T/R€*,*® with R=1 MQ at T
in which an operation can be performed adiabatically. This=40 mK.
time is relevant with respect to decoherence and relaxation It is evident, as exemplified by the latter formula, that a
effects, since the operation must take place in a time shoriecessary and—less evident—perhaps also a sufficient condi-
compared to decoherence and relaxation times. An estimat®n for quantum behavior of the system is a low classical
for 7,4iap fOr the NOT operationt® gives dissipation. In the present context this implies a large value
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/fdec Erelax 10—
1.0f T Q
= ground state
=
5 0.8 T
3
ng 0.61 1 Q=Q,exp(B/T)
= - | Q,=35.37x1.29
15 0.4 10°} B=(15.45 + 0.85)K]
1) . \ . \ \ \
‘q-) 0.2r . b 0.24 0.26 0.28 0.30 0.32 0.34 0.36
E " excited state TYK
= oot e 4
' = ' o ! 5 : M ' 3 FIG. 4. Q factor as a function of the inverse of the temperature
10 10 10 10 10 obtained by switching flux measuremerfRef. 24. Q increases
Tsweep(s) exponentially with decreasing temperature, following the exponen-

tial law Q=Q,e®T, with Q,=35.37 andB=15.45 K. This behav-

ior shows a strongly decreasing dissipation with temperature, and
that the dissipation mechanism is essentially due to the tunneling of
thermally activated quasiparticles in the Josephson junction.

FIG. 3. The probability of inversion as a function of sweep time.
The inversion probability is one until the sweep time approache
Tgec, then it falls to about 0.5. Whemg,c,is increased toward
Trelax @nd greater, the system always ends in the lowest state, so the
inversion probablllty is one if the initial state is the ground State,ing qub|ts can be controlled by On_chip Superconducting
while it falls to zero for starting in the excited state. SQUID param-g|actronics. The coupling between the probe and the readout
eters used for the simulation wefl =1.2, the loop inductance  gygiem could be through a superconducting transformer.
=400 pH, the junction capacitan€z=0.1 pF, the effective resis- While the intrinsic dissipation can be considerably reduced
tanceR=1 M(), and the temperaturé=40 mK . .

at low temperatures as explained ab8v®a major cause of
. difficulty can be the spurious interaction of the qubit with
of R Therefore we present some experimental data on thig,aqout and control devices.
point, collected in the thermal regime for superconducting |, 5 good design, the readout device could be turned off
devices based on SQUID'. during the manipulation. The technology to control this cou-

In order to evalqate the d|SS|pat|o_n of our system, W?Pling may need to be developed, but could be reasonably
measured the transitions between adjacent flux states of the = : o8 . .
(f SQUID as a function of the external flug® . In the provided by stacked junctiors,or small double-junction

absence of noise, the escape from the metastable well woulac’p’19 interrupting the coupling transfqrmers. The coupling
occur at a critical value of the external flus®. Thermal IS then controlled by external current signals. A further pos-

noise induces transitions at random valuesgStt smaller ~ SiPility is the development of a fast switch using simple
than ¢°, whose probability distribution, namely?(¢*) single-flux quantum circuitry for switching the interaction on

26
was measured by standard “time fly technique,” as explainednd Off: ,
in the third reference listed in Ref. 9. In conclusion we have presented a general method for

By fitting the data forP versus ¢ with Kramers Studying the adiabatic evolution of a Hamiltonian describing

theory?® in the extremely low-damping limit, with, 1., and & multiqubit system, controlled by varying external param-
C independently measured, we can obtain the effective resigters. Detailed calculations were provided for a two-qubit
tanceR. We introduce a dimensionless parameé@er R, de-  Hamiltonian, whose eigenstates can be used as logical states
fined asQ=woRC, wherew, is the small oscillation fre- for a quantuncNoT gate. From the numerical analysis of the
quency. With decreasing temperatu@eis large, showing a stationary Schrdinger equation we obtained sets of param-
small dissipation at low temperatures. The plot of Fig. 4eters suitable to perform aNoT operation, and indicated
indicates an exponential increase Rfand using the mea- how a time-dependent study determines the limits for adia-
sured parameters we obtaR=22 k() at T=2.9 K. Thisis  batic evolution. Specializing to a definite physical system
encouraging if theD =T/R¢€* estimate is correct, where we involving SQUID’s, we identified reasonable values of the
needed 1 M) at T=40 mK. The exponential fit shows that parameters, estimated effects due to dissipation, and consid-
the effective resistand@ is determined by tunneling of ther- ered some points of system design.

mally activated quasiparticles, as expected when the external

noise has been filtered out and only the intrinsic dissipation
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