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Adiabatic evolution of a coupled-qubit Hamiltonian
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We present a general method for studying coupled qubits driven by adiabatically changing external
parameters. Extended calculations are provided for a two-bit Hamiltonian whose eigenstates can be used
as logical states for a quantumCNOT gate. From a numerical analysis of the stationary Schro¨dinger equation we
find a set of parameters suitable for representingCNOT, while from a time-dependent study
the conditions for adiabatic evolution are determined. Specializing to a concrete physical system involving
superconducting quantum interference devices~SQUID’s!, we determine reasonable parameters for experimen-
tal purposes. The dissipation for SQUID’s is discussed by fitting experimental data. The low dissipation
obtained supports the idea that adiabatic operations could be performed on a time scale shorter than
the decoherence time.
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I. INTRODUCTION

The basic elements for processing quantum informa
~e.g., to perform quantum computation1! are quantum bits
~qubits!, namely, two-level systems exhibiting quantum c
herence between the states, quantum register~arrays of qu-
bits!, and quantum gates.2 Computations are performed b
the creation of quantum superpositions of the qubits and
controlled entanglement of the information on the qubit3

The main goal of any physical implementation of a quant
information-processing device is therefore to control syste
of coupled qubit with a phase-coherence time long enoug
permit the necessary manipulations. Various physical s
tems have been proposed for the physical implementatio
qubits, including photons,4 trapped ions,5 spins in nuclear
magnetic resonance~NMR!,6 electrodynamics cavities,7 and
semiconductor quantum dots,8 to mention some of the mos
popular. Other experiments and proposals focus on super
ducting Josephson devices, where almost macroscopic~me-
soscopic! devices such as Josephson junctions,9 supercon-
ducting quantum interference devices~SQUID’s!,10 or
Cooper pair boxes,11 that is, devices fabricated in condense
matter physics, are brought to behave quantum mechanic
These devices promise certain advantages such as large
integration and fabrication as well as ease of integration w
conventional electronics. To manipulate qubits quant
gates are necessary, that is, logic devices capable of op
ing on linear combinations of input states.

Among the possible mechanisms for manipulati
coupled qubits, adiabatic procedures12 are of special interest
Quantum adiabatic evolution provides a natural framew
for solving combinatorial search problems on quant
computers.13 Any problem which can be recast as the min
mization of an energy function~which can then be converte
0163-1829/2003/68~22!/224508~7!/$20.00 68 2245
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into a quantum Hamiltonian! can potentially be solved by
adiabatic quantum computation. General problems have b
treated numerically, and studies of a set of exact cover
stances designed to be hard have shown polynomial beha
out to instances containing as many as 20 bits.14 Whereas a
conventional quantum algorithm is implemented as a
quence of discrete unitary transformations that form a qu
tum circuit involving many energy levels of the compute
the adiabatic algorithm works by keeping the state of
quantum computer close to the instantaneous ground sta
a Hamiltonian that varies continuously in time. Therefore,
imperfect quantum computer implementing a conventio
quantum algorithm might experience different sorts of err
than an imperfect adiabatic quantum computer. In fact,
adiabatic quantum computer has an inherent robustn
against errors that might enhance the usefulness of the a
batic approach.15 Local operations on single qubits~such as
NOT16! or two coupled qubits~such as the adiabaticall
controlledCNOT gate we shall discuss17,18! are also possible
where adiabatic operations take place as a sequence of
crete transformations acting on a few qubits at a time. In t
line it is important to study a possible tradeoff between
advantages of error reduction due to adiabatic evolution
the longer times required for gate operations.

In this paper we will explain some general principles f
studying adiabatic SQUID qubit operations focusing partic
larly on aCNOT gate, and present numerical calculations r
evant to the behavior and design of such systems.

II. COUPLED-QUBIT HAMILTONIAN

In discussing coherence properties of the SQUID un
adiabatic inversion, we have suggested its interest for
©2003 The American Physical Society08-1
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elements of the ‘‘quantum computer.’’16 The single-bitNOT

operation can be realized by adiabatic inversion. The n
most complicated operation is the two-bit operationCNOT,
with which a computer may, in principle, be constructe
CNOT is a two-qubit operation and we will try to represent
by two interacting double-potential well systems. Quali
tively, we will use the procedure of performing an adiaba
NOT on the first qubit while trying to influence its behavio
by the state of the second. We will find a region of parame
space where this works.

In the one-dimensional or one SQUID problem one ha
Schrödinger equation in the variableF with a kinetic term
and the potential term,

U5
~F2Fext!2

2L
2

I cF0

2p
cos~2pF/F0!, ~1!

which for smallF yields a double-well potential.I c and L
are the Josephson critical current and the inductance of
superconducting ring, respectively, whileFext is an applied
external flux. WhenFext is swept slowly as a function o
time, as explained in Ref. 16, an adiabatic inversion or le
crossing can be induced, amounting to a realization of
NOT operation. If the state is originally in the left potenti
well it is transferred to the right well and vice versa, impl
ing a reversal of the current direction in the superconduc
ring.

We now wish to investigate this idea of quantum ga
generated by adiabatic transformations to systems of m
than one variable, in particular for the two variableCNOT

operation. Although we are only concerned here with t
SQUID’s, we briefly indicate a method valid for many q
bits. The equation for an array of underdamped flux-linked
SQUID’s is

F2Fext5Li . ~2!

In this equationF and i are meant as column vecto
representing all the fluxesF j and currentsi j in the j th rf
SQUID loop,Fext is the column vector corresponding to th
external fluxes, whileL is a matrix representing the self an
mutual inductances. The currenti j in j th ring is expressed in
terms of the capacitanceCj and the superconducting Josep
son currentI j :

i j52CjF̈ j2
1

R
Ḟ j2I j

csinF j

2p

F0
, ~3!

where F05hc/2e5231027 G cm2 is the superconducting
flux quantum andR is the effective resistance of the junctio

An important property ofL, by the reciprocity of mutual
inductances, is thatL is a symmetric matrix. As we needi for
the linear homogeneous system of Eq.~3!, we invertL:

i 5L21~F2Fext!. ~4!

SinceL is symmetric,L21 is also symmetric. Neglecting
the dissipative term, we now have Eq.~3! as
22450
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L jk
21~F2Fext!k2I j

c sinF j

2p

F0
5CjF̈ j ~5!

that can be written as

2
]U

]F j
5CjF̈ j ~6!

by introducing the potential

U5
1

2 (
j ,k

L jk
21~F2Fext!k~F2Fext! j

2S F0

2p DS j I j
c cosF j

2p

F0
. ~7!

Finally, switching to the reduced dimensionless flux va
ablef5F(2p/F0) the last two equations become

2
]U

]f j
5S F0

2p D 2

Cj f̈ j , ~8!

U5S F0

2p D 2 1

2 (
j ,k

L jk
21~f2fext!k~f2fext! j

2S F0

2p DS j I j
c cosf j . ~9!

To make this situation look more symmetric, we follo
recent practice and introduce the shiftsf→f1p, fext

→fext1p, which move the maximum of the cosf term to
f50.19 This does not affect the quadratic term, but it mu
be kept in mind thatfext50 now corresponds to a nonzer
applied field. We thus have finally

U→U5S F0

2p D 2 1

2 (
j ,k

L jk
21~f2fext!k~f2fext! j

1S F0

2p DS j I j
ccosf j , ~10!

where henceforth we use the shifted variables.

A. Two variables

We now specialize to two SQUID’s, called 1 and 2, wi
variablesf1 ,f2. In the absence of mutual inductance, ea
one can be thought of as a qubit, whose dynamics is
scribed by a double-well potential. ForCNOT we shall think
of f1 as the target bit andf2 as the control bit. We shal
apply a sweeping fluxf1

ext and would like that this sweeping
flux induce an adiabatic inversion if the control bit isu1&
~e.g., current flowing clockwise in SQUID 2!, and not induce
this inversion if the control bit isu0& ~current flowing in the
opposite direction in SQUID 2!.

For the two-variable system the matrixL5(L12 L2

L1 L12) can be

inverted, giving
8-2
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L215
1

L1L22L12
2 S L2 2L12

2L12 L1
D . ~11!

L12, the mutual inductance between the two rings, co
be controlled experimentally by a further device with J
sephson junctions20 and switched off for convenience in pe
forming other operations.

Writing out U we obtain

U5S F0

2p D 2 1

2

1

L1L22L12
2 @L2~f12f1

ext!21L1~f22f2
ext!2

22L12~f12f1
ext!~f22f2

ext!#1S F0

2p D I 1
c cosf1

1S F0

2p D I 2
c cosf2 . ~12!

Let us first look at this potential with thefext zero, and
imagine varyingf1 at fixedf2. For L1250, we would sim-
ply have the usual symmetric double-potential well forf1.
Now as L12 is turned on, a tilt is introduced into thisf1
potential. A coupling term;L12f1f2 is added providing a
bias in the potential forf1, so that the double well is asym
metric even thoughf1

ext50. The direction of this bias de
pends on whetherf2 is positive or negative.

If we think of f2 as essentially fixed, and now suppo
sweepingf1

ext , we see that this sweep will either increa
the asymmetry present in the double well, or decrease i
the wells are caused to be further separated, we have
inversion, if the wells are brought together and cross, we
have an inversion and a ‘‘NOT.’’ Which case occurs will de-
pend on the sign off2. The condition forCNOT is accom-
plished: according to the state off2, an inversion takes plac
or does not take place in thef1 variable.

The discussion is more convenient if we introduce dim
sionless parameters

1

L
5A L1L2

L1L22L12
2 , b15

2p

F0

LI 1
c , b25

2p

F0

LI 2
c ,

~13!

as well as the dimensionless inductances

l 15
L1

AL1L2

, l 25
L2

AL1L2

, l 125
L12

AL1L2

. ~14!

We may then write Eq.~12! as

U5S F0

2p D 2 1

L H 1

2
@ l 1~f12f1

ext!21 l 2~f22f2
ext!222l 12~f2

2f2
ext!~f12f1

ext!#1b1 cosf11b2 cosf2J . ~15!

With this potential the Schro¨dinger equation for the wave
function c(f1 ,f2 ,t) is
22450
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i ċ5Hc ~16!

with Hamiltonian

H5
21

2C1S f0

2p D 2

]2

]f1
2 1

21

2C2S f0

2p D 2

]2

]f2
2 1U. ~17!

Introducing

C5AC1C2 ~18!

as the typical capacitance, and defining the energy scale

E051/ALC ~19!

H can be cast in the form of an energy times a dimension
Hamiltonian

H5E0H, ~20!

H5
21

2m1

]2

]f1
2 1

21

2m2

]2

]f2
2 1V ~21!

with

V5V0H 1

2
@ l 1~f12f1

ext!21 l 2~f22f2
ext!222l 12~f22f2

ext!

3~f12f1
ext!#1b1 cosf11b2 cosf2J , ~22!

and the dimensionless parameters

m15C1E0S F0

2p D 2

, m25C2E0S F0

2p D 2

,

V05AC/LS F0

2p D 2

. ~23!

Figure 1 shows the equipotential contours ofV(f1 ,f2),
with its four potential wells.

FIG. 1. ~Color online! Potential as in Eq~22!, with its four
wells. The coordinatef1 ~target bit! runs horizontally andf2 ~con-
trol bit! vertically.
8-3
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We use natural units:\51, c51, e2/\c51/137, thus
F05hc/2e5pA137, and (F0/2p)25137/4534.3; also
Afarad/henry530. Using these values

m1'1030AS C1

C2
D 1/2 C1 /pF

L/pH
,

m2'1030AS C2

C1
D 1/2 C2 /pF

L/pH
, V0'1030AC/pF

L/pH
.

~24!

Note that these parameters are not all independent, a
following relation exists:

Am1m25V0 . ~25!

That is, the three basic dimensional quantitiesC1 , C2,
and L have been exchanged for two dimensionless par
eters and the overall energy scaleE0.

III. CNOT BY ADIABATIC INVERSION

With SQUID qubits, the logical states are the flux sta
of the superconducting rings~with one qubitu0& or u1&, with
two qubitsu0&u1&, u1&u1&, and so forth!, whereas the Hamil-
tonian eigenstates are in general a linear combination
them. In case of two coupled qubits to formCNOT, each
logical state of the gate will be represented by a wave fu
tion localized in one of the four distinct minima of the p
tential of Eq.~22!. The four states can be labeled as 1,2,
and placed in a tableau of the kind (1 2

4 3), where the locations
refer to Fig. 1. That is, in the tableau the positions of t
numbers indicate in which well of Fig 1 the state is localiz
while the numbers themselves indicate which energy eig
state is meant. The lowest-energy eigenstate is ‘‘1,’’ and
highest of the four first states ‘‘4.’’

A CNOT operation is defined by the following condition
~A! the control bit does not change its state and~B! the target
bit is reversed or not reversed, according to whether the c
trol bit is u1& or u0&. In the tableau representation, a physic
embodiment ofCNOT would be

S 4 3

1 2D→S 4 3

2 1D . ~26!

Condition ~A! on the stability of the control bit is exhib
ited in that no states move between the top and bottom r
Condition B! is realized in that the top row remains u
changed while the bottom row is ‘‘flipped.’’

Realization of operations such as Eq.~26! can be accom-
plished by using adiabatic processes, thanks to the ‘‘no le
crossing’’ behavior of adiabatic evolution. The no-crossi
property assures that a state initially in the first, or second
third, . . . energy level will end up in the first, or second,
third, . . . energy level after the adiabatic evolution, while
the same time the logical state associated with the level
be changing.

One can proceed as follows. We first search for an ini
Hamiltonian whose variable external parameters (f1

ext,f2
ext)
22450
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are adjusted to give the first four energy eigenstates local
in the four different minima of Fig. 1. Then, we search for
final Hamiltonian where another set of (f1

ext,f2
ext) gives the

tableau on the right of Eq.~26!. In this procedure we need
only to study thestationary Schrödinger equation at first.
After having determined some suitable parameter sets,
shall also study the full time-dependent Schro¨dinger equation
to determine what sweep speed is ‘‘slow’’ in order to gua
antee adiabatic behavior.

For the present paper we defer a detailed discussion o
phases the states acquire during the time evolution. Th
phases contain dynamic and geometric contributions21 and
they themselves can be used for quantum informat
processes.22 For a given set of parameters and sweep con
tions the phases can of course be calculated explicitly an
no way affect the general applicability of the results a
procedures presented here. Calculations of phases wil
reported upon in future work.

We obtain23 the switching behavior according to Eq.~26!
by fixing the control biasf2

ext at a relatively high value,
while an adiabatic sweep of the target biasf1

ext occurs. This
is a generalization of aNOT ~Ref. 16! on f1. The presence of
the l 12 coupling produces an extra bias on the target
which ‘‘helps or hinders’’ theNOT operation. The relatively
large bias onf2 comes from condition~A!: we attempt to
‘‘immobilize’’ the control bit despite the perturbations com
municated by the sweep off1

ext via l 12. We therefore inves-
tigate the regionuf1

extu!uf2
extu. If f2 is indeed successfully

immobilized, it will be fixed in one of its two potential wells
and can have only the valuesf2'61. As seen byf1, these
two states amount to an extra bias which is added or s
tracted tof1

ext . To linear order~since we take allf1
ext,f2

ext

small compared to 1 andf1 ,f2 are in the neighborhood o
1! and introducing the notationf1 e f f

ext 5f1
ext6 l 12/ l 1 the po-

tential terms involvingf1 in Eq. ~22! become

22l 1f1f1
ext22l 12f1~61!522l 1f1S f1

ext6
l 12

l 1
D

522l 1f1f1 e f f
ext , ~27!

so that there is an effective shift in the external bias onf1 by
(6 l 12/ l 1). According to Eq. ~27! the bias condition for
switching from one tableau to another is given byuf1

extu
5 l 12/ l 1.

By a numerical study where we find essentially exact
lutions of the Schr’´odinger equation for our potential, w
find that there is indeed a region off1

ext,f2
ext plane where

the eigenstates of Eq.~21! are well defined and behave as
this description. These regions are shown in the gray area
Figs. 2~a! and 2~b!. By well defined we mean that the expe
tation values off1 ,f2 are at the location of one of the well
'(61,61), that only one of the first four levels is so loca
ized, and finally that the dispersion of each coordin
A^f2&2^f&2 is small compared to the expectation value
f, which itself is in the neighborhood of 1. For the cases
present here, the ratio of the dispersion to the expecta
value was in the vicinity of 0.3.
8-4
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We find that the three different gray areas of Fig. 2~a! and
2~b! have well-defined tableaux as follows:

S 3 4

1 2D , S 4 3

1 2D , S 4 3

2 1D , ~28!

for the intermediate gray region~left!, the darkest region
~center!, and the light gray region~right!, respectively. On
the order of 10–20 points were used to determine the bou
aries in the figures. These tableaux fit with the descript
arrived at in the ‘‘immobilization’’ model, where either th
top or bottom row inverts as we go from the central region
large uf1

extu. Hence a sweep from the central region to t
right region will produce the desired mapping of Eq.~26!.
Similarly sweeping from the right region to the center a
from the left region to the central region and vice versa c
also serve as realizations, differing simply in the assignm
of ~0,1! for the bits or the names~1,2! for the SQUID’s. Note
that the switch between tableaux occurs quite close
uf1

extu5u l 12/ l 1u, as predicted by Eq.~27!.
Concerning the time-dependent problem, the import

time scale in the present context istadiab , the shortest time
in which an operation can be performed adiabatically. T
time is relevant with respect to decoherence and relaxa
effects, since the operation must take place in a time s
compared to decoherence and relaxation times. An estim
for tadiab for the NOT operation16 gives

FIG. 2. ~a! A region of thef1
ext,f2

ext plane with a well-defined
set of wave functions as explained in the text. The coupling par
eter is l 1250.0005, The other parameters arel 15 l 251, b15b2

51.19, m15m25V0516.3. ~b! As in ~a! with coupling parameter
l 1250.005.
22450
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tadiab5ev tunnel
22 5etosc

2 , ~29!

where e is the asymmetry of the potential andv tunnel
21

5tosc the inverse tunneling energy or oscillation time b
tween the two states. Since here we also perform a kind
NOT, we expect a similar relation to hold, wherev tunnel or
tosc

21 is the smallest level splitting during the adiabatic pa
sage ande may be read off as the energy shift of the wells
the beginning and end of our sweep. A set of reasona
SQUID parameters for CNOT are L15300 pH, L2

5280 pH, L1251.8 pH, C15C250.1 pF, and I 1
c5I 2

c

51.45mA. Since in frequency units E0

'@1/AL/pH C/pF 1000# GHz these values giveE0
'185 GHz andtadiab'2.731029 s. Preliminary results are
in agreement with this estimate,18 and the question will be
studied in more detail in further numerical work.

IV. IMPLEMENTATION

A. Dissipation

As with all discussions of quantum computation, the im
portant open questions concern dissipative effects. Thes
clude the decoherence timetdec, or its inverse the decoher
ence rateD, as well as relaxation processes, represented
time t relax .

These will affect adiabatic processes as we can see
examining the inversion orNOT process for a single qubit
With an increasing loss of phase coherence as caused bD,
we expect the situation to become more and more ‘‘cla
cal’’ and finally, when D is very large, the inversion is
inhibited.16 Furthermore, after the inversion is complete
there will be some tendency of the upper-energy state
relax to the lower-energy state.

We illustrate these effects in Fig. 3 where we show t
probablity for an inversion as a function of sweep tim
tsweeep. Note that the times involved are much longer th
the above estimate for the adiabatic time of 2.731029 s, so
the adiabatic condition should be satisfied. Starting at
left, we see that the probability of inversion is one un
tsweepapproachestdec. For tsweepmuch longer thantdec it
falls to 0.5, the ‘‘decohered’’ limit. For longer times, a
tsweepapproaches and passest relax , the final result depends
on which state we started with. Evidently in this limit w
will always end up in the ground state, so the inversion pr
ability is one if we started with the ground state~solid line!
and zero if we started in the excited state~dotted line!.

The times used weretdec50.2 ms and t relax50.2 ms.
The early part of the curve was found using the plots in F
5 of the second part of Ref. 16 with this value oftdec, while
the relaxation effects were found from the calculatio
shown in Fig. 7 of this reference. The valuetdec used was
based on the estimateD5T/Re2,16 with R51 MV at T
540 mK.

It is evident, as exemplified by the latter formula, that
necessary and–less evident–perhaps also a sufficient c
tion for quantum behavior of the system is a low classi
dissipation. In the present context this implies a large va

-
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of R. Therefore we present some experimental data on
point, collected in the thermal regime for superconduct
devices based on SQUID’s.24

In order to evaluate the dissipation of our system,
measured the transitions between adjacent flux states o
rf SQUID as a function of the external fluxfext. In the
absence of noise, the escape from the metastable well w
occur at a critical value of the external fluxfc. Thermal
noise induces transitions at random values offext smaller
than fc, whose probability distribution, namely,P(fext)
was measured by standard ‘‘time fly technique,’’ as explain
in the third reference listed in Ref. 9.

By fitting the data for P versus fext with Kramers
theory25 in the extremely low-damping limit, withL, I c , and
C independently measured, we can obtain the effective re
tanceR. We introduce a dimensionless parameterQ;R, de-
fined asQ5v0RC, wherev0 is the small oscillation fre-
quency. With decreasing temperatureQ is large, showing a
small dissipation at low temperatures. The plot of Fig.
indicates an exponential increase ofR, and using the mea
sured parameters we obtainR522 kV at T52.9 K. This is
encouraging if theD5T/Re2 estimate is correct, where w
needed 1 MV at T540 mK. The exponential fit shows tha
the effective resistanceR is determined by tunneling of ther
mally activated quasiparticles, as expected when the exte
noise has been filtered out and only the intrinsic dissipa
acts.

B. System design

On-chip integrated dc SQUID’s can be used to read
the flux states,10 while the manipulation of the superconduc

FIG. 3. The probability of inversion as a function of sweep tim
The inversion probability is one until the sweep time approac
tdec, then it falls to about 0.5. Whentsweep is increased toward
t relax and greater, the system always ends in the lowest state, s
inversion probability is one if the initial state is the ground sta
while it falls to zero for starting in the excited state. SQUID para
eters used for the simulation werebL51.2, the loop inductanceL
5400 pH, the junction capacitanceC50.1 pF, the effective resis
tanceR51 MV, and the temperatureT540 mK
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ing qubits can be controlled by on-chip superconduct
electronics. The coupling between the probe and the rea
system could be through a superconducting transform
While the intrinsic dissipation can be considerably reduc
at low temperatures as explained above,9,10 a major cause of
difficulty can be the spurious interaction of the qubit wi
readout and control devices.

In a good design, the readout device could be turned
during the manipulation. The technology to control this co
pling may need to be developed, but could be reasona
provided by stacked junctions,20 or small double-junction
loop,19 interrupting the coupling transformers. The couplin
is then controlled by external current signals. A further po
sibility is the development of a fast switch using simp
single-flux quantum circuitry for switching the interaction o
and off.26

In conclusion we have presented a general method
studying the adiabatic evolution of a Hamiltonian describi
a multiqubit system, controlled by varying external para
eters. Detailed calculations were provided for a two-qu
Hamiltonian, whose eigenstates can be used as logical s
for a quantumCNOT gate. From the numerical analysis of th
stationary Schro¨dinger equation we obtained sets of para
eters suitable to perform aCNOT operation, and indicated
how a time-dependent study determines the limits for ad
batic evolution. Specializing to a definite physical syste
involving SQUID’s, we identified reasonable values of t
parameters, estimated effects due to dissipation, and con
ered some points of system design.
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FIG. 4. Q factor as a function of the inverse of the temperatu
obtained by switching flux measurements~Ref. 24!. Q increases
exponentially with decreasing temperature, following the expon
tial law Q5Q0eB/T, with Q0535.37 andB515.45 K. This behav-
ior shows a strongly decreasing dissipation with temperature,
that the dissipation mechanism is essentially due to the tunnelin
thermally activated quasiparticles in the Josephson junction.
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