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Dynamic Hubbard model: Effect of finite boson frequency
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Dynamic Hubbard models describe coupling of a boson degree of freedom to the on-site electronic double
occupancy. In the limit of infinite boson frequency this coupling gives rise to a correlated hopping term in the
effective Hamiltonian and to superconductivity when the Fermi level is near the top of the band. Here we study
the effect of finite boson frequency through a generalized Lang-Firsov transformation and a high-frequency
expansion. It is found that finite frequency enhances the tendency to superconductivity in this model.

DOI: 10.1103/PhysRevB.68.224507 PACS number~s!: 74.20.Mn, 71.10.Fd, 71.10.2w
s
ifie
s
r
d
th
es
ic
ou
o
-

hi
er
ni
te

no
ro

i
b
c

ha

at

u-
e
e

av

,
is

bor

in
e

of
l in-
ely it
indi-
ng
-
nd
ing

lds

he
l in-
tem
r
is
ns-

n
tic
I. INTRODUCTION

An attempt to understand electron-electron interaction
solids over the last few decades has focused on simpl
models which single out, for example, on-site or neare
neighbor Coulombic interactions. While it is usually unde
stood that the parameters that are required in these mo
are not ‘‘bare’’ parameters, it is often tacitly assumed that
omitted physics can be recovered by simply modifying th
parameters to effectively incorporate the missing phys
However, the notion that this procedure may in fact leave
much of the interesting physics has been emphasized by
of us recently,1 and a new class of model Hamiltonians, ‘‘dy
namic Hubbard models,’’ was introduced to remedy t
difficulty.1–4 These Hamiltonians describe an essential diff
ence between the empty and the doubly occupied Wan
orbital, that the former is representable by a single Sla
determinant and the latter one is not. This difference is
described by the conventional models and leads to elect
hole asymmetry and to an unconventional mechanism
superconductivity.5

In this paper we focus attention on one particular dynam
Hubbard model, which introduces a modulation of the Hu
bardU by coupling the electron double occupancy to a fi
titious local boson displacement. The site Hamiltonian t
describes this model is given by1

Hi5
pi

2

2M
1

1

2
Kqi

21~U1aqi !ni↑ni↓ , ~1!

where the boson is characterized by an Einstein oscill
with massM and spring constantK. The displacement of the
local oscillatorqi is coupled to the electron double occ
pancy with coupling constanta, and as a consequence th
on-site repulsionU1aqi becomes a dynamical variable. Th
Hamiltonian in electron representation is given by

H5v0(
i

ai
†ai2t(

id
s

~cis
† ci 1ds1ci 1ds

† cis!2m(
is

nis

1(
i

@U1gv0~ai1ai
†!#ni↑ni↓ , ~2!

wherecis
† is an electron creation operator for sitei and spin

s, nis is the corresponding number operator and we h
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introduced the boson creation and annihilation operatorsai
†

and ai , respectively. The Einstein oscillator frequency
v0[(K/M )1/2 andg[a/(2Kv0)1/2. In addition we have in-
troduced the electron kinetic energy, with nearest-neigh
hopping amplitudet and chemical potentialm. Finally, U
describes the static electron-electron repulsion.

Treating the four-fermion term involving the boson
mean field leads to a model with ordinary Holstein-lik
electron-boson coupling,

Hel2b5g~n!v0~ai
†1ai !~ni↑1ni↓!, ~3!

g~n!5
n

2
g, ~4!

where the coupling constantg(n) increases with electron
occupation and is maximum for the Fermi level at the top
the band. Hence the quasiparticle dressing in this mode
creases as the Fermi level rises in the band, and convers
decreases as the system is doped with holes. There are
cations in the highTc cuprates that the quasiparticle dressi
decreases with hole doping6 and this is one of the motiva
tions to study this Hamiltonian. However to fully understa
the physics of this model the mean-field decoupling lead
to Eqs.~3! and ~4! is certainly inappropriate.

We study the Hamiltonian, Eq.~2!, in hole rather than
electron representation. A particle-hole transformation yie
in addition a Holstein-like coupling

H5v0(
i

ai
†ai2t(

id
s

~cis
† ci 1ds1ci 1ds

† cis!2m(
is

nis

2gv0(
is

~ai1ai
†!nis1(

i
@U1gv0~ai1ai

†!#ni↑ni↓ ,

~5!

where nowcis
† andnis are the hole creation operator and t

hole number operator, respectively. One of the essentia
gredients of this and other similar models is that the sys
is inherently not electron-hole symmetric. This is clea
within the Hartree approximation, but the asymmetry
best revealed through a generalized Lang-Firsov tra
formation.1,7,8

In the following section we perform this transformatio
and derive a Migdal-like expansion valid in the antiadiaba
©2003 The American Physical Society07-1
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limit, which allows us to study corrections due to finite b
son frequency. While the antiadiabatic limit is very we
understood,5 the effect of noninfinite boson frequency~retar-
dation! is not. The purpose of this paper is to address t
question which is of fundamental importance because d
vation of the model from first principles necessarily leads
finite boson frequency.2 The expansion is performed to firs
order in inverse boson frequency, and the impact on su
conductivity is determined. We find that retardation increa
Tc at all hole densities, and increases the range of hole d
sities over which superconductivity occurs. This is in qua
tative agreement with a previous study3 which determined
the effective pairing interaction for two holes within a pse
dospin model on small clusters. That study found an
creased attractive interaction due to retardation as well.

II. GENERALIZED LANG-FIRSOV TRANSFORMATION

We use the transformation

H̃5eGHe2G, ~6!

where8

G5(
i

g~ai2ai
†!~ni↑1ni↓2ni↑ni↓!. ~7!

The usual Lang-Firsov transformation serves to diagona
the nonhopping part of standard electron-phonon Hami
nians. In contrast, here the ‘‘dressing’’ operatorsXis @see Eq.
~9! below# depend on fermion occupation number: the hole
dressed~undressed! if there is not~is! other hole of opposite
spin at the site.

Application of Eq.~6! results in

H̃5v0(
i

ai
†ai2m0(

is
nis1Ueff(

i
ni↑ni↓

2t(
id
s

~Xis
† Xi 1dscis

† ci 1ds1H.c.!, ~8!

whereUeff[U2v0g2, m0[m1v0g2, and

Xis
† [exp@g~ai2ai

†!~12ni 2s!# ~9!

dresses the hole-hopping amplitudes. These operators ar
pendent on both the oscillator and hole degrees of freed

Equation~8! leads to a low-energy Hamiltonian for th
hole degrees of freedom if the ground-state expectation v
is taken with respect to the oscillator degrees of freedo
Following Ref. 1, we find

H̃'2 t̃ 0(
id
s

~cis
† ci 1ds1H.c.!2m0(

is
nis1Ueff(

i
ni↑ni↓

2Dt(
id
s

~cis
† ci 1ds1H.c.!~ni 2s1ni 1d2s!, ~10!

where
22450
is
ri-
o

r-
s
n-
-

-
-

e
-

s

de-
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.

t̃ 0[te2g2
~11!

and

Dt[te2g2
~eg2/221!. ~12!

Equation~10! is the effective quasiparticle Hamiltonian stu
ied in Ref. 5. This model is known to lead to supercondu
tivity at low hole dopings, and to characteristic properti
related to ‘‘undressing’’ phenomenology.8 The effective
single hole hopping

t̃ ~n!5 t̃ 01nDt ~13!

is an increasing function of hole doping, and so is the eff
tive hole bandwidth.

Based on previous studies,5 superconductivity~and in fact
pair binding! occurs in the model in Eq.~8! in the antiadia-
batic limit. We wish to answer the question: will superco
ductivity occur more or less readily with retardation, i.e
away from the antiadiabatic limit? To this end, we use p
turbation theory following the generalized Lang-Firso
transformation. That is, we note that the operatorXis

† can be
written as

Xis
† 5ni 2s1~12ni 2s!exp@g~ai2ai

†!#

5ni 2s1~12ni 2s!e2g2/2e2gai
†
egai

'ni 2s1~12ni 2s!e2g2/2@11g~ai2ai
†!#, ~14!

and similarly forXis . In the last line of Eq.~14! we have
expanded the exponential to first order in the oscillator m
mentum ~or, equivalently, the displacement!. To put terms
involving the linear oscillator operators into ‘‘standard’’ form
~with the oscillator displacement rather than the momentu!,
we utilize the canonical transformation

ai→2 iai

ai
†→ iai

† . ~15!

Finally, Fourier transforming all the operators to momentu
space, using a Hartree-Fock approximation and retain
only the reduced part of the Hamiltonian, we obtain

H̃5v0(
q

aq
†aq1(

ks
~ ẽk2m̃0!cks

† cks

1
1

N (
kk8

FUeff12
Dt

t̃ 01nDt
~ ẽk1 ẽk8!G

3ck↑
† c2k↓

† c2k8↓ck8↑

1
1

AN
(
kk8
s

gkk8~ak2k81a2(k2k8)
†

!cks
† ck8s , ~16!

where

ẽk522~ t̃ 01nDt !(
d

cos~kd!, ~17!
7-2
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t̃ 05te2g2
, ~18!

Dt5 t̃ 0~eg2/221!, ~19!

Ueff5U2v0g2 ~20!

m̃05m1v0g22Ueffn/2, ~21!

and

gkk8[ ig
t̃ 0~12n/2!1nDt/2

t̃ 01nDt
~ ẽk2 ẽk8!. ~22!

Note that we have included Hartree corrections already in
hopping and chemical potential terms; these are not to
included again when treating the Hamiltonian~16!. The cor-
rection to the hole-hopping matrix element in particular lea
to a wider bandwidthD̃ for increasing number of holes in th
band.

III. ELIASHBERG-LIKE APPROXIMATION FOR HIGH
BOSON FREQUENCIES

Equation~16! looks like a standard Hamiltonian with lin
ear electron-phonon coupling. One can determine its pro
ties with the Migdal-Eliashberg approximation. Omitting th
detailed steps in the derivation, the final result is

f~k,ivm!5
1

Nb (
k8,m8

S 2v0g2k82kgk8k

v0
21~vm2vm8!

2
2Vkk8D

3
f~k8,ivm8!

E~k8,ivm8!
, ~23!

S~k,ivm!5
1

Nb (
k8,m8

S 2v0gk8kgkk8

v0
21~vm2vm8!

2D
3

G̃0
21~2k8,2 ivm8!

E~k8,ivm8!
, ~24!

wheref(k,ivm) and S(k,ivm) are the pairing and norma
self energies, respectively, and the denominatorE(k,ivm) is
given by

E~k,ivm![G̃0
21~k,ivm!G̃0

21~2k,2 ivm!1f2~k,ivm!
~25!

with

G̃0
21~k,ivm![ ivm2~ ẽk2m̃0!2S~k,ivm!. ~26!

These equations are standard Eliashberg equations,
ivm[ ipT(2m21) a fermion Matsubara frequency,b
[1/(kBT) the inverse temperature, andN the number of lat-
tice sites. The direct electron-electron interaction is given

Vkk85Ueff1
2Dt

t̃ 01nDt
~ ẽk1 ẽk8!. ~27!
22450
e
e

s
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y

It is also customary to write the normal self-energy in ter
of an odd and even~in Matsubara frequency! part

S~k,ivm![ ivm@12Z~k,ivm!#1x~k,ivm!, ~28!

which leads to three coupled equations instead of the
Eqs.~23! and ~24!. Note that the arguments of theg factors
in the kernels of Eqs.~23! and~24! are actually different, and
lead, in this case, to kernels with opposite signs in the pair
and normal equations. These equations also require an
iliary number equation

n5112Re
1

Nb

3(
k,m

G̃0
21~2k,2 ivm!

G̃0
21~k,ivm!G̃0

21~2k,2 ivm!1f2~k,ivm!
,

~29!

wheren is the hole number density.
These equations are most easily solved by noting

each unknown function can be decomposed into th
k-dependent pieces. For example,

f~k,ivm![f0~ ivm!1f1~ ivm!S 2
ẽk

D̃/2
D

1f2~ ivm!S ẽk

D̃/2
D 2

, ~30!

whereD̃[D̃(n)58( t̃ 01nDt) is then-dependent hole band
width. This makes the entire problem only slightly more d
ficult than the standard Eliashberg equations which req
iterative solution in Matsubara frequency space.9

Nonetheless, we need not solve these rather complic
equations to determine their properties for large boson
quencyv0. Equations~23! and ~24! contain a kernel of the
form

kkk8~ inn!52
D̃~n!

v0

v0
2

v0
21nn

2

g2

2 S t̃ 0~12n/2!1nDt/2

t̃ 01nDt
D 2

3S ẽk2 ẽk8

D̃~n!/2
D 2

, ~31!

whereinn[ i2pTn is a boson Matsubara frequency, and t
other variables have been previously defined. We have w
ten Eq. ~31! with an explicit prefactorD̃(n)/v0, which
shows that for infinite boson frequencyv0 all of the compli-
cations due to the electron-boson coupling can be igno
This leaves

Z~k,ivm!51,

x~k,ivm!50,
7-3
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f~k,ivm![f~k!52
1

Nb (
k8,m8

Vkk8

f~k8!

G̃0
21~k8,ivm8!G̃0

21~2k8,2 ivm8!1f2~k8!
, ~32!
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which is a straightforward BCS-like problem which has be
solved previously.5 The result is an extendeds-wave solution
for superconductivity at low hole densities. To understa
what happens for large but noninfinite boson frequencies,
adopt a standard approximation for Eliashberg theory, i.e
the kernel we assume that the boson frequency is m
larger than the other energy scales, so that it becomes i
pendent of Matsubara frequency. This allows us to neg
the normal channels, and focus on the gap equation10

f~k!5
1

Nb
D̃~n! (

k8,m8
F2k~n!S ẽk2 ẽk8

D̃~n!/2
D 2

2
Vkk8

D̃~n!
G f~k8!

vm8
2

1~ ẽk82m̃0!2
, ~33!

where

k~n![
D̃~n!

v0

g2

2 S t̃ 0~12n/2!1nDt/2

t̃ 01nDt
D 2

. ~34!

The Matsubara sum in this equation is readily performed

1

b (
m

D̃~n!/2

vm
2 1~ ẽk2m̃0!2

5
D̃~n!/2

2~ ẽk2m̃0!
@122 f ~ ẽk2m̃0!#

[F1~ ẽk!. ~35!

As noted already in Eq.~30!, the k dependence can be de
composed into a constant, a term proportional toẽk , and a
third term proportional toẽk

2 . The latter term is new, and
in
te

22450
n

d
e

in
ch
e-

ct

arises from the fact that a noninfinite boson frequency
used. More explicitly, if we use a constant electron density
states@g( ẽ)51/D̃, 2D̃/2, ẽ,D̃/2#, then we have

f~x!5E
21

1

dx8 @2k~n!~x21x82!12k~n!xx82k~x1x8!

2ueff#f~x8!F1~ ẽ8!, ~36!

whereueff[Ueff /D̃(n), k[8Dt/D̃(n), andx[ẽ/(D̃(n)/2),
and similarly for the primed quantities. Normally, positiv
components of the kernels contribute to pairing, and henc
Tc . For example, focusing on the antiadiabatic terms,ueff
clearly deters pairing, whereask will enhance pairing in the
energy range where holes dominate~negativeẽ and negative
ẽ8). At the same timek hurts pairing in the electron regim
~positiveẽ). Clearly the effect ofk(n) is helpful ~to pairing!
in the central term~and hence adds to the role ofk), and is
detrimental in the first term. However, a full solution is r
quired to determine the overall impact of a nonzerok(n)
@and hence noninfinitev0—see Eq.~34!#.11

IV. BCS-LIKE SOLUTION

A full solution to Eq.~36! is obtained by noting that

f~x!5a02a1x1a2x2. ~37!

Substitution of Eq.~37! into Eq.~36! leads to three homoge
neous equations, so thatTc is given by setting the following
333 determinant to zero
detS 11k~n!I 21uI02kI1 k~n!I 31uI12kI2 k~n!I 41uI22kI3

2kI022k~n!I 1 12kI122k~n!I 2 2kI222k~n!I 3

k~n!I 0 k~n!I 1 11k~n!I 2
D 50, ~38!
i-
where

I ,[E
2D̃(n)/2

D̃(n)/2
dẽS 2

ẽ

D̃~n!/2
D ,

122 f ~ ẽ2m̃0!

2~ ẽ2m̃0!
. ~39!

For the number equation we assume that all nonpairing
teractions are already taken into account in the parame
thus we obtain, for the chemical potential

m̃0

D̃~n!/2
52~12n!, ~40!
-
rs;

wheren is the hole density. The evaluation of the determ
nant, and the determination ofTc(n) is a tedious process; in
weak coupling, one can use the relations

I 05 lnS 1.13

kBTc

D̃~n!

2
An~22n! D ,

I 15r~ I 021!,

I 25r2I 01 1
2 2 3

2 r2,
7-4
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I 35r3I 01 1
2 r2 11

6 r3,

I 45r4I 01 1
4 1 1

2 r22 25
12 r4, ~41!

where r[12n. Weak coupling is accurate over a wid
range of parameters.12 The end result is

kBTc51.13
D̃~n!

2
An~22n!exp~2a/b!, ~42!

where

a511kr~21kr!2kr~2k22ur13kr2!1k2~29130r2

17r4!/122k3~329r2113r41r6!/12,

b5~k222u14kr1k2r2!/21k~3u13ur224kr3!/3

1k2~116r21r4!/42k3~929r2115r41r6!/36,

~43!

with k[k(n). Note that if only the coupling to the boso
was present, then, for small hole density,b/a'2k2 for k
!1. Thus the boson leads to an attractive interaction, in

FIG. 1. Tc vs hole dopingn. For these parametersg52.063, the

hole bandwidth at the top of the band isD̃50.2 eV, and the elec-
tron bandwidth at the bottom of the band isD514 eV. The quasi-
particle weight is one at the bottom of the band~electrons! and
0.014 at the top of the band~holes!. The boson frequencies ar
v0510 and 5 eV, which givesk050.043 andk050.085, respec-
tively.
22450
e-

pendent of the sign ofk, but Tc is unobservably small ifk
!1. However, ifTc already exists~through the presence o
the antiadiabatic terms, in this case!, then the enhancemen
due to the coupling to the boson~which, in this case, mean
a coupling at noninfinite frequency! can be substantial. This
nonlinear effect is merely due to the nature of the expon
tial function.

In Fig. 1 we plotTc versus hole densityn for parameter
valuesDt50.185 eV,Ueff55.0 eV, andt̃ 050.025 eV. The
justification for this choice of parameters is the followin
the value ofUe f f is within the generally accepted range; th
choice of a large valueDt/ t̃ 057.4 ~i.e., g;2) implies a
large dressing of the single hole in the normal state~mass
enhancement;70 in the underdoped regime! and a rapid
undressing as a function of hole concentration, as seen in
cuprates. The values ofDt and t̃ are then determined by
requiring that the maximumTc be of order of 100 K. As
shown in our previous work, Ref. 5, results for this mod
are not very sensitive to the precise choice of parameters
explore the effects of retardation, we show results forv0
5`, 10 eV and 5 eV. The explicitn dependence ofk(n) is
not significant, and is shown in Fig. 2, for a variety of p
rameter values~note; for Fig. 1,Dt/ t̃ 057.4). Figure 1 shows
that Tc is enhanced by retardation—asv0 decreases,k0
[k(n50) increases. It is also clear that the range of h
densities increases with increasing amount of retardation

Finally, we can compute the effective mass and quasip
ticle residue as a function of doping. These are obtained
two-step process. First, in the antiadiabatic limit (v0→`),
the effective mass ratio is given for low hole densities8 as

FIG. 2. k(n) vs hole dopingn from Eq. ~34!.
7-5
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FIG. 3. Effective mass~a! and quasiparticle residue~b! vs hole dopingn for several boson frequencies as indicated. As expected,
quasiparticle effective mass decreases as the situation becomes more electronlike; similarly the residue increases towards unity
both quantities have the same tendency, as is made clear by the dashed curve in~b!, where the inverse effective mass is plotted forv0

→`.
ce
o
d

lyt
io
cy

ies

t is
rticle
ntra-
ally

cts
hat

of
Ref.
maa* /m5
~11Dt/ t̃ 0!2

~11nDt/ t̃ 0!
~44!

and the quasiparticle residue is similarly given by8

zaa05

S 11
n

2
Dt/ t̃ 0D 2

~11Dt/ t̃ 0!2
. ~45!

Here zaa0 is the quasiparticle residue on the Fermi surfa
and the subscriptaa stands for the antiadiabatic limit. T
incorporate changes due to retardation effects, we procee
the usual fashion, and compute the real part of the ana
continuation to the real axis of the self-energy express
Eq. ~24!, in the normal state, and without self-consisten
~i.e., we omit the self-energy on the right-hand side!. Then

m*

m
5

maa*

m S 12av

11ak
D ~46!

and

z05
zaa0

12av
, ~47!

where
22450
,

in
ic
n,

av[
]S1

]v
~ẽk ,v1 id!uv50,ẽk5m̃0

~48!

and

ak[
]S1

]ẽk

~ ẽk ,v1 id!uv50,ẽk5m̃0
, ~49!

whereS1 is the real part of the self-energy. These quantit
are given by

av52k~n!@11~12n!2# ~50!

and

ak5k~n!@11~12n!2#. ~51!

The effective mass and residue are plotted in Fig. 3. I
clear that the effective mass decreases and the quasipa
residue increases as a function of increasing hole conce
tion, as expected in this model. Note that retardation actu
decreasesthe effective mass andincreasesthe quasiparticle
residue, because retardation ‘‘undoes’’ some of the effe
from the generalized Lang-Firsov transformation. Note t
retardation has little effect on the doping dependence
these properties. To emphasize the observation made in
3 we have plotted the inverse effective mass ratio in Fig. 3~b!
7-6
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~dashed curve! in the antiadiabatic limit to show that th
residue and inverse mass behave similarly as a functio
doping. This indicates that the frequency dependence of
hole self-energy is most important~as opposed to the mo
mentum dependence!.

V. CONCLUSIONS

We have studied the effect of finite boson frequency i
dynamic Hubbard model. The model describes modulatio
the Hubbard on-site repulsion by a boson degree of freed
In the limit of infinite boson frequency the properties of t
model are well understood, and here we studied the effec
finite frequencies through a generalized Lang-Firsov tra
formation and a high-frequency expansion.

One might also ask about the use of cruder approxim
tions. For example, one might first consider the Hamilton
~5! in the mean-field decoupling given by Eqs.~3! and ~4!.
Doing then the usual Lang-Firsov transformation wou
yield an effective repulsive Hubbard model, with no sup
conductivity in the antiadiabatic limit at the BCS-Eliashbe
level of approximation. Thus the starting point for such
study would already be in serious error. The dynamics inh
ent in the coupling of the double occupancy of holes to
boson displacement given in Eq.~5! is crucial for the occur-
rence of pairing.

The central result of this work is the finding thatTc in-
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creases with retardation. That this effect is expected was
indicated by the exact diagonalization study in Ref. 3. In
derivation of this model from first principles1,2 the boson
frequency represents the scale of intra-atomic electronic
citation energies. This scale is expected to be large comp
to the scale of interatomic hopping, but is certainly not in
nite. Therefore, it is essential to study the effect of fin
frequency corrections as done in this paper.

This finding supports the possibility that the model m
be relevant to the superconductivity of real materials.
should also be noted that in the microscopic derivation of
model both the coupling constantg increases and the boso
frequency decreases as the degree of negative charging o
ion increases. According to the results of this study, b
effects enhance superconductivity in this model. Hence
results support the hypothesis that conduction of ho
through negative ions is conducive to high-temperature
perconductivity. This is in qualitative agreement with the fa
that highTc is found in cuprates~with holes in O5 ions! and
in MgB2 ~with holes in B2 ions!.
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