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Dynamic Hubbard model: Effect of finite boson frequency
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Dynamic Hubbard models describe coupling of a boson degree of freedom to the on-site electronic double
occupancy. In the limit of infinite boson frequency this coupling gives rise to a correlated hopping term in the
effective Hamiltonian and to superconductivity when the Fermi level is near the top of the band. Here we study
the effect of finite boson frequency through a generalized Lang-Firsov transformation and a high-frequency
expansion. It is found that finite frequency enhances the tendency to superconductivity in this model.
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I. INTRODUCTION introduced the boson creation and annihilation operatrs,
and a;, respectively. The Einstein oscillator frequency is
An attempt to understand electron-electron interactions invy= (K/M)*? andg= a/ (2K w) . In addition we have in-
solids over the last few decades has focused on simplifiettoduced the electron kinetic energy, with nearest-neighbor
models which single out, for example, on-site or nearesthopping amplitudet and chemical potentigle. Finally, U
neighbor Coulombic interactions. While it is usually under-describes the static electron-electron repulsion.
stood that the parameters that are required in these models Treating the four-fermion term involving the boson in
are not “bare” parameters, it is often tacitly assumed that themean field leads to a model with ordinary Holstein-like
omitted physics can be recovered by simply modifying theselectron-boson coupling,
parameters to effectively incorporate the missing physics.
However, the notion that this procedure may in fact leave out Hei-b=0(N)wo(al +a))(ni; +n;)), (©)
much of the interesting physics has been emphasized by one
of us recently, and a new class of model Hamiltonians, “dy- n
namic Hubbard models,” was introduced to remedy this 9(”)259* “)
difficulty.1=* These Hamiltonians describe an essential differ- . . .
ence between the empty and the doubly occupied Wannigfhere the coupling constag(n) increases with electron
orbital, that the former is representable by a single SlatePccupation and is maximum for the Fermi level at the top of
determinant and the latter one is not. This difference is notn€ Pand. Hence the quasiparticle dressing in this model in-

described by the conventional models and leads to electrorf/€aS€s as the Fermi level rises in the band, and conversely it

hole asymmetry and to an unconventional mechanism ofecreases as the system is doped with holes. There are indi-

superconductivity. cations in the higiT; cuprates that the quasiparticle dressing

In this paper we focus attention on one particular dynamiciecreases with hole dopihgnd this is one of the motiva-
Hubbard model, which introduces a modulation of the Hub-tions to study this Hamiltonian. However to fully understand

bard U by coupling the electron double occupancy to a fic-the physics of this model the mean-field decoupling leading

titious local boson displacement. The site Hamiltonian thaf® EAS-(3) and(4) is certainly inappropriate.
describes this model is given by We study the Hamiltonian, E¢2), in hole rather than

electron representation. A particle-hole transformation yields
piZ in addition a Holstein-like coupling

1
Hi=or + 5 Kaf+(U+agnn;, (1)

_ T i i
where the boson is characterized by an Einstein o:scillatorH oni % t% (CioCit 07+ it 50 Cio) 'LL% Mo
with massM and spring constari€. The displacement of the
local oscillatorq; is coupled to the electron double occu- + N
pancy with coupling constant, and as a consequence the _9‘”0% (ai+a; )”ia+2i [U+gwo(ai+ai)]nin;,
on-site repulsiotJ + «q; becomes a dynamical variable. The

Hamiltonian in electron representation is given by )

where nowc!, andn;,, are the hole creation operator and the
H:woz ai‘rai_tz (¢l civsotcl, &TCw)—MZ Ny hole number operator, respectively. One of the essential in-
[ i i gredients of this and other similar models is that the system
is inherently not electron-hole symmetric. This is clear
within the Hartree approximation, but the asymmetry is

(o8

o

+
+Ei [U+gawo(ai+ay)Inin;,, 2 pest revealed through a generalized Lang-Firsov trans-
formation®"®
WhereciTU is an electron creation operator for sitand spin In the following section we perform this transformation

o, N, is the corresponding number operator and we havend derive a Migdal-like expansion valid in the antiadiabatic
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limit, which allows us to study corrections due to finite bo- Tozte‘gz (11)
son frequency. While the antiadiabatic limit is very well

understood, the effect of noninfinite boson frequenagtar- ~ and

dation is not. The purpose of this paper is to address this s 2

question which is of fundamental importance because deri- At=te 9°(e9?-1). (12)

vation of the model from first principles necessarily leads togqyation(10) is the effective quasiparticle Hamiltonian stud-
finite boson frequencyThe expansion is performed to first ied in Ref. 5. This model is known to lead to superconduc-

order in inverse boson frequency, and the impact on supekyyity at low hole dopings, and to characteristic properties
conductivity is determined. We find that retardation increasegg|aied to “undressing” phenomenolofyThe effective

T_C.at all hole qlensities, and inc_re_ases the range pf _hole d?%‘mgle hole hopping

sities over which superconductivity occurs. This is in quali-

tative agreement with a previous stddyhich determined T(n)=To+nAt (13)

the effective pairing interaction for two holes within a pseu- _ _ _ _ _

dospin model on small clusters. That study found an iniS an increasing function of hole doping, and so is the effec-

creased attractive interaction due to retardation as well.  tive hole bandwidth.
Based on previous studi@superconductivityand in fact

pair binding occurs in the model in Eq8) in the antiadia-

Il. GENERALIZED LANG-FIRSOV TRANSFORMATION L . . .
batic limit. We wish to answer the question: will supercon-

We use the transformation ductivity occur more or less readily with retardation, i.e.,
away from the antiadiabatic limit? To this end, we use per-
H=e®He ¢, (6) turbation theory following the generalized Lang-Firsov
& transformation. That is, we note that the operafy can be
wher written as
G:E g(ai—a;r)(n”+nil—n”nil). (7) XiTzr:ni—a+(1_ni—o)eXF[g(ai_aiT)]

1
=n -n - 9220- 08 a04

The usual Lang-Firsov transformation serves to diagonalize Mgt (1=Ni-o)e e e

the nonhopping part of standard electron-phonon Hamilto- Nni_(ﬁ(l_ni_a)e792/2[1+g(ai_aj)], (14)
nians. In contrast, here the “dressing” operat¥ts [see Eq. o _

(9) below] depend on fermion occupation number: the hole is2nd similarly forX;, . In the last line of Eq(14) we have

dressedundresseylif there is not(is) other hole of opposite €Xpanded the exponential to first order in the oscillator mo-
spin at the site. mentum (or, equivalently, the displacemenflo put terms

Application of Eq.(6) results in involving the linear oscillator operators into “standard” form
(with the oscillator displacement rather than the momentum
we utilize the canonical transformation

H:‘DOEi aiTai_MOiE nia+Ueﬁ2i NitN;|
o

aj— — iai
—t2 (X0, X508, 001 g+ H.C), ®) al —ia/. (15
1
v Finally, Fourier transforming all the operators to momentum
whereU g=U — wy0?, o=+ wog?, and space, using a Hartree-Fock approximation and retaining

only the reduced part of the Hamiltonian, we obtain
Xl,=exdg(a—a)(1-n;_,)] )

lo

i T ~ =\t
dresses the hole-hopping amplitudes. These operators are de- H= wog 8q8qt % (€= 140)CioCror
pendent on both the oscillator and hole degrees of freedom.

Equation(8) leads to a low-energy Hamiltonian for the 1 At

hole degrees of freedom if the ground-state expectation value + N 2 Uestt 2~m(fk‘*' €r)
is taken with respect to the oscillator degrees of freedom. kk 0
Following Ref. 1, we find XcchikLC—k’lck'T
~ ~ + 1
H~ _tO% (Ciaci+§U+H'C')_MO% ni(r+ Ueffzi niTnil + — 2 gkk,(ak,k/+ai(k7k,))CEUCk/U, (16)
o Kk’
—ALY (Cl,Civsrt HO) (05 ,), (10  Where
i
&= —2(to+nAt) > cogkd), (17)
where 5
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To=te g° (18) It is also customary to write the normal self-energy in terms
' of an odd and evefin Matsubara frequengypart
At=To(e92— 1), 19
o : 19 S(Kiop=ionl-Z(Kion ]+ x(Kioy), (28
Ue=U — wog? 20 . o
eff @od 20 which leads to three coupled equations instead of the two
~ Egs.(23) and(24). Note that the arguments of tlgefactors
— 2__
to=pt wog"—Uern/2, @Y inthe kernels of Eqg23) and(24) are actually different, and
and lead, in this case, to kernels with opposite signs in the pairing
and normal equations. These equations also require an aux-
CTo(l-n/2)+nAt/2 . - iliary number equation
Ok =19 (€x—€xr). (22
o+ nAt

Note that we have included Hartree corrections already in the N=1+ 2R9N_

hopping and chemical potential terms; these are not to be

included again when treating the Hamiltonid6). The cor- (~351(_ K,—iwm)
rection to the hole-hopping matrix element in particular leads X 2

to a wider bandwidtfd for increasing number of holes in the i Go (ki) Gy M(—ki~iwm) + ¢*(kiwm)
band. (29

IIl. ELIASHBERG-LIKE APPROXIMATION FOR HIGH thr’[]e” is the hole number dens'wzl ved b —
BOSON FREQUENCIES ese equations are most easily solved by noting that

each unknown function can be decomposed into three
Equation(16) looks like a standard Hamiltonian with lin- k-dependent pieces. For example,
ear electron-phonon coupling. One can determine its proper-
ties with the Migdal-Eliashberg approximation. Omitting the

detailed steps in the derivation, the final result is d(Kiwm)=do(iwm) + di(iom)| — 56_;2
2009k —kJk'k ~ 2
- ’ €]
llen =g 2, (wéﬂwm—wmoz Y +¢2<iwm>(~—k> , (30
D/2
d(K' Twy) - _
Xma (23 whereD=D(n)=8(ty+ nAt) is then-dependent hole band-
Em width. This makes the entire problem only slightly more dif-
ficult than the standard Eliashberg equations which require
S (Kiwy) = > 2009k kKK’ iterative solution in Matsubara frequency space.
m N,B e w(2)+(wm_wm')2 Nonetheless, we need not solve these rather complicated
g equations to determine their properties for large boson fre-
Ggl(—k’,—iwm,) guencywg. Equations(23) and (24) contain a kernel of the
, ) (24) form
E(k, )1 (l)m/)
where ¢(K,iw,,) and3(k,iw,) are the pairing and normal D(n) w3 92<T()(1—n/2)+nAt/2)2
self energies, respectively, and the denomin&id,i w,) is Ky (Tvg)=— % 5 =
given by wo wyt vy 2 to+nAt
~ ~\2
E(k,i om) =Go (ki wm)Go (K, ~i wm) + ¢?(K i) ek (31
(25 (n)/2

with whereiv,=i27Tn is a boson Matsubara frequency, and the

~_1. . . ~ o~ . other variables have been previously defined. We have writ-
Co (Kiom) =iom= (& po) =2 (Kiwm). (26 ten Eq. (31) with an explicit prefactorD(n)/w,, Which
These equations are standard Eliashberg equations, wighows that for infinite boson frequenay all of the compli-
io,=i7T(2m—1) a fermion Matsubara frequency3  cations due to the electron-boson coupling can be ignored.
=1/(kgT) the inverse temperature, ahtthe number of lat-  This leaves
tice sites. The direct electron-electron interaction is given by

Z(kjiwy) =1,

Vi = Ut = et €r). 27
ke et to+nAt(k “ x(Kiwm) =0,
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1 o(k')
Vi = _ , 32
Nﬁkzm KK B (K i wm )Gy H(—k',—i )+ H2(K') 32

d(Kiowm)=d(k)=—

which is a straightforward BCS-like problem which has beenarises from the fact that a noninfinite boson frequency is
solved previously.The result is an extendeswave solution  used. More explicitly, if we use a constant electron density of
for superconductivity at low hole densities. To understanogtates[g(e) 1D, —D/2<e<D/2], then we have

what happens for large but noninfinite boson frequenmes we

adopt a standard approximation for Eliashberg theory, i.e.,

the kernel we assume that the boson frequency is muchb X)—f dx’ [ = x(n)(x*+x"?)+2k(n)xx’ —k(x+x")
larger than the other energy scales, so that it becomes inde-

pendent of Matsubara frequency. This allows us to neglect — Uy B(X)F1(€), (36)
the normal channels, and focus on the gap equ#tion
-~ > whereugs=U4/D(n), k=8At/D(n), andx="e/(D(n)/2),
gb(k):if)(n) 2 —k(n ) ~ €k and similarly for the primed quantities. Normally, positive
NS K’ ( )2 components of the kernels contribute to pairing, and hence to

T.. For example, focusing on the antiadiabatic tering;
d(k") clearly deters pairing, where&swill enhance pairing in the

' (33 energy range where holes dominé&tegativee and negative
‘€’). At the same timek hurts pairing in the electron regime

(positive€). Clearly the effect ok(n) is helpful (to pairing
f)(n) gz(To(l—n/2)+nAt/2> 2 in the central term{and hence adds to the role lof, and is

_ ka/
D(n)|w

+ (e — 1o)?

where

k(n)= > (34 detrimental in the first term. However, a full solution is re-
(0]

To+nAt quired to determine the overall impact of a nonzeim)

P 11
The Matsubara sum in this equation is readily performed: L&nd hence noninfinite,—see Eq.(34)].
1 D(n)/2 D(n)/2 - - IV. BCS-LIKE SOLUTION
22 5~ ==~ =~ [1-2f(a—po)] _ o _
Wy k™ Mo k— Mo ull solution to Eq. IS obtained by noting tha
Bm wnt(ec—pmo)®  2(e— po) A full solution to Eq.(36) is obtained by noting that
=F,(e). (35 H(X)=ag—a;x+ax>. (37)

As noted a!ready in Eq30), the k dependgnce~can be de- gypstitution of Eq(37) into Eq. (36) leads to three homoge-
composed into a constant, a term proportionakfo and a  neous equations, so th# is given by setting the following
third term proportional to:sﬁ. The latter term is new, and 3X3 determinant to zero

1+K(n)|2+ulo_k|1 K(n)|3+ull_k|2 K(n)|4+U|2_k|3

de _kIO_ZK(n)Il 1_k|1_2K(n)|2 _kIZ_ZK(n)Ig :0, (38)
K(n)lo K(n)ll 1+K(n)|2
|
where wheren is the hole density. The evaluation of the determi-
~ ~ ¢ ~ o~ nant, and the determination @f(n) is a tedious process; in
| EID(HW ael - € 1-2f(e—po) (39) weak coupling, one can use the relations
) Bwye D)  2(e-rny 5
For the number equation we assume that all nonpairing in- 0= E_D(n)m
teractions are already taken into account in the parameters; keTc 2 ’
thus we obtain, for the chemical potential
~ l1=p(lo—1),
Mo
= =—(1—n), 40
Bz 0 o= P10+ b 22
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FIG. 1. T, vs hole dopingh. For these parametegs=2.063, the
hole bandwidth at the top of the bandbs=0.2 eV, and the elec-
tron bandwidth at the bottom of the bandDs=14 eV. The quasi-
particle weight is one at the bottom of the bafelectron$ and
0.014 at the top of the bantholes. The boson frequencies are
wo=10 and 5 eV, which giveg,=0.043 andx,=0.085, respec-

tively.

_ 3 .1 _ 113
I3=p°lotzp—Fp°,

_ 4 1 1 2 25 4
l4,=p"lo+z+3p"—12p",

where p=1—n. Weak coupling is accurate over a wide

range of parameteré.The end result is

kgT.= 1.13[?\/n(2— n)exp —al/b),

where

a=1+kp(2+kp)— kp(—k—2up+3kp?)+ k?(— 9+ 30p?

+7p*112— k3(3—9p2+13p*+ p®)/12,

0.25

(41)

(42

b=(k?—2u+4kp+k?p?)/2+ k(3u+3up?—4kp>)/3

+ k?(1+6p%+ p*) 14— k3(9—9p?+ 15p*+ p©)/36,

(43

with k=«(n). Note that if only the coupling to the boson
was present, then, for small hole densiya~2«? for «
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FIG. 2. k(n) vs hole dopingn from Eq. (34).

pendent of the sign ok, but T, is unobservably small ik

<1. However, if T, already existgthrough the presence of
the antiadiabatic terms, in this caséhen the enhancement
due to the coupling to the bosdwhich, in this case, means

a coupling at noninfinite frequenggan be substantial. This
nonlinear effect is merely due to the nature of the exponen-
tial function.

In Fig. 1 we plotT, versus hole density for parameter
valuesAt=0.185 eV,U=5.0 eV, andt,=0.025 eV. The
justification for this choice of parameters is the following:
the value ofU,; is within the generally accepted range; the
choice of a large value\t/t,=7.4 (i.e., g~2) implies a
large dressing of the single hole in the normal staass
enhancement-70 in the underdoped regimend a rapid
undressing as a function of hole concentration, as seen in the
cuprates. The values aft andt are then determined by
requiring that the maximunT, be of order of 100 K. As
shown in our previous work, Ref. 5, results for this model
are not very sensitive to the precise choice of parameters. To
explore the effects of retardation, we show results dgr
=0, 10 eV and 5 eV. The explicit dependence ok(n) is
not significant, and is shown in Fig. 2, for a variety of pa-
rameter valuegnote; for Fig. 1At/t,=7.4). Figure 1 shows
that T, is enhanced by retardation—as, decreasesk,
=k(n=0) increases. It is also clear that the range of hole
densities increases with increasing amount of retardation.

Finally, we can compute the effective mass and quasipar-
ticle residue as a function of doping. These are obtained in a
two-step process. First, in the antiadiabatic limity(~ ),

<1. Thus the boson leads to an attractive interaction, indethe effective mass ratio is given for low hole densftias
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FIG. 3. Effective mas$a) and quasiparticle residu®) vs hole dopingn for several boson frequencies as indicated. As expected, the
quasiparticle effective mass decreases as the situation becomes more electronlike; similarly the residue increases towards unity. Note that
both quantities have the same tendency, as is made clear by the dashed dimyevimere the inverse effective mass is plotted égy
— 0,

1+At/t,)? 921 ~ .
*[m= q (44) a,= T( €k, 0+16)]u=07=7, (48)
(1+nAt/ty) @
and the quasiparticle residue is similarly giverf by and
n _\?2 9% ~ .
1+ 5 AU, akEaT(ek,wﬂ&Iw:o;k:;O, (49
€
ZaaO:—~2- (45) K
(1+At/to) whereZ,; is the real part of the self-energy. These quantities
are given by

Here z,4o is the quasiparticle residue on the Fermi surface,
and the subscripaa stands for the antiadiabatic limit. To
incorporate changes due to retardation effects, we proceed in
the usual fashion, and compute the real part of the analytignd
continuation to the real axis of the self-energy expression,
Eqg. (24), in the normal state, and without self-consistency a,=k(nN)[1+(1—n)?]. (51
(i.e., we omit the self-energy on the right-hand $idehen

a,=2k(n)[1+(1—n)?] (50)

The effective mass and residue are plotted in Fig. 3. It is
clear that the effective mass decreases and the quasiparticle
(46) residue increases as a function of increasing hole concentra-
tion, as expected in this model. Note that retardation actually
and decreaseshe effective mass aniicreasesthe quasiparticle
residue, because retardation “undoes” some of the effects
Zas0 from the generalized Lang-Firsov transformation. Note that
Zp= ) (47) retardation has little effect on the doping dependence of
these properties. To emphasize the observation made in Ref.
where 3 we have plotted the inverse effective mass ratio in Hilg) 3

* *
m* Mz,

1-a,
1+ak

m m
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(dashed curvein the antiadiabatic limit to show that the creases with retardation. That this effect is expected was also
residue and inverse mass behave similarly as a function ahdicated by the exact diagonalization study in Ref. 3. In the
doping. This indicates that the frequency dependence of theerivation of this model from first principlé$ the boson
hole self-energy is most importafés opposed to the mo- frequency represents the scale of intra-atomic electronic ex-

mentum dependenge citation energies. This scale is expected to be large compared
to the scale of interatomic hopping, but is certainly not infi-
V. CONCLUSIONS nite. Therefore, it is essential to study the effect of finite

) o ~ frequency corrections as done in this paper.

We have studied the effect of finite boson frequency in a = Thjs finding supports the possibility that the model may
dynamic Hubbard model. The model describes modulation ohe relevant to the superconductivity of real materials. It
the Hubbard on-site repulsion by a boson degree of freedongnoyid also be noted that in the microscopic derivation of the
In the limit of infinite boson frequency the prqpertles of the model both the coupling constagtincreases and the boson
model are well understood, and here we studied the effect qfequency decreases as the degree of negative charging of the
finite frequencies through a generalized Lang-Firsov transiyn increases. According to the results of this study, both
formation and a high-frequency expansion. ~ effects enhance superconductivity in this model. Hence our
~ One might also ask about the use of cruder approximaregylts support the hypothesis that conduction of holes
tlons. For exampl'e, one m|ghf[ flrst.con5|der the Hamlltonlanthrough negative ions is conducive to high-temperature su-
(5) in the mean-field decoupling given by Ed8) and(4).  perconductivity. This is in qualitative agreement with the fact

Doing then the usual Lang-Firsov transformation wouldpat highT. is found in cuprategwith holes in O" ions) and
yield an effective repulsive Hubbard model, with no super-iy \gB, (with holes in B ions.

conductivity in the antiadiabatic limit at the BCS-Eliashberg
level of approximation. Thus the starting point for such a

stud_y would alre_ady be in serious error. The dynamics inher- ACKNOWLEDGMENTS

ent in the coupling of the double occupancy of holes to the

boson displacement given in E) is crucial for the occur- We are grateful to the Natural Sciences and Engineering
rence of pairing. Research Council of Canada and the Canadian Institute for

The central result of this work is the finding th@ag in-  Advanced Research for support.

1J.E. Hirsch, Phys. Rev. Let87, 206402(2001). 9F. Marsiglio and J. P. Carbotte, ifihe Physics of Conventional

2J.E. Hirsch, Phys. Rev. B5, 184502(2002. and Unconventional Superconductpedited by K.H. Benne-

3J.E. Hirsch, Phys. Rev. B5, 214510(2002; 66, 064507(2002. mann and J.B. KettersdSpringer-Verlag, Berlin, 2003p. 233;

4J.E. Hirsch, Phys. Rev. B7, 035103(2003. cond-mat/0106143.

®J.E. Hirsch and F. Marsiglio, Phys. Rev.3®, 11 515(1989; 41,  10Strictly speaking,x(kiw,) simply renormalizes the chemical
6435(1990. potential, butZ(k,iw,) remains dependent on Matsubara fre-

°H. Ding, J.R. Engelbrecht, Z. Wang, J.C. Campuzano, S.C. Wang, quency, even i (i v,) is replaced by a constant independent
H.B. Yang, R. Rogan, T. Takahashi, K. Kadowaki, and D.G. 4t Matsubara frequency. These corrections have been neglected,
Hinks, Phys. Rev. Lett87, 227001 (200; . Y Ando, A.N. and are expected to cause only minor quantitative changes.
Lavrov, S. Komiya, K. Segawa, and X.F. Subid. 87, 017001 1 This is apparent by inspection of the kernel as written in(8),
(2003; P.D. Johnson, T. Valla, A.V. Fedorov, Z. Yusof, B.O. where itwould appearthat the additional electron-boson cou-

Wells, Q. Li, A.R. Moodenbaugh, G.D. Gu, N. Koshizuka, C. ling could only have a detrimental effect @i [because of the
Kendziora, Sha Jian, and D.G. Hinkiid. 87, 177007(2001. ping coud ony e .
minus sign in front of thec(n) term]. That this is not the case is

7 . 7 .
|.G. Lang and Y.A. Firsov, Zh. Esp. Teor. Fiz.43, 923 (196 . ; .
g P (1962 clear from the numerical solutiorisee Fig. 1

[Sov. Phys. JETR6, 1301(1963]. b ror : .
8J.E. Hirsch, Phys. Rev. B2, 14 487(2000: 62, 14 498(2000. F. Marsiglio and J.E. Hirsch, PhysicaIB5 71 (1990.

224507-7



