Impurity effects on the A_1 - A_2 splitting of superfluid ³He in aerogel

J. A. Sauls^{1,2} and Priya Sharma¹

¹Department of Physics and Astronomy, Northwestern University, Evanston, Illinois 60208, USA ²Centre de Recherches sur les Très Basses Températures, Centre National de la Recherche Scientifique, Laboratoire Associé à l'Université Joseph Fourier, Boîte Postale 166, 38042 Grenoble Cedex 9, France (Received 4 June 2003; published 5 December 2003)

When liquid ³He is impregnated into silica aerogel a solid-like layer of ³He atoms coats the silica structure. The surface ³He is in fast exchange with the liquid on NMR time scales. The exchange coupling of liquid ³He quasiparticles with the localized ³He spins modifies the scattering of ³He quasiparticles by the aerogel structure. In a magnetic field the polarization of the solid spins gives rise to a splitting of the scattering cross section of for "up" vs "down" spin quasiparticles, relative to the polarization of the solid ³He. We discuss this effect, as well as the effects of nonmagnetic scattering, in the context of a possible splitting of the superfluid transition for $\uparrow\uparrow$ vs $\downarrow\downarrow$ Cooper pairs for superfluid ³He in aerogel, analogous to the A_1 - A_2 splitting in bulk ³He. Comparison with the existing measurements of T_c for B < 5 kG, which shows no evidence of the A_1 - A_2 splitting, suggests a liquid-solid exchange coupling of order $J \approx 0.1$ mK. Measurements at higher fields, $B \ge 20$ kG, should saturate the polarization of the solid ³He and reveal the A_1 - A_2 splitting.

DOI: 10.1103/PhysRevB.68.224502

PACS number(s): 67.57.Bc, 67.57.Pq

One focus of experimental investigations of ³He in aerogel has been the determination of the phase diagram. Torsional oscillator, NMR, vibrating wire, and sound attenuation experiments on ³He in \approx 98% porosity aerogels suggest that there is just one superfluid phase for pressures above the critical pressure of 6 atm in zero magnetic field.¹⁻³ At lower pressures there appears to be only normal ³He down to zero temperature.⁴ In short, a *B*-like phase, with reduced susceptibility, is the only stable superfluid phase observed in zero field. An A-like phase, if it exists in zero field, may be stable only in a very small region $\Delta T \leq 20 \ \mu \text{K}$ near T_c . As in bulk ³He, an *A*-like phase can be stabilized in a magnetic field; the region of stability, $T_{AB} \leq T \leq T_c$, increases quadratically with field, $T_c - T_{AB} = -g_{AB}B^2$. However, a splitting of the transition for $\uparrow\uparrow$ and $\downarrow\downarrow$ pairs, analogous to the A_1 - A_2 splitting in bulk ³He, has so far not been observed for fields up to $B \approx 5 \text{ kG.}^{3,5}$

In pure ³He, on application of a magnetic field, the A_1 phase, characterized by spin-polarized Cooper pairs composed of only $\uparrow\uparrow$ spins, nucleates at a temperature slightly higher than the zero-field transition, $T_c^{A_1} = T_c + \lambda^{A_1} B$.²⁹ This transition is followed by a second transition, shifted below the zero-field transition, at $T_c^{A_2} = T_c - \lambda^{A_2} B$, in which the $\downarrow \downarrow$ pairs nucleate. The region of stability of pure $\uparrow\uparrow$ pairs increases linearly with field, $\Delta T_{A_1-A_2} \equiv (T_c^{A_1} - T_c^{A_2}) = (\lambda^{A_1} + \lambda^{A_2})B$, at a rate of $\lambda^{A_1} + \lambda^{A_2} \approx 6.1 \ \mu$ K/kG at p = 33.4 bars.^{6,7}

This splitting of the zero-field transition originates from the combined effect of the nuclear Zeeman coupling to the ³He spin, and particle-hole asymmetry in the normal-state density of states and pairing interaction. The original estimate of λ^{A_1} by Ambegaokar and Mermin⁸ was based on the asymmetry of the density of states for \uparrow vs \downarrow quasiparticles at the Fermi level. More involved calculations include the effects of spin polarization of the Fermi liquid on the pairing interaction.^{9,10} Estimates of the splitting of the A_1 transition are of order

$$\lambda^{A_1} = \Lambda \left| \frac{\gamma \hbar}{2} \right| \left(\frac{k_B T_c}{E_f} \right), \tag{1}$$

where γ is the gyromagnetic ratio for ³He, $k_B T_c/E_f \sim 10^{-3}$, and $\Lambda \sim \mathcal{O}(1-10)$ is a "high-energy" vertex. A first principles calculation of Λ requires a solution of the manybody problem for the pairing interaction in ³He. Alternatively, we treat Λ on the same level as other high-energy vertices in Fermi-liquid theory; Λ is a Fermi-liquid parameter, which can be determined by comparing physical predictions of the Fermi-liquid theory with experiment—in this case the A_1 -A splitting. Once Λ is determined, its effects on other low-energy properties of ³He can be calculated. Thus, the A_2 transition can be calculated in terms of Λ , and corrections to $T_{\alpha}^{A_2}$ from the $\uparrow\uparrow$ pair condensate.¹¹

The disorder introduced by the aerogel structure into liquid ³He is, on average, weak on the high-energy scale, $\hbar/\tau E_f \ll 1$. Thus, the Fermi-liquid interactions are essentially unaffected by the aerogel, and we can calculate the effects of aerogel on the low-energy excitations and superfluid properties within Fermi-liquid theory. The main effect of the aerogel structure is to scatter ³He quasiparticles moving with the Fermi velocity. At temperatures below $T^* \approx 10$ mK elastic scattering by the aerogel dominates inelastic quasiparticlequasiparticle collisions.¹² This limits the mean free path of normal ³He quasiparticles to $\ell \simeq 130-180$ nm. In *p*-wave superfluids quasiparticle scattering is intrinsically pairbreaking and leads to renormalization of nearly all properties of the superfluid phases, including the A_1 and A_2 transition temperatures. The suppression of T_c , as well as pairbreaking effects on observable properties of the superfluid phases, have been analyzed theoretically for nonmagnetic scattering.^{13–18} Here we analyze the effects of scattering by the aerogel on the A_1 and A_2 transitions.

The aerogel has a strong effect on the *short-distance*, high-energy properties of the liquid locally near the silica

strands. The first few atomic layers of ³He are adsorbed on the silica structure and form a highly polarizable solidlike phase, observable as a Curie-like component of the magnetization of ³He aerogel.¹⁹ The surface ³He is in fast exchange with the liquid on typical NMR time scales, implying a liquid-solid exchange interaction, $|J|/h \ge 0.66$ MHz $(|J| \ge 0.03$ mK).^{19,20} The exchange coupling of liquid ³He quasiparticles with the localized ³He spins J may modify the scattering of ³He quasiparticles by the aerogel structure.²¹ Here we include the effect of magnetic scattering of ³He quasiparticles by polarizable ³He spins coating the aerogel strands. The differential scattering of \uparrow vs \downarrow spin quasiparticles by the polarized surface leads to an additional contribution to the splitting of the $\uparrow\uparrow$ vs $\downarrow\downarrow\downarrow$ transitions, $\lambda_{J} \propto J$, which is determined by the nonmagnetic u_0 and exchange J interactions and the density of ³He coating the aerogel.²² Below we extend the analysis of Ref. 22 and examine the role of the exchange coupling on the possible A_1 - A_2 splitting of the superfluid phases of ³He in aerogel.

The suppression of the AB transition in both pure and disordered ³He is quadratic in field on a scale set by $g_{AB} \sim mK/kG^{2,3}$ Thus, for fields $B \gg B^* = \lambda^{A_1}/g_{AB} \sim 1$ G and temperatures $T \approx T_c$, the $\uparrow \downarrow$ pairs are suppressed. In the field and temperature range of interest we can restrict the full *p*-wave, spin-triplet order parameter to two components, d_+ for $\uparrow\uparrow$ pairs and d_- for $\downarrow\downarrow$ pairs. We assume that the orbital state is the same for both spin components and the axial (ABM) form, $\chi(\hat{\mathbf{p}}) = \hat{\mathbf{p}} \cdot (\hat{\mathbf{m}} + i\hat{\mathbf{n}})/\sqrt{2}$. Thus, in pure ³He the full Ginzburg-Landau (GL) free-energy functional (c.f. Ref. 23) reduces to¹¹

$$\Omega[\mathsf{d}_{+},\mathsf{d}_{-}] = \alpha(|\mathsf{d}_{+}|^{2} + |\mathsf{d}_{-}|^{2}) - \eta B(|\mathsf{d}_{+}|^{2} - |\mathsf{d}_{-}|^{2}) + \beta_{24}(|\mathsf{d}_{+}|^{2} + |\mathsf{d}_{-}|^{2})^{2} + 4\beta_{5}|\mathsf{d}_{+}|^{2}|\mathsf{d}_{-}|^{2},$$
(2)

where α , η , and β_i are the known material parameters for superfluid ³He; $\alpha(T) = (1/3)N_f \ln(T/T_c)$ determines the zerofield transition and $\eta = (1/3)N_f \lambda^{A_1}/T_c$ determines the A_1 $(\uparrow\uparrow)$ transition, where N_f is the single-spin density of states at the Fermi level. The fourth-order coefficients determine the relative stability of the possible phases. In particular, $\beta_{24}>0$ and $\beta_5<0$ favor an equal-spin-pairing (ESP) phase with $|\mathbf{d}_+|=|\mathbf{d}_-|$. The linear field term is symmetry breaking and competes with the fourth-order terms. The latter wins at lower temperatures and gives rise to the A_2 transition where $\downarrow\downarrow$ spins condense with $T_c^{A_2} = T_c - \lambda^{A_2} B$ and

$$\lambda^{A_2} = \left(\frac{\beta_{245}}{-\beta_5}\right) \lambda^{A_1}.$$
 (3)

Within the homogeneous, isotropic scattering model (HSM) the rotational symmetry of ³He in aerogel is preserved on the coherence length scale, and the GL free energy has the same form as in pure ³He, but with material parameters, $\bar{\alpha}$, $\bar{\eta}$, etc., that are modified by the effects of scattering by the aerogel (we use a "bar" to denote the material parameters in the presence of aerogel scattering). These effects were calcu-

lated within the quasiclassical theory to leading order in T_c/E_f (weak coupling), and one finds¹³

$$\bar{\alpha} = \frac{1}{3} N_f [\ln(T/T_{c0}) - 2 S_1(x)], \qquad (4)$$

where $x = v_f/2\pi T\ell$ and ℓ is the mean free path of quasiparticles scattering off the aerogel. In Eq. (4), and hereafter, we denote the transition temperature for pure ³He by T_{c0} . The superfluid transition in aerogel is determined by the condition $\bar{\alpha}(T_c) = 0$ and

$$S_1(x) = \sum_{n=0}^{\infty} \left(\frac{1}{2n+1+x} - \frac{1}{2n+1} \right).$$
(5)

The parameter η is directly proportional to the high-energy vertex Λ and so is unrenormalized by impurities to leading order in $\hbar/p_f \ell$. Thus, $\bar{\eta} = \eta = (1/3)N_f \lambda^{A_1}/T_{c0}$, where λ^{A_1} is the rate for the splitting of the A_1 -A transition in pure ³He. Although η is unrenormalized, the splitting parameters for the A_1 and A_2 transitions are renormalized by the impurity corrections to transition temperature and, in general, by the β parameters.

The weak-coupling results for the fourth-order coefficients are,¹³

$$\overline{\beta}_{24} = -2\overline{\beta}_5 = 4(\overline{\beta}^{\text{wc}} + \overline{\beta}^{\overline{\sigma}}), \qquad (6)$$
$$\overline{\beta}^{\text{wc}} = \frac{N_f}{30\pi^2 T^2} S_3(x),$$
$$\overline{\beta}^{\overline{\sigma}} = \frac{N_f}{9\pi^2 T^2} (\overline{\sigma}_0 - \frac{1}{2}) x S_4(x), \qquad (7)$$

where $\bar{\sigma}_0$ is the dimensionless, nonmagnetic, *s*-wave scattering cross section, $0 < \bar{\sigma}_0 < 1$ (see below), and

$$S_p(x) = \sum_{n=0}^{\infty} \left(\frac{1}{2n+1+x} \right)^p, \quad p > 1.$$
 (8)

Note that the ratio $\bar{r}_{\beta} = \bar{\beta}_{245}/(-\bar{\beta}_5) \equiv 1$ in the weakcoupling limit, even with (isotropic) impurity scattering. However, this ratio deviates substantially from 1 in pure ³He, particularly at high pressures, e.g., $r_{\beta} \approx 0.47$ at p = 33.4 bars. Thus, the asymmetry of the A_1 -A vs the A_2 -Atransitions is a measure of the strong-coupling corrections to the β parameters, $\delta\beta^{sc} = \beta - \beta^{wc}$, which are of order

$$\frac{\delta\beta^{\rm sc}}{\beta^{\rm wc}} \sim \frac{T_c}{E_f} \langle |\Gamma_{\rm N}|^2 \rangle_{\rm FS}, \qquad (9)$$

compared to the weak-coupling values, where $\langle \cdots \rangle_{FS}$ is a Fermi-surface average of the normal-state quasiparticlequasiparticle collision rate $\propto |\Gamma_N|^2$.

Corrections to the weak-coupling β parameters from quasiparticle scattering off the aerogel strands are of the order $\delta \bar{\beta}^{\rm wc} / \beta^{\rm wc} \sim x_c = v_f / 2\pi \ell T_c$, which is small for high-porosity aerogels, but comparable to the strong-coupling corrections

from quasiparticle-quasiparticle collisions. Based on the suppression of T_c and the aerogel mean free path we estimate $x_c \approx 0.12$ at high pressures.

If we neglect aerogel scattering corrections to the intermediate quasiparticle states that enter the strong-coupling self-energies,²⁴ then the relative strong-coupling corrections for ³He in aerogel are scaled relative to their bulk ratios by the ratio of transition temperatures,

$$\frac{\delta \bar{\beta}^{\rm sc}}{\bar{\beta}^{\rm wc}} = \frac{\delta \beta^{\rm sc}}{\beta^{\rm wc}} \left(\frac{T_c}{T_{c0}} \right). \tag{10}$$

This approximation gives a good qualitative description of the suppression of strong-coupling parameters for ³He in aerogel as measured by the field dependence of the AB transition.³

A theoretical calculation of the β parameters that includes some of the effects of aerogel scattering on the intermediate states of the strong-coupling self-energies was carried out by Baramidze and Kharadze¹⁶ within the spin-fluctuation feedback theory of Brinkman and Anderson. This calculation predicts a suppression of strong-coupling effects with increased disorder, but at a rate that is slower than that predicted just on the basis of the suppression of T_c . We can use the results of Ref. 16 to estimate the strong-coupling correction to the predicted A_2 transition for ³He in aerogel. The results of Ref. 16 depend on a high-energy vertex, which we determine by comparison with the magnitude of strong-coupling ratio $r_{\beta} = \beta_{245}/(-\beta_5)$ for pure ³He. In particular, we fix the ratio $\delta\beta^{\rm sc}/\beta^{\rm wc}$ for pure ³He, using the measured value of r_{β} : $(1/2) \delta \beta^{\rm sc} / \beta^{\rm wc} = (1 - r_{\beta}) / (1 + r_{\beta})$. Then, the impurity corrections to the strong-coupling β parameters calculated in Ref. 16 give $\overline{r}_{\beta} = [1 - (1/2) \, \delta \overline{\beta}^{\text{sc}} / \overline{\beta}^{\text{wc}}] / [1 + (1/2) \, \delta \overline{\beta}^{\text{sc}} / \overline{\beta}^{\text{wc}}]$ where³⁰

$$\frac{\delta \overline{\beta}^{\rm sc}}{\overline{\beta}^{\rm wc}} = \frac{\delta \beta^{\rm sc}}{\beta^{\rm wc}} \left(\frac{T_c}{T_{c0}} \right) \left(\frac{S_2(x_c)/S_2(0)}{S_3(x_c)/S_3(0)} \right). \tag{11}$$

To leading order in the pair-breaking parameter, $\delta \bar{\beta}^{\rm sc}/\bar{\beta}^{\rm wc} \approx (\delta \beta^{\rm sc}/\beta^{\rm wc})(1-a x_c)$. Based on Eq. (10), $a \approx 2.47$. The rate of suppression is reduced to $a \approx 1.28$ based on Eq. (11). In what follows we use Eq. (11) to estimate the suppression of the strong-coupling correction for $T_c^{\rm A_2}$. This correction turns out to be small and relatively unimportant on the scale of corrections that are required to explain the lack of the A_1 - A_2 splitting for $B \leq 5$ kG.

Finally, before discussing the effects of the liquid-solid exchange coupling, we consider a simplified version of an *inhomogeneous* scattering model discussed in Ref. 13 that incorporates correlations of the aerogel. The length scale at which aerogel reveals inhomogeneity, $\xi_a \sim 30-100$ nm, is typically comparable to the pair correlation length, ξ , and has a substantial effect on the transition temperature of ³He in aerogel, particularly at high pressures. The inhomogeneity of the aerogel on scales $\xi_a \sim \xi$ leads to higher superfluid transition temperatures than predicted by the HSM with the same quasiparticle mean free path. Regions of lower aerogel density, of size of order ξ_a , are available for formation of the

FIG. 1. (Color online) The phase diagram for ³He in 98% aerogel. The data are from Refs. 4 and 25. The theoretical curve is calculated from $\bar{\alpha}(T_c) = 0$ using Eq. (4) in zero field with the effective pair-breaking parameter \tilde{x} evaluated with $\xi_a = 502$ Å and ℓ = 1400 Å. The phase boundaries for pure ³He are shown for comparison.

condensate. Thus, the qualitative picture is that of a random distribution of low density regions, "voids," with a typical length scale ξ_a in an aerogel with a quasiparticle mean free path, ℓ . When $\xi \sim \xi_a \ll \ell$, the superfluid transition is determined by the pairbreaking effects of dense regions surrounding the voids, and scales as $\delta T_c / T_{c0} \propto -(\xi/\xi_a)^2$. However, when the pair size is much larger than ξ_a the aerogel is effectively homogeneous on the scale of the pairs and pairbreaking results from homogeneous scattering defined by the transport mean free path, which scales as $\delta T_c/T_{c0} \propto$ $-(\xi/\ell)$. This latter limit is achieved at low pressures. We incorporate the correlation effect by introducing an effective pairbreaking parameter in Eq. (4) that interpolates between these two limits, $x \rightarrow \tilde{x} = x/(1 + \zeta_a^2/x)$, where $\zeta_a \equiv \xi_a/\ell$. This heuristic treatment of aerogel correlations provides a good description of the pressure dependence of T_c in zero field for ³He in aerogel over the whole pressure range, as shown in Fig. 1 for $\ell = 1400$ Å and $\xi_a = 502$ Å. Alternatively, we can adjust the mean free path ℓ with pressure in order to simulate the correlation effect on T_c . However, we prefer to identify ℓ with the pressure-independent geometric mean free path and introduce aerogel correlation effects via the effective pair-breaking parameter \tilde{x} . In either scenario, the GL theory for ³He in aerogel predicts transitions for the A_1 and A_2 phases, which correspond to the condensation of $\uparrow\uparrow$ and $\downarrow\downarrow$ Cooper pairs as in pure ³He; the transition temperatures are of the same form,

$$T_{c}^{A_{1}} = T_{c} + \bar{\lambda}^{A_{1}}B, \quad T_{c}^{A_{2}} = T_{c} - \bar{\lambda}^{A_{2}}B,$$
 (12)

but with renormalized parameters,

$$\bar{\lambda}^{A_1} = \lambda^{A_1} \left(\frac{T_c}{T_{c0}} \right) [1 + 2\tilde{x}'_c S_2(\tilde{x}_c)], \quad \bar{\lambda}^{A_2} = \bar{r}_\beta \bar{\lambda}^{A_1}, \quad (13)$$

where $\tilde{x}'_c \equiv T_c d\tilde{x}_c / dT_c$, and $\bar{r}_{\beta} = \bar{\beta}_{245} / (-\bar{\beta}_5)$ is calculated including both impurity scattering and strong-coupling corrections as described above. These results predict the $A_1 - A_2$

splitting of $\Delta T_c^{A_1-A_2}/B = (\bar{\lambda}^{A_1} + \bar{\lambda}^{A_2}) \approx 6.3 \ \mu \text{K/kG}$ at p = 33.4 bars, comparable to that of pure ³He. There is currently no experimental evidence of the A_1 - A_2 splitting in ³He aerogel. Since the width of the transition is less than 20 μ K, inhomogeneities within the aerogel cannot account for the absence of the A_1 - A_2 splitting.

For ³He in aerogel an additional mechanism contributing to the splitting of the $\uparrow\uparrow$ and $\downarrow\downarrow$ transitions is possible.²² It originates from an exchange coupling between liquid ³He quasiparticles and the surface ³He spins adsorbed on the silica structure. Such a surface solid of ³He has been observed for ³He impregnated into silica aerogel. The signature is a Curie-like susceptibility $\chi_{\rm S} = C/(T - \Theta_{\rm S})$ with a Curie temperature, $\Theta_{\rm S} \approx 0.4$ mK.²¹

Thus, the model for scattering of quasiparticles by aerogel that we adopt is a modified version of the scattering model described above which includes an exchange coupling between ³He quasiparticles in the liquid and localized ³He atoms bound to the silica aerogel structure. This coupling is described by an exchange term in the quasiparticle-impurity potential,

$$u = u_0 + J\mathbf{S} \cdot \boldsymbol{\sigma}, \tag{14}$$

where *J* is the liquid-solid exchange coupling, **S** is the localized ³He spin operator, and σ is the Pauli spin operator for the ³He quasiparticles. There are no direct measurements of *J* for ³He on aerogel, and theoretical calculations for ³He on planar substrates give indirect exchange interactions that vary over a wide range of values, $J_{ind} \sim 0.1 \ \mu$ K–1.0 mK, and may be either ferromagnetic or antiferromagnetic depending on the specific mechanism and details of the theoretical model (cf. Ref. 26).

In a magnetic field $\mathbf{B} = -B\hat{\mathbf{z}}$ the solid ³He spins are polarized, $\mathbf{S} = S(T,B)\hat{\mathbf{z}}$, with $S(T,B) = \mathcal{P}(B,T)\mathbf{S}$, where $0 \leq \mathcal{P} \leq 1$ is the fractional polarization and $\mathbf{S} = (1/2)$. For sufficiently low fields, and temperatures well above the ordering temperature for the solid ³He spins, the polarization is expected to be linear in field with $\mathcal{P}(B,T) \approx |\boldsymbol{\mu}| B/k_B T$. In this limit the A_1 - A_2 splitting is given by Eqs. (12) and (13), but with $\bar{\lambda}^{A_1} \rightarrow \bar{\lambda}^{A_1} + \lambda_J$, where λ_J represents the effect of the surface polarization and exchange coupling on the transition temperatures for $\uparrow\uparrow$ vs $\downarrow\downarrow$ pairs. The polarization-induced splitting $\lambda_J \propto J$ depends on the sign of the exchange coupling. Thus, this term may either enhance or reduce the intrinsic splitting $\bar{\lambda}_J$ and discuss the result in relation to the existing data for T_c .

To calculate the liquid-solid exchange contribution to the A_1 - A_2 splitting we use the quasiclassical theory of superfluid ³He,²⁷ with effects of scattering by the aerogel described by the HSM,¹³ modified to include the exchange coupling in Eq. (14). The instability temperatures for $\uparrow\uparrow$ and $\downarrow\downarrow$ Cooper pairs are obtained by solving the weak-coupling gap equation for the spin-triplet components of the order parameter,

$$\frac{1}{3}\ln(T/T_{c0})\mathbf{\Delta}(\mathbf{\hat{p}}) = T\sum_{\varepsilon_n} \int \frac{d\Omega_{\mathbf{\hat{p}}'}}{4\pi} (\mathbf{\hat{p}} \cdot \mathbf{\hat{p}}') \\ \times \left(\mathbf{f}(\mathbf{\hat{p}}';\varepsilon_n) - \pi \frac{\mathbf{\Delta}(\mathbf{\hat{p}}')}{|\varepsilon_n|} \right), \quad (15)$$

where $\mathbf{f}(\hat{\mathbf{p}}; \boldsymbol{\varepsilon}_n) = (f_1, f_2, f_3)$ are the "pair" amplitudes for the three spin-triplet states: $f_{\uparrow\downarrow} = f_3$, $f_{\uparrow\uparrow} = (-f_1 + if_2)$, and $f_{\downarrow\downarrow} = (f_1 + if_2)$. The pairing interaction and density of states at the Fermi level, as well as the cutoff, have already been adsorbed into T_{c0} .

The scattering of quasiparticles off the aerogel structure is described by a random distribution of scattering centers ("impurities"). The impurity self-energy, to leading order in $\hbar/\tau E_f$, is determined by a *t* matrix for multiple scattering by a single impurity and the mean density of impurities,

$$\hat{\boldsymbol{\Sigma}}_{imp}(\hat{\mathbf{p}};\boldsymbol{\varepsilon}_n) = n_s \hat{\mathfrak{t}}(\hat{\mathbf{p}},\hat{\mathbf{p}};\boldsymbol{\varepsilon}_n). \tag{16}$$

The model for scattering of quasiparticles by aerogel that we adopt is described by an isotropic, nonmagnetic scattering amplitude u_0 and an exchange term in the quasiparticle-impurity scattering potential; in 4×4 Nambu representation $\hat{u} = u_0 \hat{1} + JS \hat{\Sigma}_z$, where $\hat{\Sigma} = (\hat{1} + \hat{\tau}_3) \sigma/2 + (\hat{1} - \hat{\tau}_3) \sigma^{tr}/2$ is the Nambu representation for the quasiparticle spin. For simplicity we also assume J to be isotropic. The t matrix for repeated scattering of quasiparticles off a random distribution of these polarized scattering centers is

$$\hat{\mathfrak{t}} = \hat{\mathfrak{u}} + N_f \hat{\mathfrak{u}} \langle \hat{\mathfrak{g}} \rangle \hat{\mathfrak{t}}, \qquad (17)$$

where $\langle \hat{\mathfrak{g}} \rangle$ is the Fermi-surface-averaged propagator. For normal ³He in aerogel and even in the presence of magnetic fields and magnetic scattering, the propagator reduces to $\hat{\mathfrak{g}}_{N}$ $= -i\pi \operatorname{sgn}(\epsilon_{n})\hat{\tau}_{3}$. Thus, the solution to the scattering *t* matrix is given by

$$\hat{\mathbf{t}} = \frac{1}{\pi N_f} (\hat{\mathbf{1}} + i s_{\epsilon} \hat{\mathbf{u}} \hat{\boldsymbol{\tau}}_3)^{-1} \hat{\mathbf{u}}, \tag{18}$$

where $s_{\epsilon} = \text{sgn}(\epsilon_n)$, and the dimensionless scattering potential is $\hat{\mathbf{u}} = \mathbf{u}\hat{\mathbf{1}} + \mathbf{v}\hat{\mathbf{\Sigma}}_z$, with $\mathbf{u} = \pi N_f u_0$, $\mathbf{v} = \pi N_f J S$.

For nonmagnetic scattering (S=0) the *t* matrix is parametrized by the *s*-wave scattering phase shift, $\delta_0 = \tan^{-1}(u)$,

$$\hat{\mathfrak{t}} = \frac{1}{\pi N_f} \sin \delta_0 \, e^{-is_\epsilon \delta_0 \hat{\tau}_3}. \tag{19}$$

In this minimal model for aerogel scattering, the mean density of impurities and scattering rate for normal quasiparticles are fixed by the mean free path ℓ and scattering cross section σ ,

$$n_{\rm s} = \frac{1}{\sigma \ell}$$
, with $\sigma = \frac{4 \pi \hbar^2}{p_f^2} \bar{\sigma}_0$, (20)

where the normalized cross section is related to the scattering potential by

$$\bar{\sigma}_0 = \frac{u^2}{1+u^2}.$$
 (21)

Note that $\overline{\sigma}_0 \rightarrow 0$ is the Born scattering limit, while $\overline{\sigma}_0 \rightarrow 1$ is the unitary limit.

When $S \neq 0$ there are different phase shifts for the scattering of \uparrow (+) and \downarrow (-) spin quasiparticles, which we parametrize as

$$\delta^{\pm} = \delta_0 \pm \Delta \delta. \tag{22}$$

The *t* matrix can now be expressed as

$$\hat{\mathfrak{t}} = \frac{1}{\pi N_f} \{ \sin \delta_0 \cos(\Delta \delta) \, \hat{1} + \cos \delta_0 \sin(\Delta \delta) \, \hat{\Sigma}_z \} \\ \times e^{-is_\epsilon \delta_0 \hat{\tau}_3} e^{-is_\epsilon \Delta \delta \hat{\Sigma}_z \hat{\tau}_3}.$$
(23)

The quasiparticle-impurity scattering rates for \uparrow and \downarrow quasiparticles are calculated from the retarded self-energy $\hat{\Sigma}_{imp}^{R} = n_s \hat{\mathfrak{t}}^{R}$, obtained from Eq. (23) by setting $s_{\epsilon} = +$. Thus, for quasiparticles the self-energy for spin $\sigma_z = \uparrow$ and $\sigma_z = \downarrow$ becomes

$$\boldsymbol{\Sigma}_{\uparrow,\downarrow}^{\mathrm{R}} = \Gamma_{\mathrm{N}} \sin \delta_{\uparrow,\downarrow} (\cos \delta_{\uparrow,\downarrow} - i \sin \delta_{\uparrow,\downarrow}), \qquad (24)$$

where $\Gamma_N = n_s / \pi N_f$. The scattering rates for \uparrow and \downarrow spin quasiparticles are then

$$\frac{1}{2\tau_{\pm}} = \Gamma_{\mathrm{N}} \mathrm{sin}^2 \,\delta^{\pm} = \Gamma_{\mathrm{N}} \bar{\sigma}_{\pm} = \Gamma_{\mathrm{N}} \frac{(\mathbf{u} \pm \mathbf{v})^2}{1 + (\mathbf{u} \pm \mathbf{v})^2}, \qquad (25)$$

where $\overline{\sigma}_{\pm}$ is the dimensionless cross section for scattering of \uparrow vs \downarrow spin quasiparticles. In both the unitary ($\delta_0 \rightarrow \pi/2$) and the Born ($\delta_0 \rightarrow 0$) limits, the \uparrow and \downarrow spin scattering rates are equivalent,

$$\frac{1}{2\tau_{\pm}} \rightarrow \begin{cases} \Gamma_{\rm N} \cos^2(\Delta \,\delta), & \delta_0 = \pi/2 \\ \Gamma_{\rm N} \sin^2(\Delta \,\delta), & \delta_0 = 0. \end{cases}$$
(26)

Only when $\delta_0 \neq 0, \pi$ is the scattering rate for \uparrow and \downarrow spin quasiparticles differ. In general, we can parametrize the scattering rates as

$$\frac{1}{\tau^{\pm}} = \frac{1}{\overline{\tau}} \pm \frac{1}{\tau_{\rm S}},\tag{27}$$

or equivalently,

$$\frac{1}{\tau_{\rm S}} = \frac{1}{\bar{\tau}} \left(\frac{\bar{\sigma}_+ - \bar{\sigma}_-}{\bar{\sigma}_+ + \bar{\sigma}_-} \right),\tag{28}$$

where $1/\overline{\tau}$ is the polarization-independent scattering rate. It is convenient to express the normal-state self-energy in terms of base particle-hole matrices,

$$\hat{\boldsymbol{\Sigma}}_{N} = \boldsymbol{\Sigma}_{11} \hat{\boldsymbol{1}} + \boldsymbol{\Sigma}_{13} \hat{\boldsymbol{\Sigma}}_{z} + \boldsymbol{\Sigma}_{31} \hat{\boldsymbol{\tau}}_{3} + \boldsymbol{\Sigma}_{33} \hat{\boldsymbol{\tau}}_{3} \hat{\boldsymbol{\Sigma}}_{z}, \qquad (29)$$

with components

$$\Sigma_{11} = \pm \frac{1}{2} \Gamma_{\rm N} \sin(2\,\delta_0) \cos(\Delta\,\delta), \qquad (30)$$

$$\boldsymbol{\Sigma}_{13} = \pm \frac{1}{2} \Gamma_{\mathrm{N}} \cos(2\,\delta_0) \sin(\Delta\,\delta), \qquad (31)$$

$$\boldsymbol{\Sigma}_{31} = -\frac{i}{2} \Gamma_{\mathrm{N}} \boldsymbol{s}_{\epsilon} [1 - \cos(2\,\delta_0)\cos(2\,\Delta\,\delta)], \qquad (32)$$

$$\boldsymbol{\Sigma}_{33} = -\frac{i}{2} \Gamma_{\mathrm{N}} \boldsymbol{s}_{\epsilon} \sin(2\,\delta_0) \sin(2\,\Delta\,\delta). \tag{33}$$

To calculate the instability temperatures for $\uparrow\uparrow$ and $\downarrow\downarrow$ pairs we need the off-diagonal propagator to linear order in the pairing self-energy. Thus, we expand the transport equation, self-energies, and normalization condition in powers of Δ . The zeroth-order terms are the normal-state propagator and self-energy [Eq. (29)]. To first order we obtain²⁷

$$[i\varepsilon_n\hat{\tau}_3 - \hat{\Sigma}_N, \hat{\mathfrak{g}}^{(1)}] = [\hat{\Delta}, \hat{\mathfrak{g}}_N], \qquad (34)$$

and $\hat{\tau}_3 \hat{\mathfrak{g}}^{(1)} + \hat{\mathfrak{g}}^{(1)} \hat{\tau}_3 = 0$ from the normalization condition. We reduce the equations to 2×2 spin space by writing \hat{H}_N = $i \epsilon_n \hat{\tau}_3 - \hat{\Sigma}_N = (1/2)(\hat{1} + \hat{\tau}_3)H_N + (1/2)(\hat{1} - \hat{\tau}_3)\bar{H}_N$ with H_N = $i \epsilon_n - \Sigma_N$ and $\bar{H}_N = -i \epsilon_n - \bar{\Sigma}_N$. Note that $\hat{\mathfrak{g}}^{(1)}$ is purely off-diagonal with the upper-right pair amplitude satisfying the equation in spin space,

$$\mathbf{H}_{\mathrm{N}}f^{(1)} - f^{(1)}\bar{\mathbf{H}}_{\mathrm{N}} = 2i\,\pi\,\mathrm{sgn}(\,\boldsymbol{\epsilon}_{n})\Delta. \tag{35}$$

Projecting out the spin-triplet components, we obtain $(i\epsilon_n - \Sigma_{\pm})f_{\pm} = i\pi \operatorname{sgn}(\epsilon_n)\Delta_{\pm}$ with $\Sigma_{\pm} = \Sigma_{31} \pm \Sigma_{33} = -i\operatorname{sgn}(\epsilon_n)/2\tau_{\pm}$, and for $f_{\uparrow\uparrow(\downarrow\downarrow)} \equiv f_{+(-)} = \mp f_1 + if_2$,

$$f_{\pm} = \frac{\pi \Delta_{\pm}}{|\boldsymbol{\epsilon}_n| + 1/2\tau_{\pm}}.$$
(36)

The linearized gap equations for Δ_{\pm} are given by Eq. (15) with $\mathbf{f} \rightarrow f^{\pm}$, $\Delta \rightarrow \Delta^{\pm}$, and $T \rightarrow T_c^{\pm}$. For nonunitary, axial states

$$\Delta_{\pm}(\hat{\mathbf{p}}) = \mathsf{d}_{\pm}(\hat{p}_x + i\hat{p}_y)/\sqrt{2}, \qquad (37)$$

the eigenvalue equation for d_{\pm} yields the weak-coupling equation for the instability temperatures T_c^{\pm} . In the absence of the polarization, the aerogel transition temperature is given by

$$\ln(T_c/T_{c0}) = 2S_1(x_c), \tag{38}$$

where $x_c = 1/2\pi\tau T_c$, and the spin-independent rate for quasiparticles scattering off the aerogel is given by

$$\frac{1}{2\tau} = \Gamma_{\rm N} \sin^2 \delta_0 \equiv \Gamma_{\rm N} \bar{\sigma}_0. \tag{39}$$

In the presence of a liquid-solid exchange coupling, and polarization of the solid ³He, the instability temperatures for the $\uparrow\uparrow$ and $\downarrow\downarrow$ condensates are given by

$$\ln(T_c^{\pm}/T_{c0}) = 2 S_1(x^{\pm}), \tag{40}$$

where $x^{\pm} \equiv 1/2\pi \tau_{\pm} T_c^{\pm}$. For $u_0 \neq 0$, the leading-order polarization correction to the scattering cross sections gives

FIG. 2. (Color online) The low-field (linear) splitting of T_c with magnetic field for ³He in aerogel with a mean free path of ℓ = 140 nm, a correlation length of ξ_a = 50 nm and a typical cross section $\overline{\sigma}_0 = 1/2$. The splitting for ³He aerogel without liquid-solid exchange is indicated by the solid (red) lines. The data points are taken from Ref. 25.

$$\frac{1}{\overline{\tau}} = \frac{1}{\tau}, \quad \frac{1}{2\tau_{\rm S}} = 2n_s JS(T,B) \sqrt{\overline{\sigma}_0} (1-\overline{\sigma}_0)^{3/2}. \tag{41}$$

In the low-field region, and above the magnetic ordering temperature, $\mathcal{P} = |\mu| B / k_B T_c$, and we obtain

$$\lambda_{\mathrm{J}} = g_{\mathrm{J}} \left(\frac{|\mu|}{k_B} \right) \left(\frac{(1 - \bar{\sigma}_0)^{3/2}}{\sqrt{\bar{\sigma}_0}} \right) \left(\frac{-2x_c S_2(x_c)}{1 - 2x_c S_2(x_c)} \right), \quad (42)$$

where $x_c = (\xi_0 / \ell) (T_{c0} / T_c)$, and the dimensionless exchange coupling is

$$g_{\rm J} = 2 \,\pi N_f J {\rm s.} \tag{43}$$

Note the impurity-induced exchange splitting vanishes in the unitary limit.³¹ Equation (42) is easily generalized to include aerogel correlations within the heuristic "random void" model described above; the result for $\lambda_{\rm J}$ has the same form as Eq. (42), but with $-x_c S_2(x_c) \rightarrow \tilde{x}'_c S_2(\tilde{x}_c)$, where $\tilde{x}_c = x_c^2/(x_c + \zeta_a^2)$, $x_c = 1/2\pi\tau T_c$, and $\tilde{x}'_c \equiv T_c d\tilde{x}_c/dT_c$.

The effects of the liquid-solid exchange coupling g_1 and the polarization of the solid ³He coating the aerogel strands on the A_1 - A_2 splitting are shown in Fig. 2, and compared with measurements of the superfluid transition in 98% aerogel reported in Ref. 25; these authors found no evidence of the A_1 - A_2 splitting for fields up to B = 5 kG. The data for the superfluid transition of ³He in 98% aerogel for fields up to B = 5 kG are shown in Fig. 2. The error bars are conservative estimates of the uncertainty in defining T_c ; the experiment shows no evidence of a splitting to within the error of determining T_c , and consequently we can assume that the splitting to be less than the error bars for T_c .³²

The calculation of the A_1 - A_2 splitting includes aerogel correlations, which are most important at high pressures. Both the mean free path ℓ and the aerogel correlation length ξ_a contribute. The values of $\ell = 1400$ Å and $\xi_a = 502$ Å correspond to $T_c = 2.12$ mK at p = 33.4 bars and yield close agreement with $T_c(p)$ over the full pressure range. The dimensionless cross section $\bar{\sigma}_0$ is not known with any certainty; there is likely a distribution of cross-sections provided by the aerogel. In the absence of detailed knowledge we assume an average value of $\overline{\sigma}_0 = 1/2$. The values of λ^{A_1} and λ^{A_2} for pure ³He, and thus the strong-coupling parameter r_{β} are taken from Ref. 6. The effects of nonmagnetic scattering by aerogel lead to small corrections for $\overline{\lambda}^{A_1}$ and $\overline{\lambda}^{A_2}$; these terms alone (shown in Fig. 2 as $g_J=0$) generate the A_1 - A_2 splitting that is substantially larger ($\approx \times 2$) than the error reported for the superfluid ³He transition in Ref. 5. An antiferromagnetic exchange coupling $(g_1 > 0)$ decreases the A_1 - A_2 splitting. The magnitude of the predicted splitting is reduced to lie within the error bars for T_c for $g_J = 1.8$ $\times 10^{-4}$, which corresponds to an exchange coupling of J $\simeq 0.1$ mK per liquid ³He spin.

The existing data, while suggestive that the liquid-solid layer coupling may be playing an important role in suppressing the A_1 - A_2 splitting are not conclusive. If scattering by polarized ³He is responsible for the suppressed A_1 - A_2 splitting for pure ³He in aerogel, then heat capacity or acoustic attenuation measurements with ⁴He added to displace the solid ³He, should exhibit the A_1 - A_2 splitting that is comparable to that of pure bulk ³He. Measurements of Sprague et al.²¹ at p = 18.7 bars and at B = 1.47 kG do show an increase in T_c from 1.69 mK without ⁴He coverage to 1.76 mK with the addition of one monolayer of ⁴He to remove the solid ³He; thus, $\Delta T_c \approx 70 \ \mu$ K. By comparison, if we suppress the polarization component of the scattering rate in our theoretical calculation we obtain an increase in T_c from the conventional component of the A_1 - A_2 splitting of $\Delta T_c^{A_1 \cdot A_2} = 3.1 \ \mu \text{K/kG} \, \hat{B} \simeq 4.6 \ \mu \text{K}$, which is more than an order of magnitude smaller than the change in T_c observed by

FIG. 3. (Color online) The field-evolution of the splitting of T_c for ³He in aerogel with the same parameters as those used in Fig. 2. The linear field splitting expected in the absence of polarized solid ³He is indicated by the solid (red) lines. The nonlinear field evolution of the splitting is indicated by the thick (green) lines and corresponds to the value of $g_J = 3.0 \times 10^{-4}$. The Curie temperature is taken from Ref. 19, $\Theta_S \approx 0.4$ mK, and the exchange field is $B_S = k_B \Theta_S / |\mu| \approx 5.14$ kG. The data points are from Ref. 25.

adding ⁴He. Thus, the addition of ⁴He also modifies the nonmagnetic contribution to the pairbreaking, and this effect is dominant at these low fields.

Measurements on pure ³He in aerogel at higher fields should not suffer from this problem and should be able to resolve some or all of the uncertainty in the mechanism suppressing the A_1 - A_2 splitting at low fields. In particular, if an exchange coupling, $J \approx 0.1-0.2$ mK is responsible for the suppressed A_1 - A_2 splitting at $B \leq 5$ kG, then for higher fields, $B \geq B_S = k_B \Theta_S / |\mu| \approx 5$ kG the polarization of the solid ³He should saturate, producing a field-independent shift from scattering off the polarized ³He, and the A_1 - A_2 splitting that increases with field, for $B \geq B_S$, at a rate comparable to that for pure ³He. The Curie temperature for the solid ³He provides the temperature and field scale for the polarization, i.e., $\mathcal{P}(B/B_{\rm S}, T/\Theta_{\rm S})$. In order to estimate the field dependence of the A_1 - A_2 splitting at higher fields we use the mean-field theory for the S = 1/2, near-neighbor Heisenberg ferromagnet to calculate the polarization.²⁸ The result is shown in Fig. 3 for the same parameters used to obtain the low-field suppression of the A_1 - A_2 splitting shown in Fig. 2. Thus, even if fully suppressed at low fields $B \leq B_{\rm S}$ the A_1 - A_2 splitting should emerge for fields above $B \approx 20$ kG.

We thank Yuriy Bunkov, Henri Godfrin, and Bill Halperin for useful discussions, and acknowledge support from NSF Grant No. DMR-9972087.

- ¹B.I. Barker, Y. Lee, L. Polukhina, D.D. Osheroff, L.W. Hrubesh, and J.F. Poco, Phys. Rev. Lett. **85**, 2148 (2000).
- ²P. Brussaard, S.N. Fisher, A.M. Guénault, A.J. Hale, N. Mulders, and G.R. Pickett, Phys. Rev. Lett. 86, 4580 (2001).
- ³G. Gervais, T.M. Haard, R. Nomura, N. Mulders, and W.P. Halperin, Phys. Rev. Lett. **87**, 035701 (2001).
- ⁴K. Matsumoto, J.V. Porto, L. Pollack, E.N. Smith, T.L. Ho, and J.M. Parpia, Phys. Rev. Lett. **79**, 253 (1997).
- ⁵G. Gervais, K. Yawata, N. Mulders, and W.P. Halperin, Phys. Rev. Lett. 88, 045505 (2002).
- ⁶U.E. Israelson, B.C. Crooker, H.M. Bozler, and C.M. Gould, Phys. Rev. Lett. **53**, 1943 (1984).
- ⁷D.C. Sagan, P.G.N. DeVegvar, E. Polturak, L. Friedman, S.S. Yan, E.L. Ziercher, and D.M. Lee, Phys. Rev. Lett. **53**, 1939 (1984).
- ⁸V. Ambegaokar and N.D. Mermin, Phys. Rev. Lett. **30**, 81 (1973).
- ⁹K. Levin and O.T. Valls, Phys. Rev. B **23**, 6154 (1981).
- ¹⁰K.S. Bedell and K.F. Quader, Phys. Rev. B 23, 6154 (1981).
- ¹¹N.D. Mermin and G. Stare, Phys. Rev. Lett. **30**, 1135 (1973).
- ¹²D. Rainer and J.A. Sauls, J. Low Temp. Phys. **110**, 2861 (1998).
- ¹³E.V. Thuneberg, S.-K. Yip, M. Fogelström, and J.A. Sauls, Phys. Rev. Lett. **80**, 2861 (1998).
- ¹⁴E.V. Thuneberg, cond-mat/9802044 (unpublished).
- ¹⁵G. Baramidze, G. Kharadze, and G. Vachnadze, JETP 63, 107 (1996).
- ¹⁶G. Baramidze and G. Kharadze, J. Phys.: Condens. Matter 14, 7471 (2002).
- ¹⁷P. Sharma and J.A. Sauls, J. Low Temp. Phys. **125**, 115 (2001).
- ¹⁸V.P. Mineev and P.L. Krotkov, Phys. Rev. B **65**, 024501 (2002).

- ¹⁹D. Sprague, T. Haard, J. Kycia, M. Rand, Y. Lee, P. Hamot, and W. Halperin, Phys. Rev. Lett. **75**, 661 (1995).
- ²⁰Y.M. Bunkov, A.S. Chen, D.J. Cousins, and H. Godfrin, Phys. Rev. Lett. 85, 3456 (2000).
- ²¹D. Sprague, T. Haard, J. Kycia, M. Rand, Y. Lee, P. Hamot, and W. Halperin, Phys. Rev. Lett. **77**, 4568 (1996).
- ²²G. Baramidze and G. Kharadze, Physica A **284–288**, 305 (2000).
- ²³D. Vollhardt and P. Wölfle, *The Superfluid Phases of ³He* (Taylor & Francis, New York, 1990).
- ²⁴D. Rainer and J.W. Serene, Phys. Rev. B 13, 4745 (1976).
- ²⁵G. Gervais, K. Yawata, N. Mulders, and W.P. Halperin, Phys. Rev. B 66, 054528 (2002).
- ²⁶H. Godfrin and R.E. Rapp, Adv. Phys. 44, 113 (1995).
- ²⁷J.W. Serene and D. Rainer, Phys. Rep. **101**, 221 (1983).
- ²⁸N.W. Ashcroft and N.D. Mermin, *Solid State Physics* (Holt, Rinehart, and Winston, New York, 1975).
- ²⁹The A_1 phase corresponds to pairs of ³He quasiparticles with their magnetic moments aligned along the field. We follow the notation of Ref. 23 and define the quantization axis for the spin to be $\hat{\mathbf{z}}||-\mathbf{B}$ to compensate for the negative gyromagnetic ratio of ³He.
- ³⁰This is the result for $\bar{\sigma}_0 = 1/2$. There is a correction to the third term on the right side of Eq. (11) for $\bar{\sigma}_0 \neq 1/2$.
- ³¹The splitting also vanishes in the Born limit; although Eq. (42) is not valid in the Born limit since it is based on a expansion of J/u_0 . Nevertheless, in the limit $u_0=0$, i.e., with only pure exchange coupling the cross sections for \uparrow and \downarrow spin scattering are equal and the splitting vanishes.
- ³²W.P. Halperin (private communication).