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Order-parameter fluctuations in Ising spin glasses at low temperatures
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We present a numerical study of the order-parameter fluctuations for Ising spin glasses in three and four
dimensions at very low temperatures and without an external field. Accurate measurements of two previously
introduced parameters and G show that the order parameter is not self-averaging, consistent with a zero-
temperature thermal exponent val@le=0, and confirms the validity of the relatidd=1/3 in the thermody-
namic limit in the whole low-temperature phase, as predicted by stochastic stability arguments.
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[. INTRODUCTION lation B=1—-A/(2G). For a model without time-reversal
symmetry(TRS), A, G, andB are given by Eqs(2), (3), and
Understanding the low-temperature physics of short-rangé4) below. The parametes serves as a good indicator of the
spin glassesremains a major unsolved problem. Much of existence of phase transitidAsn systems lacking TR®or
the current debate concentrates on the equilibrium thermodywhich B is generally a bad indicatpras recently shown for
namics of the Edwards-Anderson model with Ising spinsseveral systems, including the Ising spin glass in the Migdal-
(EAI model, the canonical short-range spin glass. Since anakadanoff approximation? RNA folding models.’ chiral
lytical approaches pose formidable difficulties, the problemSPin systems; and mean-field models such as the SK model
is often studied numerically. However, the existence of largdWith and without a magnetic fieJdthe infinite-rangep-spin

barriers between low-energy configurations has limited so faf’0del;” and the infinite-range Potts moc?@l'.l’h_e parameter
numerical calculations to small systems sizes, from which i has also been studied before for random diluted models at

g i, 21,22
is hard to draw definite conclusions on the Iarge-volumecr't'ca“tY' . . . .
limit In this paper, we investigate the OP fluctuations in the
' aErAI model with Gaussian couplings in three and four dimen-

Two main issues have been addressed in many numeric i . :
. ) - Sions by low-temperature Monte Carlo simulations. We study
studies: the existence and character of the fmne-temperatume case with no external field, which satisfies TRS. In three

sp?n-glass transition and the nat_ure o_f the IO\f\"temper""tu,raimensions(3D), numerical data are available in the litera-
;pm-glass phase. A central ql_Jantlty of |r_1terest in the descripy e forA in the high-temperature phdand forG near the

tion of the spin-glass phase is the scaling expor€ngov-  critical point24 for the “+ J” coupling distribution. In 4D,G
erning the typical energy of the lowest-lying excitations with ;.35 measured at moderately low temperatures, also for the
linear size of ordel, which is assumed to scale Bs-1?". In +J distribution}* Here, we study much lower temperatures
general,§’ may be distinct® from the stiffness exponerit  than in these studies, in order to reduce crossover effects
measured in domain-wall computatichs, and stability of —associated to the critical poift?® which complicate the in-
the spin-glass phase requires the inequalif=0. In a terpretation of the numerical data at higher temperatures.
“many-state” picturé such as the replica-symmetry- A summary of our results is as follows. First, we estimate
breaking picture inspired by mean-field theb’y!° one has ¢’ from the system-size dependence Affinding, for the
#’=0; hence there are excitations whose energy remainsystem sizes we could reach, a small valugoincompat-
finite (of the order of the coupling strength between twoible with the accepted values of the domain-wall exponent
sping even as their length scale diverges. In a “two-state’[ #=0.2 in 3D (Refs. 4, 5, and )fand =0.7 in 4D (Ref. 6]
picture, such as the droplet modét?one has9’ >0; hence and compatible with zero. This agrees with recent determi-
the energy of large-scale excitations diverges with their sizenations of #’ from ground-state perturbation meth6ds’

In this case the identity’ = @ is often assumed. and from low-temperature measurements of the OP
Both the spin-glass transition and the ordered phase hawdistributiont®2%2329 (which all consider sample-averaged
been usually investigated numerically by computing samplequantitie3 and supports a picture of the spin-glass phase

averaged quantities such as the Binder cumitantthe dis-  characterized by two distinct exponents>0 and ¢’ =0.
tribution of the order parametgOP) and related observ- The resultd’ =0 implies that the OP is natelf-averagingn
ables. Recentl{'°it was observed that useful information the thermodynamic limit.

on both issues can be drawn from the sample-to-sample fluc- Second, we find good evidence that the idenGy 1/3
tuations of the OP. In particular, two dimensionless measurelsolds in the whole spin-glass phase in the thermodynamic
of the OP fluctuations were considet&®® A, the normal- limit, confirming the validity of sum rules proposed by
ized fluctuation of the spin-glass susceptibility, @Bda ratio ~ Guerrd® and first derived for the SK model, which follow
between two cumulants of the OP distribution. These twdrom the property of “replica equivalence’>2

parameters are related to the Binder cumuBia the re- Third, we find thatA and G allow one to locate the spin-
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glass transition reasonably well although, as expected due to T3 Tl
TRS and as previously numerically obser?&@ provides a G(T.L)= M &)
better estimate for the critical temperatieemuch more ac- m_@

curate estimate is provided by the correlation lerfdtivhich
we do not investigate here —a

We do not study in this paper the surface fractal dimen- B(T.L)==| 3 Cw 4
sion dg of the excitations, which is the other exponent, with ' 2 mz '

0', characterizing the spin-glass phdge particular,d;=0
in the standard replica-symmetry-breaking picttfrel;>0
in the droplet model, while the “TNT” picture® predicts the
“mixed” behavior dg>0, 6'=0).

The rest of the paper is organized as follows. In Sec. Il w
introduce the different models and observables studied an@
discuss the theoretical predictions for these observables. )
Sec. Il we present and analyze our numerical results for th§ample variance of the OP.

quantitiesA, G, andB. Finally, in Sec. IV we summarize our " the paramagnetic phasé>T., and forL sufficiently
conclusions. large so that.> ¢ (whereé is the correlation lengjhthe OP

is Gaussian distributed and all three parameters vanish as
1/LP, for the central limit theorem. Following the terminol-
ogy of Wiseman and Domarfy,this means that the OP is
strongly self-averaging

We study the EAI model defined by the Hamiltonian At T=T,, the correlation length diverges and the central
limit theorem cannot be applied. For strongly disordered sys-
tems such as spin glasses it is known that the OP is not
self-averaging at criticality>'?> namely, A tends to a finite
value in the thermodynamic limit. IA is finite, then clearly

: ; J Sk > = . G must be finite, and standard renormalization-group argu-
@meqsmns vy|th !lnear sizk and perlod|c boundary condi- 1 ants show thaB is also finite atT,. SinceB and G are
tions in all directions. The couplingd; are drawn from &  gimensionless and monotonic T in plots of these quanti-
Gaussian distribution of zero mean and unit variance. Wejas a5 a function ofr, the curves for different values af
consider two different modelgi) the case with interactions must all cross al =T,, and one can use this to determine
(i,) restricted to nearest neighbaeferred to as the NN 1 " grom standard finite-size scaling, one can then deter-

mode) in D=3 and 4;(ii) the case with interactions re- mine the critical exponent. Since much work has been
stricted to nearest, next-nearest, and next-next-nearest ”e'q_tﬂévoted to measuring from the standard observablésee
bors (referred to as the NNN modein D=3, which has a ¢y, instance, Refs. 24, 33, and 36381d we are primarily

coordination numbez = 26. , , , interested in the low-temperature phase here, we will not
The NN model has been extensively studied and is knowréttempt a precise determination.

to display a finite-temperature continuous spin-glass transi- | the spin-glass phasg<T., A is expecte®*to van-
tion for D%B. Regent estlmatgs of the critical temper'atureish linearly with T according to the scaling law
for Gaussian-distributed couplings givie,.=0.95+0.04 in
3D (Ref. 33 and T,=1.80+0.03 in 4D (Ref. 39, as also _y
confirmed in Ref. 35. A(T,L)~TL™7, 5
The NNN model has been much less studied. In Ref. 23, ) ) i . )
the 3D case with+ J couplings was considered, but no con- where ¢’ is the exponent discussed in the Introduction. This
clusive evidence of a finite-temperature transition was obl@W holds under two hypothesésoth satisfied in the case of
tained, the data being compatible with baftt=3.27 and a  continuous couplings studied hgri) the ground state is
zero-temperature singularity. Incidentally, in the NNN case!Midue; (i) the probability distribution of the energy of the
we do not expect a large differencelip between binary and lowest-lying excitations _has finite weight at zero eneftff
Gaussian distributions, due to the large coordination number, From the above scaling law we see thabit>0, thenA
For the NNN model, we did not consider temperatures ayanishes fol.—co; namely, the OP isveakly self-averaging
low as for the NN model, but focused on the phase transitiotVhere “weakly |nc(ij|cate§ that OP fluctuations vanish
region. Another of the results of this paper is a convincingMOre slowly than 11% a consequence of the inequality
evidence that indeed a finite-temperature transition exists in-d). This situation is encountered in the droplet moldef,

Whereqz(llLD)EiSf‘S,b is the spin overlap of two indepen-
dent systems? andSP with the same random couplings, and
e(' -y and (---) stand for thermal and disorder averages,
spectively. The OP for a given realization of the disorder is
2}; therefore A is nothing but the normalized sample-to-

Il. MODELS, OBSERVABLES, AND THEORETICAL
PREDICTIONS

H=—<i§j:> JiSS;, S==*1, (1)

whereLP Ising spinsS; sit on a(hypencubic lattice inD

this model in 3D. as discussed in the Introduction, and also in mean-field mod-
We measuré), G, andB as a function of temperature els with a marginally stable replica-symmetric solution at
and sizel using the following definitions: low temperaturegsuch as the spherical SK motfg! If 6’
=0, as in a “many-state” pictureA remains finite in the
W_mz thermodynamic limit; namely, the OP it self-averaging.
AT, L)=—"—s", ) Turning now toG, it is knowrt** that in the SK model
(q?) the following relation holds fof <T.:
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TABLE |. Parameters of the simulationis.is the linear system
size, Tin and Ta the smallest and largest temperatures consid-
ered,N; the number of temperatures in the parallel tempering al-
gorithm, Ng the number of independent realizations of the disorder
(sampleg and MCS the number of Monte Carlo steps per spin and
per temperature.

0.2

A(T,L)

0.1

(]
(@]
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FIG. 1. ParameteA for the 3D NN model as a function of the

temperature, for different system sizesThe vertical line repre-
sents the estimated value of the critical temperatdres 0.95
+0.04.

T. (see Sec. Il ¢ In all cases, the behavior éf resembles
that observed in the SK modé&lee Refs. 14, 18, and 13t
high temperaturesA decreases with., approximately as

1/LP, showing that the OP is strongly self-averaging in this

Model L Twin  Tmax Nt N MCS
3D NN 4 0.1 2.0 18 16000 fo
6 0.2 2.0 16 6000 1o
8 0.2 2.0 16 6600 10
12 0.94 2.0 14 3751 810
16 0.94 2.0 16 587 fo
4D NN 3 0.2 2.8 12 16000 fo
4 0.2 2.8 12 13951 fo
5 0.46 2.8 19 1476  810°
7 0.995 2.8 29 832 ]10°
3D NNN 4 2.0 5.0 16 9005 o)
6 2.0 5.0 16 3258 10
8 2.0 5.0 16 3574 g 10
12 2.8 5.0 12 1751 fo
16 3.4 5.0 9 489 10
lim G(T,L)=1/3. (6)
L—oo

regime, as expected. Nedr=T., there is a maximum
whose position shifts towardg; asL increases, an effect of

finite-size corrections. The shift is modest in the 4D NN

Guerra has showf that this relation should holdfor T

model but quite noticeable in the 3D NN model, where even

<Tc) in any model which is “stochastically stable” with for the largesL the position of the maximum is still signifi-
respect to a mean-field perturbation and which has a noreantly larger thaT... In the 3D NNN model, the position of

self-averaging OP. Under the hypotheggsand (ii) above,
the more general conjecture has also been fatiat the
above relation holds folT<T. even if the OP is self-
averaging. In this casé& would be finite but both the nu-
merator and the denominator in E§) would vanish, as, for
example, in the Migdal-Kadanoff spin glagsee Bokil
et al1% and the SK spherical modé&l.It has also been ex-

plicitly proved?® under hypothese§) and (i), that one has A is approximately linear iffl, in agreement with

G(T=0,L)=1/3 for anyL. Note that models in whicls(T
=0,L) # 1/3 in general will not satisfy the conjecture of Ref.
41.

III. NUMERICAL RESULTS

We simulated the various models with the parallel temper-
ing techniqué’? which allows us to reach significantly lower
temperatures than conventional Monte Carlo methods. The
parameters of the simulation are given in Table I. Equilibra-
tion of the Monte Carlo runs was tested by monitoring all the
measured observables on a logarithmic time scale, checking
that they all had converged within their statistical errors, and
by applying the equilibration test discussed in Ref. 26.

A. Parameter A

In Figs. 1, 2, and 3 we show our numerical resultsAan
the 3D NN, 4D NN, and 3D NNN models, respectively. The

the maximum is also larger thah. (see discussion in Sec.
Il C on the value ofT; in this mode], but the shift is less
pronounced. Thaeightof the maximum increases within
all models, indicating thaA attains a finite value in the ther-
modynamic limit(since it is bounded from aboye-namely,
that the OP is not self-averaging Bt, as expected.

At low temperaturesT<T,), Figs. 1, 2, and 3 show that

A(T,L)

0.2

0.1

Eq(5).

0 0.5 1 1.5

T

2 2.5

FIG. 2. Same as Fig. 1 but for the 4D NN model.
vertical lines in Figs. 1 and 2 indicate the estimated value ofine corresponds td.=1.80+0.03.
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FIG. 3. Same as Fig. 1 but for the 3D NNN model.

Most interestingly, the data for different valueslotend to
superimpose to each other. In a scenario Witk 0, the data
should tend to zero for lardein the whole region below .. .

In 3D, we see no decrease at all in the data with incredsing
while a modest decrease is observed in 4D.

To analyze in more detail the size dependencA af low
temperatures, in Fig. 4 we plot the raddT as a function of
L at different temperatures for the three models. The straig
lines represent the scaling law, E§), assumingd’ = 6 and
using the estimates of from domain-wall calculationsg
=0.2in 3D(Refs. 4, 5, and )fand #=0.7 in 4D(Ref. 6). No
estimates off are available for the 3D NNN model, so we
use that for the NN moddlwe expect tha® is a universal
exponent equal for both modgl<learly, the data in Fig. 4
do not agree with the hypothedis= @ for the range of sizes

PHYSICAL REVIEW B68, 224430 (2003
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FIG. 5. Parameter& (main figurg andB (inse for the 3D NN
model, as a function of the temperature and for various system
sizes. The vertical lines correspondTig=0.95+0.04; the horizon-
tal line in the main figure corresponds to the limit relatiGh
=1/3.

' should be seen as an “effective” exponent which depends
on the temperature and which effectively takes into account
h&orrections to the leading scaling behavior, with— 6’ in
the limit TL=% —0. The fits gived varying from 0.03
+0.02 (T=0.7) to 0.06:0.06 (T=0.2) in the 3D NN
model, from 0.36¢:0.05 (T=1.0) to 0.003-0.006 (T
=0.32) in the 4D NN model, and from 0.63.04 (T
=2.8) t0 0.08-0.04 (T=2.0) in the 3D NNN model.
Therefore, in all cases the data are compatible with

considered and seem to saturate to a constant value instead?: In agreement with the “many-state” picture, and are

We fitted the data with the form(T,L)/TzaL*&', where

0.15

—
7
’

E [T —
e £ S 3D E
~0.14 F = -
- F 3
£ 0.13 [~ T=0.70 =
< Fa T=0.20 Tl ]
O Ege——— T 77T 5
< S 4D
Py = T=1.00
3 0.1 RN 4 T=0.32 3
E, 0.09 E 3
008
0.06 1 q_og =~ -
Q (= T=2.8 ~~._ 3D NNN ]
:T e T=2.0 < ]
\&1/ - =3 4
= 0.05 - e 14
1 | | A T B
3 4 5 6 7 8910
L

FIG. 4. Log-log plot ofA/T vs L at different temperatures for
the 3D NN model(top), the 4D NN model(middle), and the 3D
NNN model (bottom). The straight lines of slope-0.2 (top and
bottom and— 0.7 (middle) are the expected scaling behavior of Eq.
(5)if 6'=0.

statistically incompatible withd’ = 6, in disagreement with
the “two-state” picture. As usual, we cannot exclude a
crossover to a larger value of)’ for largerL. In this case,
in the large-volume limitA would be zero at all tempera-
tures, except at=T,.

A value of #" compatible with zero was also obtained
from the OP distributiotf:?628:293%nd from direct measure-
ments of the energy of low-lying excitations created by per-

turbing the ground state®?’

B. ParametersG and B

Figures 5, 6, and 7 show our numerical resultsGand
B for the three models. At high temperatur€sandB vanish
approximately as 1P in all three models, again indicating
strong self-averaging. Nedr=0, the data for the NN model
in both 3D and 4D are compatible with(T=0,)=1/3 and
B(T=0L)=1, as expected® for a continuous coupling
distribution. More importantlys(T,L) seems to converge to
the value 1/3 for largd. in the whole low-temperature re-
gion, in agreement with Eq6). This is particularly evident
in the 4D NN model(Fig. 6), where G(T,L) has already
converged to 1/3 foL=5 at temperatures below~T./2
~0.9 (the data points above 1/3 are due to incomplete
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0 0.5 1 1.5 2 2.5 for both B andG for different values of. come together a§

L L LA B B 0.4 approached . from above, as indicative of a phase transi-
tion. Below T, the data forG separate again in a statisti-
cally significant way, while foB one would need a substan-

0.3 tially larger statistics (or larger sizes to see a clear
separation, as observed in previous studié§ For example,
at T=0.82 the separation between the=12 and theL=4
data is 1.4 standard deviations Brand 2.5 standard devia-
tions forG. The small separation beloW, is probably due to
the vicinity of D=3 to the lower critical dimensiofr-3¢-38
We also note that the crossing point®fis at temperatures
0.1 larger thanT., and close inspection shows that it shifts to-
wards T, from above asL increases. A similar shift was
observed for the position of the maximum Afin Fig. 1.
In 4D, both B and G display a very clear crossingee
Fig. 6), as also observed in previous studi@s! FromB we
T estimateT,=1.80+0.03 in agreement with the results of
Refs. 34 and 43. This value is indicated by the vertical lines
FIG. 6. Same as Fig. 5 but for the 4D NN model. The verticalin Fig. 6. As in 3D, the crossing point @ is at temperatures
lines correspond t@.=1.80+0.03. larger thanT. and shifts towardg . asL increases.

Overall, this confirms that both in 3D and 4D the correc-
equilibratiort®). It is quite unlikely that the saturation is a tions to scaling are significantly larger f@ and A than for
finite-size effect; therefore, our results strongly suggest tha. SinceG andA have also much larger statistical errors than
indeedG=1/3 in the whole spin-glass phase. As discussed, the latter quantity is to be preferred @andA for locat-
above, ifA remains finite a — (as indicated by our data  ing T¢ in models with TRS. As already mentioned, a much
this is an expected consequence of stochastic staffiliftyA =~ more accurate quantity for this purpose is the correlation
vanishes, instead, our results would support the more gener&@ngth, which shows a very clear crossing in 3Dynlike B

conjecture of Ref. 41. andG.
Finally, in the 3D NNN model botlis andB show a rather

clear crossingsee Fig. 7. This provides clear evidence for
the existence of a phase transition in 3D Ising spin glasses,

In this section we comment on the behavior@fandB  confirming recent results for the NN mod&#®*8 that ob-
near the critical temperature, starting from the NN model. tained a convincing evidend@specially Ref. 24 after the

In 3D, the vertical lines in Fig. 5 indicates the position of issue had remained unsolved for a long time. The crossing
the critical temperature, using the vallie,.=0.95-0.04 pointis atT=3.3 forB and at somewhat higher temperatures
quoted in Ref. 33, which was obtained from the paramBter for G, although also here the crossing férshifts to the left
measured in a large-scale simulation. One sees that the dadal increases. From the data fBrone might be tempted to
conclude that the critical temperaturelis=3.3. However, if

G(T,L)

0.2

C. Critical region

2 2.5 3 3.5 4 4.5 this were the case, the value Bfat T (which is a universal
) 0.4 quantity) would be lower in the 3D NNN model than in the
3D NNN | 3D NN model, violating universality. This suggests that the
S ] actual value ofT is significantly lower than 3.3, despite the
3 04 0.3 clear crossing oB (which would then be strongly affected
a6 ] — by scaling corrections and for this reason we have not in-
a8 1 = dicated the position of ¢ in Figs. 3 and 7. A more detailed
0.8 [rrrrr e 1.8 analysié* clearly shows that inde€®, is significantly lower
S ] ] 0.2 than 3.3 in this model.
ot s ]
= f ] ] IV. CONCLUSIONS
Eoel ] 0.1
mor ] To conclude, we have provided evidence that the order
05 a . parameter is not self-averaging in the low-temperature phase
' 3.|...|...|...T\..|.' 0 of the Edwards-Anderson Ising spin glass in 3D and 4D,
28 3 32 34 36 which implies an exponent’=0, in agreement with a

T “many-state” picture of the spin-glass phase, such as the
replica-symmetry-breaking picture or the “TNT” picture. As
FIG. 7. Same as Fig. 5 but for the 3D NNN model. The trueusual, due to the limited system sizes that are currently
critical temperature is significantly lower than the crossing point ofreachable in numerical simulations, we cannot exclude that
B. for larger sizes one recovers self-averaging; nevertheless, our
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result is consistent with other studies which used samplespin-glass phase transition at finite temperature in three di-
averaged quantitié$?®?” and also found¢’=0. Indepen- mensions.

dently of whether there is self-averaging or not, we have

provided evidence that the identi€=1/3 holds in the ther-

modynamic limit in the whole spin-glass phase, a fact that ACKNOWLEDGMENTS
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