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Order-parameter fluctuations in Ising spin glasses at low temperatures
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We present a numerical study of the order-parameter fluctuations for Ising spin glasses in three and four
dimensions at very low temperatures and without an external field. Accurate measurements of two previously
introduced parametersA and G show that the order parameter is not self-averaging, consistent with a zero-
temperature thermal exponent valueu8.0, and confirms the validity of the relationG51/3 in the thermody-
namic limit in the whole low-temperature phase, as predicted by stochastic stability arguments.
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I. INTRODUCTION

Understanding the low-temperature physics of short-ra
spin glasses1 remains a major unsolved problem. Much
the current debate concentrates on the equilibrium thermo
namics of the Edwards-Anderson model with Ising sp
~EAI model!, the canonical short-range spin glass. Since a
lytical approaches pose formidable difficulties, the probl
is often studied numerically. However, the existence of la
barriers between low-energy configurations has limited so
numerical calculations to small systems sizes, from whic
is hard to draw definite conclusions on the large-volu
limit.

Two main issues have been addressed in many nume
studies: the existence and character of the finite-tempera
spin-glass transition and the nature of the low-tempera
spin-glass phase. A central quantity of interest in the desc
tion of the spin-glass phase is the scaling exponentu8 gov-
erning the typical energy of the lowest-lying excitations w

linear size of orderl, which is assumed to scale asE; l u8. In
general,u8 may be distinct2,3 from the stiffness exponentu
measured in domain-wall computations,4–7 and stability of
the spin-glass phase requires the inequalityu8>0. In a
‘‘many-state’’ picture8 such as the replica-symmetry
breaking picture inspired by mean-field theory,1,9,10 one has
u850; hence there are excitations whose energy rem
finite ~of the order of the coupling strength between tw
spins! even as their length scale diverges. In a ‘‘two-sta
picture, such as the droplet model,11,12one hasu8.0; hence
the energy of large-scale excitations diverges with their s
In this case the identityu85u is often assumed.

Both the spin-glass transition and the ordered phase h
been usually investigated numerically by computing samp
averaged quantities such as the Binder cumulant13 or the dis-
tribution of the order parameter~OP! and related observ
ables. Recently,14,15 it was observed that useful informatio
on both issues can be drawn from the sample-to-sample
tuations of the OP. In particular, two dimensionless measu
of the OP fluctuations were considered14,15: A, the normal-
ized fluctuation of the spin-glass susceptibility, andG, a ratio
between two cumulants of the OP distribution. These t
parameters are related to the Binder cumulantB via the re-
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lation B512A/(2G). For a model without time-reversa
symmetry~TRS!, A, G, andB are given by Eqs.~2!, ~3!, and
~4! below. The parameterG serves as a good indicator of th
existence of phase transitions15 in systems lacking TRS~for
which B is generally a bad indicator!, as recently shown for
several systems, including the Ising spin glass in the Migd
Kadanoff approximation,16 RNA folding models,17 chiral
spin systems,18 and mean-field models such as the SK mo
~with and without a magnetic field!, the infinite-rangep-spin
model,19 and the infinite-range Potts model.20 The parameter
A has also been studied before for random diluted model
criticality.21,22

In this paper, we investigate the OP fluctuations in t
EAI model with Gaussian couplings in three and four dime
sions by low-temperature Monte Carlo simulations. We stu
the case with no external field, which satisfies TRS. In th
dimensions~3D!, numerical data are available in the liter
ture forA in the high-temperature phase23 and forG near the
critical point,24 for the ‘‘6J’’ coupling distribution. In 4D,G
was measured at moderately low temperatures, also for
6J distribution.14 Here, we study much lower temperatur
than in these studies, in order to reduce crossover eff
associated to the critical point,25,26 which complicate the in-
terpretation of the numerical data at higher temperatures

A summary of our results is as follows. First, we estima
u8 from the system-size dependence ofA, finding, for the
system sizes we could reach, a small value ofu8 incompat-
ible with the accepted values of the domain-wall expon
@u.0.2 in 3D ~Refs. 4, 5, and 7! andu.0.7 in 4D ~Ref. 6!#
and compatible with zero. This agrees with recent deter
nations of u8 from ground-state perturbation methods2,3,27

and from low-temperature measurements of the
distribution10,26,28,29 ~which all consider sample-average
quantities! and supports a picture of the spin-glass pha
characterized by two distinct exponentsu.0 and u850.
The resultu850 implies that the OP is notself-averagingin
the thermodynamic limit.

Second, we find good evidence that the identityG51/3
holds in the whole spin-glass phase in the thermodyna
limit, confirming the validity of sum rules proposed b
Guerra30 and first derived for the SK model, which follow
from the property of ‘‘replica equivalence.’’31,32

Third, we find thatA andG allow one to locate the spin
©2003 The American Physical Society30-1
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glass transition reasonably well although, as expected du
TRS and as previously numerically observed,24 B provides a
better estimate for the critical temperature~a much more ac-
curate estimate is provided by the correlation length,24 which
we do not investigate here!.

We do not study in this paper the surface fractal dim
sion ds of the excitations, which is the other exponent, w
u8, characterizing the spin-glass phase~in particular,ds50
in the standard replica-symmetry-breaking picture,10 ds.0
in the droplet model, while the ‘‘TNT’’ picture2,3 predicts the
‘‘mixed’’ behavior ds.0, u850).

The rest of the paper is organized as follows. In Sec. II
introduce the different models and observables studied
discuss the theoretical predictions for these observables
Sec. III we present and analyze our numerical results for
quantitiesA, G, andB. Finally, in Sec. IV we summarize ou
conclusions.

II. MODELS, OBSERVABLES, AND THEORETICAL
PREDICTIONS

We study the EAI model defined by the Hamiltonian

H52(
^ i , j &

Ji j SiSj , Si561, ~1!

where LD Ising spinsSi sit on a ~hyper!cubic lattice inD
dimensions with linear sizeL and periodic boundary condi
tions in all directions. The couplingsJi j are drawn from a
Gaussian distribution of zero mean and unit variance.
consider two different models:~i! the case with interaction
^ i , j & restricted to nearest neighbors~referred to as the NN
model! in D53 and 4; ~ii ! the case with interactions re
stricted to nearest, next-nearest, and next-next-nearest n
bors ~referred to as the NNN model! in D53, which has a
coordination numberz526.

The NN model has been extensively studied and is kno
to display a finite-temperature continuous spin-glass tra
tion for D>3. Recent estimates of the critical temperatu
for Gaussian-distributed couplings giveTc50.9560.04 in
3D ~Ref. 33! and Tc51.8060.03 in 4D ~Ref. 34!, as also
confirmed in Ref. 35.

The NNN model has been much less studied. In Ref.
the 3D case with6J couplings was considered, but no co
clusive evidence of a finite-temperature transition was
tained, the data being compatible with bothTc'3.27 and a
zero-temperature singularity. Incidentally, in the NNN ca
we do not expect a large difference inTc between binary and
Gaussian distributions, due to the large coordination num
For the NNN model, we did not consider temperatures
low as for the NN model, but focused on the phase transi
region. Another of the results of this paper is a convinc
evidence that indeed a finite-temperature transition exist
this model in 3D.

We measureA, G, andB as a function of temperatureT
and sizeL using the following definitions:

A~T,L !5
^q2&22^q2&

2

^q2&
2 , ~2!
22443
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G~T,L !5
^q2&22^q2&

2

^q4&2^q2&
2 , ~3!

B~T,L !5
1

2 S 32
^q4&

^q2&
2D , ~4!

whereq5(1/LD)( iSi
aSi

b is the spin overlap of two indepen
dent systemsSi

a andSi
b with the same random couplings, an

^•••& and (•••) stand for thermal and disorder average
respectively. The OP for a given realization of the disorde
^q2&; therefore,A is nothing but the normalized sample-to
sample variance of the OP.

In the paramagnetic phase,T.Tc , and forL sufficiently
large so thatL@j ~wherej is the correlation length!, the OP
is Gaussian distributed and all three parameters vanish
1/LD, for the central limit theorem. Following the termino
ogy of Wiseman and Domany,21 this means that the OP i
strongly self-averaging.

At T5Tc , the correlation length diverges and the cent
limit theorem cannot be applied. For strongly disordered s
tems such as spin glasses it is known that the OP is
self-averaging at criticality;21,22 namely,A tends to a finite
value in the thermodynamic limit. IfA is finite, then clearly
G must be finite, and standard renormalization-group ar
ments show thatB is also finite atTc . SinceB and G are
dimensionless and monotonic inT, in plots of these quanti-
ties as a function ofT, the curves for different values ofL
must all cross atT5Tc , and one can use this to determin
Tc . From standard finite-size scaling, one can then de
mine the critical exponentn. Since much work has bee
devoted to measuringn from the standard observables~see,
for instance, Refs. 24, 33, and 36–38! and we are primarily
interested in the low-temperature phase here, we will
attempt a precise determination.

In the spin-glass phase,T,Tc , A is expected39,40 to van-
ish linearly withT according to the scaling law

A~T,L !;TL2u8, ~5!

whereu8 is the exponent discussed in the Introduction. T
law holds under two hypotheses~both satisfied in the case o
continuous couplings studied here!: ~i! the ground state is
unique;~ii ! the probability distribution of the energy of th
lowest-lying excitations has finite weight at zero energy.39,40

From the above scaling law we see that ifu8.0, thenA
vanishes forL→`; namely, the OP isweakly self-averaging
~where ‘‘weakly’’ indicates21 that OP fluctuations vanish
more slowly than 1/Ld, a consequence of the inequalityu8
,d). This situation is encountered in the droplet model,11,12

as discussed in the Introduction, and also in mean-field m
els with a marginally stable replica-symmetric solution
low temperatures~such as the spherical SK model41!. If u8
50, as in a ‘‘many-state’’ picture,A remains finite in the
thermodynamic limit; namely, the OP isnot self-averaging.

Turning now toG, it is known31,32 that in the SK model
the following relation holds forT,Tc :
0-2
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ORDER-PARAMETER FLUCTUATIONS IN ISING SPIN . . . PHYSICAL REVIEW B68, 224430 ~2003!
lim
L→`

G~T,L !51/3. ~6!

Guerra has shown30 that this relation should hold~for T
,Tc) in any model which is ‘‘stochastically stable’’ with
respect to a mean-field perturbation and which has a n
self-averaging OP. Under the hypotheses~i! and ~ii ! above,
the more general conjecture has also been made41 that the
above relation holds forT,Tc even if the OP is self-
averaging. In this case,G would be finite but both the nu
merator and the denominator in Eq.~3! would vanish, as, for
example, in the Migdal-Kadanoff spin glass~see Bokil
et al.16! and the SK spherical model.41 It has also been ex
plicitly proved,39 under hypotheses~i! and ~ii !, that one has
G(T50,L)51/3 for anyL. Note that models in whichG(T
50,L)Þ1/3 in general will not satisfy the conjecture of Re
41.

III. NUMERICAL RESULTS

We simulated the various models with the parallel temp
ing technique,42 which allows us to reach significantly lowe
temperatures than conventional Monte Carlo methods.
parameters of the simulation are given in Table I. Equilib
tion of the Monte Carlo runs was tested by monitoring all t
measured observables on a logarithmic time scale, chec
that they all had converged within their statistical errors, a
by applying the equilibration test discussed in Ref. 26.

A. Parameter A

In Figs. 1, 2, and 3 we show our numerical results forA in
the 3D NN, 4D NN, and 3D NNN models, respectively. T
vertical lines in Figs. 1 and 2 indicate the estimated value

TABLE I. Parameters of the simulations.L is the linear system
size, Tmin and Tmax the smallest and largest temperatures cons
ered,NT the number of temperatures in the parallel tempering
gorithm,Ns the number of independent realizations of the disor
~samples!, and MCS the number of Monte Carlo steps per spin a
per temperature.

Model L Tmin Tmax NT Ns MCS

3D NN 4 0.1 2.0 18 16000 105

6 0.2 2.0 16 6000 105

8 0.2 2.0 16 6600 105

12 0.94 2.0 14 3751 33105

16 0.94 2.0 16 587 106

4D NN 3 0.2 2.8 12 16000 104

4 0.2 2.8 12 13951 105

5 0.46 2.8 19 1476 33105

7 0.995 2.8 29 832 33105

3D NNN 4 2.0 5.0 16 9005 104

6 2.0 5.0 16 3258 104

8 2.0 5.0 16 3574 33104

12 2.8 5.0 12 1751 105

16 3.4 5.0 9 489 105
22443
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Tc ~see Sec. III C!. In all cases, the behavior ofA resembles
that observed in the SK model~see Refs. 14, 18, and 19!. At
high temperatures,A decreases withL, approximately as
1/LD, showing that the OP is strongly self-averaging in th
regime, as expected. NearT5Tc , there is a maximum
whose position shifts towardsTc asL increases, an effect o
finite-size corrections. The shift is modest in the 4D N
model but quite noticeable in the 3D NN model, where ev
for the largestL the position of the maximum is still signifi
cantly larger thanTc . In the 3D NNN model, the position o
the maximum is also larger thanTc ~see discussion in Sec
III C on the value ofTc in this model!, but the shift is less
pronounced. Theheightof the maximum increases withL in
all models, indicating thatA attains a finite value in the ther
modynamic limit~since it is bounded from above!—namely,
that the OP is not self-averaging atTc , as expected.

At low temperatures (T,Tc), Figs. 1, 2, and 3 show tha
A is approximately linear inT, in agreement with Eq.~5!.

-
l-
r
d

FIG. 1. ParameterA for the 3D NN model as a function of the
temperature, for different system sizesL. The vertical line repre-
sents the estimated value of the critical temperature,Tc50.95
60.04.

FIG. 2. Same as Fig. 1 but for the 4D NN model. The vertic
line corresponds toTc51.8060.03.
0-3
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Most interestingly, the data for different values ofL tend to
superimpose to each other. In a scenario withu8.0, the data
should tend to zero for largeL in the whole region belowTc .
In 3D, we see no decrease at all in the data with increasinL,
while a modest decrease is observed in 4D.

To analyze in more detail the size dependence ofA at low
temperatures, in Fig. 4 we plot the ratioA/T as a function of
L at different temperatures for the three models. The stra
lines represent the scaling law, Eq.~5!, assumingu85u and
using the estimates ofu from domain-wall calculations,u
50.2 in 3D~Refs. 4, 5, and 7! andu50.7 in 4D~Ref. 6!. No
estimates ofu are available for the 3D NNN model, so w
use that for the NN model~we expect thatu is a universal
exponent equal for both models!. Clearly, the data in Fig. 4
do not agree with the hypothesisu85u for the range of sizes
considered and seem to saturate to a constant value ins
We fitted the data with the formA(T,L)/T5aL2 û8, where

FIG. 3. Same as Fig. 1 but for the 3D NNN model.

FIG. 4. Log-log plot ofA/T vs L at different temperatures fo
the 3D NN model~top!, the 4D NN model~middle!, and the 3D
NNN model ~bottom!. The straight lines of slope20.2 ~top and
bottom! and20.7 ~middle! are the expected scaling behavior of E
~5! if u85u.
22443
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û8 should be seen as an ‘‘effective’’ exponent which depen
on the temperature and which effectively takes into acco
corrections to the leading scaling behavior, withu 8̂→u8 in
the limit TL2u8→0. The fits giveu 8̂ varying from 0.03
60.02 (T50.7) to 0.0060.06 (T50.2) in the 3D NN
model, from 0.3060.05 (T51.0) to 0.00360.006 (T
50.32) in the 4D NN model, and from 0.0360.04 (T
52.8) to 0.0860.04 (T52.0) in the 3D NNN model.

Therefore, in all cases the data are compatible withu8
50, in agreement with the ‘‘many-state’’ picture, and a
statistically incompatible withu85u, in disagreement with
the ‘‘two-state’’ picture. As usual, we cannot exclude
crossover25 to a larger value ofu8 for largerL. In this case,
in the large-volume limitA would be zero at all tempera
tures, except atT5Tc .

A value of u8 compatible with zero was also obtaine
from the OP distribution10,26,28,29,37and from direct measure
ments of the energy of low-lying excitations created by p
turbing the ground state.2,3,27

B. ParametersG and B

Figures 5, 6, and 7 show our numerical results forG and
B for the three models. At high temperatures,G andB vanish
approximately as 1/LD in all three models, again indicatin
strong self-averaging. NearT50, the data for the NN mode
in both 3D and 4D are compatible withG(T50,L)51/3 and
B(T50,L)51, as expected39,41 for a continuous coupling
distribution. More importantly,G(T,L) seems to converge to
the value 1/3 for largeL in the whole low-temperature re-
gion, in agreement with Eq.~6!. This is particularly evident
in the 4D NN model~Fig. 6!, where G(T,L) has already
converged to 1/3 forL55 at temperatures belowT'Tc/2
'0.9 ~the data points above 1/3 are due to incompl

FIG. 5. ParametersG ~main figure! andB ~inset! for the 3D NN
model, as a function of the temperature and for various sys
sizes. The vertical lines correspond toTc50.9560.04; the horizon-
tal line in the main figure corresponds to the limit relationG
51/3.
0-4
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equilibration19!. It is quite unlikely that the saturation is
finite-size effect; therefore, our results strongly suggest
indeedG51/3 in the whole spin-glass phase. As discuss
above, ifA remains finite asL→` ~as indicated by our data!,
this is an expected consequence of stochastic stability.30 If A
vanishes, instead, our results would support the more gen
conjecture of Ref. 41.

C. Critical region

In this section we comment on the behavior ofG and B
near the critical temperature, starting from the NN mode

In 3D, the vertical lines in Fig. 5 indicates the position
the critical temperature, using the valueTc50.9560.04
quoted in Ref. 33, which was obtained from the parameteB
measured in a large-scale simulation. One sees that the

FIG. 6. Same as Fig. 5 but for the 4D NN model. The verti
lines correspond toTc51.8060.03.

FIG. 7. Same as Fig. 5 but for the 3D NNN model. The tr
critical temperature is significantly lower than the crossing point
B.
22443
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for bothB andG for different values ofL come together asT
approachesTc from above, as indicative of a phase tran
tion. Below Tc , the data forG separate again in a statist
cally significant way, while forB one would need a substan
tially larger statistics ~or larger sizes! to see a clear
separation, as observed in previous studies.33,38For example,
at T50.82 the separation between theL512 and theL54
data is 1.4 standard deviations forB and 2.5 standard devia
tions forG. The small separation belowTc is probably due to
the vicinity of D53 to the lower critical dimension.33,36,38

We also note that the crossing point ofG is at temperatures
larger thanTc , and close inspection shows that it shifts t
wards Tc from above asL increases. A similar shift was
observed for the position of the maximum ofA in Fig. 1.

In 4D, both B and G display a very clear crossing~see
Fig. 6!, as also observed in previous studies.29,34 From B we
estimateTc51.8060.03 in agreement with the results o
Refs. 34 and 43. This value is indicated by the vertical lin
in Fig. 6. As in 3D, the crossing point ofG is at temperatures
larger thanTc and shifts towardsTc asL increases.

Overall, this confirms that both in 3D and 4D the corre
tions to scaling are significantly larger forG andA than for
B. SinceG andA have also much larger statistical errors th
B, the latter quantity is to be preferred toG andA for locat-
ing Tc in models with TRS. As already mentioned, a mu
more accurate quantity for this purpose is the correlat
length, which shows a very clear crossing in 3D,24 unlike B
andG.

Finally, in the 3D NNN model bothG andB show a rather
clear crossing~see Fig. 7!. This provides clear evidence fo
the existence of a phase transition in 3D Ising spin glas
confirming recent results for the NN model24,36,38 that ob-
tained a convincing evidence~especially Ref. 24! after the
issue had remained unsolved for a long time. The cross
point is atT.3.3 forB and at somewhat higher temperatur
for G, although also here the crossing forG shifts to the left
asL increases. From the data forB one might be tempted to
conclude that the critical temperature isTc.3.3. However, if
this were the case, the value ofB at Tc ~which is a universal
quantity! would be lower in the 3D NNN model than in th
3D NN model, violating universality. This suggests that t
actual value ofTc is significantly lower than 3.3, despite th
clear crossing ofB ~which would then be strongly affecte
by scaling corrections!, and for this reason we have not in
dicated the position ofTc in Figs. 3 and 7. A more detailed
analysis44 clearly shows that indeedTc is significantly lower
than 3.3 in this model.

IV. CONCLUSIONS

To conclude, we have provided evidence that the or
parameter is not self-averaging in the low-temperature ph
of the Edwards-Anderson Ising spin glass in 3D and 4
which implies an exponentu8.0, in agreement with a
‘‘many-state’’ picture of the spin-glass phase, such as
replica-symmetry-breaking picture or the ‘‘TNT’’ picture. A
usual, due to the limited system sizes that are curre
reachable in numerical simulations, we cannot exclude
for larger sizes one recovers self-averaging; nevertheless

l

f
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result is consistent with other studies which used sam
averaged quantities2,3,26,27 and also foundu8.0. Indepen-
dently of whether there is self-averaging or not, we ha
provided evidence that the identityG51/3 holds in the ther-
modynamic limit in the whole spin-glass phase, a fact t
calls for a theoretical explanation in terms of the geome
and energetics of the low-lying excitations. We have co
firmed thatG and A can be used to locate the spin-gla
transition, although in models with time-reversal symme
the usual sample-averaged parameters provide a better d
mination. Finally, we have confirmed the existence of
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