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Aging dynamics of heterogeneous spin models
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We investigate numerically the dynamics of three different spin models in the aging regime. Each of these
models is meant to be representative of a distinct class of aging behavior: coarsening systems, discontinuous
spin glasses, and continuous spin glasses. In order to study heterogeneities of the dynamics induced by
quenched disorder, we consider single-spin observables for a given disorder realization. In some simple cases
we are able to provide analytical predictions for single-spin response and correlation functions. The results
strongly depend upon the model considered. It turns out that, by comparing the slow evolution of a few
different degrees of freedom, one can distinguish between different dynamic classes. As a conclusion we
present the general properties which can be induced from our results, and discuss their relation with thermo-
metric arguments.
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I. INTRODUCTION

Physical systems with an extremely slow relaxation d
namics ~aging! are, at the same time, ubiquitous a
fascinating.1 Much of the insight we have on such system
comes from the study of mean-field models.2

One of the weak points of the results obtained so fa
that they focus on global quantities, e.g., the correlation
response functions averaged over all the spins. On the o
hand, we expect one of the peculiar features of glassy
namics to be itsheterogeneity.3–11 In order to understand thi
character, we study the out-of-equilibrium dynamics of th
models belonging to three different families of slowly evol
ing systems: coarsening systems, discontinuous and con
ous glasses.

The dynamics of such systems can be heterogeneou
cause of two distinct reasons. In the simplest case the m
itself is heterogeneous: the Hamiltonian is not invariant
der a group transformation which permutes its degrees
freedom. This is for instance the case of spin models w
quenched disorder.12–14 Local correlations and respons
functions will depend of course upon the particular degree
freedom~spin! considered. In this paper we shall focus
this type of phenomenon. As stressed by the title, it is
model rather than the dynamics to be heterogeneous. We
see that, in the aging regime, some nontrivial relatio
emerge between the correlation and the response functio
different degrees of freedom.

A much more subtle effect is essential for the physics
structural glasses3–5 ~and other systems without quench
disorder!. In this case, the Hamiltonian itself does not dist
guish different degrees of freedom. Nevertheless the ther
noise is able to break the initial spatial uniformity and
bring the system in a strongly heterogeneous configurat
The dynamics itself~rather than the model! is heterogeneous
This is why one refers sometimes to such a phenomeno
‘‘dynamical heterogeneity.’’ Although there is no general u
derstanding of this effect, the structure of spat
0163-1829/2003/68~22!/224429~20!/$20.00 68 2244
-

s
d
er

y-

e

u-

be-
el
-
of
h

f

e
ill
s
of

f

al

n.

as
-
l

correlations9,15 is probably a key ingredient. We shall no
address this purely dynamical phenomenon in the pre
paper, and, in particular, we shall disregard the role of spa
correlations. However, we think that considering syste
with quenched disorder can be an instructive first step e
in that direction. As it has been argued several times,16,17

structural glasses behave similarly to some disordered
tems because of a sort ofself-induceddisorder. Each mol-
ecule relaxes in the amorphous environment produced by
~partially frozen! arrangement of the other ones. In partic
lar, the relations between correlations and response funct
of different degrees of freedom mentioned above sho
have some generalization for systems without quenched
order.

In a heterogeneous model, the correlation and respo
functions of a particular spin depend upon its local enviro
ment, i.e., the strength of its interactions with other spi
However, the way the single-spin dynamics is influenced
its environment is highly dependent upon the nature of
system as a whole. For instance, as we will show, while
coarsening systems strongly interacting spins relax faster
discontinuous glasses the opposite happens. Continu
glasses lie somehow midway. In principle, this allows to d
tinguish different types of slow dynamics just by looking
the relation between a couple of spins.

In order to extract quenched-disorder-induced heteroge
ities we will average on a very large number of independ
thermal histories. This will delete the effects of the therm
noise.

On the contrary we are forced not to perform a na
average over the disorder realizations, because this w
wash any difference between spins. Instead of doing m
careful disorder averages, e.g., conditioning on the local
vironment of the spin under study, we prefer to work with
unique fixed disorder realization. In the limit of large syste
size we expect local quantities still to fluctuate from site
site, and to converge in distribution sense, making the an
©2003 The American Physical Society29-1
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sis of a single typical sample representative of the wh
ensemble.

After these preliminaries, we can summarize the appro
used in this work. Given a disordered model, we take a
typical samples63 ~as big as possible according to our n
merical capabilities! from the ensemble and we repeat a hu
number of times the typical numerical experiment used
studying out-of-equilibrium dynamics: start from a rando
configuration, quench the system to a low temperatu
where it evolves slowly, wait a timetw , switch on a small
perturbing field, and take measurements. The observable
measure are local quantities, such as single-spin correla
and response functions, averaged over the thermal noise

We shall consider three different disordered models:~1! a
two-dimensional ferromagnetic Ising model~couplings are
all ferromagnetic but of different strengths!, which has a fer-
romagnetic phase below the critical temperature;~2! the
three-spin Ising model on random hypergraph, which ha
glassy phase with one step of replica symmetry break
~1RSB!; ~3! the spin-glass Ising model on random grap
also known as Viana-Bray~VB! model,18 which is believed
to have a glassy phase with continuous replica symm
breaking~FRSB!.

The last two models are examples ofdiluted mean-field
spin glasses. They lack any finite-dimensional geome
structure: this makes them soluble using mean-fi
techniques.60 On the other hand, the local fluctuations
quenched disorder are not averaged out as in completely
nected models. For instance, the local connectivity is a P
sonian random variable. Because of these two features,
are an interesting playing ground for understanding hete
geneous dynamics.

Diluted mean-field models have been intensively stud
in the last years, one of the qualifying motivations bei
their correspondence with random combinatorial problem19

Statical heterogeneities have been well understood, at lea
1RSB level. Throughout the paper we shall neglect FR
effects,20 and assume that 1RSB is a good approximation
Refs. 21 and 22, the authors defined a linear-time algori
that computes single-spin static quantities for a given sam
in 1RSB approximation. The algorithm was dubbedsurveys
propagation ~SP! and, strictly speaking, was defined fo
computing zero-temperature quantities. It is straightforwa
although computationally more demanding, to generaliz
for finite temperaturesT ~the generalization follows the idea
of Ref. 23!: we shall call this generalization SPT .

The resulting heterogeneities can be characterized b
local Edwards-Anderson parameter. This can be defined24 by
consideringm weakly-coupled ‘‘clones’’$s (1), . . . ,s (m)% of
the system. The local overlap between two of themqEA

( i ) (m)
5^s i

(a)s i
(b)&, with aÞb, is given by

qEA
( i ) ~m![

1

Zm
(

aP$states%
e2bmFa ^s i&a

2 , ~1.1!

where the sum ona runs over the pure states,^•&a denotes
the thermal average over one of such states, andZm
5(ae2bmFa. Equation~1.1! follows from the observation
that them clones stay at any time in the same statea, and
22442
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that each state is selected with probabilitye2bmFa/Zm . The
parameterm enables us to select metastable states. In fact
expect the dynamics of discontinuous glasses to be tig
related with the properties of high-energy metasta
states.25,26

While in a paramagnetic phaseqEA
( i ) (m)50 apart for a

non-extensive subset of the spins, in the spin glass ph
qEA

( i ) (m).0 in a finite fraction of the system. In gener
qEA

( i ) (m) depends upon the sitei: the phase is heterogeneou
We will return in the next Section on the dynamical signi
cance of this and other statical results.

The paper is organized as follows. In Sec. II we pres
some of the theoretical expectations which we are going
test. We also give a few technical details concerning the
merics. Section III deals with coarsening systems. We po
late the general behavior of response and correlation fu
tions, and test our predictions on a simple model. In Secs
and V we present our numerical results for, respectively,
three-spin and two-spin interaction spin glasses on rand
~hyper!graphs. The particularly easy case of weakly intera
ing spins is treated in Sec. VI. We show that the aging
havior of these spins can be computed from the behavio
their neighbors. Finally, in Sec. VII, we discuss the gene
picture which emerges from our observations. In Sec. V
we interpret some peculiar properties of the discontinu
spin glass of Sec. IV using thermometric arguments. T
Appendix A present some calculations for coarsening
namics. A brief account of our results has appeared in R
27.

II. GENERALITIES

In the following we shall discuss three different spin mo
els. Before embarking in such a tour it is worth present
the general frame and fixing some notations.

Our principal tools will be the single-spin correlation an
response functions:

Ci j ~ t,tw![^s i~ t !s j~ tw!&, Ri j ~ t,tw![
]^s i~ t !&
]hj~ tw!

U
h50

,

~2.1!

where the average is taken with respect to some stoch
dynamics, andhj is a magnetic field coupled to the spinj. It
is also useful to define the integrated responsex i j (t,tw)
5* tw

t ds Ri j (t,s).

We shall not repeat the subscripts when considering
diagonal elements of the above functions~i.e., we shall write
Ci for Cii , etc.!. The global~self-averaging! correlation and
response functions are obtained from the single-site qua
ties as follows: C(t,tw)5(1/N)( iCi(t,tw), x(t,tw)
5(1/N)( ix i(t,tw). The timest and tw are measured with
respect to the initial quench~at tquench50) from infinite tem-
perature.

We will be interested in comparing the outcome of sta
calculations and out-of-equilibrium numerical simulation
For instance, we expect the order parameter~1.1! to have the
following dynamical meaning64
9-2
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AGING DYNAMICS OF HETEROGENEOUS SPIN MODELS PHYSICAL REVIEW B68, 224429 ~2003!
qEA
( i ) ~mth!5 lim

Dt→`

lim
tw→`

Ci~ tw1Dt,tw! , ~2.2!

where mth is the parameter that selects the highest-ene
metastable states.

In the aging regime Dt,tw@1, Ci(tw1Dt,tw)
,qEA

( i ) (mth). We expect the functions~2.1! to satisfy the out-
of-equilibrium fluctuation-dissipation relation25 ~OFDR!

TRi~ t,tw!5Xi@Ci~ t,tw!#] tw
Ci~ t,tw!. ~2.3!

If Xi@Ci #51 the fluctuation-dissipation theorem~FDT! is re-
covered. The arguments of Refs. 28 and 29 and the ana
with exactly soluble models25,30,31suggest that the function
Xi@C# is related to the static overlap probability distributio

Pi~q!52
dXi~q!

dq
. ~2.4!

For discontinuous glasses the dynamics never approa
thermodynamically dominant states. In this case the func
Pi(q) entering in Eq.~2.4! is the overlap distribution amon
highest metastable states. We refer to the following sect
for concrete examples of the general relation~2.4!.

Let us now give some details concerning our numeri
simulations. We shall consider systems defined onN Ising
spinss i561, i P$1, . . . ,N%, with HamiltonianH(s). The
dynamics is defined by single-spin-flip moves with Metrop
lis acceptance rule. The update will besequentialfor the
spin-glass models of Secs. IV and V andrandom sequentia
for the ferromagnetic model of Sec. III.

For each one of the mentioned models, we shall repea
typical aging ‘‘experiment.’’ The system is initialized in
random~infinite temperature! configuration. At timetquench
50, the system is cooled at temperatureT within its low-
temperature phase. We run the dynamics for a ‘‘physic
time tw ~corresponding totw attempts to flip each spin!. Then
we ‘‘turn on’’ a small random magnetic fieldhi56h0 and go
on running the Metropolis algorithm for a maximum phys
cal time DtMAX . Notice that the random external field
changed at each trajectory.

The correlation and response of the single degrees of f
dom are extracted by measuring the following observabl

Ci~ tw12Dt,twuh0![
1

Dt (
t85tw1Dt11

tw12Dt

^s i~ t8!s i~ tw!&,

~2.5!

x i~ tw12Dt,twuh0![
1

Dt h0
(

t85tw1Dt11

tw12Dt

^s i~ t8! sign~hi !&,

~2.6!

where^•& denotes the average over the Metropolis trajec
ries and the random external field. The sum overt8 has been
introduced for reducing the statistical errors. While it is
drastic modification of the definition~2.1! in the quasiequi-
librium regimeDt!tw , it produces just a small correction i
the aging regimeDt,tw@1. This correction should cance
out in two interesting cases:~i! in the time sectort/tw
5const, if one restricts himself to the response-vers
22442
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correlation relation;~ii ! in ‘‘slower’’ time sectors @e.g.,
(log t)m2(log tw)m5const, with m,1]. The functions~2.5!
and ~2.6! have finiteh0→0 limits Ci(tw1Dt,tw) andx i(tw
1Dt,tw).

Finally, let us mention that we shall look at thex i(t,tw)
versusCi(t,tw) data from two different perspectives. In th
first one we focus on a fixed sitei and vary the timest and
tw : this allows to verify the relations~2.3! and ~2.4!. We
shall refer to this type of presentations asFD plots. In the
second approach we plot, for a given couple of times, all
points „Ci(t,tw),x i(t,tw)… for i 51, . . . ,N. Then we let t
grow as tw is kept fixed. We dubbed such a procedure
movie plot. It emphasizes the relations between different d
grees of freedom in the system.

III. COARSENING SYSTEMS

Coarsening is the simplest type of aging dynamics.32,33

Despite its simplicity it has many representatives: ferrom
nets ~both homogeneous and not!, binary liquids, and, ac-
cording to the droplet model,34–37 spin glasses.

Consider a homogeneous spin model with a lo
temperature ferromagnetic phase~e.g. an Ising model in di-
mensiond>2). When cooled below its critical temperatur
the system quickly separates into domains of different m
netization. Within each domain the system is ‘‘near’’ one
its equilibrium pure phases. Nevertheless it keeps evolvin
all times due to the growth of the domain sizej(t). This
process is mainly driven by the energetics of domain bou
aries.

In the t→` limit, the coarsening length obeys a pow
law j(t);t1/z ~for nonconserved scalar order parametez
52). Two-time observables decompose in a quasiequi
rium part describing the fluctuations within a domain (Ceq
and xeq in the equations below!, plus an aging contribution
which involves the motion of the domain walls (Cag, Cdw ,
andxdw):

C~ t,tw!'Ceq~ t2tw!1qEACagS j~ t !

j~ tw! D
2qEAtw

2aCdwS j~ t !

j~ tw! D , ~3.1!

x~ t,tw!'xeq~ t2tw!1qEAtw
2a8xdwS j~ t !

j~ tw! D , ~3.2!

where qEA is the equilibrium Edwards-Anderson~EA! pa-
rameter. For a ferromagnetqEA5M (b)2, M (b) being the
spontaneous magnetization. MoreoverCeq(t) decreases from
(12qEA) to 0 ast goes from 0 tò , andCag(l) goes from
1 to 0 as its argument increases from 1 to`. Finally the
equilibrium part of the susceptibilityxeq(t) goes from 0 to
(12qEA)/T. In the case of a scalar order parameter both
response and correlation functions receive subleading co
butions (Cdw and xdw) from spins ‘‘close’’ to the domain
walls. Notice that these spins will decorrelate faster and
spond easier than the others~in other wordsCdw andxdw are
typically positive!. These contributions are expected to
9-3
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ANDREA MONTANARI AND FEDERICO RICCI-TERSENGHI PHYSICAL REVIEW B68, 224429 ~2003!
proportional to the density of domain wallsrdw(tw)
}j(tw)21. This would65 imply a5a851/z.

It is easy to generalize this well-established scenario
include single-spin quantities in heterogeneous systems
expect that the quasiequilibrium parts of the correlation a
response functions will depend upon the detailed envir
ment of each spin. On the other hand, the large scale mo
of the domain boundaries will not depend upon the prec
point of the system we are looking at. Therefore the ag
contribution will depend upon the sitex only through the
local Edwards-Anderson parameterqx

EA5Mx(b)2. The rea-
son is thatqx

EA quantifies the distance between pure phase
seen through the spinsx .

We are led to propose the following form for single-s
functions:

Cx~ t,tw!'Cx
eq~ t2tw!1qx

EACagS j~ t !

j~ tw! D
2qx

EAtw
2aCdwS j~ t !

j~ tw! D , ~3.3!

xx~ t,tw!'xx
eq~ t2tw!1qx

EAtw
2a8xdwS j~ t !

j~ tw! D . ~3.4!

This ansatz can be summarized, as far asO(tw
2a ,tw

2a8) terms
are neglected, in the schematic response-versus-correl
plot reported in Fig. 1. Each spin follows its own fluctuatio
dissipation curve. This is composed of a quasiequilibri
sectorTxx512Cx , plus a horizontal aging sectorTxx51
2qx

EA . Moreover, for each couple of timestw and t, all the
points are aligned on the line passing through (C50,Tx
51).

Notice thatspins with larger qx
EA relax faster~although on

the same time scale!. Roughly speaking this happens becau
they have to move a larger distance in order to jump fr
one pure phase to the other.

FIG. 1. Qualitative picture of the response-versus-correla
plot for coarsening systems. Bold dashed lines are the single-
OFDR’s. Black dots represent the correlation and response f
tions at a given pairs of times (t,tw). Arrows correspond to the
‘‘velocities’’ of the dots when they move along the fluctuatio
dissipation curves.
22442
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Due to the independence ofCdw andxdw upon the sitex,
Eqs.~3.3! and~3.4! imply that alignment in thex-C plane is
verified even in the pre-asymptotic regime. This property
therefore more robust than the OFDR which is violated

O(tw
2a ,tw

2a8) terms, cf. Figs. 4 and 5.
Finally, both the large-n calculation of Sec. III A 1, and

our numerical data, cf. Sec. III A 2, suggest that domain-w
contributions in Eqs.~3.3!, ~3.4! have the same order of mag
nitudeCdw(l);Txdw(l).

A. A staggered spin model

Here we want to test our predictions in a simple conte
We shall consider ad-dimensional lattice ferromagnet, de
fined by the Hamiltonian

H~s!52(
(xy)

Jxysxsy , ~3.5!

where the sum runs over all the couples (xy) of nearest
neighbors on the latticeZd, and Jxy>0. Moreover we as-
sume periodicity in the couplings. Namely, there exist po
tive integersl 1 , . . . ,l d such that, for anyx,yPZd and m
P$1, . . . ,d%

Jxy5Jx1m̂ l m ,y1m̂ l m
~3.6!

wherem̂ is the unit vector in themth direction. Clearly there
are V5 l 1l 2••• l d different ‘‘types’’ of spins in this model.
Two spins of the same type have the same correlation
response functions. We can identify theseV types with the
spins of the ‘‘elementary cell’’L[$xPZdu0<xm, l m%.

Spatial periodicity is helpful for two reasons:~i! it allows
an analytical treatment in the large-n limit; ~ii ! averaging the
single-spin quantities over the set of spins of a given ty
greatly improves the statistics of numerical simulations.

1. Large n

The model~3.5! is easily generalized ton-vector spins
fx5(fx

1 , . . . ,fx
n). We just replace the ordinary product b

tween spins in Eq.~3.5! with the scalar product. Moreove
we fix the spin length:fx•fx5n. The dynamics is specified
by the Langevin equation

] tfx
a~ t !52zx~ t !fx

a~ t !1(
y

Jxyfy
a~ t !1hx

a~ t !, ~3.7!

where we introduced the Lagrange multiplierszx(t) in order
to enforce the spherical constraint. The thermal noise
Gaussian with covariance

^hx
a~ t !hy

b~s!&52Tdxyd
abd~ t2s!. ~3.8!

The definition of correlation and response functions must
slightly modified for ann-component order parameter:

n
in
c-
9-4
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AGING DYNAMICS OF HETEROGENEOUS SPIN MODELS PHYSICAL REVIEW B68, 224429 ~2003!
Cxy~ t,t8!5
1

n
^fx~ t !•fy~ t8!&,

Rxy~ t,t8!5
1

n (
a

d^fx
a~ t !&

dhy
a~ t8!

. ~3.9!

Like its homogeneous relative,33 this model can be solved
in the limit n→`. The calculations are outlined in the Ap
pendix. Let us summarize here the main results. Ford.2 the
model undergoes a phase transition at a finite tempera
Tc . Below the critical temperature theO(n) symmetry is
broken:^fx

a&5Mx(b)da1. Of course the spontaneous ma
netizations preserve the spatial periodicity of the mod
Mx1 l mm̂(b)5Mx(b).

At low temperature, the forms~3.3! and ~3.4! hold, with
qx

EA5Mx
2(b), a5a85d/221, z52, and

Cag~l!5S l1l21

2 D 2d/2

. ~3.10!

The subleading contribution reads

Cdw~l!5
2T

~8p!d/2S (
xPL

Mx
2DD1/2

FC~l;d!, ~3.11!

xdw~l!5
2

~4p!d/2S (
xPL

Mx
2DD1/2

Fx~l;d!, ~3.12!

whereD is a constant which depends uniquely on the c
plingsJxy , cf. Sec. 1 of the Appendix.FC(•), Fx(•) are two
universal functions which do not depend either on the te
perature or on the particular model. The explicit expressi
for these functions are not very illuminating. We report the
in Sec. 2 of the Appendix; see Eqs.~A17! and ~A18!. Here
we plot the two functions in thed53 case, see Fig. 2. Notic
that bothFC(l;d) and Fx(l;d) vanish in thel→` limit.

FIG. 2. Domain-wall contributions to the correlation~dashed
line! and integrated response functions~continuous line! in the n
→` limit: the universal scaling functions, cf. Eqs.~3.11! and
~3.12!, as a function ofl5At/tw.
22442
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This could be expected because we know thatCx(t,tw)→0
andxx(t,tw)→(12Mx

2)/T as t→` for any fixedtw .

2. Numerical simulations

We simulated the model~3.5! in d52 dimensions with
l 15 l 252 and the choice of couplings among spins in t
elementary cell illustrated in Fig. 3. We used square latti
with linear sizeL. There areV522 different types of spins in
this case. We improved our numerical estimates by averag
the single-site functionsCi(t,tw ;h0) and x i(t,tw ;h0), cf.
Eqs.~2.5! and ~2.5!, over theL2/4 spins of the same type.

Most of our numerical results were obtained at tempe
ture T51. A rough numerical estimate yieldsTc51.10(5)
for the critical temperature. The equilibrium magnetizatio
for T51 of the four types of sites areM050.8803(5), M1
50.8395(5), M250.7573(5), andM350.8624(5). Notice
that, in order to separate the magnetization values on dif
ent sites, we are forced to choose a quite high tempera
for our simulations.

We expect the growth of the domain size in the mod
~3.5! to follow asymptotically the lawj(t)'k(b)t1/z, with
z52, as in the homogeneous case. The pinning effect du
inhomogeneous couplings will renormalize the coefficie
k(b). We checked this law by studying the evolution of th
total magnetization starting from a random initial conditio
for different lattice sizes. It turns out that the law is reaso
ably well verified with a coefficientk(b51) of the order of
1.

The aging experiment was repeated for several value
the waiting timetw510, 102, 103, 104, 105. The correlation
and response functions were measured up to a maxim
time interval~respectively! DtMAX 5210, 213, 215, 217, 219.
The linear size of the lattice wasL52000 in all the cases
except fortw5105. In this case we usedL51000. All the
results were therefore obtained in thej(t)!L regime, with
the exception, possibly, of the latest times in thetw5105 run.
Some systematic discrepancies can be indeed noticed
these data. In Table I we report the numberNstat of different
runs for each choice of the parameters.

Let us start by illustrating how the asymptotic behav
summarized in Fig. 1 is approached. In Fig. 4 we show
correlation functions and the FD plot for type-0 sites. Noti
that the approach to the asymptotic behavior is quite s

FIG. 3. Definition of the ferromagnetic couplings for the tw
dimensional model studied in Sec. III A 2.
9-5
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and, in particular, the domain-wall contribution to the r
sponse function is pretty large. This can be an effect of
proximity of the critical temperature: the ‘‘thickness’’ of th
domain walls grows with the equilibrium correlation lengt
Similarly large pre-asymptotic contributions were observ
in Refs. 38 and 39.

In Fig. 5 we verify the alignment of different sites corr
lation and response functions for a given pair of times (t,tw).
Notice that the alignment works quite well even for ‘‘prea
ymptotic’’ times, i.e., when the anomalous response is s
sizable and the OFDR is not well verified, cf. Fig. 4.

In order to check the form~3.4! for the site dependence o
the domain-wall contribution, we plot in Fig. 6 the rescal
response and correlation functions:

Cx
res5

q̄

qx
EA

Cx , Txx
res512

q̄

qx
EA ~12Txx!, ~3.13!

TABLE I. Number Nstat of different runs for the ferromagneti
Ising model.

h0 tw510 tw5102 tw5103 tw5104 tw5105

0.025 30 23 30 9
0.05 30 12 12 5 10
0.10 12

FIG. 4. Correlation function~a! and FD plot~b! for type-0 sites
~cf. Fig. 3!. Different symbols correspond totw510 (h), 102 (*),
103 (3), 104 (1), 105 ~filled h). The dot-dashed line in~a! is the
equilibrium Edwards-Anderson parameterM0

2. In ~b! we report the
FDT line Tx512C ~dot-dashed! and the OFDR~dashed! which
corresponds to Eqs.~3.3! and ~3.4!.
22442
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whereq̄ is an arbitrary reference overlap. The rescaled c
relation and response functions of different types of spin
incide perfectly for any couple of times (t,tw).

Finally, we notice that we can consistently define a tim
dependentfitting temperatureas the slope of the lines in Fig
5, i.e.,

Tfit~ t,tw!5
TCx~ t,tw!

12Txx~ t,tw!
. ~3.14!

As a consequence of Eqs.~3.3! and ~3.4! this temperature
should depend upont and tw only through the parameterl
5j(t)/j(tw). In Fig. 7 we verify this scaling.

IV. DISCONTINUOUS GLASSES

In this section we consider a ferromagnetic Ising mo
with three-spin interactions, defined on a rando
hypergraph.40,41 More precisely, the Hamiltonian reads

H~s!52 (
( i jk )PH

s is jsk . ~4.1!

The hypergraphH defines which triplets of spins do interac
We construct it by randomly choosingM among theN(N
21)(N22)/3! possible triplets of spins.

FIG. 5. Movie plots attw5103 ~a! and 104 ~b!. The various
symbols correspond to different types of spin: type 0 (1), type 1
(3), type 2 (h), and type 3 (*). Thestraight lines confirm the
alignment predicted in the general picture, cf. Fig. 1.
9-6
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Although ferromagnetic, this model is thought to have
glassy behavior, due toself-inducedfrustration.42 Depending
upon the value ofg[M /N, it undergoes no phase transitio
~if g,gd), a purely dynamic phase transition~if gd,g
,gc), or a dynamic and a static phase transition~if g
.gc) as the temperature is lowered. The 1RSB analysis
Refs. 40 and 43 yieldsgd'0.818 andgc'0.918. These re-
sults have been later confirmed by rigorous derivations.44,45

FIG. 6. Correlation function~a! and FD plot~b! with the res-
caled correlation and response functions, see Eq.~3.13!, for all the
four spin types and several different waiting times:tw5102, 103,
104, and 105 ~a!, Hereh050.05.

FIG. 7. The fitting temperature~3.14! as a function ofl
5At/tw for tw510 ~filled h), 102 (h), 103 (*), 104 (1), and 105

(3). The dot-dashed line is then5` scaling function~3.10!, with
d52.
22442
of

We studied two samples extracted from theensemblede-
fined above: the first one involvesN5100 sites andM
5100 interactions~hereafter we shall refer to it asHA); in
the second one (HB) we haveN5M51000. In both cases
g51.gc . The hypergraphHA consists of a large connecte
component including 96 sites, plus four isolated si
~namely the sitesi 515,22,62,69). The largest connecte
component ofHB includes 938 sites~there are 62 isolated
sites!. We will illustrate our results mainly onHA ~on this
sample we were able to reach larger waiting times!. HB has
been used to check finite-size effects.

Using SPT , we computed the 1RSB free-energy dens
F(m,b) and complexityS(T)5b ]mF(m,b)um51 for our
samples as a function of the temperatureT51/b. The result-
ing complexity is reported in Fig. 8 for sampleHA . The
dynamic and static temperatures are defined, respectivel
the points where a nontrivial~1RSB! solution of the cavity
equations first appears, and where its complexity vanis
From the results of Fig. 8~a! we get the estimatesTd
50.557(2) andTc50.467(2).

FIG. 8. The complexityS(T) ~a! and the 1RSB paramete
mth(T) ~b! for threshold states as functions of the temperatureT.
These curves refer to sampleHA considered in Sec. IV.
9-7
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ANDREA MONTANARI AND FEDERICO RICCI-TERSENGHI PHYSICAL REVIEW B68, 224429 ~2003!
In analogy with the analytic solution of thep-spin spheri-
cal model,25,26 we assume the aging dynamics of the mo
~4.1! to be dominated by threshold states. These are defi
as the 1RSB metastable states with the highest free-en
density. Although not exact,20 we expect this assumption t
be a good approximation for not-too-high values ofg. The
threshold 1RSB parametermth(T) can be computed by im
posing the condition]m

2 @mF(m,b)#50. We computed
mth(T) on sampleHA for a few temperatures belowTd . We
get mth(0.3)50.395(10), mth(0.4)50.58(1), mth(0.5)
50.80(1). Moreover, in the zero-temperature limit, we o
tain mth(T)5m thT1O(T2), with m th51.08(1). These re-
sults are summarized in Fig. 8~right frame!. A good descrip-
tion of the temperature dependence is obtained using
polynomial fit mth(T)51.08T10.038T212.17T3 @cf. con-
tinuous line in Fig. 8~b!#.

Now we are in the position of precising the connecti
between single-spin statics and aging dynamics, outline
Sec. II. It is convenient to work with the integrated respon
functions x i(t,tw). Equation ~2.3! implies the relation
x i(t,tw)5x i@Ci(t,tw)# to hold in the limit t,tw→`. Within
a 1RSB approximation, Eq.~2.4! corresponds to

Tx i@q#5H 12q for q.qEA,th
( i ) ,

12qEA,th
( i ) 2mth~q2qEA,th

( i ) ! for q,qEA,th
( i ) ,

~4.2!

where we used the shorthandqEA,th
( i ) 5qEA

( i ) (mth). Since the
SPT algorithm allows us to compute bothmth and the param-
etersqEA

( i ) (m) for a given sample in linear time, we can che
the above prediction in our simulations.

A. Numerical results

We ran our simulations at three different temperatu
(T50.3,0.4,0.5) and intensities of the external field (h0
50.05,0.1,0.15). In order to probe the aging regime, we
peated our simulations for several waiting timestw
510,102,103,104, with ~respectively! DtMAX
5213,216,216,218.

We summarize in Table II the statistic of our simulatio
on sampleHA .

For sampleHB , we limited ourselves to the caseh0
50.10, T50.4, and generated 0.93106 Metropolis trajecto-
ries with tw5103.

1. Two types of spins

The most evident feature of our numerical data is that
spins can be clearly classified in two groups:~I! the ones

TABLE II. Statistics of numerical simulation for the three-sp
Ising model~sampleHA!.

h0 tw510 tw5102 tw5103 tw5104

0.05 53106 53106 53106 106

0.10 1.53106 1.53106 1.53106 106

0.15 106 106 106 0.53106
22442
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which behave as if the system were in equilibrium—the c
responding correlation and response functions satisfy ti
translation invariance and FDT;~II ! the out-of-equilibrium
spins, whose correlation and response functions are no
mogeneous on long-time scales and violate FDT.

Of course the group~I! includes the isolated sites, but als
an extensive fraction of nonisolated sites~for instance the 12
sites i 51,6,8,14,27,39,68,74, 77,84,87,98 of sampleHA).
Remarkably these sites are the ones for which the SPT algo-
rithm returnsqEA

( i ) 50: they are paramagnetic from the sta
point of view. In Figs. 9 and 10 we present the correlati
function and the FD plot, respectively, for a type-I site and
type-II site. In both cases we tookT50.5 andh50.05. No-
tice that the FD curve of type-I sites lies slightly below th
Tx512C line. We used the data collected ath050.10, 0.15
to check carefully that this is a nonlinear response effect

There exists a nice geometrical characterization of typ
sites in terms of aleaf-removal algorithm.44,45 Let us recall
here the definition of this procedure. The algorithm starts
removing all the interactions which involve at least one s
with connectivity 1. The same operation is repeated rec
sively until no connectivity-1 site is left. The reduced gra
will contain either isolated sites or sites which have conn
tivity greater than one. The sites of this last type are sur
type II, but they are not the only ones. In fact one has
restore a subset of the original interactions according to
following recursive rule. If an interaction involves at lea

FIG. 9. Correlation function~a! and FD plot~b! of the spini
51 ~sampleHA) for T50.5, h050.1, and tw510–104. Time-
translation invariance is well verified fortw*100. The discrepancy
from FDT ~continuous line on the right! can be ascribed to nonlin
ear response effects.
9-8
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AGING DYNAMICS OF HETEROGENEOUS SPIN MODELS PHYSICAL REVIEW B68, 224429 ~2003!
two type II sites, restore it and declare the third site to
type-II. If no such a interaction can be found among t
original ones, stop. In this way, one has singled out the s
set of original interactions which arerelevantfor aging dy-
namics. The sites which remain isolated after this restora
procedure are type-I sites, the others are type II.

The dynamical relevance of this construction is easily
derstood by considering two simple cases. A connectivit
spin whose two neighbors evolve slowly will be affected
a slow local field and will relax on the same time scale of
field. In the opposite case, two connectivity-1 spins who
neighbors evolve slowly will effectively see just a slow
alternating two-spin coupling between them. They will rel
as fast as a two-spin isolated cluster does.

It is worth stressing that the above construction does
contain all the dynamical information on the model. For
stance, one may wonder whether the dynamics of typ
spins does resemble the dynamics of isolated spins. The
swer is given in Fig. 11 where we reproduce the correlat
functions for several different type-I spins, forT50.5, h
50.1, andtw5104 ~remember that the dependence upontw
is weak for these sites!. The results are strongly site depe
dent and by no way similar to the free-spin case. Notice
peculiar behavior of the isolated spin, an artifact of Metrop
lis algorithm with sequential updatings. Were it not for t
perturbing field we would haves i(t)5(21)ts i(0), which
implies Ci(tw11,tw)521, Ci(tw12,tw)51, and Ci(tw

FIG. 10. Correlation function~a! and FD plot~b! for the spin
i 50 ~sampleHA). The dashed line on the left corresponds to t
ergodicity breaking parameterqEA

( i ) 50.716(7) obtained with the
SPT algorithm. On the right we report with a full line the corre
sponding OFDR predicted within a 1RSB scenario.
22442
e
e
b-

n

-
1

e
e

ot
-
-I
n-
n

e
-

12Dt,tw)50 for Dt>2 @remind the time average in Eq
~2.5!#. In the presence of an external field the correlati
function ~with no time average! becomes Ci(tw1t,tw)
5@2exp(22bh)#t.

Finally, in Fig. 10 we compare the numerical results w
the prediction from the statics, cf. Eq.~4.2!. The agreement
is quite good although finite-tw and finite-h0 effects are not
negligible.

2. Glassy degrees of freedom

In this section we focus on type-II sites, which rema
out-of-equilibrium on long time scales. In Fig. 12 we repr
duce the correlation and response functions ofall the spins
of sampleHA in a movie plot. We fixtw5104 and watch the
single-spin correlation and response functions, as the sys
evolves, i.e., ast grows. The behavior can be described
follows: ~i! for small t, all the points (Ci ,x i) stay on the
fluctuation-dissipation lineTx i512Ci , type-I and type-II
spins cannot be distinguished;~ii ! as t grows, type-I spins
reveal to be ‘‘faster’’ than type-II ones and move rapid
toward theC50, x51 corner;~iii ! just after this, type-II
spins move out of the FDT relation, all together;66 ( iv) type
II keep evolving in theC-x plane but, amazingly, they stay
at each time on a unique~moving! line passing throughC
51, x50.

On the same graphs, in Fig. 12, we show the results o
fit of the type

x i~ t,tw!5
1

Tmovie~ t,tw!
@12Ci~ t,tw!#. ~4.3!

The fit works quite well: it allows to define a new effectiv
temperature, the ‘‘movie’’ temperatureTmovie(t,tw). The
thermometrical interpretation ofTmovie(t,tw) will be dis-
cussed in Sec. VIII.Tmovie(t,tw) increases witht at fixed
waiting time tw . Notice the difference between this formu
and Eq.~3.14! which we argued to hold for coarsening sy
tems. The organization of heterogeneous degrees of free
in thex-C plane is strongly dependent upon the nature of
physical system as a whole.

FIG. 11. The correlation functions of four type-I spins of samp
HA : from above to belowi 51,14,8,15. The first three sites ar
connected to the rest of the cluster~and therefore interacting!, the
last one is isolated~free!.
9-9
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The cautious reader will notice a few discrepancies
tween the above description and the data in Fig. 12. Typ
spins reach the (C50,x51) corner slightly after type-II
ones move out of the FDT line. A careful check shows t
this is a finite-tw artifact. Moreover, for large times, they sta
slightly below the FDT line. As already mentioned in Se
IV A 1, this phenomenon can be proved to be a finite-h0
effect by carefully analyzing the data obtained with differe
amplitudes of the perturbing fieldh0.

Let us now consider the local OFDR’s, and compare
dynamical results with the static 1RSB prediction~4.2!. A
preliminary check was given in Fig. 10. In Fig. 13~a! we
reproduce thex i versusCi curves for seven type-II sites
They are superimposed for short times~quasiequilibrium re-
gime! and spread at later times~aging regime!, but remaining
roughly parallel to each other. If the static prediction~4.2!
holds, we can collapse the variousx i@Ci # curves by properly
rescalingx i andCi . A particular form of rescaling, which is
quite natural for coarsening systems, was used in S
III A 2, cf. Eqs. ~3.13!. It turns out that, in this case, a bett
collapse can be obtained by using the definition:

Ci
res512

12q̄

12qEA,th
( i ) ~12Ci !, x i

res5
12q̄

12qEA,th
( i )

x i ,

~4.4!

FIG. 12. Movie plot for sampleHA of Sec. IV. Here we useh
50.1, T50.4, and tw5104. The different frames correspond t
~from left to right and top to bottom! Dt524, 29, 212, 215, 216, and
217. Black and white circles refer, respectively, to type-I and type
sites. Continuous lines correspond to ordinary FDTx i5(1
2Ci)/T, while dotted ones are fits to a modified relationx i5(1
2Ci)/Tmovie. We getTmovie50.459 ~for t5212), 0.536 (t5215),
0.564 (t5216), 0.590 (t5217).
22442
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whereq̄ is a reference overlap~which can be chosen freely!.
In Fig. 13 ~b! we plot x i

res andCi
res for the same seven spin

as before, computing theqEA,th
( i ) with the SPT algorithm. Note

that there is no fitting parameter in this scaling plot.
It can be interesting to have a more general look at

statics-dynamics relation. In order to make a comparison,
fitted67 the single-sitex i-versus-Ci data to the theoretica
prediction ~4.2!. The results for the two fitting paramete
qEA

( i ,fit) andm( i ,fit), are compared in Figs. 14 and 15 with th
outcome of the SPT algorithm. Although several sources o
error affect the determination of the EA parameters fro
dynamical data, the agreement is quite satisfying.

In the above paragraphs we stressed two properties o
aging dynamics of the model~4.1!: the alignment in the
movie plots, cf. Fig. 12 and Eq.~4.3!, and the OFDR~4.2!.
Let us notice that these two properties are not compatibl
all times (t,tw). In fact we expect our model to verify th
weak ergodicity-breaking condition limt→`Ci(t,tw)50.
Therefore, in this limit, the alignment~4.3! cannot be veri-
fied unless thex i become site independent. On the oth
hand, this would invalidate the OFDR~4.2!.

One plausible way-out to this contradiction is that E
~4.3! breaks down at large enough times. How this may h
pen is well illustrated by the numerical data concerni
sampleHB shown in Fig. 16. It is quite clear that the simp

I

FIG. 13. In ~a! the FD plot for seven different sites:i 510
(1), 11 (s), 12 ~filled squares!, 13 (h), 16 (3), 17 (*), 18 (d).
In ~b! a collapse plot of the same data, cf. Eq.~4.4!. HereT50.3,

h050.1, tw5104, and we useq̄50.94.
9-10
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AGING DYNAMICS OF HETEROGENEOUS SPIN MODELS PHYSICAL REVIEW B68, 224429 ~2003!
law ~4.3! no longer holds. Nevertheless, it remains a ve
good approximation for the sites with a large EA parame
qEA

( i ) *0.5. Moreover, it seems that the points correspond
to different sites still lie on the same curve in thex-C plane,
although this curve is not a straight line as in Eq.~4.3!. We
shall further comment on this point in Sec. VII.

The general picture which holds at intermediate times~or
largeqEA

( i ) ’s! for discontinuous glasses is summarized in F
17. This should be compared with Fig. 1, which refers
coarsening systems.

V. CONTINUOUS GLASSES

The Viana-Bray model18 is a prototypical example of con
tinuous spin glass. It is defined by the Hamiltonian

H~s!52 (
( i j )PG

Ji j s is j , ~5.1!

where the graphG is constructed by randomly choosingM
among theN(N21)/2 couples of spins, and the coupling
Ji j are independent identically distributed random variab
The average connectivity of the graph is given byc
52M /(N21). If we assume that the coupling distribution
even, the phase diagram of this model is quite simple.18,46

For c,1 the interaction graph does not percolate and
model stays in its paramagnetic phase at all finite temp

FIG. 14. Correlation between the theoretical prediction for
local EA parameters and the results of out-of-equilibrium simu
tions. In~a! we show the data for sampleHA (T50.5, tw5103, and
h050.1), in ~b! for sampleHB (T50.4, tw5103, andh050.1).
22442
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tures. Forc.1 the graph percolates and the giant compon
undergoes a paramagnetic spin-glass phase transition.
critical temperature is given by the solution of the equat
EJ(tanhbJ)251/c. Below the critical temperature, a finit

e
- FIG. 15. Distribution of the slopes of single-site OFDR’s f
T50.4. The vertical lines correspond to the theoretical predict
for the 1RSB parametermth . In ~a! we fixedh050.05, while in~b!
(tw5104).

FIG. 16. Movie plot for sampleHB (T50.4, h050.1): we show
the position of all the degrees of freedom in thex-C plane, fortw

5103 andDt5216. The thin continuous lines are the FD plots for
few selected sites~in this caseDt varies between 0 and 216). In the
inset: the histogram of slopes of the FD curves in the out-
equilibrium regime.
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ANDREA MONTANARI AND FEDERICO RICCI-TERSENGHI PHYSICAL REVIEW B68, 224429 ~2003!
Edwards-Anderson parameterqEA develops continuously
from zero.

We considered three samples of this model: hereafter
will be denoted asGA , GB , andGC . The interaction graph
and the signs of the interactionsJi j were the same forGA and
GB : in particular we usedN51000 andM51999, i.e.,c
'4, and chosen the interaction signs to be61 with equal
probabilities. The two samples differ only in the strength
the couplings. While inGA we useduJi j u51, in GB we took
uJi j u5kJ0, where kP$1, . . . ,10% with uniform probability
distribution andJ050.161 164.68 We made this choice in
order to check the effects of degenerate coupling stren
on the aging dynamics. The sampleGC was instead much
larger: we usedN510000, M520 190 ~once againc'4),
and Ji j 561 with equal probabilities. The critical tempera
tures forc54 and the two coupling distributions used he
areTc'1.820 478 9~for GA andGC) and 1.671 741 5 (GB).

The glassy phase of the VB model is thought to be ch
acterized by FRSB. Nevertheless we can use the SPT algo-
rithm to compute a one-step approximation to the local ov
laps and the local OFDR’s. Of course, such an approxima
will have the simple two-time-sector form, see Eq.~4.2!,
instead of the expected infinite-time-sector behavior. Ho
ever the situation is not that simple because of two proble

~1! We expect, in analogy with the Sherringto
Kirkpatrick model,30 the dynamics of this model to reach th
equilibrium free energy in the long-time limit. It is not clea
whether a better approximation to the correct OFDR is
tained by using the threshold valuemth or the ground-state
valuemgs of the 1RSB parameter.

~2! The SPT algorithm does not converge. After a fa
transient the probability distributions of local fields oscilla
indefinitely. This is, plausibly, a trace of FRSB. The fir
problem does not cause great trouble because the two d
minations ofm are, generally speaking, quite close. On t
other hand, we elaborated two different way-out to the s
ond one:~i! To force the local-field distributions to be sym
metric ~which can be expected to be true on physi

FIG. 17. Qualitative picture of aging dynamics for discontin
ous glasses. The black circles correspond to three different spin
a given pair of~large! times (t,tw). Notice that, for intermediate
timesDt;tw they stay on the same line passing through the po
(C51,x50). As t grows, they move with parallel velocities~ar-
rows!. Along the time, each of them describes a differe
fluctuation-dissipation curve~dashed lines!.
22442
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grounds!, which assures convergence;~ii ! to average the lo-
cal EA parameters over sufficiently many iterations of t
algorithm.

While the approach~i! seems physically more sound,
underestimates grossly theqEA

( i ) ’s. The approach~ii !, which
will be adopted in our analysis, gives much more reasona
results. Notice that the authors of Refs. 23 and 47 follow
the same route. In their calculation, they faced no problem
convergence. In fact they required convergence in distri
tion, while we require convergence site by site.

A. Numerical results

Most of our simulations were run at temperatureT50.5,
and withh050.1. We used waiting timestw5102, 103, 104,
and, respectively,DtMAX 5214, 216, 218. In Table III we
summarize the statistics used in each case.

Moreover we simulatedNstat54.23105 Metropolis trajec-
tories at temperatureT50.4 on sampleGA with tw5104 and
DtMAX 5218.

In Fig. 18 we show th e movie plot of sampleGA for tw
5104. As in the previous Sections, the local correlation a
response functions are strongly heterogeneous: the gl
two-time functions give just a rough idea of the dynamics
the system. Moreover all the points quit the FDT line on t
same time scale in the aging limit~cf. Sec. IV A 2!. How-
ever, their behavior in the aging regime does not fit any
the alignment patterns we singled out in the case of coar
ing systems, cf. Eq.~3.14! and Fig. 1, or discontinuous

for

t

t

TABLE III. Summary of the statistics used for the Viana-Bra
model.

tw5102 tw5103 tw5104

GA 106 43105 5.53105

GB 63105 1.53106

GC 63105

FIG. 18. Single-spin correlation and response functions for
sampleGA ~VB model! for T50.5, h050.1, andtw5104. The con-
tinuous line and full circle refer to the global correlation and r
sponse.
9-12
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AGING DYNAMICS OF HETEROGENEOUS SPIN MODELS PHYSICAL REVIEW B68, 224429 ~2003!
glasses, cf. Eq.~4.3! and Fig. 17. We repeated the same ty
of analysis for the numerical data obtained on sampleGC . In
this case, see Fig. 19, the points corresponding to local
relation and response functions are much less spread in
x-C plane. Therefore our simulations are quite inconclus
on the possibility of defining a ‘‘movie’’ temperature as
Eq. ~4.3!. To settle the question, simulations on larg
samples are probably necessary.

Notice however that both the lines through the (C
50,Tx51) and (C51,Tx50) points seem to play som
role. Finite-N effects, for instance, are strongly enhanc
along the last direction.

Numerical results on sampleGA are also deceiving for
what concerns local OFDR’s, cf. Fig. 20. It seems that
local FD plots depend strongly upon the waiting time and
particular site. Moreover the slopes of this plots@for a given
couple (tw ,Dt)] change from site to site. These effects a
much smaller in sampleGC . In Fig. 21 we consider the dis
tribution of slopes of local FD plots for samplesGA andGC .
We computed the slopes by fitting the aging part of the p
to the one-step form~4.2!.

By the same fitting procedure we extracted the local
parameters. The comparison with the predictions of theT
algorithm, cf. Fig. 22, is quite satisfying. Notice that, both
analyzing the numerical data and in using the SPT algorithm,
we are adopting a 1RSB approximation, cf. Eq.~4.2!, to the
real OFDR. The slopes considered in Fig. 21 should the
fore be understood asaverageslopes in the aging regime. W
expect the systematic error induced by this approximation
be small.

The arguments of Ref. 48 imply that the slopes~effective
temperatures! of the OFDR’s for different degrees of free
dom should be identical. This conclusion is valid only in t
aging window 1!tw ,Dt!terg(N). Our numerical data, cf
Fig. 21, suggest a clear trend confirming this expectat
Nevertheless, they show large finite-size effects due, a
ably, to a mild divergence ofterg(N) with N: the smaller
(N5103) samples begin to equilibrate during the simu
tions. This is quite different from what happens with disco

FIG. 19. Single-spin correlation and response functions: here
compare the results obtained on samplesGA (d) andGC (s) which
are of different sizes. The dot-dashed lines are guides for the e
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tinuous glasses, cf. Sec. IV. In that case, we did not de
any evidence of equilibration even in sampleHA (N
5102). A better understanding of the scaling ofterg(N) in
different classes of models would be welcome.

VI. WEAKLY INTERACTING SPINS

We lack analytical tools for studying the dynamics of d
luted mean-field spin glasses~for some recent work, see
Refs.49–52!. This makes somehow ambiguous the interpre

e

e.

FIG. 20. FD plot for a few selected sites of sampleGA (T
50.5, h050.1). Notice the completely different behaviors of th
sites in the two frames. The sites in~a! with connectivity 1 ~site
111) and 3~site 164), look like a ‘‘glassy’’ system. The ones in~b!
with connectivity 4~site 103) and 2~site 114), look like a ‘‘coars-
ening’’ system.

FIG. 21. Distributions of slopes of the local FD plots in th
aging regime. The two curves refer to samplesGA (s) andGC (d),
which are of different sizes.
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tion of many numerical results. For instance, the identity
effective temperatures for different spins, although consis
with our data, see Figs. 15 and 21, could still be question
This would contradict the general arguments of Refs. 48
53. Even more puzzling is the definition of a movie tempe
ture along the lines of Eq.~4.3!. Such a definition seems t
be consistent only in some particular models and time
gimes. In this Section we want to point out a simple pert
bative calculation which supports the identity of single-sp
effective temperatures, in agreement with the standard
dom. Moreover it gives some intuition on the range of val
ity of the definition~4.3!.

Let us consider a generic diluted mean-field spin gl
with k-spin interactions

H~s!52 (
aPH

Jasa1
• . . . •sak

. ~6.1!

Herea5$a1 , . . . ,ak% is ak-uple of interacting spins, andH
is a k hypergraph, i.e., a set ofM suchk-uples.

Let us focus on a particular site, for instancei 50, and
assume that it is weakly coupled to its neighbors. It is qu
natural to think that its response and correlation functio
can be related to the response and correlation functions o
neighbors. To the lowest order this relation reads

C0
ag~ t,tw!5 (

a{0
~ tanhbJa!2 )

i Pa\0
Ci

ag~ t,tw!1O~b4J4!,

~6.2!

R0
ag~ t,tw!5 (

a{0
~ tanhbJa!2 (

i Pa\0
Ri

ag~ t,tw!

3 )
j Pa\$0,i %

Cj
ag~ t,tw!1O~b4J4!. ~6.3!

We shall not give here the details of the derivation. The ba
idea is to use an appropriate dynamic generalization of
cavity method.54,55As for static calculations,22 this approach
gives access to single-site quantities for a given disorder
alization. Notice that Eq.~6.2! can be easily obtained b

FIG. 22. Local EA parameters on sampleGC . Numerical results,
obtained by fitting the aging part of the FD plots, are compared w
the outcome of the SPT algorithm.
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assuming that the spins0 does not react on its neighbor
This is not the case for Eq.~6.3!.

Equation~6.2! implies a relation between local Edward
Anderson parameters:

qEA
(0)5 (

a{0
~ tanhbJa!2 )

i Pa\0
qEA

( i ) 1O~b4J4!. ~6.4!

In thek52 ~Viana-Bray! case, we can derive from Eq.~6.3!
a simple relation between the integrated responses:

12Tx0
ag~ t,tw!5 (

i P]0
~ tanhbJ0i !

2@12Tx i
ag~ t,tw!#

1O~b4J4!, ~6.5!

where] i 0 denote the set of neighbors of the spini 0. In the
general (k.2) case Eq.~6.3! cannot be integrated withou
further assumptions.

We checked the above relations on our numerical data
the Viana-Bray model. SampleGB is particularly suited for
this task, since we can choose spins whose interactions
a varying strength. In Fig. 23, we consider a few spins w
connectivity 1 and 2, and compare their correlation and
sponse functions with the outcome of Eqs.~6.2! and~6.5!. Of
course, the perturbative formulas are well verified only
small couplings. For connectivity-2 sites we have plotted
Fig. 23 only those with coupling of the same strength, sin
spins with two couplings of very different strengths beha
very similarly to connectivity-1 spins.

Let us now discuss some implications of Eqs.~6.2! and
~6.3!. If we define the fluctuation-dissipation ratio a
Xi(t,tw)[TRi

ag(t,tw)/] tw
Ci

ag(t,tw), we get

X0~ t,tw!'

(
a{0

(
i Pa\0

Wa,i~ t,tw!Xi~ t,tw!

(
a{0

(
i Pa\0

Wa,i~ t,tw!

, ~6.6!

where

Wa,i~ t,tw![~ tanhbJa!2] tw
Ci~ t,tw! )

j Pa\$ i ,0%
Cj~ t,tw!

~6.7!

are positive weights. Therefore, at the lowest order in per
bation theory, the effective temperature of the spins0 is a
weighted average of the effective temperatures of its ne
bors. Let us suppose that this conclusion remainsqualita-
tively true beyond perturbation theory. It follows tha
Xi(t,tw)5X(t,tw) is independent of the sitei. In fact, if the
Xi(t,tw) were site dependent we could just consider a sitei *
such thatXi

*
(t,tw) is a relative maximum and show that E

~6.6! cannot hold on such a site. With a suggestive rephras
we may say that effective temperatures must diffuse u
they become site independent.

Moreover, Eqs.~6.2! and ~6.3! can be used to construc
examples of weakly interacting spins which violate the alig
ment in thex-C plane which we encountered for discontin
ous glasses, cf. Eq.~4.3! and Fig. 12. The simplest of suc

h
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AGING DYNAMICS OF HETEROGENEOUS SPIN MODELS PHYSICAL REVIEW B68, 224429 ~2003!
examples is obtained by considering the Viana-Bray (k52)
case, and assuming that the site 0 has just one neighbo
this case it is immediate to show that

C0
ag~ t,tw!

12Tx0~ t,tw!
'

Ci
ag~ t,tw!

12Tx i~ t,tw!
, ~6.8!

i.e., weakly interacting spins have the tendency to align a
coarsening systems. The reader can easily construct a
gous examples fork.2 models. This suggests that th
movie temperature~4.3! is well defined uniquely for strongly
interacting and glassy systems, or, in other words, for slo
evolving sites with aqEA

( i ) close to 1.

VII. DISCUSSION

In the last two sections we shall discuss the propertie
single-spin correlation and response functions which eme
from the numerics. In the present section we give an ov
view of the general properties, which seems to apply to
the three classes of models studied so far. We think that
numerical evidence towards this conclusion is quite stron

In the following section we shall reconsider a very sp
cific property of our discontinuous spin glass, cf. Sec. IV a
Fig. 12. This alignment phenomenon was not found eithe

FIG. 23. FD plots for a few weakly interacting spins: numeric
results (d) and outcomes of the perturbative formulas~6.2! and
~6.5! (s). We consider connectivity-1 sites~a!, and connectivity-2
sites~b!.
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the coarsening model of Sec. III or in the continuous s
glass of Sec. V. Nevertheless we think that it deserves s
further exploration because it is both new and puzzling.
Sec. VIII we will show that the empirical relation~4.3! is
closely related to the thermometric interpretation of effect
temperatures.53 Moreover, we will show that this interpreta
tion is ill founded ~in a general model! unless Eq.~4.3!
holds.

Here we shall focus on two-time correlation and respo
functionsCi(t,tw) and Ri(t,tw) ~see Ref. 50 for a prelimi-
nary discussion of multitime functions! and distinguish two
types of facts:~i! their scaling behavior in the large tim
limit; ~ii ! the fluctuation-dissipation relations which conne
correlation and response.

A. Time scaling

Following Refs. 30 and 31, we assume monotonicity
the two-time functions: ] tCi(t,tw), ] tRi(t,tw)<0, and
] tw

Ci(t,tw), ] tw
Ri(t,tw)>0. Moreover we consider a weak

ergodicity-breaking situation:Ci(t,tw),Ri(t,tw)→0 as t
→` for any fixedtw . All these properties are well realize
within our models.

It is quite natural to assume69 that, for pair of sitesi andj,
there exist two continuous functionsf i j and f j i such that

Ci~ t,tw!5 f i j @Cj~ t,tw!#, Cj~ t,tw!5 f j i @Ci~ t,tw!#,
~7.1!

in the t,tw→` limit. Notice that we can always write

Ci~ t,tw!5 f i j @Cj~ t,tw!,t#. ~7.2!

We are therefore assuming that the functionsf i j @C,t# admit
a limit as t→` and that the limit is continuous. Sinc
f i j @C,t# is smooth and]Cf i j @C,t#>0, if the limit exists it
must be a continuous, nondecreasing function ofC. Since
Eq. ~7.1! implies that bothf i j and f j i are invertible~indeed
f i j + f j i 51, see below! they must be strictly increasing.

Without any further specification, the property~7.1! is
trivially false. Consider the example of type-I~paramagnetic!
spins in the three-spin model studied in Sec. IV. Ifi is type I
and j is type II Ci(t,tw)→0 in the aging regime, while
Cj (t,tw) remain nontrivial: f i j @•# cannot be inverted. An-
other example would be that of a Viana-Bray model, cf. S
V such that the interaction graph has two disconnected c
ponents.

However, both these counterexamples are someh
‘‘pathological.’’ We can precise this intuition by noticing tha
Eq. ~7.1! defines an equivalence relation~in mathematical
sense! between the sitesi and j. Therefore the physical sys
tem breaks up intodynamically connected componentswhich
are the equivalence classes of this relation. Type-I a
type-II spins in the three-spin model of Sec. IV are two e
amples of dynamically connected components. Hereafter
shall restrict our attention to a single dynamically connec
component. Physically, structural rearrangements occur
herently within such a component.

Clearly the transition functions$ f i j % have the following
two properties:~i! f j i 5 f i j

21 , and ~ii ! f i j 5 f ik+ f k j . This im-

l
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plies that they can be written in the formf i j 5 f i
21+ f j ~the

proof consists in taking a reference spink50 and writing
f i j 5 f i0+ f 0 j5 f 0i

21+ f 0 j ). Of course the functionsf i are not
unique: in particular they can be modified by a global re
arametrizationf i→g+ f i .

Although very simple, the hypothesis~7.1! has some im-
portant consequences. Suppose thatCj (t,tw) hasp discrete
correlation scales~in the sense of Refs. 30 and 31!, charac-
terized byqa11

( j ) ,Cj (t,tw)<qa
( j ) , for a51, . . . ,p. Within a

scale we have

Cj~ t,tw!'C j
(a)@ha

( j )~ t !/ha
( j )~ tw!#, ~7.3!

where ha
( j )(t) is a monotonously increasingtime-scaling

function. Two timest and tw belong to the same time secto
if 1 ,ha

( j )(t)/ha
( j )(tw),`.

Applying the transition functionf i j to the above equation
one can prove that, for each scalea of the sitej, there exists
a correlation scale for the sitei, with qa11

( i ) ,Ci(t,tw)<qa
( i )

and q
•

( i )5 f i j @q
•

( j )#. Moreoverha
( i )(t)5ha

( j )(t)[ha(t) ~up to
an irrelevant multiplicative constant! and

C i
(a)5 f i j + C j

(a) . ~7.4!

In summary there is a one-to-one correspondence betw
the correlation scales of any two sites. Notice that this i
necessary hypothesis if we want the connection between
ics and dynamics28,29 to be satisfied both at the level of glo
bal and local~single-spin! observables. A spectacular dem
onstration of the correspondence of correlation scales
different sites is given by our movie plots, cf. Figs. 5, 12, a
18. In particular such correspondence implies that all
(x i ,Ci) points leave the FDT line at once.

Equation~7.1! can be rephrased by saying that the beh
ior of one spin ‘‘determines’’ the behavior of the whole sy
tem. This is compatible with the locality of the underlyin
dynamics because:~i! ‘‘determines’’ has to be understood i
average sense;~ii ! the relation~7.1! is not true but in the
aging limit.

B. Fluctuation-dissipation relations

On general grounds, we expect single-spin quantities
isfy site-dependent OFDR’s of the type~2.3!. In integrated
form we obtain, for large timest,tw , the relationx i(t,tw)
5x i@Ci(t,tw)#. We think that we accumulated convincin
numerical evidence in this direction as far as the models
Secs. III ~coarsening! and IV ~discontinuous spin glass! are
considered. The situation is more ambiguous~and probably
very hard to settle numerically! for the Viana-Bray model of
Sec. V.

Fluctuation-dissipation relations on different sites are
unrelated: we expect48 to be able to define a site-independe
effective temperature as follows:

x i8@Ci~ t,tw!#5x j8@Cj~ t,tw!#[2
1

Teff~ t,tw!
. ~7.5!

In terms of transition functions, we getx i8@Ci #5x j8@Cj #
whenCi5 f i j @Cj #. As before, the numerics support this ide
22442
-

en
a
at-

n
d
e

-

t-

f

t
t

tity both for coarsening systems, cf. Sec. III, and discontin
ous glasses, cf. Sec. IV. For continuous glasses, cf. Se
the situation is less definite. In Sec. VI we presented a p
turbative calculation which supports Eq.~7.5! also in this
case.

VIII. THERMOMETRIC INTERPRETATION

A suggestive approach53 for justifying Eq. ~7.5! consists
in regardingTeff(t,tw) as the temperature measured by
thermometer coupled to a particular observable of the s
tem. It is quite natural to think that the result of this measu
should not depend upon the observable. In aging syst
with more than just one time sector, this approach is
consistent unless the following identity holds:

x i~ t,tw!

12Ci~ t,tw!
5

x j~ t,tw!

12Cj~ t,tw!
[

1

Tmovie~ t,tw!
. ~8.1!

The new effective temperatureTmovie(t,tw) is in fact the one
measured by a particular class of thermometers which
shall denote as ‘‘sharp.’’ It is a weighted average of the
fective temperatures@in the sense of Eq.~7.5!# corresponding
to different time sectors. In order to prove this result, w
shall carefully reconsider the arguments of Refs. 53, 56,
57

Let us notice that Eq.~8.1! is remarkably well verified in
our discontinuous spin-glass model, cf. Fig. 12, although
breaks down for (t/tw)@1. In Sec. III we demonstrated tha
it does not hold for coarsening systems, and in fact a dif
ent relation is true in this case, cf. Eq.~3.14!. Finally, we
were not able to reach any definite conclusion for the Via
Bray model of Sec. V.

According to Ref. 53 the temperature of an out-o
equilibrium system can be measured by weakly coupling i
a ‘‘thermometer,’’ i.e., to a physical device which can b
equilibrated at a tunable temperatureTth51/b th . The tem-
perature of the system is defined as the value ofTth such that
the heat flow between it and the thermometer vanishes.
details of the thermometer are immaterial in the wea
coupling limit. What matters are the correlation and respo
functions of the thermometer70 Cth(t,tw)5Cth(t2tw) and
Rth(t,tw)5Rth(t2tw), which are assumed to satisfy FDT
Rth(t)52b th]tCth(t).

In the spirit of our work, we shall couple the thermomet
to a single-spin variables i between times 0 andt, and aver-
age over many thermal histories. The measured tempera
b th is given by53,56

b thE
0

t

dtwRth~ t2tw!] tw
Ci~ t,tw!

5E
0

t

dtwRth~ t2tw!~2x i8@Ci~ t,tw!# !] tw
Ci~ t,tw!,

~8.2!

where we assumed the general OFDR~2.3! in its integrated
form: x i(t,tw)5x i@Ci(t,tw)#, and denoted by a prime th
9-16
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derivative ofx i@•# with respect to its argument. Notice thata
priori the measured temperature depends uponi and t, for a
given thermometer.

It is convenient to change variables fromtw to q
[Ci(t,tw). This relation can be inverted by defining the tim
scalet i(t;q) as follows:

Ci„t,t2t i~ t;q!…5q. ~8.3!

Using these definitions in Eq.~8.2!, we get

b thE
qmin

1

dqRth„t i~ t;q!…5E
qmin

1

dqRth„t i~ t;q!…~2x i8@q# !,

~8.4!

whereqmin[Ci(t,0). As t→`, we haveqmin→0. In the same
limit t i(t;q)→t i

eq(q) if q.qEA
( i ) , while t i(t;q)→` if q

,qEA
( i ) .

In order to measure temperatures on long-time scales
need a thermometer with an adjustable time scale. M
ematically speaking, we takeRth(t)5R̃th(t/t th), and uset th

to select the time scale. The precise form ofR̃th(x) is not
very important. We shall assume thatR̃th(x)'1 for x!1 and
R̃th(x)'0 for x@1. A simple example isR̃th(x)5u(x)e2x.
Some of the relations we will derive simplify ifR̃th(x)
'u(x)u(x* 2x). We will call such a thermometer sharp.

We have two types of choices for the thermometer ti
scalet th .

~1! We may take a ‘‘fast’’ thermometer, whose relaxatio
is much faster than the structural rearrangements of the
tem. Equivalently, we look at our thermometer after a tim
t@t th . Mathematically this corresponds to taking the lim
t→` with t th fixed. The result of such a measure is~for
large timest) the bath temperature.

~2! We may use a ‘‘slow’’ thermometer, with a relaxatio
time which is of the same order of the time needed fo
structural change in the system. This corresponds to ta
the limits t→`, t th→` at the same time. If the system age
the outcome of such a measure will depend upon the pre
way these limits are taken.

Let us consider separately the two cases.

A. Fast thermometer

In this case we have, ast→`,

Rth„t i~ t;q!…→H Fi~q!5R̃th~t i
eq~q!/t th! for q.qEA

( i )

0 for q,qEA
( i ) ,

~8.5!

with Fi(qEA
( i ) )50 andFi(1)51. Inserting into Eq.~8.4! we

get

b thE
qEA

( i )

1

dqFi~q!5E
qEA

( i )

1

dq Fi~q!~2x i8@q# !. ~8.6!

Assuming that in the ‘‘quasiequilibrium’’ time sector@i.e., for
Ci(t,tw).qEA

( i ) ] the system satisfies FDT, we can usex i8@q#
52b, which yieldsb th5b, as expected.
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B. Slow thermometer

Here we shall assume that the system hasp discrete cor-
relation scales in the aging regime.31 The generalization to a
continuous set of correlation scales is straightforward.
each scaleaP$1, . . . ,p% we associate a time-scaling func
tion ha(t). As discussed in Sec. VII,ha(t) is site-
independent.

In order to probe the correlation scalea, we tune the
thermometer time scale with the functiont th,A(t). This func-
tion is defined by imposing

ha~ t !

ha„t2t th,A~ t !…
5A, ~8.7!

for some fixed numberA.1.
Within the scalea, we haveqa11

( i ) ,Ci(t,t8),qa
( i ) . It is

easy to show that

lim
t→`

Rth„t i~ t;q!/t th,A~ t !…5Fi ,a~q!, ~8.8!

with Fi ,a(q)50 for q,qa11
( i ) , Fi ,a(q)51 for q.qa

( i ) , and
Fi ,a(q) increasing in (qa11

( i ) ,qa
( i )). Integrating by parts Eq

~8.4!, we get

b th
( i )E

0

1

dq Fi ,a8 ~q!~12q!5E
0

1

dqFi ,a8 ~q!x i~q!, ~8.9!

which is our final expression for the temperature measu
on the spini ~here we emphasized the dependence ofb th
upon the site!.

Notice that the support ofFi ,a8 (q) is contained in the in-
terval (qa11

( i ) ,qa
( i )). The expression~8.9! simplifies in two

cases:~i! if the ath correlation scale is smallqa11
( i ) 'qa

( i )

'q
*
( i ) ~and, in particular, when there is a continuous set

scales!; ~ii ! if the thermometer is sharp in the sense defined
the beginning of this section, and, therefore,Fi ,a8 (q) is
strongly peaked around someq

*
( i ) . In both cases we have

b th
( i )'

x i~q
*
( i )!

12q
*
( i )

. ~8.10!

Let us now imagine to couple two copies of the same th
mometer to two different sitesi and j. We shall measure two
temperaturesb th

( i )'x i(q*
( i ))/(12q

*
( i )) and b th

( j )'x j (q*
( j ))/(1

2q
*
( j )), with q

*
( i )5 f i j (q*

( j )). These two temperatures coin
cide,b th

( i )'b th
( j ) , only if Eq. ~8.1! is satisfied.

The conclusion of the arguments presented so far is
the condition~8.1! is necessaryif we want a given thermom-
eter to measure the same temperature on any two spins o
system. Moreover this condition issufficientfor the special
class of sharp thermometers. In the last part of this sec
we will show that the condition~8.1! is indeed sufficient for
any thermometer, once Eq.~7.5! is assumed.

C. Thermometric equivalence of different sites

We want to prove that Eqs.~8.1! and~7.5! imply the iden-
tity of thermometric temperatures on the sitesi and j for any
given thermometer. Let us stress that the measured temp
9-17
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ture may, eventually, depend upon the thermometer. The
sential ingredient for the ‘‘small intropy production’’ sce
nario of Ref. 59 to be applicable, is that the result should
depend upon the site.

Notice that from the definition~8.3!, it follows that the
time scales defined on different sites are related as follo

t i„t; f i j ~q!…5t j~ t;q!, ~8.11!

whence we easily derive the identityFi ,a( f i j (q))5F j ,a(q).
By the change of variablesq→ f i j (q) we get, from Eq.~8.9!,

b th
( i )E

qa11
( j )

qa
( j )

dq Fj ,a8 ~q!@12 f i j ~q!#

5E
qa11

( j )

qa
( j )

dq Fj ,a8 ~q!x i„f i j ~q!…, ~8.12!

where we specified the range ofq such thatF j ,a8 (q) is ~pos-
sibly! nonzero. If we use Eq.~8.1! to connect the response
on different sites, we obtain

b th
( i )E

qa11
( j )

qa
( j )

dq Fj ,a8 ~q!~12q!F12 f i j ~q!

12q G
5E

qa11
( j )

qa
( j )

dq Fj ,a8 ~q! x j~q!F12 f i j ~q!

12q G . ~8.13!

The factors@12 f i j (q)#/(12q) prevent us from concluding
thatb th

( i )5b th
( j ) with no further assumption. Let us assume E

~7.5!, and thatx i8@q# stays constant forqa11
( i ) ,q,qa

( i ) . It
follows that, within the scalea, f i j (q)512 f a,i j

0 (12q),
f a,i j

0 being a constant. This impliesb th
( i )5b th

( j ) for any ther-
mometer.
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APPENDIX A: LARGE- n CALCULATIONS

In this appendix we sketch the large-n calculations whose
results were presented in Sec. III A 1.

1. Statics

The trick for solving the periodic model of Sec. III A 1 i
quite standard.61 We define thenV component vectorcx
which containsn components for each type of spin:

cx
a,u5fx• l 1u

a , uPL, xPZd, ~A1!

wherex• l 5(m51
d xml m andL is the elementary cell. In this

basis the Hamiltonian reads

H~c!52(
x,m

cx•K̂
(m)cx1m2

1

2 (
x

cx•L̂cx , ~A2!

where K̂au,bv
(m) 5dabKu,v

(m) , L̂au,bv5dabLu,v , and Ku,v
5Ju,m̂ l m1v , Lu,v5Ju,v .
22442
s-

t

:

.

-

The equilibrium correlation functions are computed
standard methods:

^cx
a,u&5da,1Mu , ~A3!

^cx
a,ucy

b,v&c5TE
BZ

dp

~2p!d
@M

*
21~p!#u,veip(x2y), ~A4!

where theV3V matrix M* (p) is given by

M
*
uv~p!52 (

m51

d

@Kuv
(m)eipm1Kvu

(m)e2 ipm#2Luv1z
*
u duv .

~A5!

TheV Lagrange multipliersz
*
u and theV magnetizationsMu

must be computed from the set of 2V equations given below

(
vPL

M
*
uv~0!M v50, ~A6!

15Mu
21TE

BZ

dp

~2p!d
@M

*
21~p!#uu . ~A7!

These equations have two types of solutions: at high te
peratureMu50 and the matrixM* (0) has rankV; at low
temperatureMu.0 and the matrixM* (0) has one vanishing
eigenvalue.

In the following section we shall treat the dynamics
this model. Remarkably all the complication produced
inhomogeneous couplings affects the aging dynamics o
through the values of the local magnetizations$Mu%, the
critical temperatureTc and one more constantD, which we
are going to define. Consider the lowest-lying eigenva
l0(p) of the matrixM* (p). As p→0 the corresponding ei
genvector coincides withM v andl0(p)→0. We then define

D5DetF ]2l0~p!

]pm]pn
U

p50
G . ~A8!

All these quantities can be easily computed once the solu
to Eqs.~A6! and ~A7! is known.

2. Dynamics

The Langevin equation~3.7! is easily solved by defining
the new order parametercx as in the preceding Section
going to Fourier space:

]ca,u~p!52 (
vPL

Muv~p,t !ca,u~p!1ha,u~p,t !. ~A9!

The ‘‘mass’’ matrixMuv(p,t) is given by the expression~A5!
with the Lagrange multipliersz

*
u replaced by their time-

dependent versionzu(t). Of course limt→`zu(t)5z
*
u .

The correlation and response functions for the fieldcx
becomeV3V matrices. Their diagonal elements are the o
site correlation and response functions of the fieldf. Stan-
dard manipulations yield
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C~ t,tw!5E
BZ

ddp

~2p!d
U~p;t !F112TE

0

tw
ds U~p;s!21U

~2p;s!21GU~2p;t ! ~A10!

R~ t,tw!5E
BZ

ddp

~2p!d
U~p;t !U~p;t !21. ~A11!

The matrixU(p;t) satisfies the differential equation

] tU~p;t !52M~p;t !U~p;t !, U~p;0!5I, ~A12!

and the Lagrange multipliers must satisfy the se
consistency conditionsCuu(t,t)51.

One can find the following asymptotic behavior f
U(p;t):

U~p;t !5Atd/4~11gt2d/2111••• !e2M
*

(p)t. ~A13!

The constantsA andg are simple numbers given below:

A5
A (

uPL
Mu

2

11T/T*
~8p!d/4D1/4. ~A14!

g52
T

S (
uPL

Mu
2D ~8p!d/2D1/2

G~12d/2!2

G~22d!
. ~A15!

The constantT* appearing in Eq.~A14! is defined as follows

1

2T*
[E

0

`

dt ŝ•U~0;t !22, ~A16!

where isŝ theV-dimensional unit vector parallel to the ve
tor of the magnetizations:ŝu5Mu /((uMu

2)1/2. The expres-
sion~A16! is quite hard to evaluate, but this is not a proble
becauseT* cancels out in all physical quantities.

Using the results listed above one can recover the gen
form ~3.3! and the expressions~3.10!–~3.12!. The universal
functions which determine the domain wall contributions a
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