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Aging dynamics of heterogeneous spin models
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We investigate numerically the dynamics of three different spin models in the aging regime. Each of these
models is meant to be representative of a distinct class of aging behavior: coarsening systems, discontinuous
spin glasses, and continuous spin glasses. In order to study heterogeneities of the dynamics induced by
guenched disorder, we consider single-spin observables for a given disorder realization. In some simple cases
we are able to provide analytical predictions for single-spin response and correlation functions. The results
strongly depend upon the model considered. It turns out that, by comparing the slow evolution of a few
different degrees of freedom, one can distinguish between different dynamic classes. As a conclusion we
present the general properties which can be induced from our results, and discuss their relation with thermo-
metric arguments.
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. INTRODUCTION correlation$!® is probably a key ingredient. We shall not
address this purely dynamical phenomenon in the present

Physical systems with an extremely slow relaxation dy-paper, and, in particular, we shall disregard the role of spatial
namics (aging are, at the same time, ubiquitous and correlations. However, we think that considering systems
fascinating! Much of the insight we have on such systemswith quenched disorder can be an instructive first step even
comes from the study of mean-field models. in that direction. As it has been argued several tifies,

One of the weak points of the results obtained so far isstructural glasses behave similarly to some disordered sys-
that they focus on global quantities, e.g., the correlation antems because of a sort sélf-induceddisorder. Each mol-
response functions averaged over all the spins. On the othetule relaxes in the amorphous environment produced by the
hand, we expect one of the peculiar features of glassy dy(partially frozen arrangement of the other ones. In particu-
namics to be itdieterogeneity " In order to understand this |ar, the relations between correlations and response functions
character, we study the out-of-equilibrium dynamics of threepf different degrees of freedom mentioned above should
models belonging to three different families of slowly evolv- haye some generalization for systems without quenched dis-
ing systems: coarsening systems, discontinuous and contingzqer.

ous glasses. In a heterogeneous model, the correlation and response

The ?yt\r/\vamdlpsi_ ol tSUCh systelmtshcan bel htiterogetr;]eous :a'nctions of a particular spin depend upon its local environ-
cause of two distinct reasons. 1n the simplest case the Modgian; o the strength of its interactions with other spins.

itself is heterogeneous: the Hamiltonian is not invariant un-

der a group transformation which permutes its degrees OI?owever, the way the single-spin dynamics is influenced by

freedom. This is for instance the case of spin models with-> environment is highly_dependent upon t_he nature O.f the
quenched disordé?~2* Local correlations and response SYSt€M as @ whole. For instance, as we will show, while in
functions will depend of course upon the particular degree of 9a'S€ning systems strongly interacting spins relax faster, for
freedom(spin considered. In this paper we shall focus ondiscontinuous glasses the opposite happens. Continuous
this type of phenomenon. As stressed by the title, it is th@las;es |I? somehow midway. In prlnC|pIe,.th|s allows _to dis-
model rather than the dynamics to be heterogeneous. We wiilnguish different types of slow dynamics just by looking at
see that, in the aging regime, some nontrivial relationghe relation between a couple of spins.
emerge between the correlation and the response function of In order to extract quenched-disorder-induced heterogene-
different degrees of freedom. ities we will average on a very large number of independent
A much more subtle effect is essential for the physics ofthermal histories. This will delete the effects of the thermal
structural glassés® (and other systems without quenched noise.
disordej. In this case, the Hamiltonian itself does not distin-  On the contrary we are forced not to perform a naive
guish different degrees of freedom. Nevertheless the thermalverage over the disorder realizations, because this would
noise is able to break the initial spatial uniformity and towash any difference between spins. Instead of doing more
bring the system in a strongly heterogeneous configuratiorcareful disorder averages, e.g., conditioning on the local en-
The dynamics itselfrather than the modgis heterogeneous. vironment of the spin under study, we prefer to work with a
This is why one refers sometimes to such a phenomenon asique fixed disorder realization. In the limit of large system
“dynamical heterogeneity.” Although there is no general un-size we expect local quantities still to fluctuate from site to
derstanding of this effect, the structure of spatialsite, and to converge in distribution sense, making the analy-
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sis of a single typical sample representative of the wholehat each state is selected with probabity’™F«/Z,. The
ensemble parametem enables us to select metastable states. In fact we
After these preliminaries, we can summarize the approackxpect the dynamics of discontinuous glasses to be tightly
used in this work. Given a disordered model, we take a fewelated with the properties of high-energy metastable
typical sample¥ (as big as possible according to our nu- states>2®
merical capabilitiesfrom the ensemble and we repeat a huge While in a paramagnetic phasgii(m)=0 apart for a
number of times the typical numerical experiment used fomon-extensive subset of the spins, in the spin glass phase
studying out-of-equilibrium dynamics: start from a randomq(Ei/l(m)>o in a finite fraction of the system. In general
configuration, quench the system to a low temperatureg() m) depends upon the sitethe phase is heterogeneous.
where it evolves slowly, wait a timg,, switch on a small e will return in the next Section on the dynamical signifi-
perturbing field, and take measurements. The observables W& ce of this and other statical results.
measure are local quantities, such as single-spin correlation The paper is organized as follows. In Sec. Il we present
and response functions, averaged over the thermal noise. some of the theoretical expectations which we are going to
We shall consider three different disordered modéllsa  test. We also give a few technical details concerning the nu-
two-dimensional ferromagnetic Ising modelouplings are  merics. Section Il deals with coarsening systems. We postu-
all ferromagnetic but of different strengthsvhich has a fer-  |ate the general behavior of response and correlation func-
romagnetic phase below the critical temperatui®; the tions, and test our predictions on a simple model. In Secs. IV
three-spin Ising model on random hypergraph, which has @nq v we present our numerical resuilts for, respectively, the
glassy phase Wlth_ one step_of replica symmetry breaklnghree-spin and two-spin interaction spin glasses on random
(IRSB; (3) the spin-glass Ising model on random graph, hypepgraphs. The particularly easy case of weakly interact-
also known as Viana-BragvB) model;® which is believed jng spins is treated in Sec. VI. We show that the aging be-
to have a glassy phase with continuous replica symmetryayior of these spins can be computed from the behavior of
breaking(FRSB. . _ their neighbors. Finally, in Sec. VII, we discuss the general
The last two models are examples difuted mean-field pictyre which emerges from our observations. In Sec. VIII
spin glasses. They lack any finite-dimensional geometrigye interpret some peculiar properties of the discontinuous
structure: _this makes them soluble using mean-fieldspin glass of Sec. IV using thermometric arguments. The
technique€” On the other hand, the local fluctuations of Appendix A present some calculations for coarsening dy-

quenched disorder are not averaged out as in completely cOfgmics. A brief account of our results has appeared in Ref.
nected models. For instance, the local connectivity is a Poisy7.

sonian random variable. Because of these two features, they
are an interesting playing ground for understanding hetero-

Diluted mean-field models have been intensively studied |, the following we shall discuss three different spin mod-

in the last years, one of the qualifying motivations beingg|s Before embarking in such a tour it is worth presenting
their correspondence with random combinatorial probl&ms. the general frame and fixing some notations.

Statical heterogeneities have been well understood, at least at i, principal tools will be the single-spin correlation and
1RSB level. Throughout the paper we shall neglect FRSBresponse functions:

effects?® and assume that 1RSB is a good approximation. In
Refs. 21 and 22, the authors defined a linear-time algorithm Ao (1)

fchat computes S|_ngle_-sp|n static quantities for a given sample Cij(tty)=(ai(hoi(ty), Ry(tt,)= TR ,

in 1RSB approximation. The algorithm was dublsedveys ah;(ty) h=0
propagation (SP and, strictly speaking, was defined for (2.1
computing zero-temperature quantities. It is straightforward,

although computationally more demanding, to generalize iwhere the average is taken with respect to some stochastic
for finite temperature¥ (the generalization follows the ideas dynamics, andh; is a magnetic field coupled to the spinit

of Ref. 23: we shall call this generalization $P is also useful to define the integrated responsgt,t,,)
The resulting heterogeneities can be characterized by aﬁwds Rj(t,s).
local Edwards-Anderson parameter. This can be defihieyi We shall not repeat the subscripts when considering the
consideringm weakly-coupled “clones’{o™, ... ,c{™} of  giagonal elements of the above functighe., we shall write
the system. The local overlap between two of thed(m)  C, for C;;, etc). The global(self-averagingcorrelation and
=@ ¢y, with a#b, is given by response functions are obtained from the single-site quanti-
L ties as follows: C(t,t,)=(1/N)Z,Ci(t,t,), x(t,ty,)
i - _ gmF 2 =(1/N)Z;x;(t,t,). The timest andt,, are measured with
AEA(m)= Zm ae%ate$ e e (o), (.0 respect to the initial quendfat tq,eng=0) from infinite tem-
perature.
where the sum om runs over the pure states,), denotes We will be interested in comparing the outcome of static

the thermal average over one of such states, @pd calculations and out-of-equilibrium numerical simulations.
=3 e A" Equation(1.1) follows from the observation For instance, we expect the order paraméte) to have the
that them clones stay at any time in the same stateand  following dynamical meanirftf
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gil(mg)= lim lim C;(t,+At,t,), (2.2)  correlation relation;(ii) in “slower” time sectors [e.q.,
At—s ooty oo (logt)*—(logt,)“=const, with x<1]. The functions(2.5
and (2.6) have finitehy—0 limits C;(t,,+ At,t,) and ;(t,,

where my, is the parameter that selects the highest-energ
metastable states.

In the aging regime Att,>1, Ci(t,+At;t,)
<qg}\(mth). We expect the function@.1) to satisfy the out-
of-equilibrium fluctuation-dissipation relatiéh(OFDR)

YAt t,).

Finally, let us mention that we shall look at the(t,t,,)
versusC,(t,t,,) data from two different perspectives. In the
first one we focus on a fixed siteand vary the times$ and
ty: this allows to verify the relation$2.3) and (2.4). We

TR(t,t,) = X[ Ci(t,t,) 10, Ci(t,ty). 2.3 shall refer to this type of presentations BB plots In the
w second approach we plot, for a given couple of times, all the
If X;[C;]=1 the fluctuation-dissipation theorelaDT) is re-  points (C;(t,t,), xi(t,ty)) for i=1,... N. Then we lett
covered. The arguments of Refs. 28 and 29 and the analogyrow ast,, is kept fixed. We dubbed such a procedure a
with exactly soluble modets®°3tsuggest that the function movie plot It emphasizes the relations between different de-
X;[C] is related to the static overlap probability distribution: grees of freedom in the system.

dXi(a)
Pi(a)=———. (2.4) lll. COARSENING SYSTEMS

_ . dq _ Coarsening is the simplest type of aging dynanifcs.

For discontinuous glasses the dynamics never approachefespite its simplicity it has many representatives: ferromag-
thermodynamically dominant states. In this case the functiopgtg (both homogeneous and pobinary liquids, and, ac-
P;(q) entering in Eq(2.4) is the overlap distribution among cording to the droplet modéf;3" spin glasses.

highest metastable states. We refer to the following sections consider a homogeneous spin model with a low-
for concrete examples of the general relati@n). _ temperature ferromagnetic pha&eg. an Ising model in di-

~ Let us now give some details concerning our numericalnensjond=2). When cooled below its critical temperature,
simulations. We shall consider systems definedNofsing  the system quickly separates into domains of different mag-
spinsoj=*1, i e{1,... N}, with HamiltonianH (o). The  netization. Within each domain the system is “near” one of
dynamics is defined by single-spin-flip moves with Metropo-jts equilibrium pure phases. Nevertheless it keeps evolving at
lis acceptance rule. The update will lsequentialfor the 4| times due to the growth of the domain siz&). This

spin-glass models of Secs. IV and V arahdom sequential process is mainly driven by the energetics of domain bound-
for the ferromagnetic model of Sec. IlI. ari

For each one of the mentioned models, we shall repeat the I?r?'thetﬁoo limit, the coarsening length obeys a power
typical a_giryg_ “experiment.” The system is init_ialized ina |jaw £(t)~tY2 (for nonconserved scalar order parameter
random (infinite temperatureconfiguration. At timetqiench  =2). Two-time observables decompose in a quasiequilib-
=0, the system is cooled at temperatdrevithin its low-  iym part describing the fluctuations within a domaiB,

temperature phase. We run the dynamics for a “physical’yyg Xeq iN the equations belol plus an aging contribution
timet,, (corresponding te,, attempts to flip each spinThen  \\hich involves the motion of the domain wall€{y, Caw,
we “turn on” a small random magnetic field = =hpand go g9 Yaw):

on running the Metropolis algorithm for a maximum physi-

cal time Atyax - Notice that the random external field is &)

changed at each trajectory. C(t,tw)*Ceq(t—tw)JFQEACag( m)
The correlation and response of the single degrees of free- W

dom are extracted by measuring the following observables: &(t)
—deatn*Canl 27| (3.1
tyy+2At &(ty)
Cittwt2Attulho) =17 2 (oi(t)oi(tw)),
t' =t +At+1 —a’ &(t)
(2.5 X(4t) =~ Xedt—tw) + deaty” Xaw ) (3.2
w
ty+2At

_ where qga is the equilibrium Edwards-AndersofiEA) pa-
Xi(ty 24ty [ho) =5 > (ot signthy)), rameter. For a ferromagneiea=M ()2, M(B) being the

Ot =ty +at+l ,  SPontaneous magnetization. Moreo@gy(7) decreases from

(2.6 (1—0ga) to 0 as7 goes from O toe, andC,(\) goes from

where(-) denotes the average over the Metropolis trajectod to 0 as its argument increases from 1cto Finally the
ries and the random external field. The sum avemas been  equilibrium part of the susceptibility.{ 7) goes from 0 to
introduced for reducing the statistical errors. While it is a(1—qga)/T. In the case of a scalar order parameter both the
drastic modification of the definitiof2.1) in the quasiequi- response and correlation functions receive subleading contri-
librium regimeAt<t,,, it produces just a small correction in butions Cg, and x4,) from spins “close” to the domain
the aging regimeAt,t,>1. This correction should cancel walls. Notice that these spins will decorrelate faster and re-
out in two interesting casedi) in the time sectort/t,  spond easier than the othéns other wordsC,,, and x4, are
=const, if one restricts himself to the response-versustypically positive. These contributions are expected to be
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Due to the independence 6%, and x4, upon the sitex,
,AX(t,tw) Egs.(3.3) and(3.4) imply that alignment in theg.-C plane is
verified even in the pre-asymptotic regime. This property is
therefore more robust than the OFDR which is violated by
o(t,2,t,,%) terms, cf. Figs. 4 and 5.

Finally, both the larger calculation of Sec. IIl A1, and
our numerical data, cf. Sec. Il A 2, suggest that domain-wall
contributions in Eqs(3.3), (3.4) have the same order of mag-
nitude Cg,,(A) ~ Txgw(N).

A. A staggered spin model

Here we want to test our predictions in a simple context.
FIG. 1. Qualitative picture of the response-versus-correlation/Ve shall consider al-dimensional lattice ferromagnet, de-

plot for coarsening systems. Bold dashed lines are the single-spitined by the Hamiltonian

OFDR'’s. Black dots represent the correlation and response func-

tions at a given pairs of times,(,). Arrows correspond to the

“velocities” of the dots when they move along the fluctuation- H(o)=— E JyyOx0y, (3.5

dissipation curves. (xy)

where the sum runs over all the couplesy) of nearest
neighbors on the lattic&?, and Jxy=0. Moreover we as-
tgume periodicity in the couplings. Namely, there exist posi-
j .. lq such that, for any,yeZ and u

proportional to the density of domain wallgg,(ty)
« £(t,,) L. This would® imply a=a’=1/z.

It is easy to generalize this well-established scenario ;
include single-spin quantities in heterogeneous systems. W&€ integersiy, .
expect that the quasiequilibrium parts of the correlation anoe{l' - d}
response functions will depend upon the detailed environ-
ment of each spin. On the other hand, the large scale motion ny=JX+;L|” v, (3.6
of the domain boundaries will not depend upon the precise
point of the system we are looking at. Therefore the agin
contribution will depend upon the site only through the
local Edwards-Anderson parametquA= M,(B)?. The rea-
son is thagE” quantifies the distance between pure phases

Q/vhere,& is the unit vector in thewth direction. Clearly there
areV=I4l,---14 different “types” of spins in this model.
Two spins of the same type have the same correlation and
%sponse functions. We can identify thegaypes with the

seen through the spia. _ . .. spins of the “elementary cellA={xe Zd|0sxﬂ<lﬂ}.

We are led to propose the following form for single-site " gpatia| periodicity is helpful for two reason@) it allows

functions: an analytical treatment in the largelimit; (i) averaging the
single-spin quantities over the set of spins of a given type
(1) reatly improves the statistics of numerical simulations.
Cx(t,tw)~C§“(t—tw)+qEACag( S JreayIme
w
£(1) 1. Large n
—qEAtWade(m>, (3.3 The model(3.5) is easily generalized to-vector spins
w

¢X=(¢)l(, ...,®%). We just replace the ordinary product be-
£t) tween spins in Eq(3.5 with the scalar product. Moreover
ey EA,—a’ we fix the spin lengthg,- ¢,=n. The dynamics is specified

This ansatz can be summarized, as fabgs, % t,,2) terms A A A a
are neglected, in the schematic response-versus-correlation (9t¢x(t):—§x(t)¢x(t)+§y: Jxydy (D) + 75 (1), (3.7
plot reported in Fig. 1. Each spin follows its own fluctuation-

dissipation curve. This is composed of a quasiequilibrium : o .
sectorTy,=1—C,, plus a horizontal aging sectdiy, =1 where we introduced the Lagrange multipliétgt) in order

_qEA_ Moreover, for each couple of timag andt, all the to enforce the spherical constraint. The thermal noise is

points are aligned on the line passing through=0,T x Gaussian with covariance
=1).
Notice thatspins with larger §* relax faster(although on (73(1) 7y(5))=2T 8,y 6°°5(t—s). (3.9
the same time scaleRoughly speaking this happens because
they have to move a larger distance in order to jump fromThe definition of correlation and response functions must be
one pure phase to the other. slightly modified for ann-component order parameter:
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FIG. 2. Domain-wall contributions to the correlatigdashed
line) and integrated response functioft®ntinuous ling in the n
—oo |limit; the universal scaling functions, cf. Eq$3.11) and
(3.12, as a function of = \t/t,,.

1
Coyl(11)= Z( (D) (1),

Rey(t,t)=

1 S PE(t)
) (3(1)) 39

& shi(t)

Like its homogeneous relativé this model can be solved
in the limit n—o. The calculations are outlined in the Ap-

pendix. Let us summarize here the main results.cdzef the

model undergoes a phase transition at a finite temperatu

T.. Below the critical temperature th@(n) symmetry is

broken:{$2)=M,(B) 8L. Of course the spontaneous mag-
netizations preserve the spatial periodicity of the model

Mx+llu,;(ﬁ) =M,(B).
At low temperature, the form&3.3) and (3.4) hold, with
qEA=M2(B), a=a’'=d/2—1, z=2, and

)\+)\71 —d/i2
CadN)= > ) (3.10
The subleading contribution reads
2T
Caw(N) = Fe(hid),  (3.1D
(87T)d/2< 2 Mi)Allz
xe A
Xaw(N)= F(\d), (312
(477)d/2< 2 M§>A1/2
xe A
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FIG. 3. Definition of the ferromagnetic couplings for the two-
dimensional model studied in Sec. Il A 2.

This could be expected because we know tbgt,t,,)—0
and xy(t,t,) —(1—M2)/T ast—o for any fixedt,, .

2. Numerical simulations

We simulated the modégB.5) in d=2 dimensions with
I,=1,=2 and the choice of couplings among spins in the
elementary cell illustrated in Fig. 3. We used square lattices
with linear sizel.. There are/= 22 different types of spins in
this case. We improved our numerical estimates by averaging
the single-site function<;(t,t,,;hg) and y;(t,t,;hy), cf.
Egs.(2.5 and(2.5), over theL?/4 spins of the same type.

Most of our numerical results were obtained at tempera-
fure T=1. A rough numerical estimate yieldg.=1.10(5)
tr the critical temperature. The equilibrium magnetizations
for T=1 of the four types of sites afd,=0.88035), M,
=0.8395%5), M,=0.75735), andM;=0.86245). Notice
that, in order to separate the magnetization values on differ-
ent sites, we are forced to choose a quite high temperature
for our simulations.

We expect the growth of the domain size in the model
(3.5 to follow asymptotically the lawg(t)~k(B)t?, with
z=2, as in the homogeneous case. The pinning effect due to
inhomogeneous couplings will renormalize the coefficient
k(B). We checked this law by studying the evolution of the
total magnetization starting from a random initial condition
for different lattice sizes. It turns out that the law is reason-
ably well verified with a coefficienk(B8=1) of the order of
1.

The aging experiment was repeated for several values of
the waiting timet,,= 10, 1¢, 10°, 1¢*, 10°. The correlation
and response functions were measured up to a maximum
time interval (respectively Atyay =20 213 215 217 219
The linear size of the lattice wds=2000 in all the cases
except fort,=10°. In this case we usetl=1000. All the
results were therefore obtained in thf) <L regime, with

whereA is a constant which depends uniquely on the couthe exception, possibly, of the latest times in the 10° run.

plingsJyy, cf. Sec. 1 of the Appendixt¢(-), F,(-) are two

Some systematic discrepancies can be indeed noticed for

universal functions which do not depend either on the temthese data. In Table | we report the numbgy,; of different
perature or on the particular model. The explicit expressionsuns for each choice of the parameters.
for these functions are not very illuminating. We report them Let us start by illustrating how the asymptotic behavior

in Sec. 2 of the Appendix; see Eq#17) and (A18). Here

summarized in Fig. 1 is approached. In Fig. 4 we show the

we plot the two functions in thé=3 case, see Fig. 2. Notice correlation functions and the FD plot for type-0 sites. Notice

that bothF¢(\;d) and F,(\;d) vanish in thex —co limit.

that the approach to the asymptotic behavior is quite slow
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TABLE |. Number Ngy, of different runs for the ferromagnetic
Ising model.

ho t,=10 t,=10* t,=10° t,=10 t,=10°
0.025 30 23 30 9

0.05 30 12 12 5 10
0.10 12

and, in particular, the domain-wall contribution to the re-
sponse function is pretty large. This can be an effect of the
proximity of the critical temperature: the “thickness” of the
domain walls grows with the equilibrium correlation length.
Similarly large pre-asymptotic contributions were observed
in Refs. 38 and 39.

In Fig. 5 we verify the alignment of different sites corre-
lation and response functions for a given pair of timeg,J) .
Notice that the alignment works quite well even for “preas-
ymptotic” times, i.e., when the anomalous response is still
sizable and the OFDR is not well verified, cf. Fig. 4.

In order to check the forn.4) for the site dependence of
the domain-wall contribution, we plot in Fig. 6 the rescaled

0.2

PHYSICAL REVIEW B58, 224429 (2003

response and correlation functions:

q q
res__ res__
CX - EACXY TX)( =1- EA(l_TXX)I (313)
Ox Ox
1 g T T T T
0.8 ; \_\ -
| B8 ™ - )
06 ***B*ﬂ "
= * _*--*.\:«*:.. o
; 0.4 < *-&*&I
’ Lt B
0.2 T T -
0 1 1 1 1 >
(@) 0 0.2 0.4 0.6 0.8 1
C
2
6 -
1 10 100 1000 10000 100000 1e+06
(b) iy

FIG. 4. Correlation functioria) and FD plot(b) for type-0 sites
(cf. Fig. 3. Different symbols correspond tq=10 (O), 10 (*),
10% (x), 10* (+), 10 (filled O). The dot-dashed line ifa) is the
equilibrium Edwards-Anderson paramemé. In (b) we report the
FDT line Ty=1-C (dot-dashedand the OFDR(dashed which
corresponds to Eq$3.3) and (3.4).

(b) ' c

FIG. 5. Movie plots att,,=10° (a) and 1d¢ (b). The various
symbols correspond to different types of spin: type+0)( type 1
(X), type 2 (), and type 3 (*). Thestraight lines confirm the
alignment predicted in the general picture, cf. Fig. 1.

whereq is an arbitrary reference overlap. The rescaled cor-
relation and response functions of different types of spin co-
incide perfectly for any couple of timeg,(,,).

Finally, we notice that we can consistently define a time-
dependentfitting temperatureas the slope of the lines in Fig.
5, i.e.,

TC,(t,ty)

Tee(t,ty) = T Tyt
X 1 W

(3.19

As a consequence of EgE3.3) and (3.4) this temperature
should depend uponandt,, only through the parameter
= &(1)/&(ty,). In Fig. 7 we verify this scaling.

IV. DISCONTINUOUS GLASSES

In this section we consider a ferromagnetic Ising model
with  three-spin interactions, defined on a random
hypergraph®#! More precisely, the Hamiltonian reads

Hlo)=— X

U'i(TJ' Oy - (41)
(ijkyeH

The hypergrapft defines which triplets of spins do interact.
We construct it by randomly choosing among theN(N
—1)(N—2)/3! possible triplets of spins.
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FIG. 6. Correlation functior(a) and FD plot(b) with the res- T /// :
caled correlation and response functions, see(843), for all the /// i
four spin types and several different waiting timég=10?, 10°, 02 // |
10%, and 16 (a), Hereh,=0.05. : T,
0.0 L L H L
Although ferromagnetic, this model is thought to have a 00 02 04 06 08
glassy behavior, due melf-inducedrustration?” Depending (0 T

upon the value ofy=M/N, it undergoes no phase transition
(if y<wvyg), a purely dynamic phase transitidif y4<y
<v.), or a dynamic and a static phase transitigh y
>1v,.) as the temperature is lowered. The 1RSB analysis
Refs. 40 and 43 yieldy4~0.818 andy,~0.918. These re-
sults have been later confirmed by rigorous derivatf§ts.

FIG. 8. The complexity%(T) (a) and the 1RSB parameter
m(T) (b) for threshold states as functions of the temperafure
0?’hese curves refer to sampté, considered in Sec. IV.

We studied two samples extracted from tresemblale-
fined above: the first one involved=100 sites andvi
=100 interactionghereafter we shall refer to it @§,); in

1.2 —
the second oneHg) we haveN=M =1000. In both cases
L ST ROr 4 v=1>1v.. The hypergraplt consists of a large connected
X‘“*'i':‘xsﬂ_. component including 96 sites, plus four isolated sites
0.8 | X*;*g- . (namely the sited =15,22,62,69). The largest connected
- i component ofHg includes 938 sitegthere are 62 isolated
R s ] siteg. We will illustrate our results mainly oft{, (on this
e sample we were able to reach larger waiting timé#; has
0.4 ) E .. .
been used to check finite-size effects.
oo L *E-_ Using SR, we computed the 1RSB free-energy density
F(m,8) and complexity> (T)=8 dnF(m,B)|n=1 for our
0 L L samples as a function of the temperatlire1/8. The result-
0.01 01 . ! ing complexity is reported in Fig. 8 for sampl,. The

FIG. 7. The fitting temperaturg3.14 as a function of\
=\lt/t,, for t,=10 (filled ), 17 (O), 10° (*), 10* (+), and 16
(X). The dot-dashed line is the= scaling function(3.10), with

d=2.

dynamic and static temperatures are defined, respectively, as
the points where a nontrividlLRSB solution of the cavity
equations first appears, and where its complexity vanishes.
From the results of Fig. §a) we get the estimate3y
=0.557(2) andlr,=0.46712).
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TABLE Il. Statistics of numerical simulation for the three-spin
Ising model(sampleH,).

ho t, =10 t, =10 t,=10° t,=10*
0.05 5% 10° 5x10° 5x10° 10° 3
0.10 1.5¢10° 1.5x 1P 1.5x10° 10° 5
0.15 16 10° 10° 0.5x1¢°

In analogy with the analytic solution of thespin spheri-
cal modeP®>?® we assume the aging dynamics of the model
(4.1) to be dominated by threshold states. These are defined
as the 1RSB metastable states with the highest free-energy

100 1000

t,,

10000 100000 1e+0€

density. Although not exaéf, we expect this assumption to
be a good approximation for not-too-high valuesyofThe
threshold 1RSB parameten,,(T) can be computed by im-
posing the condition&ﬁ[mF(m,ﬁ)]zo. We computed
m(T) on sampleH, for a few temperatures below,. We
get my(0.3)=0.395(10), my,(0.4)=0.581), my(0.5)
=0.80(1). Moreover, in the zero-temperature limit, we ob-
tain my(T)=uuT+O(T?), with uy,=1.091). These re-
sults are summarized in Fig.(8ght frame. A good descrip-

tion of the temperature dependence is obtained using the

polynomial fit my,(T)=1.08T+0.038T?+2.17T2 [cf. con-
tinuous line in Fig. 8b)].

Now we are in the position of precising the connection

between single-spin statics and aging dynamics, outlined i

(b)

n FIG. 9. Correlation functior{a) and FD plot(b) of the spini

Sec. Il. It is convenient to work with the integrated response=1 (sampleH,) for T=0.5, h,=0.1, andt,=10-1¢. Time-

functions ;(t,t,). Equation (2.3) implies the relation

xi(t,tw) = xi[ Ci(t,ty)] to hold in the limitt,t,—occ. Within

a 1RSB approximation, Ed2.4) corresponds to

()

EA,th»

—my(q— qI(EI)A,th) for q<q(El,)A,tha
4.2

1-q
1-q

forq>q
Txilal= (i)
EAth

where we used the shortham) ,,=qlA(my,). Since the
SP;r algorithm allows us to compute bothy, and the param-
etersq(E',)\(m) for a given sample in linear time, we can check
the above prediction in our simulations.

A. Numerical results

We ran our simulations at three different temperature
(T=0.3,0.4,0.5) and intensities of the external fielady (

=0.05,0.1,0.15). In order to probe the aging regime, we re

peated our simulations for several waiting timesg
=10,1¢,10°, 10", with (respectively
_ 213’ 216, 216,218.

We summarize in Table Il the statistic of our simulations
on sampleH, .

For sampleHg, we limited ourselves to the cadm,
=0.10, T=0.4, and generated 0QL0° Metropolis trajecto-
ries witht,, = 10°.

Atmax

1. Two types of spins

translation invariance is well verified fog,=100. The discrepancy
from FDT (continuous line on the rightan be ascribed to nonlin-
ear response effects.

which behave as if the system were in equilibrium—the cor-
responding correlation and response functions satisfy time-
translation invariance and FDTII) the out-of-equilibrium
spins, whose correlation and response functions are nonho-
mogeneous on long-time scales and violate FDT.

Of course the groufl) includes the isolated sites, but also
an extensive fraction of nonisolated sitésr instance the 12
sitesi=1,6,8,14,27,39,68,74, 77,84,87,98 of sampig).
Remarkably these sites are the ones for which the dgo-
rithm returnsqiA=0: they are paramagnetic from the static
point of view. In Figs. 9 and 10 we present the correlation

gunction and the FD plot, respectively, for a type-I site and a

type-1l site. In both cases we todk=0.5 andh=0.05. No-
tice that the FD curve of type-I sites lies slightly below the
Tx=1-C line. We used the data collectedrgt=0.10, 0.15
to check carefully that this is a nonlinear response effect.
There exists a nice geometrical characterization of type-I
sites in terms of deaf-removal algorithnf*“° Let us recall
here the definition of this procedure. The algorithm starts by
removing all the interactions which involve at least one site
with connectivity 1. The same operation is repeated recur-
sively until no connectivity-1 site is left. The reduced graph
will contain either isolated sites or sites which have connec-
tivity greater than one. The sites of this last type are surely
type Il, but they are not the only ones. In fact one has to

The most evident feature of our numerical data is that theestore a subset of the original interactions according to the

spins can be clearly classified in two grougb: the ones

following recursive rule. If an interaction involves at least
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1 1 1 1 1 1 T T T T
08| .
o6} -
£
O 04 | | ;.
-0.5 : -
02 a .
E f
_1 1 1 1 1
0 1 1 1 1 1
1 10 100 1000 10000 100000 1e+06 1 10 100 . 1000 10000 100000
(@) ty A
1= T T T T FIG. 11. The correlation functions of four type-I spins of sample
- . Ha: from above to belowi=1,14,8,15. The first three sites are
08 b 4 connected to the rest of the clust@nd therefore interactingthe
last one is isolatedfree).
0.6 |- - ) _ _
= +2Att,)=0 for At=2 [remind the time average in Eq.
04 L ] (2.95]. In the presence of an external field the correlation
’ function (with rtlo time average becomesC;(t,,+t,t,)
oz L 1 =[—exp(=28N)]. _ .
) 3 Finally, in Fig. 10 we compare the numerical results with
the prediction from the statics, cf. EGt.2). The agreement
0 o7 oa Py o8 y is quite good although finitg; and finiteh, effects are not
(b) o negligible.

FIG. 10. Correlation functiorfa) and FD plot(b) for the spin
i=0 (sampleH,). The dashed line on the left corresponds to the ) ] ) ) )
ergodicity breaking parametegiA=0.716(7) obtained with the In this section we focus on type-Il sites, which remain
SR algorithm. On the right we report with a full line the corre- Out-of-equilibrium on long time scales. In Fig. 12 we repro-
sponding OFDR predicted within a 1RSB scenario. duce the correlation and response functionglbthe spins

. . . . of sampleH, in a movie plot. We fixt,,= 10* and watch the
two type Il sites, restore it and declare the third site to besingle-spin correlation and response functions, as the system
type-Il. If no such a interaction can be found among theg,glves, i.e., as grows. The behavior can be described as
original ones, stop. In this way, one has singled out the subx|iows: (i) for smallt, all the points C;,x;) stay on the
set of original interactions which amelevantfor aging dy- fluctuation-dissipation linély;=1—C;, type-l and type-|
namics. The sites which remain isolated after this restoratiogpins cannot be distinguishedi) ast grows, type-I spins

procedure are type-l sites, the others are type II. _ reveal to be “faster” than type-Il ones and move rapidly
The dynamical relevance of this construction is easily unyg\ward theC=0 x=1 comer:(iii) just after this, type-Il

derstood by consid_ering two simple cases. A connectivity-]spins move out of the FDT relation, all togettfériv) type
spin whose two neighbors evolve slowly will be affected by keep evolving in theC-y plane but, amazingly, they stay,

a slow local field and will relax on the same time scale of theat each time on a uniquenoving line passing througiC

field. In the opposite case, two connectivity-1 spins Whosezly x=0.
neighbors evolve slowly will effectively see just a slowly 5 the same graphs, in Fig. 12, we show the results of a
alternating two-spin coupling between them. They will relax; of the type
as fast as a two-spin isolated cluster does.

It is worth stressing that the above construction does not
contain all the dynamical information on the model. For in- Yi(tt,) =
stance, one may wonder whether the dynamics of type-I Y T ovid Tt
spins does resemble the dynamics of isolated spins. The an-
swer is given in Fig. 11 where we reproduce the correlationrhe fit works quite well: it allows to define a new effective
functions for several different type-l spins, fGr=0.5, h temperature, the “movie” temperatur@ oidt,ty). The
=0.1, andt,,=10* (remember that the dependence upgn thermometrical interpretation of pidt,ty) Will be dis-
is weak for these sit¢sThe results are strongly site depen- cussed in Sec. VIITidt,ty) increases witht at fixed
dent and by no way similar to the free-spin case. Notice thevaiting timet,,. Notice the difference between this formula
peculiar behavior of the isolated spin, an artifact of Metropo-and Eq.(3.14 which we argued to hold for coarsening sys-
lis algorithm with sequential updatings. Were it not for thetems. The organization of heterogeneous degrees of freedom
perturbing field we would haver(t)=(—1)'s;(0), which  inthe x-C plane is strongly dependent upon the nature of the
implies C;(t,+1t,)=—-1, Ci(t,+2t,)=1, and Ci(t,  physical system as a whole.

2. Glassy degrees of freedom

)[1—Ci(t,tw)]. 4.3
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FIG. 12. Movie plot for samplé{, of Sec. IV. Here we usé
=0.1, T=0.4, andt,=10"*. The different frames correspond to
(from left to right and top to bottoymAt=2%, 29, 212, 215 216 gnd

217, Black and white circles refer, respectively, to type-1 and type-I| (b) cle

sites. Continuous lines correspond to ordinary FLQT=(1

—C;)/T, while dotted ones are fits to a modified relatign=(1 FIG. 13. In(a) the FD plot for seven different sites=10
—Ci)/ Trovie. We QetTroie=0.459 (for t=2%), 0.536 ¢=2%), (1) 11 (0), 12 filled squares 13 (), 16 (x), 17 (*), 18 (®).

_ 516 _
0.564 ¢=2'), 0.590 ¢=2"). In (b) a collapse plot of the same data, cf. E4.4). HereT=0.3,
ho=0.1, t,,=10% and we usg=0.94.

The cautious reader will notice a few discrepancies be-
tween the above description and the data in Fig. 12. Type-\Whereq is a reference overlagwhich can be chosen fregly
spins reach the @=0,y=1) corner slightly after type-Il In Fig. 13(b) we plot x{*®and C{**for the same seven spins
ones move out of the FDT line. A careful check shows thatas before, computing ﬂ’ﬂf-(éA,th with the SR algorithm. Note
this is a finitet,, artifact. Moreover, for large times, they stay that there is no fitting parameter in this scaling plot.
slightly below the FDT line. As already mentioned in Sec. |t can be interesting to have a more general look at the
IV A1, this phenomenon can be proved to be a fitlige- statics-dynamics relation. In order to make a comparison, we
effect by carefully analyzing the data obtained with differentfitted®’ the single-sitey;-versusC; data to the theoretical
amplitudes of the perturbing field. prediction (4.2). The results for the two fitting parameters
Let us now consider the local OFDR'’s, and compare they(, andm(-  are compared in Figs. 14 and 15 with the
dynamical results with the static 1RSB predictiohd. A outcome of the Spalgorithm. Although several sources of
preliminary check was given in Fig. 10. In Fig. 18) we  error affect the determination of the EA parameters from
reproduce they; versusC; curves for seven type-Il sites. dynamical data, the agreement is quite satisfying.
They are superimposed for short timesiasiequilibrium re- In the above paragraphs we stressed two properties of the
gime) and spread at later timéaging regimg but remaining  aging dynamics of the model.1): the alignment in the
roughly parallel to each other. If the static predicti@h2) movie plots, cf. Fig. 12 and Ed4.3), and the OFDR4.2).
holds, we can collapse the varioys C;] curves by properly | et us notice that these two properties are not compatible at
rescalingy; andC; . A particular form of rescaling, which is  aJ| times ¢,t,,). In fact we expect our model to verify the
quite natural for coarsening systems, was used in Segyeak ergodicity-breaking condition lim..C;(t,t,,)=0.
IITA 2, cf. Egs. (3.13. It turns out that, in this case, a better Therefore, in this limit, the alignmer{.3 cannot be veri-
collapse can be obtained by using the definition: fied unless they; become site independent. On the other
hand, this would invalidate the OFD®&.2).
—q 1‘5 One plausible way-out to this contradiction is that Eq.
Cres=1— _((1 C), x°= — X 4.3 breaks o_Iown at large enough times. How this may h_ap-
qEAth 1-deam pen is well illustrated by the numerical data concerning
(4.9 sampleHg shown in Fig. 16. It is quite clear that the simple
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FIG. 14. Correlation between the theoretical prediction for the siope

local EA parameters and the results of out-of-equilibrium simula- F|G. 15. Distribution of the slopes of single-site OFDR’s for

tions. In(a) we show the data for samplé, (T=0.5,t,,=10°, and  T=0.4. The vertical lines correspond to the theoretical prediction

ho=0.1), in(b) for sampleHg (T=0.4, t,,=10°, andhy=0.1). for the 041RSB parameten,,. In (a) we fixedhy=0.05, while in(b)
t,=10%.

law (4.3) no longer holds. Nevertheless, it remains a very( " )

good approximation for the sites with a large EA parametetyres. Forc> 1 the graph percolates and the giant component

qiA=0.5. Moreover, it seems that the points correspondingindergoes a paramagnetic spin-glass phase transition. The

to different sites still lie on the same curve in theC plane,  critical temperature is given by the solution of the equation

although this curve is not a straight line as in E4.3. We  E,(tanhgJ)>=1/c. Below the critical temperature, a finite

shall further comment on this point in Sec. VII.

The general picture which holds at intermediate tirfes 1 . . . .
Iargqu)A’s) for discontinuous glasses is summarized in Fig. LT ' ' "]
17. This should be compared with Fig. 1, which refers to o8 F T [ 14
coarsening systems. A 3 I g

® o - -
~ 0B L 1 ) —e 1
V. CONTINUOUS GLASSES 2 YT EEYREY)
=
The Viana-Bray modéf is a prototypical example of con- E o4l slope 4
tinuous spin glass. It is defined by the Hamiltonian
0.2 = 4
H(O’):_ E ‘]ija-ia-j! (51)
(ieg Tag
O 1 1 1 1
where the graplyj is constructed by randomly choosimg 0 02 04 . 06 0.8 1

among theN(N—1)/2 couples of spins, and the couplings
Ji; are independent identically distributed random variables. g 16. Movie plot for sampléts (T=0.4, hy=0.1): we show
The average connectivity of the graph is given by the position of all the degrees of freedom in theC plane, fort,
=2M/(N—1). If we assume that the coupling distribution is — 10> andAt=26, The thin continuous lines are the FD plots for a
even, the phase diagram of this model is quite siMpfé.  few selected sitegin this caseAt varies between 0 and'9. In the
For c<1 the interaction graph does not percolate and thénset: the histogram of slopes of the FD curves in the out-of-
model stays in its paramagnetic phase at all finite temperaequilibrium regime.
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TABLE Ill. Summary of the statistics used for the Viana-Bray

model.

t, =10 t,=10° t,=10*
Ga 10° 4X10° 55X 10°
Gs 6X10° 1.5x10°
Gc 6X10°

grounds, which assures convergend@) to average the lo-
cal EA parameters over sufficiently many iterations of the
algorithm.

FIG. 17. Qualitative picture of aging dynamics for discontinu- ~ While the approactii) seems physically more sound, it
ous glasses. The black circles correspond to three different spins fetnderestimates grossly thﬁ,{’s. The approacHii), which
a given pair of(large times (,t,). Notice that, for intermediate will be adopted in our analysis, gives much more reasonable
timesAt~t,, they stay on the same line passing through the pointresults. Notice that the authors of Refs. 23 and 47 followed
(C=1,x=0). Ast grows, they move with parallel velociti€ar-  the same route. In their calculation, they faced no problem of
rows). Along the time, each of them describes a differentconvergence. In fact they required convergence in distribu-

fluctuation-dissipation curvédashed linefs tion, while we require convergence site by site.
Edwards-Anderson parametez, develops continuously A. Numerical results
from zero.

. ) Most of our simulations were run at temperatdre 0.5,
We considered three samples of this model: hereafter they,,§ with ho=0.1. We used waiting times,= 1%, 1¢%, 10*

will be denoted ag/,, Ug, andGc. The interaction graph  gng respectivelyAtya =2 218 218 In Table IIl we

and the signs of the interactiods were the same faf, and  symmarize the statistics used in each case.

Gg: in particular we usedN=1000 andM =1999, i.e.,c Moreover we simulatedl,= 4.2x 10° Metropolis trajec-
~4, and chosen the interaction signs to b& with equal tgries at temperatur&= 0.4 on sampl&, with t,,= 10* and
probabilities. The two samples differ only in the strength ofa¢,, =218,

the couplings. While irg, we usedJ;;|=1, in Gg we took In Fig. 18 we show th e movie plot of samplg for t,,

|Jij| =kJo, whereke{1,...,1Q with uniform probability ~ —10¢. As in the previous Sections, the local correlation and
distribution andJo=0.161164%° We made this choice in response functions are strongly heterogeneous: the global
order to check the effects of degenerate coupling strengthgyo-time functions give just a rough idea of the dynamics of
on the aging dynamics. The sampfe was instead much the system. Moreover all the points quit the FDT line on the
larger: we usedN=10000, M =20190(once againc~4),  same time scale in the aging limitf. Sec. IV A 2. How-
andJ;;= =1 with equal probabilities. The critical tempera- ever, their behavior in the aging regime does not fit any of
tures forc=4 and the two coupling distributions used herethe alignment patterns we singled out in the case of coarsen-

areT ~1.8204789(for G, andGc) and 1.6717415Gg).  ing systems, cf. Eq(3.14 and Fig. 1, or discontinuous
The glassy phase of the VB model is thought to be char-
acterized by FRSB. Nevertheless we can use the efo-
rithm to compute a one-step approximation to the local over-
laps and the local OFDR’s. Of course, such an approximatior . )
will have the simple two-time-sector form, see Hg.2), I T T b
instead of the expected infinite-time-sector behavior. How- ~
ever the situation is not that simple because of two problems—;
(1) We expect, in analogy with the Sherrington- = |
Kirkpatrick model®° the dynamics of this model to reach the
equilibrium free energy in the long-time limit. It is not clear =
whether a better approximation to the correct OFDR is ob-+

=28 + =28 1+ At=2" -

i (ty +At,

At=2"% 1+ At=2" 1 At=2"%

% 5

tained by using the threshold valuey, or the ground-state o
value mys of the 1RSB parameter. b

(2) The SR algorithm does not converge. After a fast
transient the probability distributions of local fields oscillate .
indefinitely. This is, plausibly, a trace of FRSB. The first ICi(tvlwAtl,tw)l '

problem does not cause great trouble because the two deter-
minations ofm are, generally speaking, quite close. On the FiG. 18. Single-spin correlation and response functions for the
other hand, we elaborated two different way-out to the secsampleg, (VB mode) for T=0.5, h,=0.1, andt,,=10*. The con-
ond one:(i) To force the local-field distributions to be sym- tinuous line and full circle refer to the global correlation and re-
metric (which can be expected to be true on physicalsponse.
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FIG. 19. Single-spin correlation and response functions: here we = Fo e o -
compare the results obtained on samgle$®) andG: (O) which S02¢ 10;" A
are of different sizes. The dot-dashed lines are guides for the eye. - e-e:—e;——e--%?:—"el.e. 1

011  site 103 ]
glasses, cf. Eq4.3) and Fig. 17. We repeated the same type o - s . s s s
of analysis for the numerical data obtained on sangle In 04 05 06 07 08 09 1
this case, see Fig. 19, the points corresponding to local cor- () Ciltty)

relation and response functions are much less spread in the FIG. 20. ED plot ; lected it ¢ T
x-C plane. Therefore our simulations are quite inconclusive_O 5 hoe0 1) l\[l)o?[iceozhi C%V% Sliti? ediffzrgrswtobezszri E)f the
on the possibility of defining a “movie” temperature as in _ >0 = pletely

Eq. (4.3. To settle the question, simulations on lar ersites in the two frames. The sites (@) with connectivity 1 (site
g. (4.9). q ’ 9 111) and 3(site 164), look like a “glassy” system. The ones(in
samples are probably necessary.

) . with connectivity 4(site 103) and Jsite 114), look like a “coars-
Notice however that both the lines through th€ ( ening’ system.ty ( ) x4 )

=0,Tx=1) and C=1Ty=0) points seem to play some
role. FiniteN effects, for instance, are strongly enhancedijn,ous glasses, cf. Sec. IV. In that case, we did not detect

along the last direction. any evidence of equilibration even in samplé, (N

Numerical results on samplé, are also deceiving for =10%). A better understanding of the scaling QifN) in
what concerns local OFDR’s, cf. Fig. 20. It seems that thejittarent classes of models would be welcome.

local FD plots depend strongly upon the waiting time and the
particular site. Moreover the slopes of this plffisr a given
couple t,,,At)] change from site to site. These effects are VI. WEAKLY INTERACTING SPINS

m_uch_ smaller in samplgc . In Fig. 21 we consider the dis- We lack analytical tools for studying the dynamics of di-
tribution of slopes of local FD plots for samplég andc . luted mean-field spin glassd$or some recent work, see

We computed the slopes by fitting the aging part of the plofygatg49-53 This makes somehow ambiguous the interpreta-
to the one-step forni.2).

By the same fitting procedure we extracted the local EA 10
parameters. The comparison with the predictions of the SP
algorithm, cf. Fig. 22, is quite satisfying. Notice that, both in ol i
analyzing the numerical data and in using the Sigorithm,
we are adopting a 1RSB approximation, cf. E42), to the sl J

real OFDR. The slopes considered in Fig. 21 should there-

fore be understood averageslopes in the aging regime. We § 6L J

expect the systematic error induced by this approximation to &

be small. 4t ]
The arguments of Ref. 48 imply that the slogefective

temperaturesof the OFDR'’s for different degrees of free- 2t g

dom should be identical. This conclusion is valid only in the

aging window X<t ,At<tg(N). Our numerical data, cf. 0

Fig. 21, suggest a clear trend confirming this expectation.
Nevertheless, they show large finite-size effects due, argu-
ably, to a mild divergence of,(N) with N: the smaller FIG. 21. Distributions of slopes of the local FD plots in the
(N=10% samples begin to equilibrate during the simula-aging regime. The two curves refer to samgie Q) andgec (@),
tions. This is quite different from what happens with discon-which are of different sizes.

slope
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1 U assuming that the spiny does not react on its neighbors.
0.os | o This is not the case for E¢6.3).
09 L PO - 600 Equation(6.2) implies a relation between local Edwards-
g 085 | o o 53 & | Anderson parameters:
< et S0
g0 o0 “ogm ] (0) 2 (i) 454
8 oz s Gl ] afd=2> (tanhpd,)? I1 afi+0(8%3%. (6.4
E e o & as>0 — iea\0
2 o7l L. PR %0 . - -
S 2O oh e 2o © i In thek=2 (Viana-Bray case, we can derive from E(.3)
'06 P ° 8 % a simple relation between the integrated responses:
055 @ E a 9 a
0.5 1 1 1 1 1 1 1 1 1 1_TXOg(t!tW):E (tanme) [1_TX|g(t1tW)]
' 05 055 06 065 07 075 08 085 09 095 1 ied0

q(Ei’A from statics + 0(184‘]4)' (65)

FIG. 22. Local EA parameters on sample. Numerical results,  \yheregi, denote the set of neighbors of the spjn In the
obtained by fitting the aging part of the FD plots, are compared W'thgeneral k>2) case Eq(6.3 cannot be integrated without
the outcome of the SPalgorithm. further assumptions

. . . . . We checked the above relations on our numerical data for
tion of many numerical results. For instance, the identity ofy, Viana-Bray model. Samplgs is particularly suited for
effecnve temperatures for different spins, although consistent,;q task, since we can choose spins whose interactions have
Wlt'h our data, see Flgs. 15 and 21, could still be questione varying strength. In Fig. 23, we consider a few spins with
This would contradict the general arguments of Refs. 48 and,nectivity 1 and 2, and compare their correlation and re-
53. Even more puzzllng is the definition of amovie tempera-Sponse functions with the outcome of E(&2) and(6.5). Of
tbure along the Imles_of Ed4.3. SL_‘ChI a deflgn;on sedems to course, the perturbative formulas are well verified only for

€ Con?'Stﬁ.m gn y In some particular models an | time regmay| couplings. For connectivity-2 sites we have plotted in
gimes. In this Section we want to point out a simple pertu.r-Fig. 23 only those with coupling of the same strength, since
bative calculation which supports the identity of smgle-spmspins with two couplings of very different strengths behave

effective temperatures, in agreement with the standard W|§7ery similarly to connectivity-1 spins
dom. Moreover it gives some intuition on the range of valid- Let us now discuss some implicaitions of E¢8.2) and

ity of the definit_ion(4.3). L . ) (6.9. If we define the fluctuation-dissipation ratio as
Let us consider a generic diluted mean-field spin glasg(,(tt )=TR¥t,t,)/d, CYt.t,), we get
itbitw) — i 1w tW i ytw/ s

with k-spin interactions

H(o-): — 2 Jao-al. et O-Dék' (6'1) go |Eza\0 Wg,l(t!tw)xl(trtw)
ash — Xo(t,ty)~= = , (6.6
Herea={aq, ...,x} is ak-uple of interacting spins, arid > > . ngi(t,tw)

as30 iea\

is ak hypergraph, i.e., a set & suchk-uples.

Let us focus on a particular site, for instanice0, and  where
assume that it is weakly coupled to its neighbors. It is quite
natural to think that its response and correlation functions
can be related to the response and correlation functions of the jeadli,of
neighbors. To the lowest order this relation reads - 6.7

W, i(t,ty)=(tanhBJ, )23 Ci(t.t,) I Cjtty)

are positive weights. Therefore, at the lowest order in pertur-
Cit,ty) = Z (tanhBJa)? H C¥t,t,)+0(B*%), bation theory, the effective temperature of the spiis a
@s0 - lea0 6.2 weighted average of the effective temperatures of its neigh-
6.2 bors. Let us suppose that this conclusion remajnalita-
tively true beyond perturbation theory. It follows that
R3t,t,)= > (tanhBJ,)? > R¥t,t,) Xi(t,t,) = X(t,t,) is independent of the sitie In fact, if the
as0 EEALA X(t,t,,) were site dependent we could just consider aisite
such thatXi*(t,tW) is a relative maximum and show that Eq.
x Il cHtt,)+0(B%3%). (6.3 (6.6 cannot hold on such a site. With a suggestive rephrasing
je o) we may say that effective temperatures must diffuse until
We shall not give here the details of the derivation. The basithey become site independent.
idea is to use an appropriate dynamic generalization of the Moreover, Egs(6.2) and (6.3) can be used to construct
cavity method*°°As for static calculation? this approach examples of weakly interacting spins which violate the align-
gives access to single-site quantities for a given disorder ranent in they-C plane which we encountered for discontinu-
alization. Notice that Eq(6.2 can be easily obtained by ous glasses, cf. Eq4.3) and Fig. 12. The simplest of such
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1 - - T - the coarsening model of Sec. Ill or in the continuous spin
glass of Sec. V. Nevertheless we think that it deserves some
08 k- Joo 4 further exploration because it is both new and puzzling. In
Sec. VIII we will show that the empirical relatio®.3) is
closely related to the thermometric interpretation of effective
3 08 J=3 T temperatureg? Moreover, we will show that this interpreta-
Eﬁ— tion is ill founded (in a general mode¢lunless Eq.(4.3
0.4 8 holds.
=4 Here we shall focus on two-time correlation and response
oo | oo 4 functio.ns Ci(t_,tw) and Ri.(.t,tw) (seg Ref. 50. fqr a prelimi-
nary discussion of multitime functionsnd distinguish two
. . . . types of facts:(i) their scaling behavior in the large time
o5 02 04 06 08 y limit; (ii) the fluctuation-dissipation relations which connect
(@) Ciltty) correlation and response.
1 1 T L) 1
J=1 A. Time scaling
0B N J=2 - Following Refs. 30 and 31, we assume monotonicity of
2 the two-time functions: ¢,C;(t,t,), Ri(t,t,)<0, and
05 I=3 i &tWCi(t,tW), &tWRi(t,tW)zo. Moreover we consider a weak-
g J=4e'i’.'5’f_‘i'_°f ergodicity-breaking situation:C(t,t,,),R;(t,t,)—0 as t
= o4l - i —oo for any fixedt,,. All these properties are well realized
' / within our models.
deS— It is quite natural to assurfiethat, for pair of sites andj,
0.2 7 there exist two continuous functiorig andf;; such that
0 L L ' ' Ci(t,tw) =1 [Ci(t,t) ],  Cj(t,ty)=TF;[Ci(t,tw)],
0 02 04 0.6 0.8 1 (7
(b) Ciltty)

in thet,t,—o limit. Notice that we can always write
FIG. 23. FD plots for a few weakly interacting spins: numerical

results @) and outcomes of the perturbative formul@s2) and Ci(t,t,) =fi[Ci(t,t,),t]. (7.2
(6.5 (O). We consider connectivity-1 sitéa), and connectivity-2 o R
sites(b). We are therefore assuming that the functiépsC,t] admit

. _ o a limit as t—o and that the limit is continuous. Since
examples is obtained by considering the Viana-Briay 2)  f;;[C,t] is smooth andicf;;[C,t]=0, if the limit exists it
case, and assuming that the site O has just one neighbor. ust be a continuous, nondecreasing functionCofSince

this case it is immediate to show that Eq. (7.1) implies that bothf;; and f;; are invertible(indeed
fijo f;i=1, see belowthey must be strictly increasing.

Colt,ty) CHM(t,ty) Without any further specification, the property.l) is

T-Txobty)  1-Txi(tty)’ (6.8 trivially false Consider the example of typejaramagnetic

spins in the three-spin model studied in Sec. I\. i§ type |
i.e., weakly interacting spins have the tendency to align as imand j is type Il Ci(t,t,)—0 in the aging regime, while
coarsening systems. The reader can easily construct analG;(t,t,) remain nontrivial:f;;[ -] cannot be inverted. An-
gous examples fok>2 models. This suggests that the other example would be that of a Viana-Bray model, cf. Sec.
movie temperaturét.3) is well defined uniquely for strongly V such that the interaction graph has two disconnected com-
interacting and glassy systems, or, in other words, for slowponents.
evolving sites with ay{) close to 1. However, both these counterexamples are somehow
“pathological.” We can precise this intuition by noticing that
Eq. (7.1 defines an equivalence relatidin mathematical
sensg between the sitesandj. Therefore the physical sys-

In the last two sections we shall discuss the properties ofem breaks up intdynamically connected componentsich
single-spin correlation and response functions which emergare the equivalence classes of this relation. Type-l and
from the numerics. In the present section we give an overtype-ll spins in the three-spin model of Sec. IV are two ex-
view of the general properties, which seems to apply to alemples of dynamically connected components. Hereafter we
the three classes of models studied so far. We think that thehall restrict our attention to a single dynamically connected
numerical evidence towards this conclusion is quite strong.component. Physically, structural rearrangements occur co-

In the following section we shall reconsider a very spe-herently within such a component.
cific property of our discontinuous spin glass, cf. Sec. IVand Clearly the transition function$f;;} have the following

Fig. 12. This alignment phenomenon was not found either irtwo properties:(i) fji:fﬁl, and(ii) fj;=fjefy;. This im-

VII. DISCUSSION
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plies that they can be written in the forfiy = fflofj (the tity both for coarsening systems, cf. Sec. lll, and discontinu-
proof consists in taking a reference spirr0 and writing  ous glasses, cf. Sec. IV. For continuous glasses, cf. Sec. V,
f; :fioofoj:failofoj)_ Of course the functiong; are not the situation is less definite. In Sec. VI we presented a per-

unique: in particular they can be modified by a global rep-turbative calculation which supports E(7.5 also in this

arametrizatiorf;— gef; . case.
Although very simple, the hypothesig.1) has some im-

portant consequences. Suppose gt,t,) hasp discrete VIIl. THERMOMETRIC INTERPRETATION

correlation scale$in the sense of Refs. 30 and)3tharac- _ S _

terized byq() , <C;(t,t,)=<q", for =1, ... p. Withina A suggestive approachfor justifying Eq. (7.5) consists

scale we have in regarding T¢4(t,t,) as the temperature measured by a

thermometer coupled to a particular observable of the sys-

Cj(t,ty)~C{ Pt/ (t,)1, (7.3  tem.Itis quite natural to think that the result of this measure

Do . o _ should not depend upon the observable. In aging systems
where hy’(t) is a monotonously increasingme-scaling  with more than just one time sector, this approach is not
function Two timest andt,, belong to the same time sector consistent unless the following identity holds:

if 1<hO(t)/hW(t,,)<o.

Applying the transition functiorfj; to the above equation, xi(t,ty) X (ttw)
one can prove that, for each scalef the sitej, there exists 1-C(t.ty) :l—C-(t i )E Tt (8.1
a correlation scale for the site with g1} ;<C;(t,t,)<q nw oW mOVIEL 2w
andq"=1f;;[q]. MoreoverhQ(t)=h{(t)=h,(t) (Upto  The new effective temperatufe,,t,t,,) is in fact the one

an irrelevant multiplicative constanand measured by a particular class of thermometers which we
(@) () shall denote as “sharp.” It is a weighted average of the ef-
Ci®=fjjoC;™. (74 fective temperaturgsn the sense of Eq7.5)] corresponding

In summary there is a one-to-one correspondence betwedf different time sect_ors. In order to prove this result, we
the correlation scales of any two sites. Notice that this is &hall carefully reconsider the arguments of Refs. 53, 56, and
necessary hypothesis if we want the connection between stat! ) . I

ics and dynamid&@2°to be satisfied both at the level of glo- L€t US notice that Eq8.1) is remarkably well verified in
bal and local(single-spin observables. A spectacular dem- OUT discontinuous spin-glass model, cf. Fig. 12, although it
onstration of the correspondence of correlation scales ofréaks down for{(t,)>1. In Sec. Ill we demonstrated that
different sites is given by our movie plots, cf. Figs. 5, 12, and't does not hold for coarsening systems, and in fact a differ-

18. In particular such correspondence implies that all th&nt relation is true in this case, cf. E(.14. Finally, we
(x:,C;) points leave the FDT line at once. were not able to reach any definite conclusion for the Viana-
Equation(7.1) can be rephrased by saying that the behayBray model of Sec. V.
According to Ref. 53 the temperature of an out-of-

ior of one spin “determines” the behavior of the whole sys- i oo
tem. This is compatible with the locality of the underlying €auilibrium system can be measured by weakly coupling it to
a “thermometer,” i.e., to a physical device which can be

dynamics becauséi) “determines” has to be understood in - h
average sensdii) the relation(7.1) is not true but in the €dquilibrated at a tunable temperaturg=1/8,. The tem-
aging limit. perature of the system is defined as the valuggéuch that

the heat flow between it and the thermometer vanishes. The

details of the thermometer are immaterial in the weak-

coupling limit. What matters are the correlation and response
On general grounds, we expect single-spin quantities safunctions of the thermomet&r Cy (t,t,,)=Cy(t—t,) and

isfy site-dependent OFDR’s of the tyg2.3). In integrated  R,(t,t,)=Ry(t—t,), which are assumed to satisfy FDT:

form we obtain, for large times,t,,, the relationy;(t,t,)  Ry(7)=—Bind,Cin(7).

=xi[Ci(t,ty)]. We think that we accumulated convincing  In the spirit of our work, we shall couple the thermometer

numerical evidence in this direction as far as the models ofo a single-spin variable; between times 0 ant] and aver-

Secs. lll(coarseningand IV (discontinuous spin glassre  age over many thermal histories. The measured temperature

considered. The situation is more ambigudasd probably g, is given by*®

very hard to settle numerica)lfor the Viana-Bray model of

Sec. V. t

Fluctuation-dissipation relations on different sites are not Bthj dtyRin(t—ty)d; Ci(t,ty)

unrelated: we expettto be able to define a site-independent 0

effective temperature as follows:

B. Fluctuation-dissipation relations

t
:fodtWRth(t_tw)(_Xi,[Ci(tatw)])&twci(titw),

X [Ci(L) =X [Ci(t k)=~ (7.9 62

Teff(tvtw) .

In terms of transition functions, we ge@i’[Ci]zxj’[Cj] where we assumed the general OF[R3) in its integrated
whenC, =f;;[ C;]. As before, the numerics support this iden- form: x;(t,t,) = x;[ Ci(t,t,) ], and denoted by a prime the
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derivative ofy;[ - ] with respect to its argument. Notice that B. Slow thermometer
priori the measured temperature depends upandt, for a Here we shall assume that the system paliscrete cor-
g|ven_thermome.ter. ) relation scales in the aging regimeThe generalization to a
It is convenient to change variables from, 0 q  continuous set of correlation scales is straightforward. To
=C;(t,ty). This relation can be inverted by defining the time o5, scalexe {1, ... p} we associate a time-scaling func-
scaler;(t;q) as follows: tion h,(t). As discussed in Sec. VIlh,(t) is site-
B N independent.
Citt=n(ta)=a. 83 In order to probe the correlation scale we tune the
Using these definitions in E@8.2), we get thermometer time scale with the functiep A(t). This func-
tion is defined by imposing
1 1
Bmf dqu(ri(t;q))=f dgRn(7i(t;@))(— xi[al), h,(t)
Amin Amin ——=A, (87)
(8.4 h(t—7in A1)
whereqn,=Ci(t,0). Ast—o, we haveq,—0. In the same for some fixed numbeA>1. 0 —
limit 7(t;q)—7°Yq) if g>qlk, while 7(t;q)—= if g Within the scalea, we haveq'), ,<C;(t,t")<q(). It is
<ql). easy to show that

In order to measure temperatures on long-time scales, we |
need a thermometer with an adjustable time scale. Math- ¢

ematically speaking, we takRy(7) =Ry (7/ 7)), and usery,

to se_lect the time scale. The precise formRyf(x) is not F .(q) increasing in qgllng)). Integrating by parts Eq.
very important. We shall assume thi(x)~1 for x<1 and (8.4), we get

Rin(X) =0 for x>1. A simple example i&Ry(x) = 6(x)e %

Some of the relations we will derive simplify iRy(x) (i)jld = 1— =f1d = _ 8.9
~ 0(x) 6(x, —x). We will call such a thermometer sharp. w J, @ La(@(1-0) 0l La(@xi(@), (8.9

We have two types of choices for the thermometer time . . , .
scaler,. which is our final expression for the temperature measured

(1) We may take a “fast” thermometer, whose relaxation on the spini (here we emphasized the dependence3gf

is much faster than the structural rearrangements of the sy’é'pon t_he Sitg , . . . :
tem. Equivalently, we look at our thermometer after a time Not|ce(i)that (tik)]e support df; ,(q) is contained in the in-
t> 7. Mathematically this corresponds to taking the limit V@l @q:1,9;’). The expressior(8.9) simplifies in two
t—o with 7y, fixed. The result of such a measure(fer ~ cases:(i) if the ath correlation scale is smati}) ,~q)
large timest) the bath temperature. mqi') (and, in particular, when there is a continuous set of
(2) We may use a “slow” thermometer, with a relaxation scaleg; (i) if the thermometer is sharp in the sense defined at
time which is of the same order of the time needed for ahe beginning of this section, and, therefofg; ,(q) is
structural change in the system. This corresponds to takingtrongly peaked around sorqé). In both cases we have
the limitst— o, 7—0o0 at the same time. If the system ages, .
the outcome of such a measure will depend upon the precise 0 Xi( i'))
way these limits are taken. th ”1_—q(.) (8.10
Let us consider separately the two cases. *

imR(7i(t;0)/ T a(1))=F; (), (8.9

— 0

with F; ,(q)=0 for g<q%},, Fi (q)=1 for g>q{, and

Let us now imagine to couple two copies of the same ther-
A. Fast thermometer mometer to two different siteisandj. We shall measure two
temperaturessf) ~ xi(a{)/(1-a’) and B~ x;(a{)/(1

In this case we have, ds», —q), with q’="f;;(q{). These two temperatures coin-

=B (€ for a>q) cide, B/~ By, only if Eq. (8.1 is satisfied.
Ru(7:(t;0))— Fi(a)=Ru(m@)/ 7) q qE_A The conclusion of the arguments presented so far is that
0 for gq<q@}, the condition(8.1) is necessaryf we want a given thermom-

(8.5  eter to measure the same temperature on any two spins of the

. i)y — 1y N system. Moreover this condition sufficientfor the special
with F;(qga) =0 andF;(1)=1. Inserting into Eq/(8.4) we class of sharp thermometers. In the last part of this section

get we will show that the conditio8.1) is indeed sufficient for
1 1 any thermometer, once E7.5) is assumed.
Bu| ndaR(@)= |  daF(a(-x/[aD). (86
deA A C. Thermometric equivalence of different sites
Assuming that in the “quasiequilibrium” time sectfire., for We want to prove that Eq$8.1) and(7.5) imply the iden-
Ci(t,t,)>ql)] the system satisfies FDT, we can ygdq] tity of thermometric temperatures on the sitemd] for any
= — B, which yieldsB,= B, as expected. given thermometer. Let us stress that the measured tempera-
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ture may, eventually, depend upon the thermometer. The es- The equilibrium correlation functions are computed by

sential ingredient for the “small intropy production” sce- standard methods:

nario of Ref. 59 to be applicable, is that the result should not

depend upon the site. (P2 =56*M,, (A3)
Notice that from the definitior8.3), it follows that the

time scales defined on different sites are related as follows:

it fi(a)=7(t;q), (8.11 (2

whence we easily derive the identi®y ,(f;;(q))=F; .(q). where theV XV matrix M, (p) is given by
By the change of variables— f;;(q) we get, from Eq(8.9),

ePx=y) - (A4)

Wgy)e=T f

d

M (p)= K{ePut Kie Pu]— Ly, + £y 8y, -
0% da (it P e

a+1 (AS)
(1) P u o
_ | Y% TheV Lagrange multiplierg; and theV magnetization$/
= | % aqF f 8.1 * u
J a, a4 Fa(@xify (@), ®12 must be computed from the set 0¥ Zquations given below:

where we specified the range @fsuch thaﬂ:j’,a(q) is (pos-
sibly) nonzero. If we use Eq8.1) to connect the responses > MP(0)M,=0, (AB)
on different sites, we obtain ve

M, () Juy- (A7)

1_fij(q)}

d
B(')fm dg F (q)(l—q)[ 1—q 1=M3+TJBZ(2:)

g _fij(q) These equations have two types of solutions: at high tem-
_f(,) dq Fj ,(q) x;(a) 1-q | (8.13 peratureM ,=0 and the matrixM, (0) has rankV; at low
faa temperatureM ;>0 and the matrix\l, (0) has one vanishing
The factord 1—f;;(q)]/(1—q) prevent us from concluding eigenvalue.

thatﬁﬁr',)z (') with no further assumption. Let us assume Eq. In the following section we shall treat the dynamics of
(7.5, and that)(I [q] stays constant fog!, <q<q(')_ It  this model. Remarkably all the complication produced by

follows that, within the scaler, f;(q)=1- 0 o (1=q), inhomogeneous couplings affects the aging_ dynamics only
f‘;” being a constant. This 'mp|'33(')_5§r'1) for any ther-  through the values of the local magnenzauo{ﬂﬁq}, the
mometer. critical temperaturd; and one more constat, which we
are going to define. Consider the lowest-lying eigenvalue
ACKNOWLEDGMENTS A%(p) of the matrixM, (p). As p—0 the corresponding ei-

genvector coincides witM, and\°(p)—0. We then define
This work received financial support from the ESF pro-
gram SPHINX and the EEC network DYGLAGEMEM. Al ‘{ézho(p) } (A8)

e
T

APPENDIX A: LARGE- n CALCULATIONS

. ) . All these quantities can be easily computed once the solution
In this appendix we sketch the largesalculations whose g Eqs.(A6) and (A7) is known.

results were presented in Sec. Il A 1.

) 2. Dynamics
1. Statics

The Langevin equatiof3.7) is easily solved by defining
the new order parametaf, as in the preceding Section,
going to Fourier space:

The trick for solving the periodic model of Sec. lll A1 is
quite standar§* We define thenV component vectonry,
which containsn components for each type of spin:

W= gl ueA, xelf, (A1) i (p)== 2 MU (p.OYAU(p)+ 77 (p.b). (A9)
veA
wherex:| =Ei:1xﬂlﬂ and A is the elementary cell. In this
basis the Hamiltonian reads The “mass” matrixM"’(p,t) is given by the expressioi5)

with the Lagrange multipliers’ replaced by their time-
dependent versiog(t). Of course lim_,..£"(t)=¢, .

The correlation and response functions for the figid
~ becomeV XV matrices. Their diagonal elements are the on-
where ]Kg’f,)bv— ab}Ku 2 Laupy="0aplu,, and Ky, site correlation and response functions of the figldStan-
=Ju,,;|#+v, Lyoy=3dy,- dard manipulations yield

H()= E - KO ww——E oLy, (A2)
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ddp ty given below for general dimension<xdd<4 (we recall that
C(t,tw)zj GU(pit) 1+ ZTJ ds U(p;s) U in the n—oo limit the model is well defined in noninteger
BZ (2) 0 dimensions
- [(1—-d/2)2 [ A+\"1) 792
—p;s) HU(—p;t A10 )= 2-d
(=p:s) (=pt) (A10) Fe(n;d) T2—d) > (1+A279)

d’p )\ 14N _d”J'z(l“Z)ld ~di2(q
Rt | UEDUGID L (ALY 2 0 X
8z (27)¢
)2
The matrixU(p;t) satisfies the differential equation ) (A7)
A
dU(p;t)=—-M(p;HUu(p;t), U(p;0)=1, (A12) ]—'X()\;d)=)\’d*2f dx X3 3(x¥2—- 1) (x*~1) "9,
1
and _t?e Lagradr!tge @mu(l;ni?)lieri, must satisfy the self- (A18)
consistency condition€,,(t,t)=1. . . . o
: ; - . The integral in Eq(A17) diverges ford>2: it is understood
U(O.rtl)e. can find the following asymptotic behavior for -2 o be analytically continu&drom d<2 to obtain
P the correct result.
U(p:t) = At (14 yt- 92414 . e Pt (A13) It can be useful to consider the asymptotic behavior of the

expressiongAl7) and(A18). AsA—» (i.e., t>t,,) we have
ra-dr)? 4 }

The constanté\ andy are simple numbers given below:

fC()\’d) — 2d/27 1)\ d/Z[

+
D M2 rez-d d-2
ueA 2
A= N ——=(8m)¥A¥ (A14) r(1-d2* _ ., ,2
1+T/T, To—d) AN92HONT?) 1, (AL19)
T I'(1—-d/2)? ra—d2)r-dmda 1
Y=- . (A1D) ]-'()\'d)z)\d*z[ +
r-d i — _
(2 Mﬁ)(%)d%m (2-d) 2T(2-3di4)  d-2
ueA 2
__ %y -2+drR —3+d2
The constanT, appearing in Eq(A14) is defined as follows 4—d)\ +O(\ )]- (A20)

1 o As already remarked in Sec. Il A 1 both functions vanish in
T Ef dto-U(0;t) 2, (A16)  the\—oo limit.
* 0 When\ —1 one gets

where isc the V-dimensional unit vector parallel to the vec- d et
tor of the magnetizationsr,=M /(2 ,M?2)*2. The expres- Fehid)=5—5(~1) [1+OM-1)],
sion(A16) is quite hard to evaluate, but this is not a problem,

A21
becausel, cancels out in all physical quantities. a Az
Using the results listed above one can recover the general Fond)= 27%d (A=1)292[14 O(A—1)]
form (3.3) and the expression8.10—(3.12. The universal xR 4—d ‘
functions which determine the domain wall contributions are (A22)
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