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Fractional Sz excitation and its bound state around the 1Õ3 plateau of theSÄ1Õ2 Ising-like zigzag
XXZ chain
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We present the microscopic view for the excitations around the 1/3 plateau state of the Ising-like zigzag
XXZ chain. We analyze the low-energy excitations around the plateau with the degenerating perturbation
theory from the Ising limit, combined with the Bethe-form wave function. We then find that the domain-wall
particles carryingSz561/3 and its bound state ofSz562/3 describe well the low-energy excitations around
the 1/3 plateau state. The formation of the bound state of the domain walls clearly provides the microscopic
mechanism of the cusp singularities and the even-odd behavior in the magnetization curve.
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I. INTRODUCTION

The microscopic view of the low-energy excitation
frustrated quantum spin systems has been on a field of
active researches, since the structure of the low-energy e
tation directly reflects on the experimentally observa
quantities such as magnetization curve. For instance, var
interesting behaviors of the magnetization curve are
served experimentally for systems such as SrCu2(BO3)2

~Ref. 1! and the exotic nature of the low-energy excitation
actually reported behind the characteristic magnetiza
curve.2 However, in general, it is not easy to reveal the ro
of the frustration in the low-dimensional quantum spin s
tems theoretically, where the quantum fluctuation and fr
tration affects the low-energy excitation cooperatively.

Among various frustrating spin systems, theS51/2 zig-
zagXXZ chain is one of the most fundamental models h
ing the frustrating interaction without loss of the translation
invariance,3–9 and is actually synthesized as SrCuO2,10

Cu(ampy)Br2,11 F2PIMNH,12 and (N2H5)CuCl3.13 The
Hamiltonian of the zigzag chain has a very simple structu
and has been playing a crucial role for the purpose of un
standing the frustration effect, since it captures a variety
interesting behaviors induced by the frustration. In fact,
zigzag chain in a magnetic field has been stud
actively.14–19 Very recently, we have presented the exo
magnetic phase diagram of the zigzag chain including
strongly frustrated region;20 we have found the magnetiza
tion plateau at 1/3 of the full moment accompanying t
spontaneous breaking of the translational symmetry, the c
singularities, and the interesting even-odd effect in the m
netization curve.

Although the above exotic properties of the magnetizat
curve have been illustrated by the extensive numerical
culations, the microscopic mechanism for them around
1/3 plateau has not been investigated systematically. In o
to address such microscopic views, we focus on the two
features of the zigzag chain: the first one is that the↑↑↓ spin
structure is realized at the 1/3 plateau state, which is
tended up to the Ising limit of the zigzagXXZ chain.20,21

Another one is that the Hamiltonian of the zigzag chain
0163-1829/2003/68~22!/224422~13!/$20.00 68 2244
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terpolates between the single Heisenberg chain and
double Heisenberg chain continuously without loss of
translational invariance. How can we connect these two f
tures with the exotic magnetization curve of the isotrop
zigzag chain? A more thorough understanding of the prob
is clearly desirable, which will provide an essential insig
for the effect of the frustration in the zigzag-structured s
tem.

In this paper, we study the microscopic picture of t
low-lying excitation around 1/3 plateau for the zigzagXXZ
chain. We first classify the excitation on the 1/3 plateau
the Ising limit and then take account of the quantum eff
with the degenerating perturbation theory. We find that
low-energy excitation can be represented as the combina
of the domain-wall-type~DW-type! excitations carryingSz

561/3 and62/3, where the DW particle ofSz562/3 can
be regarded as the bound state of the twoSz561/3 particles.
We further analyze the two-body problem of theSz561/3
DW’s invoking the Bethe-type wave function,22,23 and then
clarify that the formation of the DW bound state becom
important as the double-chain nature of the system beco
dominant. Calculating the magnetization curve with t
density-matrix renormalization-group~DMRG! method,24

we further delineate that the DW particle picture expla
well the low-energy excitation and the magnetization cu
around the 1/3 plateau state. In addition to these, we re
that the DW defect can be inserted even in the 1/3 plat
state for a finite-size system with the open boundary con
tion ~OBC!.

This paper is organized as follows. In the following se
tion, we introduce the zigzagXXZ chain briefly. In Sec. III,
we describe the 1/3 plateau state of the zigzag chain in
Ising limit. The basic structure of the DW excitation aroun
the plateau is explained here. In Sec. IV, we take accoun
the XY term with the degenerating perturbation theory.
order to solve the eigenvalue problem for the two-DW pro
lem, we invoke the Bethe-type wave function and clarify t
bound-state formation condition. In Sec. V the DMRG res
is presented and the relation with the analytical results
discussed. In Sec. VI, we discuss the effect of the OBC
the 1/3 plateau state. In Sec. VII, the conclusions are s
©2003 The American Physical Society22-1
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marized. We also make a comment on the recently syn
sized zigzag compound (N2H5)CuCl3.13

II. MODEL

The model we consider here is the Ising-likeXXZ chain
with the nearest-neighbor~NN! coupling J1 and the next-
nearest-neighbor~NNN! one J2 in a magnetic fieldH. The
Hamiltonian of the model is given by

H5H01HZeeman, ~2.1!

where H0 is the Hamiltonian of the system part an
HZeeman[2H( i 51

3N Si
z is the Zeeman interaction term. Th

Hamiltonian of the system part consists of the NN and NN
interaction terms:H0[HNN1HNNN with

HNN5J1(
i 51

3N

hi ,i 11 , HNNN5J2(
i 51

3N

hi ,i 12 , ~2.2!

hi , j5«~Si
xSj

x1Si
ySj

y!1Si
zSj

z , ~2.3!

whereSW is the S51/2 spin operator and« denotes the an
isotropy of theXY term. In the paper, we consider the syste
of 3N sites withN5 even. We also introduce the notatio
a[J2 /J1 for simplicity.

In the Ising limit («50), the phase diagram at zero tem
perature was obtained by Morita and Horiguchi about
years ago.21 The 1/3 plateau appears in the region denoted
↑↑↓ in Fig. 1. The regions denoted as↑↓ and ↑↑↓↓ mean
the Néel and double-Ne´el phases respectively, both of whic
have zero magnetization. An interesting point in the ph
diagram is that the phase boundary of the 1/3 plateau me
the boundary of the Ne´el and double-Ne´el transition point at
a51/2. This implies that the system is highly degenerat
at a51/2.

For the isotropic case («51), the phase diagram includ
ing the strongly frustrated region is recently obtained by
authors;20 the 1/3 plateau survives for 0.56,a,1.25 in spite
of the strong quantum fluctuation. In addition, the cusp s
gularities show interesting behaviors around the 1/3 plate
Moreover, the even-odd behavior of the magnetization cu
appears in a largeJ2 region. When analyzing these interes
ing magnetization curves, a key feature of the zigzag cha
that the frustration effect can be casted as the interplay

FIG. 1. The magnetic phase diagram of the zigzag Ising ch
obtained in Ref. 21. In the figure,J1 is normalized to be unity.
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tween the single-chain and double-chain natures. For
ample, the two-component Tomonaga-Luttinger~TL! liquid
is realized below the low-field cusp and/or above the hig
filed cusp, reflecting the two-chain nature of the syste
while the middle-field branch consists of the one-compon
TL liquid.17

However, the microscopic mechanism of these behav
has not been illustrated yet, since the incommensurate na
of the system due to the frustration is difficult to treat the
retically. In what follows, we address the problem starti
from the Ising limit of the zigzagXXZ chain.

III. ISING LIMIT

In this section, we investigate the nature of the excitatio
around the 1/3 plateau state of the zigzagXXZ chain in the
Ising limit. Although the argument in the Ising limit is quit
simple, we can illustrate the basic aspects of the excitati
around the plateau, providing a good starting point for tak
account of the quantum effect with the perturbative argum
of the XY term.

A. 1Õ3 Plateau state

We first remark the 1/3 plateau state in the Ising lim
briefly. The ground-state phase diagram of the zigzag Is
chain was obtained by Morita and Horiguchi.21 As soon asJ2
is introduced, the 1/3 plateau appears in the region den
as↑↑↓ in Fig. 1. Here we should recall that the Hamiltonia
is translational invariant; at the 1/3 plateau state, one of
following three configurations is chosen, accompanying
spontaneous symmetry breaking of the translation:

uNéel1&5•••↑↓↑↑↓↑↑↓↑↑↓↑•••,

uNéel2&5•••↑↑↓↑↑↓↑↑↓↑↑↓•••,

uNéel3&5•••↓↑↑↓↑↑↓↑↑↓↑↑•••.

For the system of 3N sites with the periodic boundar
condition ~PBC!, the energy of the above Ne´el states is

Eg52
N

4
~J11J2!,

where we have neglected the energy of the Zeeman te
The total magnetization of the state is triviallyM5N ~or the
magnetization per site ism5M /3N51/3).

B. Excitation around the plateau

In order to analyze the low-energy excitations around
1/3 plateau state, it is instructive to recall the excitation
the XXZ chain ~without NNN term! at zero magnetic field,
which is described by the DW separating the twofold deg
erating spin arrays of the Ne´el-ordered ground state.25 For
the present case, the excitation on the plateau state is
scribed by the DW that is made from the combinations of
three Néel-ordered spin aligns. Since the plateau state
threefold degenerating, there are six (53P2) possible types
of the DW, which are summarized in Table I. As will be se

in
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soon, the DW can be regarded as a particle carrying f
tional value ofSz. The energy of the DW particle measure
from the 1/3 plateau state is also listed in Table I.

In order to see the origin of the fractional value ofSz, we
start with the wave function forM5N11 sector that is cre-
ated by operatingS1 for a site in the 1/3 plateau state:

uc00
1 &5•••↓↑↑↓↑↑↑̇↑↑↓↑↑↓↑•••

where ‘‘dot’’ is assigned for the inverted spin. The energy
the uc00

1 & state is

E15Eg1~J11J2!.

The uc00
1 & state is not represented as a simple DW. By

changing the nearest-neighboring↑ and↓ spins, we can de-
compose the five up-spin cluster into combinations of
fundamental DW’s and thus generate the low-energy exc
state for theM5N11 sector systematically:

~3.1!

where we assign underlines to the↑↑↑ or ↑↑↑↑ clusters that
are useful signs to find the DW’s. For all configuratio
above, we can easily confirm that the energy is the sam
E15Eg1(J11J2). These degenerating states are connec
by XY term, which is essential for the degenerating pert
bation treatment in the following section.

TABLE I. The low-energy excitation on the 1/3 plateau sta
which is described by the domain wall made from three types of
Néel ordered spin aligns. These domain walls can be regarde
quasiparticles carrying fractionalSz. The numbers noted in the
‘‘type’’ column indicate the three types of Ne´el-ordered spin aligns

Type Spin array Sz Energy

1-2 •••↑↓↑↑↑↓••• 1/3 1
3 (J11J2)

3-1 •••↓↑↑↑↓↑••• 1/3 1
3 (J11J2)

3-2 •••↓↑↑↑↑↓••• 2/3 2
3 (J11J2)

1-3 •••↑↓↑↓↑↑••• -1/3 1
3 (2J112J2)

2-1 •••↑↑↓↑↓↑••• -1/3 1
3 (2J112J2)

2-3 •••↑↑↓↓↑↑••• -2/3 1
3 (J122J2)
22442
c-

f

-

e
d

as
d
-

By comparing the spin configurations in Eq.~3.1! with
those in Table I, we can identify the↑↑↑ cluster as the DW
carryingSz51/3; Since all of the↑↑↑ clusters inuc lm

1 & state
are equivalent, the three DW’s are sharing the magnetiza
Sz51 equally. Thus each DW is represented as a particle
Sz51/3 andDE5(J11J2)/3.26 In addition to this, the con-
figuration of↑↑↑↑ can be regarded as a bound state of
two Sz51/3 DW’s, which has Sz52/3 and DE52(J1
1J2)/3. As is described in the following section, this boun
state becomes important forJ2@J1.

Also for M5N21 sector, we can make almost the par
lel argument to theSz51/3 DW case. Inverting an up-spin i
the 1/3 plateau state, we have a state

uc 0̄0
2

&5•••↓↑↑↓↑↑↓↑↑↓↓̇↑↓↑↑↓↑↑↓↑•••,

whose energy isE25Eg . Although this value of the energy
is the same as that of the 1/3 plateau state, the total en
including the Zeeman terms for the 1/3 plateau state is lo
than that foruc 0̄0

2
& in a certain range of the magnetic field

We also generate the low-energy states for theM5N
21 sector, by exchanging the nearest-neighboring↑ and ↓
spins. However, we note that the point is a bit different fro
the M5N11 case. Since the stateuc 0̄0

2
& contains two kinds

of the spin clusters,↓↓ and↓↑↓, we introduce the slightly
modified labeling for the position of the↓↓ cluster; we as-
sign ‘‘bar’’ to the label of the↓↓ configuration.

where underlines are assigned for the↓↑↓ and↓↓ clusters.
Clearly, the↓↑↓ cluster can be regarded as a DW partic
carrying Sz521/3, corresponding to the type 1-3 or 2-
DW’s in Table 1. Moreover, the energy for the states cons
ing of the three↓↑↓ DW’s is easily calculated asE5Eg
2J112J2. Thus the energy of theSz521/3 DW particle
readsDE5(2J112J2)/3.

We further consider the↓↓ cluster, which is depicted a
the 2-3 type DW in Table I. Since the↓↓ cluster is decom-

,
e
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posed into the two↓↑↓ clusters, the↓↓ cluster can be re-
garded as the bound state of the twoSz521/3 DW’s. Thus
we find that the↓↓ cluster is the DW bound state carryin
Sz522/3. In addition, we note that the total energy for t
state including theSz522/3 DW ~for example,uc 0̄1

2
&) is

E5Eg . Therefore the energy of theSz522/3 DW bound
state is readily identified to beDE5(J122J2)/3.

An essential point on the 1/3 plateau state is that the l
energy excitations of theM5N61 sector are described b
the combinations of the DW’s listed in Table I. We next ta
account of the quantum effect originating from theXY term
on the basis of the DW picture.

IV. PERTURBATION BY THE XY TERM

In this section, we consider the quantum effect on the D
excitations illustrated in the Ising limit, by using the dege
erating perturbation theory with respect to theXY term. We
assume «!1, for which the perturbation treatment
justified.27 Here we should note that the correction to t
energy of the 1/3 plateau state starts with second order o«:

Eg /N52
1

4
~J11J2!2

«2

2 S J1
2

J2
1

J2
2

J1
D . ~4.1!

Thus we can set the origin of the energy asEg52(N/4)
3(J11J2) in the following arguments of the first-order de
generating perturbation for the DW excitations.

A. Basic views for the DW

We analyze the one-body problem ofSz51/3 DW in the
infinite length chain up to the first order of«. Although the
higher-order terms may be required for a quantitative an
sis of the problem, we can capture the intrinsic property
the DW excitation within the first-order theory.

We label the position of theSz51/3 DW asx, which is
defined as the site of the center of three up-spins.28 Then the
matrix element of theH0 is obtained as

H0ux&5
J11J2

3
ux&1

«J1

2
~ ux23&1ux13&)

1higher energy terms, ~4.2!

where the higher energy terms include the configurations
yield the energy rise of orderJ1 or J2. Here an important
point is that the NNN term always generates higher-ene
terms. Thus the NNN term cannot contribute to the lo
energy dynamics of the single DW within the first order of«.
By neglecting the higher energy terms, we can easily ob
the dispersion curve of the single DW:

v~k!5
1

3
~J11J2!1«J1cos~3k!. ~4.3!

As was seen above, if the NNN term is operated
the single DW state, it generates only higher-ene
configurations. Then a natural question arises: what
22442
-

-

-
f

at

y
-

in

n
y
is

the role of the NNN term? In order to see it, we exami
the effect of the NNN term on the DW bound state
Sz52/3. We define the state for the DW bound state at
positionz by

uz&b[•••↓↑↑↓↑↑↑↑↓↑↑↓
z

•••. ~4.4!

Then the matrix element ofHNNN for the DW bound state is

HNNNuz&b5
2

3
~J11J2!uz&b1

«J2

2
~ uz23&b1uz13&b)

1higher energy terms, ~4.5!

where the higher-energy configurations are generated by
NNN term operated on the spins away from the DW pa
Thus we see that the DW bound state can move by using
NNN term without the extra energy cost. This is a cruc
point on the NNN term. WhenJ1@J2, the low-energy exci-
tation on the plateau is basically described by the single D
excitation. On the other hand, whenJ1!J2, we can expect
that the role of the DW bound state becomes essential in
low-energy excitation. The switching mechanism betwe
the single DW excitation and the DW bound state is clea
associated with the crossover between the single chain na
and double chain nature of the zigzag chain. In the follow
section, we analyze the two DW’s and their bound-st
problem systematically.

B. Two-body problem and bound state

In order to understand the formation mechanism of
DW bound state, we consider the two-body problem of
DW’s in the infinite chain.22,23 Introducing the notation for
the free two-DW state

ux,y&5•••↑↓↑↑↑↓↑
x

•••↑↓↑↑↑↓↑
y

•••

we write the wave function as

uc&5(
x,y

f x,yux,y&1(
z

gzuz&b , ~4.6!

where the summations aboutx,y,z are taken over all the
possible positions of the DW’s. Then we obtain the re
space eigenvalue equation for the two-DW scattering pr
lem:

E(2)f x,x145
2

3
~J11J2! f x,x141

«J1

2
@ f x23,x141 f x,x171gx

1gx13#, ~4.7!

E(2)gx5
2

3
~J11J2!gx1

«J2

2
@gx131gx23#

1
«J1

2
@ f x23,x111 f x,x14#. ~4.8!

In order to deal with Eqs.~4.7! and ~4.8!, we assume the
Bethe-type wave function for the two-DW problem:
2-4
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f x,y5(
k,k8

A~k,k8!eikx1 ik8y1B~k,k8!eiky1 ik8x. ~4.9!

We also write the wave function for the bound state as

gz5(
k,k8

U~k,k8!ei (k1k8)z. ~4.10!

The energy eigenvalue in Eqs.~4.7! and ~4.8! is given
r
p
lia
ve

th

an

n,

th

-

rs

22442
by

E(2)~k,k8!5v~k!1v~k8!, ~4.11!

which is determined from the free part of the two-DW pro
lem.

We define theS matrix of the two DW asS(k,k8)
[B/A. Solving the scattering problems~4.7! and ~4.8!, we
obtain
S~k,k8!52ei (k82k)
e2 i3k1ei3k82@2„cos~3k!1cos~3k8!…2a~ei3(k1k8)1e2 i3(k1k8)!#

ei3k1e2 i3k82@2„cos~3k!1cos~3k8!…2a~ei3(k1k8)1e2 i3(k1k8)!#
. ~4.12!
te
on.
ion

um

wer
In this expression of theS matrix, the extra phase facto
ei (k82k) means that if a DW overtakes another one, the s
array around the DW is shifted by one site. This is a pecu
factor for the DW problem, unlike to the usual spin-wa
one.

We now consider the formation of the bound state in
two DW problem; we assume

k5u1 iv and k85u2 iv, ~4.13!

which correspond to the two-string solution in the Bethe
satz terminology. Substituting Eq.~4.13! into Eq. ~4.11!, we
obtain the dispersion curve of the bound-state particle,

Ebound~u!5
2

3
~J11J2!1«J1~e23v1e3v!cos 3u.

~4.14!

From the normalizability condition of the wave functio
u andv must satisfy a nontrivial condition:

2e3vcos~3u!12a cos2~3u!2a50, ~4.15!

which is equivalent to the pole of theS matrix ~4.12!. The
formal solution of Eq.~4.15! is given by

e3v5a
cos 6u

cos 3u
. ~4.16!

Since the physical solution must satisfye3v>1 and21
<cos 3u<1, the bound-state dispersion curve emerges in
restricted range ofu. We numerically evaluate Eq.~4.16! in
the permitted range ofu with «50.1, and illustrate the ob
tained dispersion curve~4.14! in Fig. 2. In the figure, we can
see that the bound-state band appears below the dispe
curve of two free DW’s that is obtained as Eq.~4.11! with
k5k8.
in
r

e

-

e

ion

On the bases of Fig. 2, we discuss features ofEbound(u) in
detail. The low-energy solution of Eq.~4.16! exists in the
range

p

6
,u,u* or

2p

3
2u* ,u,

p

2
, ~4.17!

whereu* 5 1
3 arccos@ 1

4 (a212Aa2218)#. In addition to this,
we note that, whena.1, Eq. ~4.15! has a solution in the
high-energy region aroundu;0 and 2p/3.

In Fig. 2 we can see that, asa increases, the bound-sta
dispersion curve comes down to the lower-energy regi
Since the minimum energy of the free two-particle dispers
~4.11! is given byEmin

(2) [2(J11J2)/322«J1 at k5k85p/3,
the bound-state excitation becomes relevant, if the minim
of the dispersion~4.14! is lower thanEmin

(2) . Substituting Eq.
~4.16! into Eq. ~4.14!, we obtain the range ofa where the
bound state is relevant in the low-energy region:

a>2~[a1* !. ~4.18!

FIG. 2. The DW bound-state dispersion curve for«50.1 and
J251. The curves in the low-energy region are shown for 0,u
,2p/3. The solid lines indicate the curves forJ151.0, 0.8, 0.5
(51/a1* ), and 0.4. The dashed lines are the corresponding lo
bounds of the free two DW’s.
2-5
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This value ofa1* is particularly important for the even-od
behavior of the magnetization curve, which is discussed
Sec. V.

In addition, we note that the minimum energy of the D
bound state is achieved atu.p/6 or p/2, where cos 3u.0.
Thus we can easily seeEbound(u).2(J11J2)/31J2cos 6u
near the bottom of the bound-state dispersion curve. T
implies that the low-energy excitation forJ2@J1 is described
by the hopping of the DW bound state originating from t
NNN term, which is consistent with the basic view of th
DW bound state discussed in Eq.~4.5!.
e

ila
is

e

rg
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C. Two-body problem for the SzÄÀ1Õ3 DW

We next consider the two-body problem for theSz5
21/3 DW’s. Within the first-order perturbation, we can sol
the two-DW problem with the same manner as the previ
Sz51/3 case.

The single DW dispersion curve is obtained as

v~k!5
2J112J2

3
1«J1cos 3k. ~4.19!

The S matrix of the two-DW problem is also calculated as
S~k,k8!52ei (k2k8)
e2 i3k1ei3k82@2D̄12„cos~3k!1cos~3k8!…2a~ei3(k1k8)1e2 i3(k1k8)!#

ei3k1e2 i3k82@2D̄12„cos~3k!1cos~3k8!…2a~ei3(k1k8)1e2 i3(k1k8)!#
, ~4.20!
the

-

on

mes

of
gy
where

D̄[
2112a

«
. ~4.21!

This D̄ terms originates form the ‘‘binding energy’’ in th
zeroth order~Ising limit!.

Assuming the two-string-type solution~4.13!, we obtain
the equation for the DW bound state:

2e3vcos 3u12a cos23u2a2D̄50, ~4.22!

and its formal solution

e3v5
a cos 6u2D̄

cos 3u
. ~4.23!

The dispersion curve of the DW bound state is

Ebound~u!5
2

3
~2J112J2!1«J1~e23v1e3v!cos 3u.

~4.24!

Although this expression of the dispersion looks very sim
to the Sz52/3 case, the resulting behavior of the curve
quite different; Since theD̄ contains the factor 1/«, the domi-
nant properties of Eq.~4.23! are well approximated to be
e3v.2D̄/cos 3u as far asuD̄u.«. However, for uD̄u,«,
namely, in the vicinity ofa51/2, the curve depends ona
sensitively. We thus show the bound-state dispersion~4.24!
of «50.1 arounda51/2 in Fig. 3, where we can actually se
that the behavior of the curve changes drastically.

When a,(12«)/(22«), the solution of Eq.~4.22! ap-
pears only in the high-energy region (u.0). Asa increases,
the bound-state excitation is able to appear in the low-ene
region; For
r

y

a.
1

21«
, ~4.25!

the bound-state dispersion curve appears atu5p/6 andp/2.
As a is increased beyond this value, the two branches of
curve are extended from the band edges towardu5p/3. At
the same time, the energy atu5p/6 andp/2 decreases rap
idly. We can see thatEbound(u) has the local minimum at the
band edges for

a.
11A112«~21«!

2~21«!
~[ã2!, ~4.26!

where ã2 is determined by@d2Ebound(u)/du2#uu5p/6 or p/2
50.

Since the minimum value of the two free DW dispersi
is given byEmin

(2) [2(2J112J2)/322«J1, we can further see
that the bottom of the bound-state dispersion curve beco
lower thanEmin

(2) , when

FIG. 3. The DW bound-state dispersion curve of«50.1 around
a51/2. The curves in the low-energy region are shown for 0,u
,2p/3. The solid lines indicate the curves forJ250.5, 0.53, 0.55,
0.571(.a2* ), 0.58, and 0.6. The dashed line is the lower bound
the two free DW dispersion. In this figure, the origin of the ener

axis is shifted withĒbound5Ebound12(J122J2)/3.
2-6
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FIG. 4. The magnetization curves of the Ising-like zigzagXXZ chain of the 192 sites for«50.1. ~a! J250.2, ~b! 0.5, ~c! 0.6, and~d!
1.0. The inset in~c! is the magnification aroundH.0.2, where the even-odd oscillation appears in the low-field branch.
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112«

21«
~[a2* !. ~4.27!

This value ofa2* is also important for the analysis of th
even-odd behavior of the magnetization curve.

As a is increased further, after the branches exten
from u5p/6 and p/2 connect with each other ata5(1
1«)/(22«), Ebound(u) approaches13 (J122J2)1«J2cos 6u
rapidly. This behavior ofEbound(u) is also consistent with the
DW bound state moving with use of the NNN term wh
J2@J1.

V. MAGNETIZATION CURVE

In order to verify the analytical results for the DW exc
tations around the 1/3 plateau, we calculate the magne
tion curve for the Ising-like zigzagXXZ chain with the
DMRG method. We discuss the relevance of the fractionaSz

excitations to the obtained magnetization curves.

A. Numerical results

We calculate the magnetization curve for the zigzagXXZ
chain of 192 sites (N564) for «50.1, using the DMRG
method. The number of the retained bases used in
DMRG computations is typically 64, with which the calcu
lated magnetization curves converge sufficiently.

Let us first survey the features of the curves. In Fig. 4,
show the magnetization curves forJ1>J2, where we fixJ1
51 and varyJ2. As J2 is increased fromJ250, the magne-
tization plateau emerges at 1/3 of the full moment@Fig. 4~a!#,
and the width of the 1/3 plateau extends rapidly. At the sa
22442
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time, the gap at zero magnetic field becomes small. Thi
consistent with the transition form the Ne´el (↑↓) phase to the
double-Néel (↑↑↓↓) one in the Ising limit, which is located
at a51/2 andH50. A precise study of the critical point o
the Néel and double-Ne´el transition for the zigzagXXZ
model can be seen in Ref. 29. The estimated value of
critical point for«50.1 isJ2.0.45, which is in good agree
ment with the magnetization curve in Fig. 4~b!. In addition to
this, we can see that the low-field branch (5 the magnetiza-
tion curve below the 1/3 plateau! becomes very narrow. As
was mentioned in Sec. II, the zigzag Ising chain is high
degenerating ata51/2 below the 1/3 plateau, where th
phase boundary of the 1/3 plateau also merges with the N´el
and double-Ne´el transition point~see Fig. 1!. For theXXZ
chain of«Þ0, the quantum fluctuation coming from theXY
term lifts this degeneracy, and thus the magnetization cu
appears in the narrow region between the zero magnetiza
and the 1/3 plateau. The detailed relation of the DW exc
tion and the magnetization curve is discussed later.

Turning to the high-field branch of the magnetizatio
curve, we can see that the cusp singularity appears in
high-field branch forJ2.1/4, which can be explained we
by the shape change of the spin-wave dispersion curve f
the saturated state.17

In Fig. 4~c!, we can find that the even-odd oscillatio
appears in the low-field branch. Although the true magn
zation curve of the finite-size system should be determi
from the stableM5 even states, we here show the anom
lous M5 odd steps as well, because it is the evidence of
DW bound state havingSz562/3. We discuss the detaile
mechanism of the even-odd oscillation based on the D
2-7
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KOUICHI OKUNISHI AND TAKASHI TONEGAWA PHYSICAL REVIEW B 68, 224422 ~2003!
picture in the following section. Here we note that the eve
odd behavior emerges forJ2*0.58. AsJ2 is increased fur-
ther, the amplitude of the even-odd oscillation in the lo
field branch is extended gradually, and at the same time
cusp singularity in the high-field branch shifts to the lo
magnetization side@see Fig. 4~d!#.

We further show the magnetization curves forJ1,J2 in
Fig. 5. In the figures we fixJ251 and varyJ1. As J1 is
decreased from unity, the width of the 1/3 plateau shrin
Simultaneously, the region of the even-odd oscillation in
low-field branch extends down to the zero magnetizati
and the amplitude of the oscillation becomes significant@Fig.
5~a!#. On the other hand, for the high-field branch, the po
tion of the high-field cusp approaches the 1/3 plateau;
deed, for the magnetization curve ofJ1.0.6 in Fig. 5~b! we
can see that the high-field cusp merges into the 1/3 plat
For J1,0.6, the cusp singularity does not appear, but,
stead, the even-odd oscillation emerges in the high-fi

FIG. 5. The magnetization curves of the Ising-like zigzagXXZ
chain of the 192 sites for«50.1. ~a! J150.8, ~b! 0.6, and~c! 0.4.
The inset in~c! is the magnification aroundH.1.3, where the
even-odd oscillation appears in the high-field branch.
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branch. In Fig. 5~c!, we can confirm the oscillating behavio
of the magnetization curve above the 1/3 plateau clearly
J1→0 limit, the 1/3 plateau disappears and the magnet
tion curve finally becomes that of the two decoupledXXZ
spin chain. Here it should be remarked that, in the high-fi
region, the phase diagram of the Ising limit contains no s
cial point having a peculiar degeneracy, unlike to the pre
ous Néel and double-Ne´el transition point in the low-field
case. This suggests that the even-odd oscillation in the h
field branch is induced by the purely quantum effect.

B. DW excitation and the magnetization curve

We now discuss the relevance of the DW excitations
the magnetization curves. The magnetization curve of
one-dimensional~1D! quantum spin systems is generally d
scribed by the hard-core bosonic particle picture;30,31 a par-
ticle having magnetization fills its dispersion curve up to t
‘‘chemical potential’’ corresponding to the external magne
field. Then the magnetization curve is interpreted as
chemical potential versus the particle-number curve, wh
the shapes of the dispersion curve are essentially impor
to figure out the feature of the magnetization curve. As w
seen in Sec. III, the elementary excitations around the
plateau are described by the DW particles carryingSz5
61/3 and their bound states havingSz562/3, although the
total magnetization of the system always takes an inte
value particularly for a finite-size system. This implies th
the magnetic excitation ofSz561 around the plateau stat
is described by the combinations of the fractionalSz DW
excitations.

Let us first discuss the relation between theSz511/3
excitation and the characteristic properties of the high-fi
branch. IfJ1@J2, the effect of NNN term is not so big. Thu
the low-energy excitation around the plateau state is b
cally described by the freeSz51/3 DW excitation. The mag-
netization curve near the 1/3 plateau is reflecting the shap
the v(k) for the Sz51/3 DW; the magnetization curve rise
from the 1/3 plateau with the square-root behavior associa
with the curvature around the bottom ofv(k).32 This is the
case forJ2,1/4 in the high-field branch@Fig. 4~a!#

As J2 is increased and the NNN effect becomes mo
significant, the dispersion curve of the DW bound sta
comes down to the low-energy region. Then there are
possible situations: the bottom of the DW-bound-state d
persion curve is slightly higher than that of the single D
dispersion curve@Fig. 6~a!#, and the opposite@Fig. 6~b!#.

For the former case, the magnetization increases along
single DW dispersion curve, as long as the chemical pot
tial is below the bottom of the bound-state dispersion cur
However, when the chemical potential touches the bottom
the bound-state dispersion curve, the magnetization cu
captures the band-edge singularity to have the cusp@Fig.
6~a!#. After the chemical potential exceeds the bottom of t
bound-state dispersion curve, the magnetization can
creases rapidly by using the bound-state dispersion curve
the context of the crossing points of the chemical poten
and the dispersion curves, the above observation implies
the two-component TL liquid is realized above the cusp s
2-8
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FRACTIONAL Sz EXCITATION AND ITS BOUND . . . PHYSICAL REVIEW B68, 224422 ~2003!
gularity, while the one-component TL liquid is realized b
tween the high-field cusp and the 1/3 plateau. These be
iors of each branch of the magnetization curve are consis
with the known results based on the shape change of
spin-wave dispersion curve from the saturation limit.17 The
situation illustrated in Fig. 6~a! corresponds to the case fo
a,a1* .

For the latter case, the magnetization curve increase
using the bound-state dispersion curve. We here recall
the excitation ofSz51 is always represented as a combin
tion of three DW particles. IfM5odd, there are 3(M2N)
number of Sz51/3 DW particles in the system.33 Then
3(M2N)21 numbers of the DW’s can conform the boun
state ofSz52/3, but the remaining one DW cannot find i
partner. Thus the remaining one DW has to sit on the f
DW dispersion curve, as in the diagram of Fig. 6~b!. There-
fore theM5odd state has a slightly higher energy due to
gap between the bottom of the single DW band and
chemical potential lying in the bound-state band. On
other hand, for the case ofM5even, all of the DW’s can
find their partners and conform the bound states success
Clearly, this is the origin of the even-odd behavior of t
magnetization curve.

According to the analysis in Sec. IV, we can see that
switching of the above two cases occurs ata5a1* 52. Al-
though the theoretical predictiona2151/2 is consistent with
the DMRG resulta21.0.6, they shows a slight deviation
The reason for this is that theSz51/3 DW’s have no ‘‘bind-
ing energy’’ in the zeroth order~Ising limit!, corresponding
to D̄50 in Eq. ~4.12!. Thus the leading term for the bindin
energy is of first order of«, implying that the formation of
the DW bound state is responsible for the purely quant
effect. For the precise determination ofa1* , the second-orde
calculation with respect to« is required, where the applica
tion of the Bethe form wave function is rather difficult.

We turn to the analysis of the low-field branch, which c
be explained by almost the same line of the argument. H
ever, in contrast to the high-field branch, theSz521/3 DW
excitation has the zeroth-order binding energy, namelyD̄
term, which yields the sensitive behaviors of the dispers
curve of the DW bound state neara51/2. Thus we first
consider the case wherea is sufficiently away from 1/2,
where the shape of the bound-state dispersion is ra
simple. Whena,1/(21«), the bound-state DW does no

FIG. 6. Schematic diagram~a! for the cusp singularity and~b!
for the even-odd oscillation of the magnetization curve. The o
circle denotes the DW excitation and the solid circle denotes
DW bound state. The broken lines indicate the ‘‘chemical potent
corresponding to the magnetic field.
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appear in the low-energy region. Thus the magnetizat
curve can be described by the freeSz521/3 dispersion
curve @Figs. 4~a! and 4~b!#. On the other hand, ifJ2.0.62,
the shape of the bound-state dispersion curve is appr
mated well byE(2). 1

3 (2J112J2)1«J2cos 6k, whose bot-
tom is lower than that of the single-DW dispersion. Thus t
low-field branch of the magnetization curve exhibits t
even-odd oscillation forJ2.0.62 @Figs. 4~d! and 5#, due to
the same mechanism in Fig. 6~b!.

We next proceed to the analysis fora.1/2. As is seen in
Fig. 3, a characteristic feature of theSz522/3 DW bound
state is that the shape of the dispersion curve changes
tically in narrow range ofa. Accordingly, we can expect tha
the shape of the low-field branch of the magnetization cu
also changes in the corresponding region ofa. In order to
verify this expectation, we calculate the low-field branch
the magnetization curves for 0.5,a<0.62 intensively,
which are shown in Fig. 7. Whena,ã250.521, the small
dispersion curve of the bound state appears accompanyi
local maximum at the band edges (u5p/6 or u5p/2),
which is located in a sufficiently higher energy region th
the bottom of the free DW dispersion curve. Thus the m
netization below the 1/3 plateau decreases using the free
band. Forã2,a,a2* 50.571, the bound-state dispersio
comes down to the low-energy region and has the local m
mum at the band edges. Nevertheless, the energy at this
minimum is still higher than the bottom of the free DW
dispersion. Thus, in this region ofa, the situation is the same
as the case of Fig. 6~a!, so that the magnetization curve ha
the cusp singularity@Fig. 7~a!#.

For a.a2* , the lowest energy of the bound-state disp
sion becomes lower than that of the single DW one, and t

n
e
’’

FIG. 7. The low-field branch of the zigzagXXZ chain neara
51/2: ~a! a50.53, 0.55, and 0.57, and~b! a50.59 and 0.62.
2-9
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KOUICHI OKUNISHI AND TAKASHI TONEGAWA PHYSICAL REVIEW B 68, 224422 ~2003!
the magnetization curve exhibits the even-odd oscillati
which is the case of Fig. 6~b! and 7~b!. However, we should
notice that the bound-state dispersion curves has another
ture especially for 0.579,a,0.605;34 the bound-state dis
persion curve has thelocal minimum at u5p/3, implying
that the curve shows the double-well shape. Thus the m
netization curve may have the cusp singularity and even-
behavior at the same time; the DMRG result fora50.59 and
0.6 actually shows both of the cusp and even-odd oscilla
@Fig. 7~b!, see also the inset of 4~c!#. For a.0.605, the
bound-state dispersion has the single minimum atu5p/6 or
p/2, and then the magnetization curve exhibits the even-
oscillation without the cusp.

As seen above, the DW excitation picture of fractionalSz

can explain well the magnetization curve calculated by
DMRG. In the remaining part of this section, we shall d
cuss to what extent the present theory can retain its valid
Since the dispersion curves in Sec. IV are obtained wit
the first-order perturbation, the higher-order contributi
with respect to« may affect the shape of the dispersio
curves. However, what we want to emphasize here is tha
present DMRG results actually justify the DW picture as
as «50.1. Moreover, it should be noted that, even for t
isotropic zigzag chain, the topology of the magnetic ph
diagram is almost the same as the present Ising-likeXXZ
model, except for the dimer-gapped phase at the zero m
netic field of the isotropic case. The fact of the 1/3 plate
existing for the isotropic zigzag chain suggests that the D
picture is basically maintained against the quantum fluct
tion due to theXY term. Of course, a further precise analys
is required for the quantitative understanding of the probl
especially arounda.1/2, which may be an interesting fu
ture subject.

Another important factor which should be added in t
present theory is the interaction effect between the DW
Although the DMRG results also demonstrate that the D
picture basically holds up to the certain range of the mag
tization curve, a careful consideration of the interaction
tween DW’s is required for a more quantitative analysis
the magnetization curve away from the 1/3 plateau. For
ample, the DW’s and their bound-state picture for the ev
odd oscillation suggests that the magnetization curve m
have some singularity at the upper edges of the even-
oscillation branch, where the chemical potential touches
bottom of the free DW dispersion curve. However, we ca
not confirm such singularity within the DMRG result for th
192-site chain. A possible reason for this is the interact
effect, since the number of theSz51/3 DW’s increases as th
magnetization is increased away from the 1/3 plateau.

Before closing this section, here we would like to make
comment on the stability of the 1/3 plateau state in theJ1
→0 (J2→0) limit, which is related to the condition of«
mentioned in Ref. 27. In order to estimate the stability of
plateau, we need to discuss the excitations that do not ch
the totalSz of the system; for example, we consider the p
creation of type 1-3 and 3-1 DW particles. The energy c
for this pair creation can be read in Table I:1

3 (J11J2)1 1
3

(2J112J2)5aJ1, while the energy gain due to the hoppin
of the created DW’s is of order of«J1. Thus, if «@a, the
22442
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pair creation of the DW’s increases the total energy of
system significantly and does not contribute to the lo
energy properties, implying that the↑↑↓ order of the plateau
is stable. However, if«.a, the energy gain originating from
the XY term becomes comparable to the energy rise of
pair creation. This suggests that the quantum fluctuation
theXY term destroys the order of the 1/3 plateau state its
corresponding to the fact that the zigzagXXZ chain has no
magnetization plateau in theJ2→0 limit. We have also the
similar criterion «!a21 for the pair creation of theSz5
62/3 DW particles in theJ1→0 limit. In order to investigate
the critical behavior in theJ1→0 (J2→0) limit precisely,
the renormalization-group treatment is clearly required.

VI. OBC AND DEFECT IN THE 1 Õ3 PLATEAU STATE

A. Ising limit

In this section we give a remark about the plateau state
the OBC system. Since the DMRG gives the results for
OBC, the plateau state for the OBC has a special importa
for the analysis of the DMRG results.

For the case of the PBC, it is not permitted to insert sin
DW into the plateau state without changing the total mag
tization. In other words, the low-energy excitation of theM
5N sector is always represented as a combination of
DW’s such as the pair creation of theSz561/3 particles.
Thus the excitation that does not change the totalSz of the
system always accompanies the energy rise of orderJ1 or J2.

For the case of the OBC, however, we can insert sin
DW into the plateau state with keeping the magnetization
the system. Thus we should check the energy of not only
‘‘uniform Néel state’’ but also the state in which the sing
DW is inserted. The three uniform Ne´el states for the OBC
are

uNẽ́el1&5↑↓↑↑↓↑•••↑↓↑↑↓↑,

uNẽ́el2&5↑↑↓↑↑↓•••↑↑↓↑↑↓,

uNẽ́el3&5↓↑↑↓↑↑•••↓↑↑↓↑↑,

and the corresponding energies are easily obtained as

Ẽ15Eg2
J1

4
1

J2

2
, Ẽ25Ẽ35Eg1

J1

4
. ~6.1!

Since the DW’s ofSz521/3 or 22/3 have ‘‘negative en-
ergy’’ depending on the coupling constants, we should eva
ate the energy for the following three states:

uf13&5↑↓↑•••↑↓↑↓↑↑•••↓↑↑,

uf21&5↓↑↑•••↑↑↓↑↓↑•••↑↓↑,

uf23&5↑↑↓•••↑↑↓↓↑↑•••↓↑↑,

which may have lower energies than those of the unifo
Néel states~6.1!. The energies for these states are eas
calculated as
2-10
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FRACTIONAL Sz EXCITATION AND ITS BOUND . . . PHYSICAL REVIEW B68, 224422 ~2003!
Ẽ135Ẽ215Eg2
J1

4
1J2 , ~6.2!

Ẽ235Eg1
3J1

4
2

J2

2
. ~6.3!

Thus we can conclude that the 1/3 plateau state for OB
uNẽ́el1& for J2,J1 anduf23& for J2.J1. Although this is the
case of the Ising limit, we will see that the 1/3 plateau st
that is inserted the DW survives against the quantum fluc
tion.

B. DMRG result

According to the plateau quantization condition, the p
riod of the 1/3 plateau state must beq53 ~integer! with the
spontaneous symmetry breaking of the translation.35 The
three kinds of Ne´el states clearly satisfy this condition. How
ever, for the OBC system, we have discussed that theSz5
22/3 DW can be inserted in the 1/3 plateau state in the Is
limit. In order to investigate the effect of theXY term on the
defect, we calculate the distribution of the local mome
along the chain with the DMRG method, which is shown
Fig. 8. We can clearly see that the defect is inserted at
center of the chain@Fig. 8~b!#. A precise computation yields
that the defect appears fora.0.923, which is consisten
with the result for the Ising limit. Moreover, we note that th
DW inserted plateau state survives even for the isotro
zigzag chain, for which the appearing point of the DW
inserted plateau state isa.0.85.

FIG. 8. The distribution of the local spin momentm( i ) at the
1/3 plateau state:~a! J151.0 andJ250.8, and~b! J150.8 andJ2

51.0.
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Here it should be remarked that the translational symm
try of period 3 for the 1/3 plateau is broken by the insert
DW defect. However, this does not mean the breakdown
the plateau quantization condition that is valid for the infin
length chain. The present DW defect in the plateau is
single-impurity problem in a finite-size system, which can
neglected in the bulk limit. Therefore, the DW defect in t
plateau state does not conflict with the quantization theo
which is relevant for the infinite length chain.

VII. SUMMARY AND DISCUSSION

In this paper, we have studied the excitations around
1/3 plateau state of theS51/2 Ising-like zigzagXXZ chain.
We have explicitly constructed the low-energy excitations
the DW’s separating the threefold degenerating Ne´el-ordered
spin arrays of the 1/3 plateau. The important point is that
DW’s are regarded as the quasiparticles carrying the fr
tional value ofSz: the Sz561/3 DW and its bound state
having Sz562/3. Further, we have taken account of t
quantum effect of theXY term with the degenerating pertu
bation theory. Then we have found that the low-energy
namics of the DW’s is significantly affected by the interpla
between the single- and double-chain natures of the sys
originating from the zigzag structure of the model; TheSz

561/3 DW moves by using the NN interaction term, whi
Sz562/3 DW bound state uses the NNN one. Analyzing t
formation mechanism of the DW bound state precisely,
have shown that the crossover of the dispersion curves in
low-energy region occurs ata5a1* for theSz51/3 DW, and
at a5a2* for theSz521/3 DW. Moreover, this crossover o
the dispersion curves certainly induces the exotic behavio
the magnetization curve. The cusp singularity and the ev
odd oscillation of the magnetization curve are switched w
each other ata5a6* , depending on the relative position o
the dispersion curves of the freeSz561/3 DW and theSz

562/3 DW bound state. In particular, the fact that the us
Sz561 excitation is represented as a combination of
Sz561/3 DW particles is essential for the even-odd oscil
tion of the curve. In fact, the DW excitation combined wi
the hard-core bosonic particle picture has explained well
DMRG calculated magnetization curves. Although t
present argument is based on the degenerating perturb
theory of the first order with respect to«, the intrinsic prop-
erties of the DW excitations are vividly illustrated within th
present theory, which is clearly supported by the DMR
results for the magnetization curve.

Here it is worthwhile to remark about the connection
the present DW picture to other viewpoints for the magne
zation curve. As was seen above, the fractionalSz DW is
valid for the magnetization curve near the 1/3 plateau. On
other hand, we know that a good picture to describe
magnetization curve in high-field region is the spin-wa
excitation from the saturation field, which also explains t
cusp singularity successfully.17 Then both the DW picture
around the 1/3 plateau and the spin-wave picture from
saturated state seem to capture the qualitative feature o
magnetization curve in the crossover region of these
pictures. A similar situation is also considered for the lo
2-11
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field branch. For«50.1 the ground state at the zero magne
field is the Néel or double-Ne´el order. More interestingly, the
dimer-singlet order is developed particularly arounda51/2
as the system approaches isotropic point («→1). For the
isotropic system, the excitation at the zero field is rep
sented as the DW separating the twofold degenerating dim
singlet states, for which the bound state of such DW is a
reported.36,37However, the relationship between the DW pi
ture at the 1/3 plateau and the DW based on other pict
has not been clarified yet. The unified view for these comp
mental pictures may be a key problem to reveal the inte
tion effect between the DW particles in the zigzag-like qua
tum spin chain.

In addition, we would like to comment on the recent
synthesized zigzag compound (N2H5)CuCl3, which is con-
sidered as an isotropic zigzag chain of the coupling cons
J1 /J2.0.25.13 In this parameter region, the magnetizati
curve does not have the 1/3 plateau. However, the compo
belongs to the region of the even-odd oscillation. Of cour
the bulk magnetization curve does not show such oscilla
behavior, but we can expect the dual structure of the DW
its bound state in a magnetic field. According to the pres
theory, the magnetic excitation accompanying the61
change of the magnetization should be described by the c
bination ofSz561/3 DW andSz562/3 DW. Recalling that
electron-spin-resonance or nuclear-magnetic-resonance
surements are theoretically described by^S1S2&-type corre-
lation function, we can expect that the spectra of these
s
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periments may resolve the DW excitation and its bound st
Finally, we wish to stress that our approach is quite g

eral and is applicable to the plateau states represented b
Ising bases accompanying the spontaneously symm
breaking of the translational invariance. The DW partic
having the fractionalSz is essentially originating from the
discreteness of the Ising bases and the degenerating pla
state; If there is aP-fold degenerating plateau state, there is
possibility of a fractional DW excitation ofSz51/P. It is
actually known that theS51 Ising-like zigzagXXZ chain
exhibits various long-period state in a magnetic field.38 Our
approach is useful for analysis of such a problem. In ad
tion, recently, aN52 supersymmetric 1D lattice model i
proposed, where the very similar ordered state and the e
tation having the fractional U~1! charge are explicitly
constructed.39 It may be an interesting problem whether su
mathematical model can be associated with our explicit c
struction of the fractionalSz excitation.
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