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We present the microscopic view for the excitations around the 1/3 plateau state of the Ising-like zigzag
XXZ chain. We analyze the low-energy excitations around the plateau with the degenerating perturbation
theory from the Ising limit, combined with the Bethe-form wave function. We then find that the domain-wall
particles carryings*= +1/3 and its bound state &= = 2/3 describe well the low-energy excitations around
the 1/3 plateau state. The formation of the bound state of the domain walls clearly provides the microscopic
mechanism of the cusp singularities and the even-odd behavior in the magnetization curve.
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[. INTRODUCTION terpolates between the single Heisenberg chain and the
double Heisenberg chain continuously without loss of the
The microscopic view of the low-energy excitation in translational invariance. How can we connect these two fea-
frustrated quantum spin systems has been on a field of theires with the exotic magnetization curve of the isotropic
active researches, since the structure of the low-energy excrigzag chain? A more thorough understanding of the problem
tation directly reflects on the experimentally observableis clearly desirable, which will provide an essential insight
guantities such as magnetization curve. For instance, variodsr the effect of the frustration in the zigzag-structured sys-
interesting behaviors of the magnetization curve are obtem.
served experimentally for systems such as $(BQ3), In this paper, we study the microscopic picture of the
(Ref. J) and the exotic nature of the low-energy excitation islow-lying excitation around 1/3 plateau for the zigz4&Z
actually reported behind the characteristic magnetizatiochain. We first classify the excitation on the 1/3 plateau in
curve? However, in general, it is not easy to reveal the rolethe Ising limit and then take account of the quantum effect
of the frustration in the low-dimensional quantum spin sys-with the degenerating perturbation theory. We find that the
tems theoretically, where the quantum fluctuation and frustow-energy excitation can be represented as the combination
tration affects the low-energy excitation cooperatively. of the domain-wall-type(DW-type) excitations carryingS*
Among various frustrating spin systems, t8e1/2 zig- = +1/3 and*2/3, where the DW particle o8*= = 2/3 can
zag XXZ chain is one of the most fundamental models hav-be regarded as the bound state of the 8&e = 1/3 particles.
ing the frustrating interaction without loss of the translationalWe further analyze the two-body problem of tB&= +1/3
invariance’>™® and is actually synthesized as SrGuwt DW's invoking the Bethe-type wave functidA?® and then
Cu(ampy)Bs,** F,PIMNH,*? and (NHs)CuCk.'®* The clarify that the formation of the DW bound state becomes
Hamiltonian of the zigzag chain has a very simple structureimportant as the double-chain nature of the system becomes
and has been playing a crucial role for the purpose of undedominant. Calculating the magnetization curve with the
standing the frustration effect, since it captures a variety oflensity-matrix renormalization-groupDMRG) method?*
interesting behaviors induced by the frustration. In fact, thewe further delineate that the DW particle picture explains
zigzag chain in a magnetic field has been studiedvell the low-energy excitation and the magnetization curve
actively!*~1° Very recently, we have presented the exoticaround the 1/3 plateau state. In addition to these, we report
magnetic phase diagram of the zigzag chain including theéhat the DW defect can be inserted even in the 1/3 plateau
strongly frustrated regioff we have found the magnetiza- state for a finite-size system with the open boundary condi-
tion plateau at 1/3 of the full moment accompanying thetion (OBC).
spontaneous breaking of the translational symmetry, the cusp This paper is organized as follows. In the following sec-
singularities, and the interesting even-odd effect in the magtion, we introduce the zigza§ XZ chain briefly. In Sec. I,
netization curve. we describe the 1/3 plateau state of the zigzag chain in the
Although the above exotic properties of the magnetizatiorising limit. The basic structure of the DW excitation around
curve have been illustrated by the extensive numerical catthe plateau is explained here. In Sec. IV, we take account of
culations, the microscopic mechanism for them around théhe XY term with the degenerating perturbation theory. In
1/3 plateau has not been investigated systematically. In orderder to solve the eigenvalue problem for the two-DW prob-
to address such microscopic views, we focus on the two kelem, we invoke the Bethe-type wave function and clarify the
features of the zigzag chain: the first one is thatfthé spin  bound-state formation condition. In Sec. V the DMRG result
structure is realized at the 1/3 plateau state, which is exis presented and the relation with the analytical results are
tended up to the Ising limit of the zigzayXZ chain?®?'  discussed. In Sec. VI, we discuss the effect of the OBC on
Another one is that the Hamiltonian of the zigzag chain in-the 1/3 plateau state. In Sec. VII, the conclusions are sum-
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tween the single-chain and double-chain natures. For ex-
ample, the two-component Tomonaga-Lutting€L ) liquid

is realized below the low-field cusp and/or above the high-
filed cusp, reflecting the two-chain nature of the system,
while the middle-field branch consists of the one-component
TL liquid.’

However, the microscopic mechanism of these behaviors
has not been illustrated yet, since the incommensurate nature
of the system due to the frustration is difficult to treat theo-
retically. In what follows, we address the problem starting
from the Ising limit of the zigzag{XZ chain.

FIG. 1. The magnetic phase diagram of the zigzag Ising chain

obtained in Ref. 21. In the figurd, is normalized to be unity. Il ISING LIMIT

_ In this section, we investigate the nature of the excitations
marized. We also make a comment on the recently synthearound the 1/3 plateau state of the zig28§Z chain in the

sized zigzag compound ¢Ns) CuCh. Ising limit. Although the argument in the Ising limit is quite
simple, we can illustrate the basic aspects of the excitations
Il. MODEL around the plateau, providing a good starting point for taking

. . . . account of the quantum effect with the perturbative argument
The model we consider here is the Ising-lIK&XZ chain ¢ the XY term.

with the nearest-neighbdiNN) coupling J; and the next-
near(_est-r_neighboﬁNNN) ont_an_in a magnetic fieldH. The A. 1/3 Plateau state
Hamiltonian of the model is given by
We first remark the 1/3 plateau state in the Ising limit

H=Ho+Hzeeman (2.)  briefly. The ground-state phase diagram of the zigzag Ising
chain was obtained by Morita and HoriguéhiAs soon asl,
is introduced, the 1/3 plateau appears in the region denoted
as171/ in Fig. 1. Here we should recall that the Hamiltonian
is translational invariant; at the 1/3 plateau state, one of the
following three configurations is chosen, accompanying the
3N 3N spontaneous symmetry breaking of the translation:

HNNZ‘]lEl hijiv1, HNNN=32§1 hijiv2, (2.2 INGel)y=- -1 L1111 LT LT -+,

hij=e(S'S+S/S))+S7S], 2.3 INéeby=---TTLTTLTTLTTL:

where Hy is the Hamiltonian of the system part and
HZeemanE—HE?fls,z is the Zeeman interaction term. The
Hamiltonian of the system part consists of the NN and NNN
interaction termsHo=Hyn+ Hann With

where S is the S=1/2 spin operator and denotes the an- INeelg)=--- [ TTLTTLTTITT -
isotropy of theX'Y term. In the paper, we consider the system . ) o
of 3N sites withN= even. We also introduce the notation  FOr the system of B sites with the periodic boundary

a=J,/J, for simplicity. condition (PBC), the energy of the above Kestates is
In the Ising limit (¢=0), the phase diagram at zero tem- N

perature was obtained by Morita and Horiguchi about 30 Eg=— 7 (J1+Jy),

years agd! The 1/3 plateau appears in the region denoted as 4

Tl ip Fig. 1. The re,gions denoted 4¢ and77]] mean
the Neel and double-Nel phases respectively, both of which 11, 45| magnetization of the state is triviay=N (or the
have zero magnetization. An interesting point in the phas?nagnetization per site im=M/3N=1/3).
diagram is that the phase boundary of the 1/3 plateau merges
the boundary of the N and double-Nel transition point at
a=1/2. This implies that the system is highly degenerating
at a=1/2. In order to analyze the low-energy excitations around the
For the isotropic cases=1), the phase diagram includ- 1/3 plateau state, it is instructive to recall the excitation of
ing the strongly frustrated region is recently obtained by thehe XXZ chain (without NNN term) at zero magnetic field,
authors?® the 1/3 plateau survives for 0.56»< 1.25 in spite  which is described by the DW separating the twofold degen-
of the strong quantum fluctuation. In addition, the cusp sin-erating spin arrays of the Neordered ground stat@.For
gularities show interesting behaviors around the 1/3 plateauhe present case, the excitation on the plateau state is de-
Moreover, the even-odd behavior of the magnetization curvecribed by the DW that is made from the combinations of the
appears in a largd, region. When analyzing these interest- three Nel-ordered spin aligns. Since the plateau state is
ing magnetization curves, a key feature of the zigzag chain ithreefold degenerating, there are six{P,) possible types
that the frustration effect can be casted as the interplay besf the DW, which are summarized in Table I. As will be seen

where we have neglected the energy of the Zeeman term.

B. Excitation around the plateau
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TABLE I. The low-energy excitation on the 1/3 plateau state, By comparing the spin configurations in E.1) with
which is described by the domain wall made from three types of thehose in Table I, we can identify thiel T cluster as the DW
Neel ordered spin aligns. These domain walls can be regarded agrryingS*=1/3; Since all of thel 11 clusters iny") state
guasiparticles carrying fractiong#*. The 'numbers noted in the 45 equivalent, the three DW’s are sharing the magnetization
“type” column indicate the three types of Meordered spin aligns. =1 equally. Thus each DW is represented as a particle of
§*=1/3 andAE=(J;+J,)/3.2% In addition to this, the con-

Type Spin array s Energy figuration of 1771 can be regarded as a bound state of the
1-2 UL 1/3 13,43y two S$*=1/3 DW'’s, which has$*=2/3 and AE=2(J;

3-1 LT LT 1/3 13,43, +J,)/3. As is described in the following section, this bound
3-2 T L 2/3 2(3,+3,) state becomes important fp>J;.

1-3 LTI 1/3 1(-3,+23,) Also for M=N—1 sector, we can make' almost the paral—
2.1 C LT 13 1(—3,+23,) lel argument to thé&*=1/3 DW case. Inverting an up-spin in
2.3 LT 23 13,-23,) the 1/3 plateau state, we have a state

[y = LITLITLTT LT LTI TeT -,

soon, the DW can be regarded as a particle carrying frac-
tional value ofS%. The energy of the DW particle measured whose energy i€ =E,. Although this value of the energy
from the 1/3 plateau state is also listed in Table I. is the same as that of the 1/3 plateau state, the total energy

In order to see the origin of the fractional valueS¥f we including the Zeeman terms for the 1/3 plateau state is lower
start with the wave function fokl =N+ 1 sector that is cre-  than that for| hg,) in a certain range of the magnetic field.
ated by operating"* for a site in the 1/3 plateau state: We also generate the low-energy states for BN

L : —1 sector, by exchanging the nearest-neighbofingnd |
o= LTTLITTTTLTTLT - spins. Howev){ar, we no?e t%]at the point is a%it diﬁggnt from

where “dot” is assigned for the inverted spin. The energy ofthe M=N+1 case. Since the stajt$oio> contains two kinds
the |y state is of the spin clusters| | and | 7], we introduce the slightly
modified labeling for the position of thg| cluster; we as-
sign “bar” to the label of the| | configuration.
The |z//§0> state is not represented as a simple DW. By ex- B
changing the nearest-neighborihgand | spins, we can de- [g)==--LTTLTTLTTLLITLTLTTLT -
compose the five up-spin cluster into combinations of the T
fundamental DW's and thus generate the low-energy excited

state for theM =N+ 1 sector systematically: I = LITLTTLTLTLITLTLTTLT - -

ET=Eg+(J;1+Jy).

gy = LITLTTITLITTLITLT - i
— — py=- - LITLTLTTLTLTTLTLITLT -+

gy = LITLTTITLTTLI T LT+ i
— |9y == LILTTLTTLTLTTLTLTTLT -+

)= LT LTI TLTTATT LT -

317 sites 3m sites
DY ~

[y =+ LTLTT oo LTTLTLTTL +oe TTLTLT- -

317 sites 3m sites

L= -TLTTTL === TTLITTLTT =+ LTT7LT - where underlines are assigned for the| and | | clusters.
- _ - (3.1) Clearly, the| 7] cluster can be regarded as a DW particle
' carrying S*= —1/3, corresponding to the type 1-3 or 2-1
where we assign underlines to thé1 or 1111 clusters that DW’s in Table 1. Moreover, the energy for the states consist-
are useful signs to find the DW’s. For all configurationsing of the three| 7| DW's is easily calculated aE=E,
above, we can easily confirm that the energy is the same asJ;+2J,. Thus the energy of th&=—1/3 DW particle
Et= Eq+(J1+J,). These degenerating states are connecteteadsAE=(—J;+2J,)/3.
by XY term, which is essential for the degenerating pertur- We further consider the | cluster, which is depicted as
bation treatment in the following section. the 2-3 type DW in Table I. Since thg| cluster is decom-
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posed into the twa 7] clusters, the| | cluster can be re- the role of the NNN term? In order to see it, we examine
garded as the bound state of the t&o= —1/3 DW's. Thus the effect of the NNN term on the DW bound state of
we find that the| | cluster is the DW bound state carrying S?=2/3. We define the state for the DW bound state at the
$=—2/3. In addition, we note that the total energy for the positionz by
state including thes*=—2/3 DW (for example,|y,)) is
E=Ey. Therefore the energy of th&= —2/3 DW bound |Dp=---LTTLTTTITLTTL- - (4.9
state is readily identified to b&E=(J,—2J,)/3. z

An essential point on the 1/3 plateau state is that the IowThen the matrix element oy for the DW bound state is
energy excitations of th&1=N=1 sector are described by
the combinations of the DW's listed in Table |. We next take 2 e,
account of the quantum effect originating from K& term HNNN|z>b=§(J1+J2)|z>b+7(|z—3>b+ |z+3)p)
on the basis of the DW picture.

+ higher energy terms, 4.5

IV. PERTURBATION BY THE XY TERM . ' .
where the higher-energy configurations are generated by the

In this section, we consider the quantum effect on the DWNNN term operated on the spins away from the DW part.
excitations illustrated in the Ising limit, by using the degen-Thus we see that the DW bound state can move by using the
erating perturbation theory with respect to ¥ term. We  NNN term without the extra energy cost. This is a crucial
assumee<1, for which the perturbation treatment is point on the NNN term. Whed;>J,, the low-energy exci-
justified?” Here we should note that the correction to thetation on the plateau is basically described by the single DW
energy of the 1/3 plateau state starts with second order of excitation. On the other hand, whdp<J,, we can expect
that the role of the DW bound state becomes essential in the
low-energy excitation. The switching mechanism between
the single DW excitation and the DW bound state is clearly
. associated with the crossover between the single chain nature
Thus we can set the origin of the energy B$=—(N/4)  and double chain nature of the zigzag chain. In the following
X(J1+J3) in the following arguments of the first-order de- section, we analyze the two DW's and their bound-state

2 2

1
i, %
3

1 &2
Eg/N:_Z(\]l"_JZ)_? . (4.2

generating perturbation for the DW excitations. problem systematically.
A. Basic views for the DW B. Two-body problem and bound state
We analyze the one-body problem $f=1/3 DW in the In order to understand the formation mechanism of the

infinite length chain up to the first order ef Although the DWW bound state, we consider the two-body problem of the
higher-order terms may be required for a quantitative analyDW’s in the infinite chairf>?® Introducing the notation for
sis of the problem, we can capture the intrinsic property othe free two-DW state
the DW excitation within the first-order theory.

We label the position of th&=1/3 DW asx, which is X, y)=---TL11TLT---TLT1T4T- -
defined as the site of the center of three up-s@iien the x y

matrix element of thé+, is obtained as we write the wave function as

J1+J2 SJl —
H0|X>= T|X>+T(|X_3>+|X+3>) |¢> xgy fx,y|X’Y>+EZ gz|z>b! (4.6)
+higher energy terms (4.2 where the summations abouty,z are taken over all the

possible positions of the DW'’s. Then we obtain the real-
pace eigenvalue equation for the two-DW scattering prob-

where the higher energy terms include the configurations th L.

yield the energy rise of ordef; or J,. Here an important
point is that the NNN term always generates higher-energy 2 ed;

terms. Thus the NNN term cannot contribute to the low- E(z)fx,x+4=§(J1+Jz)fx,x+4+ T[fx_g,x+4+fx,x+7+gx
energy dynamics of the single DW within the first ordegof

By neglecting the higher energy terms, we can easily obtain +0yr3l, 4.7
the dispersion curve of the single DW:

(2) 2 8\]2
1 E gx:§(Jl+JZ)gx+ 7[gx+3+gx73]
w(k)=§(Jl+J2)+8chOS(3k). (4.3

8J1
. . + T[fxf3,x+1+ fx,x+4]- (4.8
As was seen above, if the NNN term is operated on
the single DW state, it generates only higher-energyin order to deal with Eqs(4.7) and (4.8), we assume the

configurations. Then a natural question arises: what iBethe-type wave function for the two-DW problem:
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N I by
fx,yZE A(k,kl)elk)(+lk Y4 B(k,k’)e'ky+|k X (4.9
Kk’ EA(k,k')=w(k)+w(k), (4.11)
We al ite th function for the bound stat _ .
© aiso write the wave function for the bound state as which is determined from the free part of the two-DW prob-
o, lem.
g,= > U(kk)e'®kk)z (4.10 We define theS matrix of the two DW asS(k,k’)

kK’ =B/A. Solving the scattering problentd.7) and (4.8), we

The energy eigenvalue in Eq$4.7) and (4.8) is given  obtain

efi3k+ei3k’_[2(005{3k)+cos(3k/))_a(eiS(k+k’)+efi3(k+k'))]
e+ e 13K _12(cog3k) +cog 3k’ ))— a(e'3kk) g idk+k))]”

S(k,k’)=—gl K=k (4.12

In this expression of thés matrix, the extra phase factor ~ On the bases of Fig. 2, we discuss featureE8f"{u) in

e~k means that if a DW overtakes another one, the spirfletail. The low-energy solution of Eq4.16 exists in the
array around the DW is shifted by one site. This is a peculiafange
factor for the DW problem, unlike to the usual spin-wave
one. T 2 T

We now consider the formation of the bound state in the g<u<u* or ?—u*<u<5, (4.17
two DW problem; we assume

whereu* = }arcco$i (e« t— o 2+8)]. In addition to this,
we note that, wherv>1, Eq. (4.15 has a solution in the

) ) o high-energy region arounai~0 and 2r/3.
which cor.respond to the. tvyo—strmg soI}Jtlon in the Bethe an- ™|, Fig. 2 we can see that, asincreases, the bound-state
satz terminology. Substituting E¢4.13 into Eq.(4.11, we  igpersion curve comes down to the lower-energy region.
obtain the dispersion curve of the bound-state particle,  gince the minimum energy of the free two-particle dispersion
(4.12) is given by E@) =2(3,+J,)/3—2¢J; at k=k'=7/3,
boun 2 s . the bound-state excitation becomes relevant, if the minimum
EPUu) = 3(Ja+Jz) +edi(e”* +e*)cos . of the dispersior(4.14 is lower thanE{), . Substituting Eq.
(4.14) (4.16 into Eq. (4.14), we obtain the range ok where the
bound state is relevant in the low-energy region:

From the normalizability condition of the wave function,

k=u+iv and k'=u-iv, (4.13

u andv must satisfy a nontrivial condition: a=2(=a*). (4.18
—e%coq3u)+2a cos(3u)—a=0, (4.15 a0
2=1.
which is equivalent to the pole of th® matrix (4.12. The L5 J=1.0."
formal solution of Eq.(4.19 is given by - 1 Eay
Red - ','/ 0.8,—"'_
cos au 1L I ]
N e L 03T
Since the physical solution must satig§?=1 and —1 e g
=<cos 311, the bound-state dispersion curve emerges in the 0 : 1/'3 T ‘u B

restricted range ofi. We numerically evaluate E¢4.16) in
the permitted range ai with e=0.1, and illustrate the ob- FIG. 2. The DW bound-state dispersion curve for 0.1 and
tained dispersion curv@t.14 in Fig. 2. In the figure, we can  j,=1. The curves in the low-energy region are shown feri0
see that the bound-state band appears below the dispersiarp /3. The solid lines indicate the curves far=1.0, 0.8, 0.5
curve of two free DW's that is obtained as Eg.11) with  (=1/a*), and 0.4. The dashed lines are the corresponding lower
k=Kk’. bounds of the free two DW's.
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. % . . C. Two-body problem for the S?=—1/3 DW
This value ofa? is particularly important for the even-odd

behavior of the magnetization curve, which is discussed in We next consider the two-body problem for tig=

Sec. V. —1/3 DW’s. Within the first-order perturbation, we can solve
In addition, we note that the minimum energy of the DW thze two-DW problem with the same manner as the previous

bound state is achieved at=#/6 or /2, where cos@=0. S'=1/3 case. _ _ _ _

Thus we can easily seE*“"{u)=2(J;+J,)/3+J,cos 6 The single DW dispersion curve is obtained as

near the bottom of the bound-state dispersion curve. This

implies that the low-energy excitation fd§>J, is described Ji+

- 2
by the hopping of the DW bound state originating from the o(K)=——F——+ecos k. (4.19
NNN term, which is consistent with the basic view of the
DW bound state discussed in Ed.5). The S matrix of the two-DW problem is also calculated as

e 13k i3k _[2A +2(coq 3k) + cog 3k’ ))— a(e3k+k) 4 gmi3k+k)y]

kk')=—ekK)= — - (4.20
Stk e'¥+e 3 —[2A+2(cog3k) +cog 3k’ ))— (€3t )+ e 3k
|
where 1
a’>2_i_8 ) (4.29
— —1+2a
=T (4.2 the bound-state dispersion curve appears=atr/6 and/2.

As a is increased beyond this value, the two branches of the
This A terms originates form the “binding energy” in the curve are extended from the band edges towardr/3. At

zeroth order(Ising limit). the same time, the energy at 7/6 and /2 decreases rap-
Assuming the two-string-type solutio@.13, we obtain  1dly. We can see thaE °“"{u) has the local minimum at the
the equation for the DW bound state: band edges for
_ 1+\1+2e(2+¢ ~
—e¥cos+2acof3u—a—A=0, (4.22 a> 2(2+:) )(Eai), (4.26

and its formal solution where @_ is determined by d2EP™(u)/du?]|y- -ss o o

— =0.
egvza cos@u—A 4.23 Since the minimum value of the two free DW dispersion
cosau ' is given byE® =2(—J,+23,)/3—2¢J;, we can further see
that the bottom of the bound-state dispersion curve becomes
The dispersion curve of the DW bound state is lower thanE). | when
boun 2 —3v 4 A3v =10
E Gtu)=§(—Jl+2‘12)+s\]1(e +e%)cos a. 0 - : 7
(4.24) _g@ 1,=0.5 \ f
Although this expression of the dispersion looks very similar im 0.53 —\ /—
to the S*=2/3 case, the resulting behavior of the curve is -01% 055 N /\
quite different; Since tha contains the factor %/ the domi- 0.571 M
nant properties of Eq(4.23 are well approximated to be 0.58 /_\
e¥=—A/cos 3 as far as|A|>e. However, for|A|<e, 0.6
namely, in the vicinity ofa=1/2, the curve depends am -0.35 X . M

sensitively. We thus show the bound-state disper$bd4)
of e=0.1 aroundx=1/2 in Fig. 3, where we can actually see  FIG. 3. The DW bound-state dispersion curvesaf0.1 around
that the behavior of the curve changes drastically. a=1/2. The curves in the low-energy region are shown feruw0

When a<(1—¢)/(2—¢), the solution of Eq(4.22 ap- <2#/3. The solid lines indicate the curves fdy=0.5, 0.53, 0.55,
pears only in the high-energy region£0). As « increases, 0.571(=a*), 0.58, and 0.6. The dashed line is the lower bound of
the bound-state excitation is able to appear in the low-energihe two free DW dispersion. In this figure, the origin of the energy
region; For axis is shifted withEPeund=gbound o3, —23.)/3.
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FIG. 4. The magnetization curves of the Ising-like zig28§Z chain of the 192 sites far=0.1. () J,=0.2, (b) 0.5, (c) 0.6, and(d)
1.0. The inset inc) is the magnification around=0.2, where the even-odd oscillation appears in the low-field branch.

1+ 2¢ time, the gap at zero magnetic field becomes small. This is
a>——(=al). (427 consistent with the transition form the dle(1 | ) phase to the
double-Nel (71 |) one in the Ising limit, which is located
This value ofa* is also important for the analysis of the at «=1/2 andH=0. A precise study of the critical point of
even-odd behavior of the magnetization curve. the Neel and double-Nel transition for the zigzag<XZ
As «a is increased further, after the branches extendedhodel can be seen in Ref. 29. The estimated value of the
from u=7/6 and w/2 connect with each other at=(1 critical point fore =0.1 isJ,=0.45, which is in good agree-
+£)/(2—¢), E®"{u) approaches(J;—2J,)+£J,c0s@1  ment with the magnetization curve in Figb# In addition to
rapidly. This behavior oE**""{u) is also consistent with the  this, we can see that the low-field branch the magnetiza-
DW bound state moving with use of the NNN term whentjon curve below the 1/3 plateabecomes very narrow. As
J2>J1. was mentioned in Sec. Il, the zigzag Ising chain is highly
degenerating atv=1/2 below the 1/3 plateau, where the
V. MAGNETIZATION CURVE phase boundary of the 1/3 plateau also merges with fle¢ Ne
In order to verify the analytical results for the DW exci- and. double-Nel transition pmnt(seg Fig. 1 .For theXXZ
tations around the 1/3 plateau, we calculate the magnetiz&n@in ofe #0, the quantum fluctuation coming from theY
tion curve for the Ising-like zigzag{XZ chain with the term lifts this degeneracy, and thus the magnetization curve

DMRG method. We discuss the relevance of the fracti@al aPpears in the narrow region between the zero magnetization
excitations to the obtained magnetization curves. and the 1/3 plateau. The detailed relation of the DW excita-
tion and the magnetization curve is discussed later.

Turning to the high-field branch of the magnetization
curve, we can see that the cusp singularity appears in the
We calculate the magnetization curve for the zigxagZ  high-field branch ford,>1/4, which can be explained well
chain of 192 sites N=64) for £=0.1, using the DMRG by the shape change of the spin-wave dispersion curve from

method. The number of the retained bases used in thiéhe saturated stafg.
DMRG computations is typically 64, with which the calcu- In Fig. 4(c), we can find that the even-odd oscillation
lated magnetization curves converge sufficiently. appears in the low-field branch. Although the true magneti-
Let us first survey the features of the curves. In Fig. 4, wezation curve of the finite-size system should be determined
show the magnetization curves fdj=J,, where we fixJ;  from the stableM = even states, we here show the anoma-
=1 and varyJ,. As J, is increased frond,=0, the magne- lousM = odd steps as well, because it is the evidence of the
tization plateau emerges at 1/3 of the full momidfig. 4(a)], DW bound state havin@*= *2/3. We discuss the detailed
and the width of the 1/3 plateau extends rapidly. At the samenechanism of the even-odd oscillation based on the DW

A. Numerical results
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' ] branch. In Fig. &), we can confirm the oscillating behavior
of the magnetization curve above the 1/3 plateau clearly. In

-5 5,=0.8, 1,=1.0, 0.1

0.4k - J;—0 limit, the 1/3 plateau disappears and the magnetiza-
= tion curve finally becomes that of the two decoupkiZ
0.3 1 spin chain. Here it should be remarked that, in the high-field
region, the phase diagram of the Ising limit contains no spe-
0.2 . cial point having a peculiar degeneracy, unlike to the previ-
ous Nel and double-Nel transition point in the low-field
0.1+ . case. This suggests that the even-odd oscillation in the high-
field branch is induced by the purely quantum effect.
00
0.5 ] B. DW excitation and the magnetization curve
We now discuss the relevance of the DW excitations to
0.4 . the magnetization curves. The magnetization curve of the
= one-dimensionallD) quantum spin systems is generally de-
0.3 . scribed by the hard-core bosonic particle pictt&: a par-
ticle having magnetization fills its dispersion curve up to the
0.2 ] “chemical potential” corresponding to the external magnetic
field. Then the magnetization curve is interpreted as the
0.1 1 chemical potential versus the particle-number curve, where
the shapes of the dispersion curve are essentially important
00 to figure out the feature of the magnetization curve. As was
seen in Sec. lll, the elementary excitations around the 1/3
0.5 . plateau are described by the DW particles carryfg
03l +1/3 and their bound states havifg= = 2/3, although the
0.4 . total magnetization of the system always takes an integer
= value particularly for a finite-size system. This implies that
0.30-2 . the magnetic excitation o8*=*1 around the plateau state
is described by the combinations of the fractio®l DW
0.2 1 excitations.
Let us first discuss the relation between t&e= +1/3
0.1 ] excitation and the characteristic properties of the high-field
J,=0.4,J,=1.0,e=0.1 branch. IfJ;>J,, the effect of NNN term is not so big. Thus
% 1 —H 2 the low-energy excitation around the plateau state is basi-

cally described by the fre®*= 1/3 DW excitation. The mag-

FIG. 5. The magnetization curves of the Ising-like zig28§Z  netization curve near the 1/3 plateau is reflecting the shape of
chain of the 192 sites far=0.1. (a) J;=0.8, (b) 0.6, and(c) 0.4.  the w(k) for the S*=1/3 DW; the magnetization curve rises
The inset in(c) is the magnification arounti=1.3, where the from the 1/3 plateau with the square-root behavior associated
even-odd oscillation appears in the high-field branch. with the curvature around the bottom &)(k).32 This is the

case forJ,<1/4 in the high-field branchFig. 4(a)]
picture in the following section. Here we note that the even- As J, is increased and the NNN effect becomes more
odd behavior emerges fd,=0.58. AsJ, is increased fur- significant, the dispersion curve of the DW bound state
ther, the amplitude of the even-odd oscillation in the low-comes down to the low-energy region. Then there are two
field branch is extended gradually, and at the same time thpossible situations: the bottom of the DW-bound-state dis-
cusp singularity in the high-field branch shifts to the low persion curve is slightly higher than that of the single DW
magnetization sidgsee Fig. 4d)]. dispersion curvéFig. 6(a)], and the oppositeFig. 6(b)].

We further show the magnetization curves fg<J, in For the former case, the magnetization increases along the
Fig. 5. In the figures we fixJ,=1 and varyJ;. As J; is  single DW dispersion curve, as long as the chemical poten-
decreased from unity, the width of the 1/3 plateau shrinkstial is below the bottom of the bound-state dispersion curve.
Simultaneously, the region of the even-odd oscillation in theHowever, when the chemical potential touches the bottom of
low-field branch extends down to the zero magnetizationthe bound-state dispersion curve, the magnetization curve
and the amplitude of the oscillation becomes signifit&ig.  captures the band-edge singularity to have the disg.
5(a)]. On the other hand, for the high-field branch, the posi-6(a)]. After the chemical potential exceeds the bottom of the
tion of the high-field cusp approaches the 1/3 plateau; Inbound-state dispersion curve, the magnetization can in-
deed, for the magnetization curve bf=0.6 in Fig. 8b) we  creases rapidly by using the bound-state dispersion curve. In
can see that the high-field cusp merges into the 1/3 plateathe context of the crossing points of the chemical potential
For J;<0.6, the cusp singularity does not appear, but, in-and the dispersion curves, the above observation implies that
stead, the even-odd oscillation emerges in the high-fieldhe two-component TL liquid is realized above the cusp sin-
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free DW dispersion
free DW dispersion

bound state

M=odd

bound state

(@ (b)

FIG. 6. Schematic diagrarta) for the cusp singularity ancb)
for the even-odd oscillation of the magnetization curve. The open
circle denotes the DW excitation and the solid circle denotes the

DW bound state. The broken lines indicate the “chemical potential” 0.2 T T
corresponding to the magnetic field. (b)

gularity, while the one-component TL liquid is realized be- 17059

tween the high-field cusp and the 1/3 plateau. These behav- E

iors of each branch of the magnetization curve are consistent 0.1l ~—

with the known results based on the shape change of the
spin-wave dispersion curve from the saturation litiThe
situation illustrated in Fig. @ corresponds to the case for
*
“<F“*' - . J,=1.0, e=0.1
or the latter case, the magnetization curve increases by 0 il
using the bound-state dispersion curve. We here recall that 0 0.1 02 H 03
the excitation ofS’=1 is always represented as a combina- i 7. The low-field branch of the zigzagXZ chain neara

tion of three DW particles. IM=odd, there are 31 —N)  —1/2: (3) «=0.53, 0.55, and 0.57, arfth) «=0.59 and 0.62.
number of =1/3 DW particles in the systefi. Then

3(M—N)—1 numbers of the DW's can conform the bound appear in the low-energy region. Thus the magnetization
state ofS?=2/3, but the remaining one DW cannot find its curve can be described by the fr&=—1/3 dispersion
partner. Thus the remaining one DW has to sit on the fregurve[Figs. 4a) and 4b)]. On the other hand, i§,>0.62,

DW dispersion curve, as in the diagram of Figb)s There-  the shape of the bound-state dispersion curve is approxi-
fore theM = odd state has a slightly higher energy due to themated well byE(®=}(—J,+2J,) + eJ,cos &, whose bot-
gap between the bottom of the single DW band and thgom is lower than that of the single-DW dispersion. Thus the
chemical potential lying in the bound-state band. On theow-field branch of the magnetization curve exhibits the
other hand, for the case &fl =even, all of the DW’'s can even-odd oscillation fod,>0.62[Figs. 4d) and 5, due to
find their partners and conform the bound states successfullihe same mechanism in Fig(tg.

Clearly, this is the origin of the even-odd behavior of the e next proceed to the analysis fer=1/2. As is seen in

magnetization curve. o Fig. 3, a characteristic feature of ti8= —2/3 DW bound
According to the analysis in Sec. IV, we can see that thestate is that the shape of the dispersion curve changes dras-
switching of the above two cases occursaat @ =2. Al- ftjcally in narrow range ofr. Accordingly, we can expect that

though the theoretical predictian *=1/2 is consistent with  the shape of the low-field branch of the magnetization curve

the DMRG resulta™'=0.6, they shows a slight deviation. also changes in the corresponding regiomofin order to
The reason for this is that ti&=1/3 DW’s have no “bind-  verify this expectation, we calculate the low-field branch of
ing energy” in the zeroth ordefising limit), corresponding the magnetization curves for G&x=<0.62 intensively,

to A=0 in Eq.(4.12. Thus the leading term for the binding which are shown in Fig. 7. Whea<a_=0.521, the small
energy is of first order og, implying that the formation of dispersion curve of the bound state appears accompanying a
the DW bound state is responsible for the purely quantumocal maximum at the band edgesi=7/6 or u=m/2),
effect. For the precise determinationaf , the second-order which is located in a sufficiently higher energy region than
calculation with respect te is required, where the applica- the bottom of the free DW dispersion curve. Thus the mag-
tion of the Bethe form wave function is rather difficult. netization below the 1/3 plateau decreases using the free DW
We turn to the analysis of the low-field branch, which canband. Fora_<a<a* =0.571, the bound-state dispersion
be explained by almost the same line of the argument. Howeomes down to the low-energy region and has the local mini-
ever, in contrast to the high-field branch, te=—1/3 DW  mum at the band edges. Nevertheless, the energy at this local
excitation has the zeroth-order binding energy, namgly minimum is still higher than the bottom of the free DW
term, which yields the sensitive behaviors of the dispersiortlispersion. Thus, in this region ef, the situation is the same
curve of the DW bound state near=1/2. Thus we first as the case of Fig.(6), so that the magnetization curve has
consider the case where is sufficiently away from 1/2, the cusp singularityFig. 7(a)].
where the shape of the bound-state dispersion is rather For a>«* , the lowest energy of the bound-state disper-
simple. Whena<1/(2+¢), the bound-state DW does not sion becomes lower than that of the single DW one, and thus
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the magnetization curve exhibits the even-odd oscillationpair creation of the DW'’s increases the total energy of the
which is the case of Fig.(B) and 1b). However, we should system significantly and does not contribute to the low-
notice that the bound-state dispersion curves has another fearergy properties, implying that tHg | order of the plateau
ture especially for 0.57@ «<0.6053* the bound-state dis- is stable. However, if = «, the energy gain originating from
persion curve has thkcal minimum at u= #/3, implying  the XY term becomes comparable to the energy rise of the
that the curve shows the double-well shape. Thus the magpair creation. This suggests that the quantum fluctuation of
netization curve may have the cusp singularity and even-odthe XY term destroys the order of the 1/3 plateau state itself,
behavior at the same time; the DMRG resultfor 0.59 and  corresponding to the fact that the zigzZd&Z chain has no
0.6 actually shows both of the cusp and even-odd oscillatiomagnetization plateau in this—0 limit. We have also the
[Fig. 7(b), see also the inset of(@]. For &>0.605, the similar criterione<a ™! for the pair creation of the?=
bound-state dispersion has the single minimum=atr/6 or  +2/3 DW particles in theéd;— 0 limit. In order to investigate
/2, and then the magnetization curve exhibits the even-odthe critical behavior in theJ;—0 (J,—0) limit precisely,
oscillation without the cusp. the renormalization-group treatment is clearly required.

As seen above, the DW excitation picture of fractiogal
can explain well the magnetization curve calculated by the VI. OBC AND DEFECT IN THE 1 /3 PLATEAU STATE
DMRG. In the remaining part of this section, we shall dis-
cuss to what extent the present theory can retain its validity. A. Ising limit

Since the dispersion curves in Sec. IV are obtained within |n this section we give a remark about the plateau state for
the first-order perturbation, the higher-order contributionthe OBC system. Since the DMRG gives the results for the
with respect toe may affect the shape of the dispersion OBC, the plateau state for the OBC has a special importance
curves. However, what we want to emphasize here is that th@r the analysis of the DMRG results.

present DMRG results actually justify the DW picture as far  For the case of the PBC, it is not permitted to insert single
ass=0.1. Moreover, it should be noted that, even for thepw into the plateau state without changing the total magne-
isotropic zigzag chain, the topology of the magnetic phasegization. In other words, the low-energy excitation of tie
diagram is almost the same as the present ISingXk& =N sector is always represented as a combination of two
model, except for the dimer-gapped phase at the zero magw's such as the pair creation of tt&#= =+ 1/3 particles.
netic field of the isotropic case. The fact of the 1/3 plateaurhys the excitation that does not change the t6tabf the
eXiSting for the iSOtI’OpiC Zigzag Chain SuggeStS that the D\/\éystem a|WayS accompanies the energy rise Of Q]fger JZ'
picture is basically maintained against the quantum fluctua-~ For the case of the OBC, however, we can insert single
tion due to theXY term. Of course, a further precise analysis pyy into the plateau state with keeping the magnetization of
is required for the quantitative understanding of the problemhe system. Thus we should check the energy of not only the
especially aroundr=1/2, which may be an interesting fu- «yniform Néel state” but also the state in which the single

ture subject. _ _ DW is inserted. The three uniform MEstates for the OBC
Another important factor which should be added in thegre

present theory is the interaction effect between the DW's.

Although the DMRG results also demonstrate that the DW INeely=T1T11---TL11LT,
picture basically holds up to the certain range of the magne-
tization curve, a careful consideration of the interaction be- INeeb)=171111---111711,

tween DW’s is required for a more quantitative analysis for

the magnetization curve away from the 1/3 plateau. For ex- ~

ample, the DW'’s and their bound-state picture for the even- INeels)= L TTLTT---LTTLTT,

odd oscillation suggests that the magnetization curve may,q the corresponding energies are easily obtained as
have some singularity at the upper edges of the even-odd

oscillation branch, where the chemical potential touches the _ J;
bottom of the free DW dispersion curve. However, we can- Ei=Ey——+
not confirm such singularity within the DMRG result for the

192-site chain. A possible reason for this is the interactiorsjnce the DW's 0fS*= —1/3 or —2/3 have “negative en-

EffeCt, since the number of tI®=1/3 DW'’s increases as the ergy” depending on the Coup”ng constants, we should evalu-

o - - J;
4 +?, E2:E3:Eg+ Z (61)

magnetization is increased away from the 1/3 plateau. ate the energy for the following three states:
Before closing this section, here we would like to make a

comment on the stability of the 1/3 plateau state in dhe |pry=T1T---TLTL11---111,

—0 (J,—0) limit, which is related to the condition of

mentioned in Ref. 27. In order to estimate the stability of the |pod=111---TTLTLT--- 11T,

plateau, we need to discuss the excitations that do not change

the totalS* of the system; for example, we consider the pair loy=T11---1TLLTT-- 111,

creation of type 1-3 and 3-1 DW particles. The energy cost

for this pair creation can be read in Table3l(J;+J,) + 3 which may have lower energies than those of the uniform
(—J1+23,) = ad4, while the energy gain due to the hopping Neel states(6.1). The energies for these states are easily
of the created DW's is of order afJ;. Thus, ife>a«, the calculated as
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(a) J;=1.0, J,=0.8, e=0.1, M=32 Here it should be remarked that the translational symme-

‘I 1 try of period 3 for the 1/3 plateau is broken by the inserted
l ‘” ” “ H H” HHHH”HHHH DW defect. However, this does not mean the breakdown of

| the plateau quantization condition that is valid for the infinite
| length chain. The present DW defect in the plateau is the
| single-impurity problem in a finite-size system, which can be

| neglected in the bulk limit. Therefore, the DW defect in the
| plateau state does not conflict with the quantization theorem
I | which is relevant for the infinite length chain.
\
'0‘ 96 - 92 VIl. SUMMARY AND DISCUSSION
(b) J;=0.8, Jo=1.0, e=0.1, M=32 In this paper, we have studied the excitations around the
0. 5 | 1 1/3 plateau state of th8=1/2 Ising-like zigzagK XZ chain.
il I We have explicitly constructed the Iow—energyl excitations as
6 M H\‘ I the DW'’s separating the threefold degeneratinglNedered
g . H || 'l M H | spin arrays of the 1/3 plateau. The important point is that the
0 ' il ’I DW'’s are regarded as the quasiparticles carrying the frac-

tional value ofS* the S’=*1/3 DW and its bound state
| having S$*= +2/3. Further, we have taken account of the
| quantum effect of th&XY term with the degenerating pertur-
I
l bation theory. Then we have found that the low-energy dy-
-0.5 . namics of the DW's is significantly affected by the interplay

0 9% i 192 between the single- and double-chain natures of the system
FIG. 8. The distribution of the local spin momemi(i) at the originating from the Zigzgg StrUCture_ of the_model; TSZe_
1/3 plateau state@ J;=1.0 andJ,=0.8, and(b) J,=0.8 andJ,  — - 1/3 DW moves by using the NN interaction term, while
=1.0. S*=+2/3 DW bound state uses the NNN one. Analyzing the

formation mechanism of the DW bound state precisely, we
3 have shown that the crossover of the dispersion curves in the
_t +J,, (6.2 low-energy region occurs at= «* for the S?’=1/3 DW, and
4 ata= a* for the S’= —1/3 DW. Moreover, this crossover of
the dispersion curves certainly induces the exotic behavior of
3, I, the magnetization curve. The cusp singularity and the even-
4 2 (63 odd oscillation of the magnetization curve are switched with
each other atv=a% , depending on the relative position of
Thus we can conclude that the 1/3 plateau state for OBC ithe dispersion curves of the fr&=+1/3 DW and theS*
|Nee|1> for J,<J; and| ¢,g) for J,>J;. Although this is the = +2/3 DW bound state. In particular, the fact that the usual
case of the Ising limit, we will see that the 1/3 plateau stateS’= =1 excitation is represented as a combination of the
that is inserted the DW survives against the quantum fluctuaS’= = 1/3 DW particles is essential for the even-odd oscilla-
tion. tion of the curve. In fact, the DW excitation combined with
the hard-core bosonic particle picture has explained well the
DMRG calculated magnetization curves. Although the
present argument is based on the degenerating perturbation
According to the plateau quantization condition, the pe-theory of the first order with respect tq the intrinsic prop-
riod of the 1/3 plateau state must Qe=3 (integep with the  erties of the DW excitations are vividly illustrated within the
spontaneous symmetry breaking of the translaifohe  present theory, which is clearly supported by the DMRG
three kinds of Nel states clearly satisfy this condition. How- results for the magnetization curve.
ever, for the OBC system, we have discussed thatSthre Here it is worthwhile to remark about the connection of
—2/3 DW can be inserted in the 1/3 plateau state in the Isinghe present DW picture to other viewpoints for the magneti-
limit. In order to investigate the effect of the€Y term on the  zation curve. As was seen above, the fractioBaDW is
defect, we calculate the distribution of the local momentvalid for the magnetization curve near the 1/3 plateau. On the
along the chain with the DMRG method, which is shown inother hand, we know that a good picture to describe the
Fig. 8. We can clearly see that the defect is inserted at thenagnetization curve in high-field region is the spin-wave
center of the chaifiFig. 8b)]. A precise computation yields excitation from the saturation field, which also explains the
that the defect appears far>0.923, which is consistent cusp singularity successfully. Then both the DW picture
with the result for the Ising limit. Moreover, we note that the around the 1/3 plateau and the spin-wave picture from the
DW inserted plateau state survives even for the isotropisaturated state seem to capture the qualitative feature of the
zigzag chain, for which the appearing point of the DW- magnetization curve in the crossover region of these two
inserted plateau state is=0.85. pictures. A similar situation is also considered for the low-

E13: E21: Eg

E23: Eg+

B. DMRG result
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field branch. Foe = 0.1 the ground state at the zero magneticperiments may resolve the DW excitation and its bound state.
field is the Nel or double-Nel order. More interestingly, the Finally, we wish to stress that our approach is quite gen-
dimer-singlet order is developed particularly aroung 1/2  eral and is applicable to the plateau states represented by the
as the system approaches isotropic poit=(1). For the |sing bases accompanying the spontaneously symmetry
isotropic system, the excitation at the zero field is reprebreaking of the translational invariance. The DW particles
sented as the DW separating the twofold degenerating dimefayving the fractionalS? is essentially originating from the
singlet states, for which the bound state of such DW is als@jiscreteness of the Ising bases and the degenerating plateau
reported’®*”However, the relationship between the DW pic- state: If there is #-fold degenerating plateau state, there is a
ture at the 1/3 plateau and the DW based on other picturgsossibility of a fractional DW excitation o8?=1/P. It is
has not been clarified yet. The unified view for these compleactua”y known that the&s=1 Ising-like zigzagXXZ chain
mental pictures may be a key problem to reveal the interacexhibits various long-period state in a magnetic fiél@ur
tion effect between the DW particles in the zigzag-like quan-approach is useful for analysis of such a problem. In addi-
tum spin phaln. _ tion, recently, aN'=2 supersymmetric 1D lattice model is

In addition, we would like to comment on the recently proposed, where the very similar ordered state and the exci-
synthesized zigzag compound i) CuCl, which is con-  tation having the fractional (1) charge are explicitly
sidered as an isotropic zigzag chain of the coupling constaronstructed? It may be an interesting problem whether such

J1/3,=0.25"° In this parameter region, the magnetization mathematical model can be associated with our explicit con-
curve does not have the 1/3 plateau. However, the compoungyction of the fractionafZ excitation.

belongs to the region of the even-odd oscillation. Of course,
the bulk magnetization curve does not show such oscillating
behavior, but we can expect the dual structure of the DW and
its bound state in a magnetic field. According to the present
theory, the magnetic excitation accompanying thel We would like to thank T. Hikihara and M. Kaburagi for
change of the magnetization should be described by the convaluable comments. K.O. also thanks N. Maeshima, A.
bination of S*= = 1/3 DW andS*= +2/3 DW. Recalling that Koga, and A. Kawaguchi for fruitful discussions. This work
electron-spin-resonance or nuclear-magnetic-resonance mesias partially supported by a Grant-in-Aid for Scientific Re-
surements are theoretically described(B8y S™)-type corre-  search on Priority Area) from the Ministry of Education,
lation function, we can expect that the spectra of these exCulture, Sports, Science and Technology of Japan.
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