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Metastability and compensation temperatures for a mixed Ising ferrimagnetic system

E. Machado and G. M. Buendı´a
Physics Department, Universidad Simo´n Bolı́var, Apartado 89000, Caracas 1080, Venezuela

~Received 7 March 2003; revised manuscript received 3 July 2003; published 10 December 2003!

In this paper we calculate the free energy of a mixed Ising ferrimagnetic system by a mean-field approach.
The system consists of two interpenetrating square sublattices, one with spins61,0 and the other with spins
61/2. We obtain the phase diagram of the system, identify the stable and metastable phases, calculate the
temperature dependence of the magnetization, and give an estimate of the free-energy barrier between stable
and metastable phases. By comparing our results with Monte Carlo simulations of the same model, we show
that this approach gives an excellent estimate of the compensation temperatures and the magnetizations in a
quite wide range of temperatures, up to quite close to the transition temperature, with a negligible computa-
tional effort. We found that when an external magnetic field is present, compensation temperatures only appear
in the metastable phase, and that a system can have different compensation temperatures depending on how it
is prepared. Some of these features have already been observed in experimental studies of molecular-based
ferrimagnets. Our results suggest that the free-energy barrier becomes independent of the external field just at
the compensation temperature.

DOI: 10.1103/PhysRevB.68.224411 PACS number~s!: 05.50.1q, 75.10.Hk, 75.50.Gg
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I. INTRODUCTION

In recent years ferrimagnetic materials have been
tensely studied due to their importance in high-dens
magneto-optical recording. Novel materials based on m
lecular compounds have been synthesized in search for
density, transparent magnets, with spontaneous momen
room temperature. Many of these materials have ferrim
netic ordering.1,2 In a ferrimagnet, the different temperatu
dependences of the sublattice magnetizations raise the p
bility of the existence of compensation temperatures, te
peratures below the critical point at which the magnetizat
vanishes.3 Experimentally it has been shown that the co
civity of a material increases dramatically at the compen
tion temperature, a behavior that has important applicati
for thermomagnetic recording.4 Mixed Ising models that in-
clude second-neighbors interactions have proven to
simple but interesting models to study several aspects of
rimagnetism. They present compensation temperature5,6

and recent results show that their coercivity increases
these temperatures.7 In this work we apply a microcanonica
approach to calculate the free energy of these systems
minimizing the free energy we calculate the magnetizati
and the compensation temperatures and identify the st
and metastable phases. The study of metastability and
time scales associated with escapes from metastable sta
very relevant for applications in memory devices. It is d
sired to obtain rapid switching of magnetization under rev
sals of an external field, but no spontaneous reversals o
magnetizations. The magnetizations calculated with the
proach described in this work are in agreement with Mo
Carlo results in a wide range of temperatures, up to q
close to the critical temperature. We get excellent estima
of the compensation temperatures of the system, and
dependence on the external magnetic field, with a minim
computer effort. We found that compensation temperatu
only appear in metastable states, and that syst
can present different compensation temperatures depen
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on their preparation. Our model describes fairly w
some general features of the thermal behavior of
magnetization of molecule-based ferrimagnets such
@rad2Ni2Cu(opba)3# (DMSO)5•11H2O, where opba
stands forortho-phenylenebys~oxamato! and rad for 2-~1-
ethylpyridinium-4-yl!-4,4,5,5-tetra-methylimidazolin-1-oxyl
3-oxide.2

The rest of this paper is organized as follows: in Sec
we define the model, in Secs. III and IV we describe t
technique to calculate the free-energy and the phases o
system, the results for the magnetizations and compensa
temperatures are given in Sec. V, and finally we present
conclusions in Sec. VI.

II. THE MIXED ISING FERRIMAGNETIC MODEL

The model consists of two interpenetrating square sub
tices, one with spinsS561,0 and the other with spinss
561/2. EachS spin has onlys spins as nearest neighbo
~nn! and vice versa. Next nearest neighbors~nnn! are always
of the same type.

The Hamiltonian has the form,

H52J1(̂
nn&

s iSj2J2 (
^nnn&

SjSl2J3 (
^nnn&

s isk

2D(
j

Sj
22HS (

i
s i1(

j
Sj D , ~1!

whereJ’s are the exchange interaction parameters,D is the
crystal field, andH is an external magnetic field, all in en
ergy units. We chooseJ1521, such that the coupling be
tween nearest neighbors is antiferromagnetic.

For a square lattice ofN5L3L sites, the sublattice mag
netizations per site are defined as,

m15
2

N (
i

Si , m25
2

N (
j

s j , ~2!

so that the total magnetization per spin is
©2003 The American Physical Society11-1
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m5 1
2 ~m11m2!. ~3!

Previous works5,7 show that this model exhibits a compens
tion temperatureTcomp defined as the temperature below t
critical temperature,Tc , where the two sublattice magnetiz
tions cancel each other, such that the total magnetizatio
zero,

um1~Tcomp!u5um2~Tcomp!u ~4!

and

sgn@m1~Tcomp!#52sgn@m2~Tcomp!#, ~5!

with Tcomp,Tc .
Note that at bothTcomp andTc the total magnetization is

zero, but atTcomp the sublattice magnetizations are not ze

III. CALCULATION OF THE FREE ENERGY

The Helmholtz free energy of the systemF is defined as8

F5E2TS, ~6!

whereE5^H& is the internal energy andS is the entropy.
For a system in thermal contact with a thermal reservoir
equilibrium state minimizes the Helmholtz free energy ov
the manifold of states of the constant~reservoir! temperature.

A. Internal Energy

To calculate the internal energyE of the ferrimagnetic
model described above we will use a mean-field appro
that assumes that each spin is in an effective field compo
by the applied field and an average exchange field due t
neighbors.9 In this approximation the Hamiltonian of the fe
rimagnetic model can be written as

H'(
i

^K1&Si2D(
i

Si
21(

j
^K2&s j , ~7!

where

^K1&52 1
2 z~J1m21J2m1!2H ~8!
22441
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and

^K2&52 1
2 z~J1m11J3m2!2H, ~9!

wherez is the coordination number of the lattice,z52d for
a hypercubic lattice of dimensiond. The factor 1/2 assure
the correct counting.

Within this mean-field approximation. The internal ener
per sitee is

e[
E

N
52

1

2 FzJ1m1m21
1

2
zJ2~m1!21

1

2
zJ3m2

21Dm1*

1H~m11m2!G , ~10!

where m1* is the number of nonzeroS spins per site, also
called the quadrupole moment per spin of theS sublattice,
m1* 52(Si

2/N.

B. Entropy

In the statistical-mechanical formalism, entropy is defin
as Boltzmann’s constant~which is taken as 1 in this work!
multiplied by the logarithm of the number of microstat
consistent with the external constrains. In this section
calculate the entropy of each sublattice by counting the nu
ber of configurations compatible with a given magnetizat
and temperature. Within a mean-field approximation we c
approximate the entropy of the system as the sum of
sublattice entropies,S'S11S2. In general the entropy of a
interacting system is smaller that the sum of its parts.

The entropy of thes sublatticeS2 can be calculated ex
actly as

S25 ln
~N/2!!

N↑!N↓!
, ~11!

whereN↑ is the number of ups spins andN↓ is the number
of down s spins. We have taken into account that each s
lattice hasN/2 spins and thatusu51/2. Then, for a particular
-

ng
ses
nti-
FIG. 1. Free-energy surface in the low
temperature region,f (T50.1,m1 ,m1* 51.0,m2).
Four minima can be observed, two correspondi
to degenerate metastable ferromagnetic pha
and two corresponding to degenerate stable a
ferromagnetic phases (J1521, J252, J356,
D521, H50).
1-2



e

ses

METASTABILITY AND COMPENSATION TEMPERATURES . . . PHYSICAL REVIEW B 68, 224411 ~2003!
FIG. 2. Free-energy surface in th
intermediate-temperature region, f (T
54.1,m1 ,m1* 50.875,m2). The two minima cor-
respond to degenerate antiferromagnetic pha
(J1521, J252, J356, D521, H50).
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value of m2 we get that, in the limit of very largeN, the
entropy per spin of thes sublattice,s2, has the form

s2~m2![
S2

N/2
5 ln 22 1

2 ~112m2!ln~112m2!

2 1
2 ~122m2!ln~122m2!. ~12!

To calculate the entropy of theS sublattice,S1, we take
into account that theS spins can take values, 0,61, then,

S15 ln
~N/2!!

N1!N0!N2!
, ~13!

whereN0 , N1 , andN2 are the total number ofSspins type,
0, 1, and21, respectively. In the limit of very largeN, the
entropy per spin of theS sublattice,s1, can be written as

s1~m1 ,m1* ![
S1

N/2
5m1* ln 22~12m1* !ln~12m1* !

2 1
2 ~m1* 1m1!ln~m1* 1m1!

2 1
2 ~m1* 2m1!ln~m1* 2m1!. ~14!

Then the free energy per spin, in this mean-field appro
mation, takes the form
22441
i-

f ~T,m1 ,m1* ,m2!

52
1

2 FJ1zm1m21
1

2
J2z~m1!21

1

2
J3zm2

21Dm1*

1H~m11m2!G1
T

4
@~m1* 1m1!ln~m1* 1m1!

1~m1* 2m1!ln~m1* 2m1!1~112m2!ln~112m2!

1~122m2!ln~122m2!12~12m1* !ln~12m1* !#

2
T

2
~11m1* !ln 2. ~15!

Note that, besides the temperature, the free energy is w
ten in terms of three quantities, the order parameters of
system: the sublattice magnetizationsm1 , m2, and the aver-
age number of nonzero spins of theS sublattice,m1* .

In Figs. 1–4 we plot the free energy in terms ofm1 and
m2 for different values of temperature and magnetic fie
For each point of coordinatesT,m1 ,m2, the value ofm1* is
the one that minimizes the free energy.

IV. PHASES OF THE SYSTEM

The different magnetic phases of the ferrimagnetic mo
are given by the extremals of the free energy, i.e., by
solutions of the system of equations:

] f

]j
50, j5m1* ,m1 ,m2 , ~16!
e

a

FIG. 3. Free-energy surface in th
high-temperature region, f (T57.1,m1 ,m1*
50.64,m2). The only minimum corresponds to
paramagnetic phase (J1521, J252, J356,
D521, H50).
1-3
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FIG. 4. Free-energy surface in th
intermediate-temperature region whenHÞ0,
f (T54.1,m1 ,m1* 50.906,m2). The degeneracies
observed in Fig. 2 are eliminated, one phase
stable and the other metastable (J1521, J2

52, J356, D521, H51).
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with the constrains21/2<m2<1/2, 0<m1* <1, and um1u
<m1* . The above system of equations is solved numeric
by an optimization algorithm.

In order to understand the features of the free-ene
landscapes and to get some insight in the rather complic
expression given by Eq. 15, we calculate its limit near
critical temperature,T→Tc . In this limit, the sublattice mag
netizationsm1 andm2 go to zero, whilem1* goes to a con-
stant value different from zero, as can be seen in Fig 5. T
limiting value of m1* depends on the parameters in t
Hamiltonian. Then, near the critical temperature, the free
ergy can be further approximated as

f ~T,m1 ,m1* ,m2!'T1m1m21
1

4m1*
~T2T2!m1

21~T2T3!m2
2

1
T

24~m1* !3
m1

41
2

3
Tm2

42H~m11m2!

2Dm1* 2
T

2
g~m1* !, ~17!

whereT1521/2zJ1 , T25m1* zJ2 , T351/4zJ3 and

g~m1* !5~11m1* !ln 22~12m1* !ln~12m1* !2m1* ln m1* .
~18!

In the absence of an external fieldH50 as the temperatur
changes, we can distinguish three behaviors. In the l
temperature region,T,T2,T3, Eq. 17 exhibits four
minima, two that correspond to degenerate metastable fe
magnetic phases,m1.0(,0), m2.0(,0), and the other
two, to degenerate stable antiferromagnetic phases,m1,0
(.0), m2.0(,0). These four minima can be clearly ob
served in Fig. 1.

In the intermediate-temperature region,T2,T,T3, the
free energy exhibits only two minima corresponding to d
generate antiferromagnetic phases, as can be seen in F

At high temperatures,T.T3, Eq. 17 has a minimum a
m150 andm250 that obviously corresponds to a parama
netic phase,Tc5T3. Again this is observed in Fig. 3.

When a magnetic field is switched on,HÞ0, the degen-
eracies are lifted. For example, whenT2,T,T3 and H
.0, the phase withm1,0 andm2.0 now corresponds to a
22441
ly
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ed
e
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-

local minimum of the free energy, becoming the metasta
phase, and the one withm1.0 andm2,0 corresponds to a
global minimum becoming the stable phase. This can be s
in Fig. 4.

V. MAGNETIZATIONS AND COMPENSATION
TEMPERATURES

Previous Monte Carlo results5 indicate that the simples
model that gives compensation temperatures haveJ250 and
a J3Þ0 interaction that depends on the other parameter
the Hamiltonian. In this section we are principally interest
in the behavior of the compensation temperatures, then
are going to simplify our model by choosingJ250. The
equilibrium magnetization of the system is obtained by mi
mizing the free energy given by Eq. 15 by solving Eq.
with the given constrains. In Fig. 6 we compare, for a syst
in zero external field, the magnetizations calculated in t

FIG. 5. Behavior ofm1* andm vs temperature. Note that at th
critical temperaturem1* goes to a constant value that for our choi
of parameters is approximately 0.6 (J1521, J252, J356,
D521).
1-4
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way with the ones obtained by a standard Monte Carlo a
rithm for a system ofN51002 sites. It is worth noticing that
our approach gives extremely good agreement with
Monte Carlo results for a surprisingly wide range of te
peratures up to near the critical point, where obviously
mean-field approximation fails. In particular, we get an e
cellent estimate of the compensation temperature withou
quiring the considerable computational effort associated w
a Monte Carlo simulation.

When an external field is added, the degeneracies of
equilibrium states are removed. The state with the glo
minimum of energy is the stable state, and others, wh
energies correspond to local minima, are metastable st
Figure 7 shows the magnetizations of metastable and st
statesmms

MF and ms
MF , respectively, obtained by minimizin

the free energy as described above. In the same figure
plot the magnetizations calculated by a Monte Carlo al
rithm from different starting configurations,m1

MC andm2
MC ,

that from comparison with the previous ones, can be ide
fied as corresponding to the stable and the metastable m
netization, respectively. Again note the excellent agreem
between both methods, except near the critical tempera
A remarkable fact, that cannot be deduced by looking onl
the Monte Carlo results, is that forHÞ0 only the metastable
system exhibits a compensation temperature. WhenHÞ0
the sublattice magnetizations of the stable and metast
states are interchanged at a temperature value that coin
with the value of the compensation temperature atH50. At
this point the system goes in a continuous way from
metastable to the stable phase, such that only one of
magnetizationsm1

MC exhibits a compensation temperature.
will be seen later that the free-energy barrier becomes ze

FIG. 6. Comparison between the magnetizations of the
stable degenerated phases, calculated by minimizing the free
gies ms

MF and 2ms
MF and magnetizations calculated from Mon

Carlo simulations that start from different configurations,ms
MC and

2ms
MC , in absence of an external field (J1521, J250, J356,

D521.9, H50).
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this temperature. Reversal of magnetic poles atTcomp has
been observed in molecular ferrimagnets.2 When in a Monte
Carlo simulation, the system is prepared in a paramagn
phase (T@Tc) and then is cooled the magnetization wou
follow the path given bym2

MC , which does not present
compensation point. This effect suggests that the existenc
a compensation temperature in a material could depend o
preparation. Recent experimental results show that molec
based ferrimagnets present different compensation temp
tures depending on whether the magnetization is measure
cooling mode or in warming mode.2

Another interesting effect happens when we change
parametersD andH. Again, as Fig. 8 indicates whenHÞ0
only the metastable phase presents a compensation tem
ture, and the sublattice magnetizations are interchange
the compensation temperature corresponding toH50. But
now the system exhibits two compensation temperatu
The magnetizations calculated from the Monte Carlo al
rithm depend on the initial preparation~even after an exten
sive warm-up of the system! and each one exhibits an inde
pendent compensation point. If the system is cooled from
paramagnetic phase only one of the compensation temp
tures will be reached. Materials with two compensation te
peratures have already been reported in the literature.10

The dependence of the compensation temperature
the magnetic field can be seen in Fig. 9, where we plot
compensation temperatures calculated from the approach
scribed in this paper and also by a Monte Carlo algorit
from different starting configurations, in terms ofH. For
small fields the compensation temperatures behave

o
er-

FIG. 7. Comparison between the magnetizations of the m
stable and stable phase,mms

MF and ms
MF , respectively, obtained by

minimizing the free energy, and the magnetizations calculated b
Monte Carlo algorithm from different starting configurationsm1

MC

and m2
MC for HÞ0. Note that the point where the stable and u

stable magnetizations are interchanged occurs at the compens
temperature corresponding toH50 (J1521, J250, J356, D
521.9, H50.2).
1-5



-
om
em
n
re
a

al

en
ther

t in
sti-
the
ur-
tly

ly
the

the
and
-
As

here
rier
a-

tic
e-
sys-
ect
this
arlo

oad
tical
ima-
m-
netic
th
ld

et

by

s
ur

in

table
lues
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Tcomp(H)5Tcomp(0)6aH, where a is a constant that de
pends on the parameters in the Hamiltonian. One shortc
ing of using a mean-field approximation is that the syst
seems to have compensation temperatures in the regio
high fields and high temperatures, however Monte Carlo
sults indicate that there is a maximum value of the field
which the system exhibits a compensation temperature, v

FIG. 8. Comparison between the magnetizations of the m
stable and stable phase,mms

MF and ms
MF , respectively, obtained by

minimizing the free energy, and the magnetizations calculated
Monte Carlo algorithm from different starting configurations,m1

MC

andm2
MC , for HÞ0 and a different value ofD. The system present

different compensation points, depending on the starting config
tion (J1521, J250, J356, D521, H50.2).

FIG. 9. Dependence of the compensation temperatures, obta
from the free-energy calculations MF1 ,MF2, and from Monte Carlo
simulations MC1 ,MC2, with the magnetic field.
22441
-

of
-
t
ue

that depends on the size of the system.
A realistic calculation of the free-energy barrier betwe

stable and metastable phases must include, among o
terms, interphase boundaries, not taken into accoun
mean-field approximations. However, we can obtain an e
mate of this barrier by calculating the difference between
local minimum and the saddle point of the free-energy s
face D f in the understanding that this result comes mos
from the bulk contribution to the barrier. It is common
believed that in many processes, the average lifetime of
metastable phase,t, has an exponential dependence on
height of the free-energy barrier between the stable
metastable phases,11–14t;exp(Df). Figure 10 shows the de
pendence of the free-energy barrier on the external field.
expected the barrier disappears at high temperatures w
the system exhibits only one phase. Note that the bar
becomes independent ofH just at the compensation temper
ture of the system atH50.

VI. CONCLUSIONS

We calculate the free energy of a mixed ferrimagne
model by a mean-field approximation. We plot the fre
energy surfaces and determine the phase diagram of the
tem identifying its stable and metastable phases. A dir
comparison between the magnetizations obtained from
technique and the ones calculated by standard Monte C
simulations shows excellent agreement in a quite br
range of temperatures, except close to and above the cri
temperature where, as expected, the mean-field approx
tion fails. This approach allows the calculation of the co
pensation temperature and its dependence on the mag
field with a minimum computational effort, compared wi
Monte Carlo simulations. We find that when an external fie

a-

a

a-

ed

FIG. 10. Free-energy barrier between the stable and metas
phases vs temperature, calculated from Eq. 15, for different va
of the external fieldH. The barrier becomes independent ofH just at
Tcomp(H50) (J1521, J250, J356, D521.9).
1-6
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is present, compensation temperatures occur only in
metastable phase of the system. We also show that, dep
ing on its initial configuration, the system can present t
different compensation temperatures, both strongly dep
dent on the external field. These results suggest that the
istence of compensation temperatures and even their va
depend on the preparation of the system. A similar effect
already been observed experimentally.2

Within this mean-field approach we also estimate the fr
energy barrier that separates the metastable and the s
-

d

gn

rg

,

di

22441
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phases, and find that it is independent of the external fi
just at the compensation temperature corresponding toH
50, maybe suggesting that magnetization reversal of
spins at this temperature is very difficult.
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