PHYSICAL REVIEW B 68, 224411 (2003

Metastability and compensation temperatures for a mixed Ising ferrimagnetic system
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In this paper we calculate the free energy of a mixed Ising ferrimagnetic system by a mean-field approach.
The system consists of two interpenetrating square sublattices, one withzspj@sand the other with spins
+1/2. We obtain the phase diagram of the system, identify the stable and metastable phases, calculate the
temperature dependence of the magnetization, and give an estimate of the free-energy barrier between stable
and metastable phases. By comparing our results with Monte Carlo simulations of the same model, we show
that this approach gives an excellent estimate of the compensation temperatures and the magnetizations in a
quite wide range of temperatures, up to quite close to the transition temperature, with a negligible computa-
tional effort. We found that when an external magnetic field is present, compensation temperatures only appear
in the metastable phase, and that a system can have different compensation temperatures depending on how it
is prepared. Some of these features have already been observed in experimental studies of molecular-based
ferrimagnets. Our results suggest that the free-energy barrier becomes independent of the external field just at
the compensation temperature.
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[. INTRODUCTION on their preparation. Our model describes fairly well
some general features of the thermal behavior of the

In recent years ferrimagnetic materials have been inmagnetization of molecule-based ferrimagnets such as
tensely studied due to their importance in high-densitylrakNiCu(opbay]  (DMSO)s-11H,0,  where opba
magneto-optical recording. Novel materials based on mostands forortho-phenyleneby@xamato and rad for 2(1-
lecular compounds have been synthesized in search for loviznYIPyridinium-4-y)-4,4.5 5-tetra-methylimidazolin-1-oxyl-
density, transparent magnets, with spontaneous moments oxide: ) ) ) .
room temperature. Many of these materials have ferrimag- 1he rest of this paper is organized as follows: in Sec. Il
netic ordering? In a ferrimagnet, the different temperature We define the model, in Secs. Ill and IV we describe the
dependences of the sublattice magnetizations raise the poschnique to calculate the free-energy and the phases of the
bility of the existence of compensation temperatures, temSYyStem, the results for the magnetizations and compensation
peratures below the critical point at which the magnetizatiofémperatures are given in Sec. V, and finally we present the
vanisheS Experimentally it has been shown that the coer-conclusions in Sec. VI.
civity of a material increases dramatically at the compensa-
tion temperature, a behavior that has important applications
for thermomagnetic recordirfgMixed Ising models that in- The model consists of two interpenetrating square sublat-
clude second-neighbors interactions have proven to bgces, one with spin$S=*1,0 and the other with spine
simple but interesting models to study several aspects of fer= + 1/2. EachS spin has onlys spins as nearest neighbors

rimagnetism. They present compensation temperatttes, (nn) and vice versa. Next nearest neighbamsn) are always
and recent results show that their coercivity increases ajf the same type.

these temperaturédn this work we apply a microcanonical The Hamiltonian has the form,
approach to calculate the free energy of these systems. By
minimizing the free energy we calculate the magnetizations

and the compensation temperatures and identify the stable
and metastable phases. The study of metastability and the
time scales associated with escapes from metastable states is _ D; sz_ H( E o+ ; Sj) ' )

Il. THE MIXED ISING FERRIMAGNETIC MODEL

H=—3> 0:5-3,2 SS—J:> ooy
(nn) (nnn) (nnn)

very relevant for applications in memory devices. It is de-

sired to obtain rapid switching of magnetization under rever-

sals of an external field, but no spontaneous reversals of th\ghereJ s are the exchange interaction parameterss the

magnetizations. The magnetizations calculated with the a crystal field, andH is an external magnetic field, all in en-

proach described in this work are in agreement with Monte®'dy Units. we Ch.OOSélz._l' .SUCh that the_ coupling be-
Carlo results in a wide range of temperatures, up to quitéWeen nearest ne|ghbors IS annfer_romagnetlc. .

close to the critical temperature. We get excellent estimates I_:or a square I_att|ce dﬂ=_L>< L sites, the sublattice mag-
of the compensation temperatures of the system, and thefetizations per site are defined as,

dependence on the external magnetic field, with a minimum 2 2

computer effort. We found that compensation temperatures m1=N 2 S, m2=N 2 T, (2)
only appear in metastable states, and that systems : J

can present different compensation temperatures dependisg that the total magnetization per spin is
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m=3(m;+m,). (3 and

. 7 . ot _
Previous works’ show that this model exhibits a compensa (Ky)=—3z(3;my +Jzmy) —H, (9)
tion temperaturdl ;,m, defined as the temperature below the
critical temperatureT ., where the two sublattice magnetiza- wherez is the coordination number of the lattices 2d for
tions cancel each other, such that the total magnetization i& hypercubic lattice of dimensioth The factor 1/2 assures

zero, the correct counting.
Within this mean-field approximation. The internal energy
IMa(T comp)| = M2 Teomp| (4 per siteeis
and
— E _ 1 1 2 1 2 *

SO My(Teomp 1= — SITM(Teomp 1, (5) e=ﬁ——§ zJ1m1m2+§zJ2(m1) +§zJ3m2+ Dm}

With Teomp<Te.
Note that at botHT .o, and T, the total magnetization is +H(mMg+my) |, (10

zero, but aff .,mp the sublattice magnetizations are not zero.
wheremj is the number of nonzer§ spins per site, also

lll. CALCULATION OF THE FREE ENERGY called the quadrupole moment per spin of theublattice,
* 2
The Helmholtz free energy of the systdfris defined a& ™1 =22S/IN.
F=E-TS, (6) B. Entropy
where E=(H) is the internal energy and is the entropy. In the statistical-mechanical formalism, entropy is defined

For a system in thermal contact with a thermal reservoir th@s Boltzmann’s constartvhich is taken as 1 in this woyk
equilibrium state minimizes the Helmholtz free energy overmultiplied by the logarithm of the number of microstates
the manifold of states of the constangéservoiy temperature. consistent with the external constrains. In this section we
calculate the entropy of each sublattice by counting the num-
A. Internal Energy ber of configurations compatible with a given magnetization
and temperature. Within a mean-field approximation we can

del d bed ab il field pproximate the entropy of the system as the sum of the
model described above we will use a mean-field approacy, pattice entropiess~S;+S,. In general the entropy of a

that assumes that each spin is in an effective field composg teracting system is smaller that the sum of its parts.

by the applied field and an average exchange field due to its The entropy of thar sublatticeS, can be calculated ex-
neighbors’ In this approximation the Hamiltonian of the fer-

To calculate the internal enerdy of the ferrimagnetic

I
rimagnetic model can be written as actly as
(N/2)!
H~2 (K)S-D2 S.2+; (Ky)aj, (7) S2=Ing N T (D
where whereN; is the number of upr spins and\| is the number
of down o spins. We have taken into account that each sub-
(Ky)=—32(J;my+J,m;)—H (8) lattice hasN/2 spins and thdto|=1/2. Then, for a particular
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FIG. 1. Free-energy surface in the low-
temperature regionf(T=0.1m,,m; =1.0m,).
Four minima can be observed, two corresponding
to degenerate metastable ferromagnetic phases
and two corresponding to degenerate stable anti-
ferromagnetic phasesl{=-1, J,=2, J3=6,
D=-1, H=0).
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value of m, we get that, in the limit of very largdl, the
entropy per spin of the sublattice,s,, has the form

S

NI IN2—3(1+2m,)In(1+2m,)

Sy(my) =

—3(1-2my)In(1—2m,). (12

To calculate the entropy of th® sublattice,S;, we take
into account that th& spins can take values,0]1, then,

o _p (N2) s
L NINTYS T (13

whereNg, N, andN_ are the total number @& spins type,
0, 1, and—1, respectively. In the limit of very largl, the
entropy per spin of th& sublattice,s;, can be written as

S
sl(ml,m’l‘)zN—/lzzm’l‘InZ—(l—m’l‘)ln(l—m’l‘)

—z(m7 +my)In(mi +my)
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FIG. 2. Free-energy surface in the
intermediate-temperature region, f(T
=4.1m;,m; =0.875m,). The two minima cor-
respond to degenerate antiferromagnetic phases
(J;=-1,3,=2,J3,=6,D=—1, H=0).

f(T,ml,mI ;mZ)

1
2

1 1
Jizmm,+ EJzz(ml)2+§J3zm§+ Dm?}

T
+H(m+m,) |+ Z[(m’l* +my)In(m3 +mjy)

+(mF —my)In(mi —my) + (1+2my)In(1+2my)

+(1—2my)In(1—2m,) +2(1—m7)In(1—m7)]

—;(1+m’l*)ln2. (15
Note that, besides the temperature, the free energy is writ-
ten in terms of three quantities, the order parameters of the
system: the sublattice magnetizatiang, m,, and the aver-
age number of nonzero spins of tBesublattice,m; .
In Figs. 1-4 we plot the free energy in termsrof and
m, for different values of temperature and magnetic field.
For each point of coordinategm;,m,, the value ofmj is
the one that minimizes the free energy.

IV. PHASES OF THE SYSTEM

The different magnetic phases of the ferrimagnetic model

—3(mf —my)In(m} —m,). (14)  are given by the extremals of the free energy, i.e., by the
solutions of the system of equations:
Then the free energy per spin, in this mean-field approxi- if _ R
mation, takes the form Pl =0, §=m;,my,my, (16)
o ]
¥
© ]
i
o | “ " FIG. 3. Free-energy surface in the
w “““““""',l //// high-temperature region, f(T=7.1m;,m;}
o “““:‘0"'/// =0.64m,). The only minimum corresponds to a
2 S S paramagnetic phasel{=—-1, J,=2, J;=6,
° == D=-1,H=0).
@: ""
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FIG. 4. Free-energy surface in the
intermediate-temperature region whed#0,
f(T=4.1m,;,m} =0.906m,). The degeneracies
observed in Fig. 2 are eliminated, one phase is
stable and the other metastablé,€—1, J,
=2,J3=6,D=—-1, H=1).

with the constrains—1/2<m,<1/2, O<mj <1, and|m,| local minimum of the free energy, becoming the metastable
<mj} . The above system of equations is solved numericallyphase, and the one with;>0 andm,<0 corresponds to a
by an optimization algorithm. global minimum becoming the stable phase. This can be seen

In order to understand the features of the free-energyn Fig. 4.
landscapes and to get some insight in the rather complicated
expression given by Eq. 15, we calculate its limit near the
critical temperature] — T. In this limit, the sublattice mag-
netizationsm; andm, go to zero, whilen; goes to a con-
stant value different from zero, as can be seen in Fig 5. This Previous Monte Carlo resuftsndicate that the simplest
limiting value of m} depends on the parameters in themodel that gives compensation temperatures Bave0 and
Hamiltonian. Then, near the critical temperature, the free ena J3# 0 interaction that depends on the other parameters in
ergy can be further approximated as the Hamiltonian. In this section we are principally interested

in the behavior of the compensation temperatures, then we
1 are going to simplify our model by choosint,=0. The
f(T,my,m7 ,mz)“Tlmlszfﬁ(T—Tz)mer(T—Ts)mg equilibrium magnetization of the system is obtained by mini-

V. MAGNETIZATIONS AND COMPENSATION
TEMPERATURES

1 mizing the free energy given by Eq. 15 by solving Eq. 16
5 with the given constrains. In Fig. 6 we compare, for a system
+————mi+ - Tmi—H(m;+m,) in zero external field, the magnetizations calculated in this
24(m7)® 3
1.0E o000y T - - 3
—Dmf — 2g(m}), 17 i 2o, ]
2 09 i O o H=00 —
L 0*200 A H=05
whereT,=—1/2z3;, T,=m¥zJ,, T;=1/4zJ; and . _ 081 Oo:*goo © H=1.0
= ok 003*22200 ]
g(my)=(1+mj)In2—(1—mj)In(1—m;)—mjInmj. i Oooogzg,.% _
(18 0.6 8388866
In the absence of an external fidll=0 as the temperature 0.5 L l L l L
changes, we can distinguish three behaviors. In the low- 2 4 6
temperature region,T<T,<T3;, EQ. 17 exhibits four - I - I -
minima, two that correspond to degenerate metastable ferro 6000098 -
magnetic phasesn;>0(<0), m,>0(<0), and the other o2l %%22 _
two, to degenerate stable antifer.ro.magnetic phassgs; 0 L 002200 000000
(>0), my>0(<0). These four minima can be clearly ob- g o1k RPN E-N T aada,
served in Fig. 1. ' CotaZo,

In the intermediate-temperature regioh,<T<Tj,, the i OOO** 20 |
free energy exhibits only two minima Corresponding to de- 0.0 __-O-_OOO,A-‘_*ZZ:;.Q.
generate antiferromagnetic phases, as can be seen in Fig. . C . | . ALY

At high temperaturesT>T;, Eq. 17 has a minimum at 0 2 4 6
m; =0 andm,=0 that obviously corresponds to a paramag- T
netic phaseT=Ts. Again this is observed in Fig. 3. FIG. 5. Behavior ofm* andm vs temperature. Note that at the

When a magnetic field is switched od#0, the degen- critical temperaturen’ goes to a constant value that for our choice
eracies are lifted. For example, whé@p<T<T3 and H of parameters is approximately 0.68);—1, J,=2, J;=6,
>0, the phase witlm;<<0 andm,>0 now correspondstoa D=-1).
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FIG. 6. Comparison between the magnetizations of the two FIG. 7. Comparison between the magnetizations of the meta-
stable degenerated phases, calculated by minimizing the free enéitable and stable phaseys and m{'", respectively, obtained by
gies " and —mF and magnetizations calculated from Monte Minimizing the free energy, and the magnetizations calculated by a
Carlo simulations that start from different configuratiomd’® and ~ Monte Carlo algorithm from different starting configuratioms'
—mYC, in absence of an external fieldy= —1, J,=0, J;=6,  andmy' for H#0. Note that the point where the stable and un-
D=-1.9,H=0). stable magnetizations are interchanged occurs at the compensation

temperature corresponding té=0 (J,=-1, J,=0, J;=6, D
way with the ones obtained by a standard Monte Carlo algo= —1.9, H=0.2).
rithm for a system oN= 100’ sites. It is worth noticing that
our approach gives extremely good agreement with thehis temperature. Reversal of magnetic polesT g, has
Monte Carlo results for a surprisingly wide range of tem-peen observed in molecular ferrimagneWhen in a Monte
peratures up to near the critical point, where obviously thecarlo simulation, the system is prepared in a paramagnetic
mean-field approximation fails. In particular, we get an ex-phase T>T,) and then is cooled the magnetization would
cellent estimate of the compensation temperature without r&gp|iow the path given bymg"c, which does not present a
quiring the consi_derabI.e computational effort associated Wi“%ompensation point. This effect suggests that the existence of
a Monte Carlo simulation. . a compensation temperature in a material could depend on its

When an external field is added, the degeneracies of thgreparation. Recent experimental results show that molecule-
equilibrium states are removed. The state with the globahaseq ferrimagnets present different compensation tempera-
minimum of energy is the stable state, and others, whosg,res depending on whether the magnetization is measured in
energies correspond to local minima, are metastable state@oo”ng mode or in warming mode.

Figure 7 shows the magnetizations of metastable and stable apgther interesting effect happens when we change the
statesmiys and my'", respectively, obtained by minimizing parameter® andH. Again, as Fig. 8 indicates whet+0

the free energy as described above. In the same figure Wehly the metastable phase presents a compensation tempera-
plot the magnetizations calculated by a Monte Carlo algotyre, and the sublattice magnetizations are interchanged at
rithm from different starting configurations)y'® andmy“,  the compensation temperature correspondingite0. But

that from comparison with the previous ones, can be identinow the system exhibits two compensation temperatures.
fied as corresponding to the stable and the metastable maghe magnetizations calculated from the Monte Carlo algo-
netization, respectively. Again note the excellent agreemenithm depend on the initial preparatigaven after an exten-
between both methods, except near the critical temperaturgive warm-up of the systenand each one exhibits an inde-
Aremarkable fact, that cannot be deduced by looking only apendent compensation point. If the system is cooled from a
the Monte Carlo results, is that fét# 0 only the metastable paramagnetic phase only one of the compensation tempera-
system exhibits a compensation temperature. WHefi0  tures will be reached. Materials with two compensation tem-
the sublattice magnetizations of the stable and metastablseratures have already been reported in the literafure.

states are interchanged at a temperature value that coincidesThe dependence of the compensation temperature with
with the value of the compensation temperaturélatO. At the magnetic field can be seen in Fig. 9, where we plot the
this point the system goes in a continuous way from thecompensation temperatures calculated from the approach de-
metastable to the stable phase, such that only one of theribed in this paper and also by a Monte Carlo algorithm
magnetizationsn)'® exhibits a compensation temperature. It from different starting configurations, in terms of. For

will be seen later that the free-energy barrier becomes zero amall fields the compensation temperatures behave as
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FIG. 8. Comparison between the magnetizations of the meta- FIG. 10. Free-energy barrier between the stable and metastable
stable and stable phasep: and m{'", respectively, obtained by phases vs temperature, calculated from Eq. 15, for different values
minimizing the free energy, and the magnetizations calculated by af the external fieldH. The barrier becomes independentbjust at
Monte Carlo algorithm from different starting configurations, TeomdH=0) (J;=—-1, J,=0, J;=6, D=—-1.9).
andmg"c, for H#0 and a different value d. The system presents
different compensation points, depending on the starting configuraghat depends on the size of the system.
tion (Jy=-1, J,=0, J3=6, D=-1, H=0.2). A realistic calculation of the free-energy barrier between

stable and metastable phases must include, among other
TeomdH) = Teomd0) = @H, wherea is a constant that de- terms, interphase boundaries, not taken into account in
pends on the parameters in the Hamiltonian. One shortconinean-field approximations. However, we can obtain an esti-
ing of using a mean-field approximation is that the systemmnate of this barrier by calculating the difference between the
seems to have compensation temperatures in the region gfcal minimum and the saddle point of the free-energy sur-
high fields and high temperatures, however Monte Carlo reface Af in the understanding that this result comes mostly
sults indicate that there is a maximum value of the field atrom the bulk contribution to the barrier. It is commonly
which the system exhibits a compensation temperature, valugelieved that in many processes, the average lifetime of the
metastable phase, has an exponential dependence on the
height of the free-energy barrier between the stable and
metastable phasés,;'* 7~ exp(Af). Figure 10 shows the de-
1 pendence of the free-energy barrier on the external field. As
expected the barrier disappears at high temperatures where
— the system exhibits only one phase. Note that the barrier
becomes independent Hfjust at the compensation tempera-
4 ture of the system ati=0.

4 ' | ' T

— VI. CONCLUSIONS

~ A MC

[~

We calculate the free energy of a mixed ferrimagnetic
model by a mean-field approximation. We plot the free-
energy surfaces and determine the phase diagram of the sys-
tem identifying its stable and metastable phases. A direct
comparison between the magnetizations obtained from this
technique and the ones calculated by standard Monte Carlo
simulations shows excellent agreement in a quite broad
range of temperatures, except close to and above the critical
temperature where, as expected, the mean-field approxima-
tion fails. This approach allows the calculation of the com-

FIG. 9. Dependence of the compensation temperatures, obtaingtnsation temperature and its dependence on the magnetic

from the free-energy calculations MPVF,, and from Monte Carlo
simulations MG ,MC,, with the magnetic field.

field with a minimum computational effort, compared with
Monte Carlo simulations. We find that when an external field

224411-6



METASTABILITY AND COMPENSATION TEMPERATURES . . . PHYSICAL REVIEW B 68, 224411 (2003

is present, compensation temperatures occur only in thphases, and find that it is independent of the external field
metastable phase of the system. We also show that, depenjdst at the compensation temperature correspondingi to
ing on its initial configuration, the system can present two=0, maybe suggesting that magnetization reversal of the
different compensation temperatures, both strongly deperspins at this temperature is very difficult.
dent on the external field. These results suggest that the ex-
istence of compensation temperatures and even their values
depend on the preparation of the system. A similar effect has ACKNOWLEDGMENTS
already been observed experimentally.

Within this mean-field approach we also estimate the free- We thank Per Rikvold and Mark Novotny for many useful
energy barrier that separates the metastable and the staldiscussions.
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