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Geometry of large-scale low-energy excitations in the one-dimensional Ising spin glass
with power-law interactions
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Results are presented for the geometry of low-energy excitations in the one-dimensional Ising spin chain
with power-law interactions, in which the model parameters are chosen to yield a finite spin-glass transition
temperature. Both finite-temperature and ground-state studies are carried out. For the range of sizes studied the
data cannot be fitted to any of the standard spin-glass scenarios without including corrections to scaling.
Incorporating such corrections we find that the fractal dimension of the surface of the excitations, is either
equal to the space dimension, consistent with replica symmetry breaking, or very slightly less than it. The latter
case is consistent with the droplet and “trivial-nontrivial” pictures.
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. INTRODUCTION dictions from the droplet modéf:2>?*However, the stiffness
exponentd’ for thermally induced droplet excitations is dif-
There have been several numerical attempts at finitéerent and consistent with zero. Heneg¢Jeast for the range
temperaturE ® and zero temperatute'®to better understand of system sizes studield<512, the data of Ref. 25 are con-
the nature of the spin-glass state for short-range spin glassegistent with both the TNT and RSB scenarios since they have
These results are generally interpreted in terms of the twd@>60'=0.
main theories for the spin-glass phase: the replica symmetry- The purpose of the present paper is to estinuhte be-
breaking(RSB) picture!’~?° and the “droplet picture®'~24  cause this distinguishes between the RSB and TNT sce-
(DP). RSB predicts that excitations involving a finite fraction Narios, sinceds=d in RSB whileds<d in TNT. For short-
of the spins cost only a finite energy in the thermodynamid@1ge models, a droplet excitation forms a single connected
limit, and that the fractal dimension of treirfaceof these ~ Pi€ce, and sals has to be zero inl=1. However, for long-
excitationsd, is equal to the space dimensidnThis is in range interactions, a droplet may consist of disconnected

contrast to DP where a low-energy excitatiginopled has an pieces’’ so a r."?”‘”‘"a' value ofl; is possible md— 1. we
energy proportional tof?, where ¢ is the characteristic perform both finite-temperature Monte Carlo simulations and

lenath scale of the droplet arglis a positive Stiffness expo- ground-state studies. Our results suggest that droplets are
9 o P P S EXp ossibly compact in agreement with RSB, although the data
nent. In addition, the surface of these excitations is fractag

: ; re also consistent with a very small valuedof dg, which
with dg<d. More recently Krzakala and Marttas well as : : y S
S~ . X ; would be consistent with TNT.
Palassini and Youngsuggest an intermediate pictuelled

“INT for trivial trivial ) in which droolets h fractal In Sec. Il we introduce the model, observables, and details
orrivia-nontrivia )_m which droplets have a lractal ¢ 1o \onte Carlo technique. Results at zero temperature
surface withd;<d, and their energy is finite in the thermo-

q e limit. Which of the ab . q i h are presented in Sec. lll, and those at finite temperature are
ynamic fimit. ich of the above pictures describes t epresented in Sec. IV. Our conclusions are summarized in
spin-glass state correctly is still widely debated. ec. V.

The RSB and TNT pictures require two stiffness expo-
nents for the energy of large-scale excitations. There is con-
vincing numerical evidence that changing the boundary con-
ditions (e.g., from periodic to antiperiodicwhich induces a
domain wall costs an energy which increases¢dswith 6
>0. On the other hand, in the RSB and TNT pictures, the The Hamiltonian of the one-dimensional long-range Ising
energy ofdroplets created by thermal noise or by applying a spin chain with power-law interactions is given by
perturbation for a fixed set of boundary conditions, varies as
¢? with ¢'=0. By contrast, the DP makes the reasonable
ansatz that' =6 (>0). _

In a previous publicatio”® we studied the one- H= _0217 4SS, @
dimensional long-range Ising spin glass with power-law in-
teractions. The model’'s advantage is that large system sizes
can be studied, in contrast to the short-range spin-glass moghere the Ising spin§,=*1 are evenly distributed on a
els commonly used. The results of Ref. 25 showed that theircular ring of lengthL to ensure periodic boundary condi-
stiffness exponen® for zero-temperature domain-wall exci- tions. The sum is over all pairs of spins on the chain and the
tations is positive and in fair agreement with analytical pre-couplingsJ;; are given by

Il. MODEL AND NUMERICAL METHOD
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. TABLE |. Parameters of th& =0 simulations. The table shows
Jij=c(o) _'(i (2) the total number of Monte Carlo steps used for each valueanfd
ri L. All data are computed with fQlisorder realizations. The lowest
temperature used to calculate the ground states with parallel tem-

5
wheré pering Monte Carlo isT=0.05, the highest 1.70. We use between
L 7T|i _ | 10 and 23 temperatures, depending on the system size, to ensure
[ :—Sin( J ) ©) that the acceptance ratios of the parallel tempering moves are larger
ij
™ L than~0.30.

is the straight-line distance between sitesidj. The random
part of the interactions;; is chosen according to a Gaussian ¢
distribution with zero mean and standard deviation unity, an@.50 2x10® 4x10® 8x10® 4.0x10* 3.2x10° 4.0x10°
the constant(o) in Eq. (2) is chosef to give a mean-field 100 2x10° 4x10° 8x10° 4.0x10° 3.2x10° 4.0x1CP
transition temperaturg;" =1. 2.00 2x10° 4x10° 8x10° 4.0x10* 3.2x10° 4.0x10°

The one-dimensional long-range Ising spin chain has a
very rich phase diagram?®%in the d-o plane. Spin-glass
behavior is controlled by the long-range part of the interaco=0.75, when the model is in the long-range phase, the
tion if o is sufficiently small, and by the short-range pawrif ~ €fficiency of the used algorithm to calculate ground states
is sufficiently large. In this work we focus on the long-rangescales ad* with z=2.9+0.3. For the current project this
behavior ate=0.75 for whiclf®> T.>0 and the critical ex- translates to a total CPU time of 70 CPU years on an Intel
ponents are non-mean-field like. Using the exact reldfith ~Pentium IV 2.4 GHz processor. Curiously, for=2.50, for
6=d— o, we expecth=0.25 ford= 1, which is in moderate Which the interactions are effectively short range so frustra-
agreement with numerical resiffigor domain wallsinduced  tion is minimal in thed=1 model studied here, the algorithm
by a change in boundary conditions B&0. By studying Performs poorly with the equilibration time varying as
thermally inducediropletexcitations, Ref. 25 also estimated ~exp(@L), with a=0.13+0.02. It would be useful to under-
6'~0, consistent with RSB and TNT. stand intuitively the reasons for this.

In order to excite droplets at zero temperature we use the One quantity that we study at=0 is the link overlap,
coupling-dependent ground-state perturbation method deaveraged oveall samples To see how this varies with size
scribed elsewhere®®3! First, we compute the ground-state consider a large cluster of excited spins. This has a charac-
configuration{sl(o)}. Then we perturb the coupling; by  teristic energy of order-L?", which is to be compared with
the following amount: the energy gained from the perturbatior(1—q,)

~eL7@799  There is a distribution of cluster energies
2e [Jizj]av which we assume to have a finite weight at the origin, so the
AH(e)= < 2 w3
N @7 (T85)?

L=16 L=32 L=64 L=128 L=256 L=512

(0)g(0)g g S : . AP
SUSTSS (4) probability that the perturbation will create the excitation is

~eL~(¢"+9-99 When this occurs +q,~L @79 and so
wheree is a coupling constant arfd - - J,, represents a dis- on average®®3!
order average. Théotal) energy of the unperturbed ground
state then increases by exactlywhereas the energy of any [1-q]a=€eL “(a+bL™9), (6)
other statea will increase by the lesser amount ef,

whereq, is the link overlap between the unperturbed groundWhere
state and a state: w=0"+2(d—dg) (7)
2 [‘]izj]av 010 and we have added a correction to scaling téim °.
o] —— SIS IS5) 5 In RSB we haveu;=0 so Eq.(6) tends to a constant for

TN (TR .
' c L—co, whereas in DP and TNT,;>0 so Eq.(6) tends to

In previous workg, has been defined for nearest-neighborzero in this limit.

models in which the sum is over nearest-neighbor pairs. Here . . .

we have generalized the link overlap to long-range models in ABLE Il. Parameters of the finitd- simulations Neamyis the

a natural way. Because the coupling constans$ of order number of samplesNweep IS t.he total nqmber of Monte C.arlo
unity and not of ordeL only low-energy excitations can be sweeps for each of theN; replicas _for a single sample, a_uhdr IS
generated. We compute the new ground state of the perturbgae number of temperatures used in the parallel tempering method.
system and record the link overlap between the old and new

ground states. In the context of zero-temperature simulations Nsamp Nsueep No
the term “link overlap” will hereafter refer to the link over- 16 2.0<10° 2.0x 10° 10
lap between the perturbed and unperturbed ground states. 32 2.0x10* 4.0x10° 10

Ground states are calculated using the parallel tempering 64 2.0x10* 8.0x 10° 12
Monte Carlo method?® (at very low temperaturg¢sas de- 128 2.0¢10° 4.0x10° 14
scribed in Refs. 25 and 32. The parameters used inTthe 256 1.0<10* 20X 1CP 17
=0 simulations are shown in Table |. For each valud_of 512 5.0< 103 8.0X 10° 24

and e we compute 1Hdisorder realizations. We find that for
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A St 1 7 Fard G T ER TABLE IV. Fits of zero-temperature data fdrl—q,],,=a
0.9 N \ﬁ\ 7] +bL™¢, appropriate for RSB, for different values of the coupling
L \\{\\\ ] constante. The number of degrees of freedamdf) here is three.
L \\\\\\. : 2
508 |- B B € a b c x“/ndf
< | ] 0.50 0580(7)  1.35(8) 0.53(3) 1.74
H' L % | 1.00 0.575(6) 1.29(5) 0.50(2) 0.21
= an | 1 2.00 0.569(5) 1.28(4) 0.474(14) 1.36
. I \\%\\\ |
€ RO
ety N | Note that in RSBu,=0 so Var(,) tends to a constant for
(g BrE S L—o. However,u,>0 in DP (since ' = >0 andd,<d)
| Lol RN and in TNT(sinceds<d). ThebL™° term is a correction to
10 102 103 scaling, which turns out to be necessary since the data cannot
L be fitted without it.

FIG. 1. Zero-temperature data fL—q]}, as a function of To speed up equilibr_ation of the finile-simulations we
system size for different values of the coupling constantNote ~ Us€ the parallel tempering Monte Carlo mettiod? We test
that the data only depend slightly eq thus indicating only small  for equilibration using the criterion developed earfierow

deviations from the scaling form. The dashed lines correspond to @eneralizet for the Hamiltonian in Eq(1). For all sizes, the
three-parameter fit ta+bL ™ ¢ as expected in RSB. lowest temperature used isT=0.05, well below

T.=0.6325?°The highest temperature is 1.70 which is well
In addition, we consider averages owsly those samples above the mean-field critical temperatur‘éﬁ"f=1) and so
in which a large excitation is generaté8*° comprising a  the spins equilibrate fast there. We choose the spacing be-
finite fraction of spins. The criterion we take fig|<0.50. tween the temperatures such that the acceptance ratios for the

Averaging just over these samples git/e¥ global moves are around 0.30. Parameters of the fihite-
) dd e simulations are summarized in Table II.
[1-ala~L J(a+bL™®), tS) To summarize, fot. — all the quantities that we calcu-

late,[1—q,]a in Eq.(6), [1—q,],, in Eq.(8), and Var@,) in
Eqg. (10) tend to a non-zero constant in RSB, whereas they
tend to zero with a power df in TNT and DP.

the prime representing the restricted average. Equd8pn
follows trivially from the arguments presented in the deriva-
tion of Eq. (6) with the probability factoreL ~(¢' *9-99) re-
placed by unity. We expect th@t—q,],, will be indepen-
dent of e.

In order to study droplet geometries at finite temperatures, \We first discuss the results for the constrained average of
we compute the distribution of the link overlap between 1-q,, including only sample$g|<0.5, since this yieldsl
two replicasa and B of the system with the same disorder: —d, independent of)’, see Eq(8). The results are shown in
) 2 Fig. 1. Note that the data only depend slightly gnindicat-

s [JijJav [<S|(a)SJ(Q)S(B)S](B)>]aV' @ N9 only small deviations from the expected scaling form.

IIl. RESULTS AT ZERO TEMPERATURE

VIN G (TVF)2 The results of a DP/TNT fit td1—q],,=L =% (a
Here(- - -) represents a thermal average, &nd- |,, repre- | Fryo—crToog=—cTo==p ey
sents a disorder average. From the finite-size scaling i A7 ]
argument$used to derive Eq6) we expect that the variance 0.8 o -3
of the distribution of the link overlap scales as TF .
Var(g) =L "“(a+bL"°). (10) 06| .
] L. 4
I3 B ]
) 0.4 — —
TABLE Ill. Fits of zero-temperature data fofl—q;];, to B ]
L~ (@=9%9)(a+bL "), appropriate for DP/TNT, for different cou- i ) ]
pling constantse. The last column isy? per degree of freedom, 0.2 _:7.;‘"____// S =
where, for this data with six points and four fitting parameters, the il 3
number of degrees of freedofmdf) is two. 0 e
€ d—dj a b c x2Indf

0.50 0.043(14) 0.81(8) 1.95(64) 0.83(19) 0.64 FIG. 2. The cumulative probability fod—ds from the fits to
1.00 0.003(28) 0.59(14) 1.29(7) 0.51(9) 0.31 [1-q]; as discussed in the text. The inner pair of dashed horizon-
2.00 0.019(19) 0.67(10) 1.30(8) 0.54(8) 1.63 tal lines show 68% confidence levels and the outer pair show
95.5% confidence levels.
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TABLE VI. RSB fits of zero-temperature data f¢d—q,].,

E e 3
- a \‘\. E =a-+bL "¢ for different values of the coupling constant
0.6 B -
E o~ e 3
E > i = 2
0.5 F E\\ s . € a b c x2Indf
_ =N @~ __ 4
04 & e 3 0.50 0.168(8) 0.73(11) 0.56(7) 0.25
& AN SN ] 1.00 0.280(8) 1.15(11) 0.57(5) 0.90
103 F - 2.00 0.378(10) 1.25(6) 0.46(3) 0.45
i L t\\ i
= - i ]
B \\‘\\ l . .
02 « R level. We take Eq(12) to be our estimate fod—ds. It is
- 4050 = . . . .
| 5100 bl 1 consistent with the RSB prediction of zero and also consis-
| ®2.00 i tent with a small non-zero value in the DP/TNT scenarios.
Ll Ll R R R Data for the average of-1q, overall samples are shown
10 1}?2 10° in Fig. 3 along with RSB fits. The data show curvature in-

dicative that corrections to scaling have to be included. The
DP/TNT fits, Eq.(6), are shown in Table V, while the RSB
fits (which fix u, to zerg are shown in Table VI. Both fits
have acceptablg?.

The cumulative probabilities shown in Fig. 4 give a lot of
+bL"°) are presented in Table IlI, while the correspondingweight to unphysical negative values af, especially for
RSB f|ts to[l_ql]é\l: a+ bL_C are shown in Table V. In e=1. For all values ofe the We|ght is small fOI;LL| gl’eatel’
the DP/TNT fits we find thatl—d, is close to zero. than about 0.10 so we conclude that

Both DP/TNT and RSB fits are acceptablg?(ndf=1).
However, in fits to a nonlinear model, one cannot convert
x?/ndf to a confidence limit even if the data have a normal
distribution. Similarly, unlike for the case for fits to a linear . . L
model, the error bars do not correspond to a 68% confidencé(ve should, per_haps, be cau_tlous about th.'s syatement Inview
We are particularly interested to get a confidence limit on theOT the large W_e|ght at negative values of in Fig. 4. How-
value ofd— d, in the DP/TNT fits. We do this by computing ever, Eq.(13)’|s consistent with Eq(12) and the result of
x? as a function ofd—dg, minimizing with respect to the Ref. 25 thatf" ~0.
other parameterg&, b, andc). The probability of the fifP is
proportional to expf x*/2) which we numerically integrate
to get the cumulative probability for=d—dy:

FIG. 3. Zero-temperature data fpL—q,],, as a function of
system size. for different values of the coupling constaat The
dashed lines represent fits accordin§jte-q,],,=a+bL™° (RSB).

IV. RESULTS AT FINITE TEMPERATURE

In this section we study the model at temperatures well
below” T,~0.63. Figure 5 shows data for the variance of
the link overlap for several low temperatures. The data show
strong curvature indicative that a simple fit of the form

Q(x)= fXP(x’)dx’. (11

The results are shown in Fig. 2. The data &+ 0.5 and .

2.0 constraind—ds to zero or a small positive value. The A 7
data fore=1.0 constraind—d less and allow a range of i : /]
negative values which are unphysical. At a 68% confidence o8- L=
level the data are consistent with i ]
06 [ 7/
0=<d-d=0.05, (12 ey i e=1.0 ]
E; = /// ,
apart from thee=0.5 data which would exclude zero at the 04 - / ]
68% level but, from Fig. 2, are consistent with it at the 86% L 0.5 ,/€=2.0 ]
L €=V. // |
TABLE V. Fits of the zero-temperature data o —q,]a, R i 7
=L"#(a+bL™°), which assume the DP/TNT picture, for different £ il .
coupling constants. 0 & HL_J.T+7‘I_+/I_/|/I_/I+ﬁﬁ+\_\I_"_\!_\T'__
-05 -04 -03 -02 -0.1 0 0.1
€ m a b c x2Indf X =
0.50 0.065(62) 0.28(1) 1.0(8) 0.81(46) 0.12 FIG. 4. The cumulative probability fod—dg from the fits to
1.00 -0.15(18) 0.07(12) 1.07(7) 0.51(6) 0.68 [1—q]a as discussed in the text. The inner pair of dashed horizon-
2.00 0.018(7) 0.44(25) 1.25(8) 0.49(13) 0.64 tal lines show 68% confidence levels and the outer pair show

95.5% confidence levels.
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N rorrrrT TABLE VIIl. RSB fits of Var(q,) to a+bL~° for different tem-
L \&\ AT = 0405 " peratures.
Foel el =016 ]
0.08 RN AT = 023 7 T a b c x3ndf
[ e ]
. 46 E\\ \:%\ 7 0.05 0.015(2) 0.073(10) 0.47(7) 0.10
g 0.05 - i N 0.10 0.020(2) 0.155(11) 0.47(3) 0.47
~ Mg
S 0.04 | B S . 0.16 0.021(1) 0.261(11) 0.50(2) 1.32
L > =N - ol
e s 0.23 0.017(1) 0.391(9) 0.55(1) 1.35
i - S —
. <]
“de_ . .
0.02 - ---a+bl= A .+ range given by Eq.13) which came from thd =0 data, and
T do not constrainu, any further.
10! 107 10°

L

FIG. 5. Log-log plot of finiteT data for the variance of the link

overlap Var@,) as a function of system size for several low

V. CONCLUSIONS

We have studied the geometry of the large-scale, low-

energy excitations in a one-dimensional Ising spin glass

temperatures. In all three cases we see strong curvature in the dajtere the interactions fall off as ¢ with o=0.75, both at
suggesting corrections to scaling. The dashed lines represent fits— ) gnd at temperatures well below the spin-glass transi-
according toa+bL"® (RSB) with the fitting parameters shown in - tjoy temperature. We find that the fractal dimension of the
surface of these excitationdy, lies in the range &d—dg
=<0.05. This is consistent with the RSB picture—dg
aL™# is improbable and corrections to scaling must be in-zo)_ It is also consistent with the DP/TNT picturd € d
>0) but with a small value ofi—dg. Substantial corrections

Table VIII.

cluded.

Fits to Eq.(10) (DP/TNT picture are shown in Table VII,

and fits to the RSB picturé@n which y, is fixed to be zerp

are shown in Table VIII. The quality of the fits is acceptable. _ gy where¢’ characterizes the dependence of the energy
However, the DP/TNT fit foff = 0.05 gives an unphysical of groplet excitations on their length scale. We find it to be in

negative value fory, with a very small amplitudea. To
clarify this situation, we plot, in Fig. 6y? as a function of
My, optimizing with respect to the other parametesshy

to scaling had to be incorporated into all the fits.

We have also estimated the exponemt=6’+2(d

and c). For T=0.05, x* is quite small out to very large namic limit, is inconsistent with the DP.
negativevalues ofy, (not shown and increases rapidly for

u; greater than about 0.12. Since physically cannot be

the range 6 u,;=<0.10, which is consistent with the value
for d—dg in Eq. (12) and our earlier resuft that §'=0.
Note that this result fo’, if also valid in the thermody-

By studying a one-dimensional model, we have been able

to study a much larger range of sizesU6<512, than is

negative, the only conclusion we can deduce from The generally possible in spin glasses. However, in the absence
=0.05 data is thafu, lies between zero and about 0.12, of a good understanding of corrections to scaling in spin
consistent with the result from thle= 0 data in Eq(13). The  glasses, we still cannot rule out the possibility that different

data for x* for T=0.10 in Fig. 6 have a minimum at,  behaviormayoccur in the thermodynamic limit.
=0.10 but it is shallow ang;=0 has only a slightly greater

x? value. TheT =0.10 data are therefore also consistent with e e e e B A I e T

Eq. (13). The data at higher temperaturds=0.16 and 0.23 6 F /i
have_ a deeper minimum at nonze,fé_, suggesting thaj, 005 I
=0 is somewhat unlikely, but experience from short-range ol T I
system$ suggests that estimates of at finite T are effective L 1
exponents which need to be extrapolated 00 to get close 4 = -
to the asymptotic value. Hence we do not feel that the results . B ]
at T=0.16 and 0.23 rule oyk,=0. =gl ]
Overall, the finiteT data are consistent witly, in the B p
2 F -
TABLE VII. DP/TNT fits of Var(q,) to L~ *(a+bL~°) for dif- L ]
ferent temperatures. 1 B .
T & a b c x2Indf 5 - d
0.05 —0.21(54) 0.002(11) 0.073(8) 0.52(35) 0.05 & 208 O/fl Ok 18 08
0.10 0.10(11) 0.047(42) 0.16(3) 0.55(24) 0.52
0.16 0.16(6) 0.079(39) 0.29(6) 0.60(17) 0.83 FIG. 6. x? as a function ofw,, optimized with respect to the
0.23 0.13(8) 0.050(34) 0.41(2) 0.52(2) 1.18 other parameter@,b, andc) in Eq.(10), for the variance of the link

overlap. The arrows mark the minima.
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