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Geometry of large-scale low-energy excitations in the one-dimensional Ising spin glass
with power-law interactions

Helmut G. Katzgraber1 and A. P. Young2,*
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Results are presented for the geometry of low-energy excitations in the one-dimensional Ising spin chain
with power-law interactions, in which the model parameters are chosen to yield a finite spin-glass transition
temperature. Both finite-temperature and ground-state studies are carried out. For the range of sizes studied the
data cannot be fitted to any of the standard spin-glass scenarios without including corrections to scaling.
Incorporating such corrections we find that the fractal dimension of the surface of the excitations, is either
equal to the space dimension, consistent with replica symmetry breaking, or very slightly less than it. The latter
case is consistent with the droplet and ‘‘trivial-nontrivial’’ pictures.
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I. INTRODUCTION

There have been several numerical attempts at fi
temperature1–8 and zero temperature9–16 to better understand
the nature of the spin-glass state for short-range spin glas
These results are generally interpreted in terms of the
main theories for the spin-glass phase: the replica symme
breaking~RSB! picture,17–20 and the ‘‘droplet picture’’21–24

~DP!. RSB predicts that excitations involving a finite fractio
of the spins cost only a finite energy in the thermodynam
limit, and that the fractal dimension of thesurfaceof these
excitationsds is equal to the space dimensiond. This is in
contrast to DP where a low-energy excitation~droplet! has an
energy proportional to,u, where , is the characteristic
length scale of the droplet andu is a positive stiffness expo
nent. In addition, the surface of these excitations is fra
with ds,d. More recently Krzakala and Martin,1 as well as
Palassini and Young,2 suggest an intermediate picture~called
‘‘TNT’’ for trivial-nontrivial ! in which droplets have a fracta
surface withds,d, and their energy is finite in the thermo
dynamic limit. Which of the above pictures describes t
spin-glass state correctly is still widely debated.

The RSB and TNT pictures require two stiffness exp
nents for the energy of large-scale excitations. There is c
vincing numerical evidence that changing the boundary c
ditions ~e.g., from periodic to antiperiodic!, which induces a
domain wall, costs an energy which increases as,u with u
.0. On the other hand, in the RSB and TNT pictures,
energy ofdroplets, created by thermal noise or by applying
perturbation for a fixed set of boundary conditions, varies
,u8 with u850. By contrast, the DP makes the reasona
ansatz thatu85u (.0).

In a previous publication,25 we studied the one
dimensional long-range Ising spin glass with power-law
teractions. The model’s advantage is that large system s
can be studied, in contrast to the short-range spin-glass m
els commonly used. The results of Ref. 25 showed that
stiffness exponentu for zero-temperature domain-wall exc
tations is positive and in fair agreement with analytical p
0163-1829/2003/68~22!/224408~6!/$20.00 68 2244
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dictions from the droplet model.23,25,26However, the stiffness
exponentu8 for thermally induced droplet excitations is di
ferent and consistent with zero. Hence,at least for the range
of system sizes studied, L<512, the data of Ref. 25 are con
sistent with both the TNT and RSB scenarios since they h
u.u850.

The purpose of the present paper is to estimateds , be-
cause this distinguishes between the RSB and TNT s
narios, sinceds5d in RSB whileds,d in TNT. For short-
range models, a droplet excitation forms a single connec
piece, and sods has to be zero ind51. However, for long-
range interactions, a droplet may consist of disconnec
pieces,23 so a nontrivial value ofds is possible ind51. We
perform both finite-temperature Monte Carlo simulations a
ground-state studies. Our results suggest that droplets
possibly compact in agreement with RSB, although the d
are also consistent with a very small value ofd2ds , which
would be consistent with TNT.

In Sec. II we introduce the model, observables, and det
of the Monte Carlo technique. Results at zero tempera
are presented in Sec. III, and those at finite temperature
presented in Sec. IV. Our conclusions are summarized
Sec. V.

II. MODEL AND NUMERICAL METHOD

The Hamiltonian of the one-dimensional long-range Isi
spin chain with power-law interactions is given by

H52(
^ i , j &

Ji j SiSj , ~1!

where the Ising spinsSi561 are evenly distributed on a
circular ring of lengthL to ensure periodic boundary cond
tions. The sum is over all pairs of spins on the chain and
couplingsJi j are given by
©2003 The American Physical Society08-1
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Ji j 5c~s!
e i j

r i j
s

, ~2!

where25

r i j 5
L

p
sinS pu i 2 j u

L D ~3!

is the straight-line distance between sitesi andj. The random
part of the interactionse i j is chosen according to a Gaussi
distribution with zero mean and standard deviation unity, a
the constantc(s) in Eq. ~2! is chosen25 to give a mean-field
transition temperatureTc

MF51.
The one-dimensional long-range Ising spin chain ha

very rich phase diagram23,26,25 in the d-s plane. Spin-glass
behavior is controlled by the long-range part of the inter
tion if s is sufficiently small, and by the short-range part ifs
is sufficiently large. In this work we focus on the long-ran
behavior ats50.75 for which25 Tc.0 and the critical ex-
ponents are non-mean-field like. Using the exact relation23,26

u5d2s, we expectu50.25 ford51, which is in moderate
agreement with numerical results25 for domain wallsinduced
by a change in boundary conditions atT50. By studying
thermally induceddropletexcitations, Ref. 25 also estimate
u8'0, consistent with RSB and TNT.

In order to excite droplets at zero temperature we use
coupling-dependent ground-state perturbation method
scribed elsewhere.2,30,31 First, we compute the ground-sta
configuration$Si

(0)%. Then we perturb the couplingsJi j by
the following amount:

DH~e!5
2e

N (
^ i , j &

@Ji j
2 #av

~Tc
MF!2

Si
(0)Sj

(0)SiSj , ~4!

wheree is a coupling constant and@•••#av represents a dis
order average. The~total! energy of the unperturbed groun
state then increases by exactlye, whereas the energy of an
other statea will increase by the lesser amount ofeql ,
whereql is the link overlap between the unperturbed grou
state and a statea:

ql5
2

N (
^ i , j &

@Ji j
2 #av

~Tc
MF!2

Si
(a)Sj

(a)Si
(0)Sj

(0) . ~5!

In previous workql has been defined for nearest-neighb
models in which the sum is over nearest-neighbor pairs. H
we have generalized the link overlap to long-range model
a natural way. Because the coupling constante is of order
unity and not of orderL only low-energy excitations can b
generated. We compute the new ground state of the pertu
system and record the link overlap between the old and
ground states. In the context of zero-temperature simulat
the term ‘‘link overlap’’ will hereafter refer to the link over
lap between the perturbed and unperturbed ground state

Ground states are calculated using the parallel tempe
Monte Carlo method27,28 ~at very low temperatures! as de-
scribed in Refs. 25 and 32. The parameters used in thT
50 simulations are shown in Table I. For each value oL
ande we compute 104 disorder realizations. We find that fo
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s50.75, when the model is in the long-range phase,
efficiency of the used algorithm to calculate ground sta
scales asLz with z52.960.3. For the current project thi
translates to a total CPU time of 70 CPU years on an In
Pentium IV 2.4 GHz processor. Curiously, fors52.50, for
which the interactions are effectively short range so frus
tion is minimal in thed51 model studied here, the algorithm
performs poorly with the equilibration time varying a
;exp(aL), with a50.1360.02. It would be useful to under
stand intuitively the reasons for this.

One quantity that we study atT50 is the link overlap,
averaged overall samples. To see how this varies with size2

consider a large cluster of excited spins. This has a cha
teristic energy of order;Lu8, which is to be compared with
the energy gained from the perturbatione(12ql)
;eL2(d2ds). There is a distribution of cluster energie
which we assume to have a finite weight at the origin, so
probability that the perturbation will create the excitation
;eL2(u81d2ds). When this occurs 12ql;L2(d2ds), and so
on average2,30,31

@12ql #av5eL2m l~a1bL2c!, ~6!

where

m l5u812~d2ds! ~7!

and we have added a correction to scaling termbL2c.
In RSB we havem l50 so Eq.~6! tends to a constant fo

L→`, whereas in DP and TNTm l.0 so Eq.~6! tends to
zero in this limit.

TABLE II. Parameters of the finite-T simulations.Nsamp is the
number of samples,Nsweep is the total number of Monte Carlo
sweeps for each of the 2NT replicas for a single sample, andNT is
the number of temperatures used in the parallel tempering met

L Nsamp Nsweep NT

16 2.03104 2.03103 10
32 2.03104 4.03103 10
64 2.03104 8.03103 12

128 2.03104 4.03104 14
256 1.03104 2.03105 17
512 5.03103 8.03105 24

TABLE I. Parameters of theT50 simulations. The table show
the total number of Monte Carlo steps used for each value ofe and
L. All data are computed with 104 disorder realizations. The lowes
temperature used to calculate the ground states with parallel
pering Monte Carlo isT50.05, the highest 1.70. We use betwe
10 and 23 temperatures, depending on the system size, to e
that the acceptance ratios of the parallel tempering moves are la
than;0.30.

e L516 L532 L564 L5128 L5256 L5512

0.50 23103 43103 83103 4.03104 3.23105 4.03105

1.00 23103 43103 83103 4.03104 3.23105 4.03105

2.00 23103 43103 83103 4.03104 3.23105 4.03105
8-2
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GEOMETRY OF LARGE-SCALE LOW-ENERGY . . . PHYSICAL REVIEW B68, 224408 ~2003!
In addition, we consider averages overonly those samples
in which a large excitation is generated,31,30 comprising a
finite fraction of spins. The criterion we take isuqu<0.50.
Averaging just over these samples gives31,30

@12ql #av8 5L2(d2ds)~a1bL2c!, ~8!

the prime representing the restricted average. Equation~8!
follows trivially from the arguments presented in the deriv
tion of Eq. ~6! with the probability factoreL2(u81d2ds) re-
placed by unity. We expect that@12ql #av8 will be indepen-
dent ofe.

In order to study droplet geometries at finite temperatu
we compute the distribution of the link overlapql between
two replicasa andb of the system with the same disorde

ql5
2

N (
^ i , j &

@Ji j
2 #av

~Tc
MF!2

@^Si
(a)Sj

(a)Si
(b)Sj

(b)&#av. ~9!

Here ^•••& represents a thermal average, and@•••#av repre-
sents a disorder average. From the finite-size sca
arguments4 used to derive Eq.~6! we expect that the varianc
of the distribution of the link overlap scales as

Var~ql !5L2m l~a1bL2c!. ~10!

FIG. 1. Zero-temperature data for@12ql #av8 as a function of
system sizeL for different values of the coupling constante. Note
that the data only depend slightly one, thus indicating only small
deviations from the scaling form. The dashed lines correspond
three-parameter fit toa1bL2c as expected in RSB.

TABLE III. Fits of zero-temperature data for@12ql #av8 to
L2(d2ds)(a1bL2c), appropriate for DP/TNT, for different cou
pling constantse. The last column isx2 per degree of freedom
where, for this data with six points and four fitting parameters,
number of degrees of freedom~ndf! is two.

e d2ds a b c x2/ndf

0.50 0.043(14) 0.81(8) 1.95(64) 0.83(19) 0.64
1.00 0.003(28) 0.59(14) 1.29(7) 0.51(9) 0.31
2.00 0.019(19) 0.67(10) 1.30(8) 0.54(8) 1.63
22440
-
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Note that in RSBm l50 so Var(ql) tends to a constant fo
L→`. However,m l.0 in DP ~sinceu85u.0 andds,d)
and in TNT~sinceds,d). ThebL2c term is a correction to
scaling, which turns out to be necessary since the data ca
be fitted without it.

To speed up equilibration of the finite-T simulations we
use the parallel tempering Monte Carlo method.27,28 We test
for equilibration using the criterion developed earlier,4 now
generalized25 for the Hamiltonian in Eq.~1!. For all sizes, the
lowest temperature used isT50.05, well below
Tc.0.63.25,29 The highest temperature is 1.70 which is we
above the mean-field critical temperature (Tc

MF51) and so
the spins equilibrate fast there. We choose the spacing
tween the temperatures such that the acceptance ratios fo
global moves are around 0.30. Parameters of the finitT
simulations are summarized in Table II.

To summarize, forL→` all the quantities that we calcu
late,@12ql #av in Eq. ~6!, @12ql #av8 in Eq. ~8!, and Var(ql) in
Eq. ~10! tend to a non-zero constant in RSB, whereas th
tend to zero with a power ofL in TNT and DP.

III. RESULTS AT ZERO TEMPERATURE

We first discuss the results for the constrained averag
12ql , including only samplesuqu<0.5, since this yieldsd
2ds independent ofu8, see Eq.~8!. The results are shown in
Fig. 1. Note that the data only depend slightly one, indicat-
ing only small deviations from the expected scaling form

The results of a DP/TNT fit to@12ql #av8 5L2(d2ds)(a

a

e

TABLE IV. Fits of zero-temperature data for@12ql #av8 5a
1bL2c, appropriate for RSB, for different values of the couplin
constante. The number of degrees of freedom~ndf! here is three.

e a b c x2/ndf

0.50 0.580(7) 1.35(8) 0.53(3) 1.74
1.00 0.575(6) 1.29(5) 0.50(2) 0.21
2.00 0.569(5) 1.28(4) 0.474(14) 1.36

FIG. 2. The cumulative probability ford2ds from the fits to
@12ql #av8 as discussed in the text. The inner pair of dashed horiz
tal lines show 68% confidence levels and the outer pair sh
95.5% confidence levels.
8-3
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HELMUT G. KATZGRABER AND A. P. YOUNG PHYSICAL REVIEW B68, 224408 ~2003!
1bL2c) are presented in Table III, while the correspondi
RSB fits to@12ql #av8 5a1bL2c are shown in Table IV. In
the DP/TNT fits we find thatd2ds is close to zero.

Both DP/TNT and RSB fits are acceptable (x2/ndf.1).
However, in fits to a nonlinear model, one cannot conv
x2/ndf to a confidence limit33 even if the data have a norma
distribution. Similarly, unlike for the case for fits to a line
model, the error bars do not correspond to a 68% confide
We are particularly interested to get a confidence limit on
value ofd2ds in the DP/TNT fits. We do this by computin
x2 as a function ofd2ds , minimizing with respect to the
other parameters~a, b, andc). The probability of the fitP is
proportional to exp(2x2/2) which we numerically integrate
to get the cumulative probability forx5d2ds :

Q~x!5Ex

P~x8!dx8. ~11!

The results are shown in Fig. 2. The data fore50.5 and
2.0 constraind2ds to zero or a small positive value. Th
data for e51.0 constraind2ds less and allow a range o
negative values which are unphysical. At a 68% confide
level the data are consistent with

0<d2ds&0.05, ~12!

apart from thee50.5 data which would exclude zero at th
68% level but, from Fig. 2, are consistent with it at the 86

FIG. 3. Zero-temperature data for@12ql #av as a function of
system sizeL for different values of the coupling constante. The
dashed lines represent fits according to@12ql #av5a1bL2c ~RSB!.

TABLE V. Fits of the zero-temperature data for@12ql #av

5L2m l(a1bL2c), which assume the DP/TNT picture, for differe
coupling constantse.

e m l a b c x2/ndf

0.50 0.065(62) 0.28(1) 1.0(8) 0.81(46) 0.12
1.00 20.15(18) 0.07(12) 1.07(7) 0.51(6) 0.68
2.00 0.018(7) 0.44(25) 1.25(8) 0.49(13) 0.64
22440
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level. We take Eq.~12! to be our estimate ford2ds . It is
consistent with the RSB prediction of zero and also con
tent with a small non-zero value in the DP/TNT scenario

Data for the average of 12ql overall samples are shown
in Fig. 3 along with RSB fits. The data show curvature
dicative that corrections to scaling have to be included. T
DP/TNT fits, Eq.~6!, are shown in Table V, while the RSB
fits ~which fix m l to zero! are shown in Table VI. Both fits
have acceptablex2.

The cumulative probabilities shown in Fig. 4 give a lot
weight to unphysical negative values ofm l , especially for
e51. For all values ofe the weight is small form l greater
than about 0.10 so we conclude that

0<m l&0.10. ~13!

We should, perhaps, be cautious about this statement in v
of the large weight at negative values ofm l in Fig. 4. How-
ever, Eq.~13! is consistent with Eq.~12! and the result of
Ref. 25 thatu8.0.

IV. RESULTS AT FINITE TEMPERATURE

In this section we study the model at temperatures w
below25 Tc'0.63. Figure 5 shows data for the variance
the link overlap for several low temperatures. The data sh
strong curvature indicative that a simple fit of the for

TABLE VI. RSB fits of zero-temperature data for@12ql #av

5a1bL2c for different values of the coupling constante.

e a b c x2/ndf

0.50 0.168(8) 0.73(11) 0.56(7) 0.25
1.00 0.280(8) 1.15(11) 0.57(5) 0.90
2.00 0.378(10) 1.25(6) 0.46(3) 0.45

FIG. 4. The cumulative probability ford2ds from the fits to
@12ql #av as discussed in the text. The inner pair of dashed horiz
tal lines show 68% confidence levels and the outer pair sh
95.5% confidence levels.
8-4
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GEOMETRY OF LARGE-SCALE LOW-ENERGY . . . PHYSICAL REVIEW B68, 224408 ~2003!
aL2m l is improbable and corrections to scaling must be
cluded.

Fits to Eq.~10! ~DP/TNT picture! are shown in Table VII,
and fits to the RSB picture~in which m l is fixed to be zero!
are shown in Table VIII. The quality of the fits is acceptab

However, the DP/TNT fit forT50.05 gives an unphysica
negative value form l with a very small amplitudea. To
clarify this situation, we plot, in Fig. 6,x2 as a function of
m l , optimizing with respect to the other parameters (a,b,
and c). For T50.05, x2 is quite small out to very large
negativevalues ofm l ~not shown! and increases rapidly fo
m l greater than about 0.12. Since physicallym l cannot be
negative, the only conclusion we can deduce from theT
50.05 data is thatm l lies between zero and about 0.1
consistent with the result from theT50 data in Eq.~13!. The
data for x2 for T50.10 in Fig. 6 have a minimum atm l
50.10 but it is shallow andm l50 has only a slightly greate
x2 value. TheT50.10 data are therefore also consistent w
Eq. ~13!. The data at higher temperatures,T50.16 and 0.23
have a deeper minimum at nonzerox2, suggesting thatm l
50 is somewhat unlikely, but experience from short-ran
systems4 suggests that estimates ofm l at finiteT are effective
exponents which need to be extrapolated toT50 to get close
to the asymptotic value. Hence we do not feel that the res
at T50.16 and 0.23 rule outm l50.

Overall, the finite-T data are consistent withm l in the

TABLE VII. DP/TNT fits of Var(ql) to L2m l(a1bL2c) for dif-
ferent temperatures.

T m l a b c x2/ndf

0.05 20.21(54) 0.002(11) 0.073(8) 0.52(35) 0.05
0.10 0.10(11) 0.047(42) 0.16(3) 0.55(24) 0.52
0.16 0.16(6) 0.079(39) 0.29(6) 0.60(17) 0.83
0.23 0.13(8) 0.050(34) 0.41(2) 0.52(2) 1.18

FIG. 5. Log-log plot of finite-T data for the variance of the link
overlap Var(ql) as a function of system sizeL for several low
temperatures. In all three cases we see strong curvature in the
suggesting corrections to scaling. The dashed lines represen
according toa1bL2c ~RSB! with the fitting parameters shown i
Table VIII.
22440
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range given by Eq.~13! which came from theT50 data, and
do not constrainm l any further.

V. CONCLUSIONS

We have studied the geometry of the large-scale, lo
energy excitations in a one-dimensional Ising spin gl
where the interactions fall off asr 2s with s50.75, both at
T50 and at temperatures well below the spin-glass tra
tion temperature. We find that the fractal dimension of t
surface of these excitations,ds , lies in the range 0<d2ds
&0.05. This is consistent with the RSB picture (d2ds
50). It is also consistent with the DP/TNT picture (d2ds
.0) but with a small value ofd2ds . Substantial corrections
to scaling had to be incorporated into all the fits.

We have also estimated the exponentm l5u812(d
2ds), whereu8 characterizes the dependence of the ene
of droplet excitations on their length scale. We find it to be
the range 0<m l&0.10, which is consistent with the valu
for d2ds in Eq. ~12! and our earlier result25 that u8.0.
Note that this result foru8, if also valid in the thermody-
namic limit, is inconsistent with the DP.

By studying a one-dimensional model, we have been a
to study a much larger range of sizes, 16<L<512, than is
generally possible in spin glasses. However, in the abse
of a good understanding of corrections to scaling in s
glasses, we still cannot rule out the possibility that differe
behaviormayoccur in the thermodynamic limit.

ata
fits

TABLE VIII. RSB fits of Var(ql) to a1bL2c for different tem-
peratures.

T a b c x2/ndf

0.05 0.015(2) 0.073(10) 0.47(7) 0.10
0.10 0.020(2) 0.155(11) 0.47(3) 0.47
0.16 0.021(1) 0.261(11) 0.50(2) 1.32
0.23 0.017(1) 0.391(9) 0.55(1) 1.35

FIG. 6. x2 as a function ofm l , optimized with respect to the
other parameters~a,b, andc) in Eq. ~10!, for the variance of the link
overlap. The arrows mark the minima.
8-5
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