
PHYSICAL REVIEW B 68, 224404 ~2003!
Energy exponents and corrections to scaling in Ising spin glasses
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We study the probability distributionP(E) of the ground-state energyE in various Ising spin glasses. In
most models,P(E) seems to become Gaussian with a variance growing as the system’s volumeV. Exceptions
include the Sherrington-Kirkpatrick model~where the variance grows more slowly, perhaps as the square root
of the volume!, and mean-field diluted spin glasses having6J couplings. We also find that the corrections to
the extensive part of the disorder averaged energy grow as a power of the system size; for finite-dimensional
lattices, this exponent is equal, within numerical precision, to the domain-wall exponentuDW . We also show
how a systematic expansion ofuDW in powers ofe2d can be obtained for Migdal-Kadanoff lattices. Some
physical arguments are given to rationalize our findings.
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I. INTRODUCTION

Exponents and corrections to scaling play a central rol
disordered systems. Consider for instance the dependen
thermodynamic quantities on the sizeL of a system when
L→`. In paramagnetic systems, correlations are short ra
and thus bulk properties converge rapidly to their thermo
namic limits. On the contrary, in systems such as spin gla
below Tc , correlations are long range and so finite size c
rections are ‘‘large.’’ In practice, that means that even if o
takes periodic boundary conditions, the disorder averag
an intensive quantity converges to its thermodynamic li
slowly: finite-size corrections go to zero as an inverse po
of L. This slow convergence is to be contrasted with pa
magnetic systems where finite-size corrections in disor
averages are exponentially small. One can also conside
sample-to-sample fluctuations of thermodynamic quantit
These fluctuations scale in the thermodynamic limit; an
teresting open question is their limiting distribution, if any

In this work we consider these issues in the context
Ising spin glasses1,2 at zero temperature and focus on t
ground-state energy. Given a distribution of disorder reali
tions ~each being represented byJ), the extensive ground
state energyEJ is a random variable. We denote byN the
number of spins in the system;N5Ld for a d-dimensional
hypercubic lattice. We are interested in the probability dis
bution PN(EJ) and in how the connected moments~cumu-
lants! of this distribution depend onN ~or L). Denoting dis-
order averages by an overbar, we have

EJ~L !5e0Ld1e1LQs1•••. ~1!

In this expression,Qs is what we call the shift exponent. T
leading order, the energy scales with the volume, whileQs
gives the leadingcorrection to scaling. The justification for
this notation will become clear later; in the mean time,
should compare to the usual notation involving the corr
tion to scaling exponentv; indeed, in the spin-glass phas
finite-size corrections ofintensive quantities decay as
power ofL:
0163-1829/2003/68~22!/224404~11!/$20.00 68 2244
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EJ~L !/Ld5e01e1L2v1••• ~2!

and sov5d2Qs .
We will also look at the width ofPN which gives the

scalingof the instance-to-instance fluctuations:

[EJ
2~L !2EJ~L !

2
] 1/25s0LQ f1•••, ~3!

where Q f is the fluctuation exponent. Naturally, one ma
extend these types of expansions to any cumulant ofPN , a
central question being whetherPN has a limiting shape as
N→`. One motivation for this is the fact that the groun
state energy is an extreme statistic: there are 2N configura-
tions of spins (Si561) and one is interested in that of min
mum energy. ~Note that these 2N random energies are
correlated.! Little is known about such statistics except in
few solvable cases.3,4 The purpose of this work is to deter
mine PN(EJ) numerically for a variety of spin-glass model
From our measurements we extractQs , Q f , etc, and com-
pare these results to theory.

The outline of this paper is as follows. We first consid
expectations arising from analogies with other systems
well as some known results. In Sec. III we describe the d
ferent types of spin glasses used in this study. Then we g
in Sec. IV our estimates of the fluctuation exponentQ f . This
is followed by a study of the probability distribution of th
ground-state energy in Sec. V; for most models we find t
it becomes Gaussian in the large system-size limit. Then
Sec. VI we present our results for the shift exponentQs . For
all of these studies, we compare thed-dimensional case to
the theoretical predictions. In Sec. VII we show that the
exponents sometimes depend on the distribution of the
order variables~the spin-spin couplings!. Finally in Sec. VIII
we discuss and conclude this work. Some details of the a
lytic computations are given in the Appendix.

II. CLUES FROM THEORY

What values should be expected for the two exponentsQs
and Q f? Suppose we start with the random energy mod5
©2003 The American Physical Society04-1
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~REM! as a guide. Its ground-state energyEJ has a Gumbel
distribution in the largeN limit 6 with a variance ofO(1).
Also, the disorder averaged ground-state energy grow
e0N1O(ln N) at large N. These properties show thatQs
5Q f50 and thus in the REM finite size corrections a
‘‘small,’’ though clearly much larger than in a paramagne
system.

Another model that can guide us is the directed polym
in a random medium~DPRM!.7 The problem on a tree is
very similar to the REM, although subtle differences appe4

The two-dimensional case~with one space and one ‘‘time’
dimension! can also be solved in much detail. In these cas
perhaps surprisingly, asingleexponentu describes the scal
ing of threea priori unrelated quantities:~1! the corrections
to scaling of the disorder averaged ground-state energyEJ ;
~2! the size of sample-to-sample fluctuations ofEJ ; ~3! the
typical excitation energy of the lowest ‘‘system-size’’ excit
tion, which is an excitation that is macroscopically differe
from the ground state. These properties lead to the rem
able relationQs5Q f5u. The DPRM is thus described by
‘‘one-parameter’’ scaling theory.

It is plausible that an extension of the DPRM scali
theory may apply to Ising spin glasses. At the heart of suc
theory, initiated by McMillan,8 developed by Bray and
Moore9 and extended by Fisher and Huse,10 is the exponent
uDW . This exponent is analogous to theu of the DPRM, and
gives the scaling of domain wall energies,EDW.YLuDW;
numerical estimates giveuDW'0.20 in d53 and uDW
'20.28 in d52. ~More generally, a number of otheru
exponents have been introduced for spin glasses; they a
associated withexcitationenergies; this is to be contraste
with our Q exponents that are associated withground-state
energies.! If we follow the correspondence with the DPRM
we expect thatQs5uDW , justifying our use of a ‘‘theta’’
notation forQs . Physically, this equality corresponds to th
fact that these systems are sensitive to boundary conditi
for some samples, these conditions are such that a ‘‘dom
wall’’ must be present in the ground state. However the an
ogy with the DPRM certainly breaks down forQ f : for any
short-range spin glass in dimensiond, Wehr and Aizenman11

proved thatQ f5d/2. This shows that the REM and th
DPRM are not good guides for finite-dimensional spi
glasses.

To have more realistic theoretical predictions, and in p
ticular to preserveQ f5d/2, it seems necessary to work wit
models having a microscopic Hamiltonian defined over c
figurations ofN spins. One approach is to use hierarchi
~Migdal-Kadanoff! lattices; there analytical computations
well as powerful numerical methods are possible. We s
also consider mean-field spin glasses where spins
coupled amongst one another at random so there is no ge
etry to speak of. ThePN(EJ) in such models can be referre
to as the mean-field prediction. Strangely enough, little
known about these systems so we will have to determ
their behavior numerically. In some cases these models
to surprises as we shall soon see.

III. MODELS AND METHODS

We focus on three families of Ising spin-glass models
that the effects of geometry and dimension are apparent.
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Hamiltonian for these models is

H52(̂
i j &

Ji j SiSj , ~4!

where Si561 and theJi j are quenched Gaussian rando
variables of zero mean and variance 1~except in the case o
the Sherrington-Kirkpatrick model which we discuss late!.
The sum (^ i j & is over nearest-neighbor spins on a giv
graph havingN nodes; the different models we consider va
simply by the nature of that graph.

Our first family of models are of the Edwards-Anders
~EA! type:12 the graphs are square or cubic lattices of line
sizeL ~thusN5Ld when the dimension isd), and the edges
connect nearest neighbors only; we take periodic bound
conditions in all directions.

Our second family of models comes from the Migda
Kadanoff ~MK ! approach13 where one performs a bond
moving real-space renormalization group. This procedure
fectively amounts to computing quantities on hierarchi
~MK ! lattices defined by an iteration process~see Fig. 1!.
The iteration takes one bond~that is an edge of the curren
graph! into b paths, each made of two segments~that is
edges!; if r is the iteration number~beginning withr 50),
the ‘‘linear’’ lattice sizeL grows as 2r and the volume~ac-
tually the number of edges and thus the number of te
contributing to the energy! grows as (2b) r . When using,
segments instead of 2 in each path, we have

L5, r and N.~,b!r ~5!

so that the dimension isd5 ln N/ln L511ln b/ln ,. The usual
choice to obtaind53 is ,52 and b54, while ,5b52
corresponds tod52 as in Fig. 1.

Our third family of models comes from mean field, an
here we have considered two types of graphs. First, we
complete graphs where all vertices are connected, co
sponding to the Sherrington-Kirkpatrick~SK! model.14 To
have an extensive energy, one takes the variance of theJi j to
be 1/N. Second, we also use diluted models for which t
connectivity is fixed and identical for all the vertices of th
graph.15 The disorder ensemble then consists of the unifo
distribution over all graphs satisfying that constraint in ad
tion to the disorder ensemble in theJi j . Such an ensemble
can be used to ‘‘model’’ the Euclidean case by setting
coordination to that of the lattice of interest. Thus to mod
the d-dimensional EA model on the hypercubic lattice, w
set the coordination to 2d.

For these three families of spin-glass models, we will d
termine the distribution of the ground-state energies. The
erarchical lattices allow one to write a recursion forPN(EJ);

FIG. 1. Construction of ad52 MK hierarchical lattice.
4-2
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because of that, there is no need tosamplethe disorder vari-
ables, we can perform the disorder average exactly. On
contrary, for the EA and the mean-field cases, we must c
pute the actual ground-state energies for a large numbe
disorder samples. For that we rely on a previously teste16

algorithmic procedure where given enough computational
sources, the ground state is obtained with a very high pr
ability for both Euclidean lattices and for random graphs
long asN is not too large. For our runs, we used seve
months of CPU time on Pentium III personal computers r
ning at 666 MHz. With this amount of CPU, we obtaine
high statistics for lattices of sizes up toL510 ~in both d
52 andd53) and for mean field graphs withN up to 300.

IV. SAMPLE-TO-SAMPLE FLUCTUATIONS
AND THE EXPONENT Q f

A. Migdal-Kadanoff lattices

Let us begin with the Migdal-Kadanoff approach f
which the important predictionQ f5d/2 can be derived. To
understand how this relation comes about on the hierarch
lattices, we construct these by ‘‘aggregation,’’ i.e., by rec
sively ~and hierarchically! joining sublattices together.~This
procedure is to be distinguished from the top-down iterat
used in Fig. 1.! We work with the distribution of ground-stat
energiesEp (Ea) subject to fixed boundary conditions, th
spins on the ends of the lattice being forced to be para
~respectively antiparallel.! Let s2 be the variance of the
ground-state energy at some level of the hierarchical c
struction. To go to the next level for whichL will be , times
larger, first find the ground-state energy in one of theb paths.
Clearly, if we take the ground-state configuration in each
the segments of that path, we will have built the ground s
for unconstrainedend spins. If the result does not give th
imposed values for the end spins~parallel or antiparallel!,
one must add a ‘‘correction’’ term equal to the smalle
domain-wall energy of the, segments of that path. Thus th
energy of one path is the sum of the ground state energie
the , segments, plus one domain-wall energy half of t
time. Second, we add up theindependentcontributions from
the b different paths, leading toEp andEa at the new level.
The ground-state energy is then simply min(Ep ,Ea). If we
neglect the ‘‘correction’’ term, thens2 at this new level is
just ,b times larger than at the previous level. At largeb, the
correction is in fact small and so it can be neglected. Fr
one level to the next, the volume grows by a factor,b, just
ass2 does, so the variance islinear in the lattice volume and
thusQ f5d/2. From our numerical study of these hierarch
cal lattices, we find that this relation holds also for smalb
and for both,52 and,53. ~We did not test for larger,.!

As mentioned in the Introduction, the Wehr-Aizenm
theorem11 shows thatQ f5d/2 in finite-dimensional spin
glasses. It is rather comforting that the MK approach a
leads to this result, sustaining the belief that it is a use
guide for real~finite dimensional! spin glasses.

B. Mean-field models

Next, consider the mean-field prediction forQ f . Since
there is no geometry in our mean field family of models,
identify L with N1/d and thus
22440
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2~N!2EJ~N!

2
] 1/25s0NQ f /d1•••. ~6!

The issue here is whether mean field also predictsQ f /d
51/2 as it should if one believes that this approach corre
describes the large dimensional limit of real spin glasses
find out, we have performed ground-state computations
thousands of samples of the SK model and of fixed conn
tivity spin glasses, and have extracted for each ensembl
associatedQ f /d.

First, consider the fixed connectivity spin glasses with
connectivitiesz53,4,6, and 10. To estimateQ f /d, we de-
termine when the root-mean-square~RMS! deviation of the
ground-state energy divided byNQ f /d becomes flat as a func
tion of N. ~Our runs were performed for 50<N<300.! This
leads toQ f /d'0.5 for z53, Q f /d'0.49 for z54, Q f /d
'0.48 for z56, andQ f /d'0.44 for z510. The drift we
observe inQ f /d is most probably an artifact of our proce
dure, and simply corresponds to the fact that the correcti
to the scaling in Eq.~6! are important in our data, especial
at largez. To get better estimates ofQ f /d, we would need to
control these corrections to scaling but our data are not
ficiently precise for that. Nevertheless, it seems very pl
sible thatQ f /d50.5 in all the fixed connectivity models. In
direct analogy to what was stated previously, we can also
that this result sustains the belief that mean-field models p
vide a useful guide to real~finite dimensional! spin glasses.

Let us now continue and consider the limit of infini
connectivity, i.e., the SK model. Since there areO(N2) terms
contributing to the Hamiltonian, a very simple minded gue
would giveQ f /d51 and thus larger fluctuations than in th
other models. However the opposite happens, revealing
the scaling in the SK is quite subtle. One can get some c
from Kondor’s analytic study17 performed just below the
critical temperatureTc . In particular, his results have bee
interpreted by Crisantiet al.18 who argued that thefree-
energyfluctuations should scale asN1/6, which is very small
compared to the naı¨ve estimate. A different estimate wa
recently proposed by Aspelmeieret al.19 who argued that
free-energy fluctuations should scale asN1/4. Our concern
here is the ground-state energy; although there are no
lytical calculations, it is plausible that the exponent for e
ergy fluctuations atT50 is the same as at that for free
energy fluctuations at 0,T,Tc . ~Such an extrapolation to
T50 is known to apply to the DPRM where the exponent
the free-energy fluctuations atT.0 is equal to that of the
ground-state energy fluctuations.! In that case, we would
haveQ f /d51/6 according to some authors andQ f /d51/4
according to others.

What do the numerical estimates tell us about this qu
tion? We are aware of a study by Cabasinoet al.20 who
showed beyond any reasonable doubt thatQ f /d,0.5; in fact
their best fit givesQ f /d'0.28. When we consider our data
motivated by Eq.~6!, we find that the ratio of the left- and
right-hand sides is compatible with a constant when we
Q f'0.25 and 40<N<150, but the two points atN5200
and 300 are then below the others as shown in Fig. 2. I
difficult to extract an error bar on the value of this expone
and most likely the terms dropped in Eq.~6! are important
just as was the case in the fixed connectivity models. In f
4-3
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here the difficulty is even more acute as the standard de
tion increases only very slowly withN. Nevertheless, let us
fit the standard deviation to apure power; then using ax2

analysis we obtainQ f /d50.2460.005 which is very close
to the conjectured 1/4 value, a result further supported
other numerical work.21 Note however that throughout thi
paper, the error bars given are statistical only. In our fit, th
are seven degrees of freedom and the resultingx2'9.5 is not
bad; nevertheless, a critical examination of the figure le
one to conclude that the actual uncertainty onQ f /d is cer-
tainly much greater than 0.005. Note that this estimate
bit lower that than of Ref. 20 and is many standard dev
tions away from the conjectureQ f /d51/6. However, if we
impose Q f /d51/6, the data are reasonably straight as
function ofN22/3 as shown in the inset of Fig. 2. Because
this ‘‘good’’ behavior, we cannot rule outQ f /d51/6.

Given that in the dilute spin glasses we expectQ f /d
50.5, how does one recover the SK case asz→`? Begin by
recalling that, in the SK model, the variance of theJi j is
taken to be 1/N to ensure that the ground-state energy
extensive. To maintain this property in the diluted sp
glasses, we must divide theJi j by Az. The fluctuations for
largeN andz in these modified spin glasses scale as

@EJ
2~N!2EJ~N!

2
] 1/25s0~z!NQ f /d/Az1••• ~7!

with Q f /d51/2 from what we saw previously. The SK lim
corresponds to settingz5N, so we see that smooth largeN
andz limits requires0(z).zm, wherem is equal to the SK
value ofQ f /d. We saw that it was difficult to obtainQ f /d in
the fixed connectivity models, but obtaining the prefac
s0(z) is even more difficult. Nevertheless, we have extra
lated our data for the root-mean-square deviation divided
N0.5 in the different finite connectivity models. This leads
the estimatess0(z53)'0.67, s0(z54)'0.70, s0(z56)
'0.73, ands0(z510)'0.76. This growth is very slow; it is
compatible with the valuem51/6 but much less with the
valuem50.25. Given the large uncertainties in our extrap

FIG. 2. Scaled RMS deviation of the ground-state energy in
SK model, displayed as a function ofN22/3. Main figure, RMS
divided byN1/4; inset, RMS divided byN1/6.
22440
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lations however, this has to be considered as only very in
rect evidence in favor ofQ f /d51/6.

We conclude that understanding the nontrivial size dep
dence of the fluctuations of the ground-state energy in the
model remains quite a challenge. Let us propose her
simple argument suggesting thatQ f /d51/4. Imagine that
one changes slowly all the couplingsJi j 5Ji j

0 /AN: Ji j
0 →Ji j

0

1dJi j
0 , where the order of magnitude ofdJi j

0 is denoted by
«. If « is infinitesimal, the ground state remains the sam
Up to what value of« will this be true? The change o
local-field induced by the change of couplings for a fix
configuration$Si* % of the spins is of order( jdJi j

0 Sj* /AN
;«. Using the fact that the local field distribution vanish
linearly for small fields in the SK model, it is easy to sho
that the smallest local field is ofO(1/AN). Therefore, the
first value of« that will trigger a change of the ground sta
is «* ;1/AN. Flipping the spin with this low local field
should lead to a cascade of flips that lowers the energy
thus to a new ground state that is ‘‘substantially’’ differe
from the starting one. Furthermore, the variation in t
ground-state energy when going from«50 to «5«* is
probably O(1); indeed, there are excited states of ene
O(1) above the ground state, and one therefore expects l
crossings to occur when«;1/AN. Finally, in order to scan
the whole distribution ofJi j

0 ’s, one needs«;1. Using this
range, the ground-state will change 1/«* ;N0.5 times. Since
between each level crossing, the ground-state energy
domly changes by an amountO(1), thetotal expected fluc-
tuation of the ground-state energy will beO(N1/4), so that
Q f /d51/4. More analytical work is obviously needed
confirm this speculative result, but note that at the hear
our argument lies the fact that the ground-state of the
model is particularlyfragile: a relative change of order 1/AN
of the disorder is enough to substantially change the gro
state.

C. Edwards-Anderson models

In the case of the finite-dimensional lattices, we know th
Q f5d/2 holds exactly because of the Wehr-Aizenm
theorem,11 and recently Aspelmeier and Moore22 found that
this relation holds within replica theory. In spite of the
theoretical results, it is instructive to see how this equa
transpires numerically. We thus follow the procedure used
the fixed connectivity models where we tested for when
rescaled RMS became size independent. Ind53, the res-
caled data show no obvious trend when 1.49<Q f<1.60,
while in d52 the corresponding range is 1.00<Q f<1.02. In
particular, in Fig. 3 we show these ratios whenQ f is set to
d/2 ~the data displayed are from the models with Gauss
Ji j s.!

In principle, it would be interesting to find thecorrections
to this scaling law. In a renormalization-group picture, co
rections go as inverse powers ofL. Furthermore, if one be-
lieves that the exponentQs gives the leading corrections t
scaling forall extensive quantities, then those for the va
ance ofEJ should go asLQs. To consider this possibility, we
set Q f5d/2 and then ask when our data for the resca
RMS follow approximately a straight line when plotted as

e

4-4
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function of L2v with the expectation thatv5d2Qs . In d
53, we findv>1.5, to be compared with the ‘‘theoretical
valuev'2.8 ~cf. Sec. VI!. SinceQs is small and may in fact
be zero, we have performed the analysis forv53; using the
intercept of the curve with they axis, we find that the RMS
of EJ grows as 0.765L3/2. In d52, the rescaled data are to
flat and so in practice we cannot give any sensible estim
of v. But we can follow thed53 procedure, setting this
time v52 (Qs is also relatively close to zero ind52); the
corresponding fits give that the RMS ofEJ grows as 0.725L.
This leads one to conclude that corrections to scaling ar
general very difficult to determine, even if the leading sc
ing law is known exactly. Nevertheless, it seems that
samev may very well describe the dominant corrections
scaling of many observables, as expected from
renormalization-group picture.

To put these last numbers in perspective, consider
Mattis model where the couplings are gauge transform
from a ferromagnet havingJi j chosen randomly on the pos
tive side of a Gaussian. The total ground-state energy of s
a system is the sum of all these couplings and thus has
expectation valuedNA2/p on the hypercubic lattice of di
mensiond. On the other hand, its variance isdN(122/p).
Thus in this Mattis model, the RMS of the ground-state e
ergy grows as 1.04L3/2 in d53, and as 0.852L in d52. As
expected, the Mattis model has larger absolute fluctuat
than the EA model. It is also appropriate to compare
relative fluctuationss r , which is the RMS of the ground
state energy divided by its mean. For the Mattis model,
find s r50.434/L3/2 in d53 ands r50.534/L in d52. These
should be compared to the values we find in the EA mod
s r50.450/L3/2 in d53 and s r50.551/L in d52. This
shows that the relative fluctuations are slightlysmallerin the
Mattis model than in the EA model. Although this is in lin
with what frustration should do, note that the size of t
effect is about 3% which is very very small.

To summarize our study ofQ f for the different spin-glass
models, we have found that all the models considered s
to satisfyQ f5d/2. The notable exception is the SK mod
for which we made the case thatQ f5d/4 was likely but

FIG. 3. Standard deviation of the ground-state energy divided
the square root of the volume for the EA model ind52 and 3,
GaussianJi j s.
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Q f5d/6 was also possible; no matter what,Q f5d/2 is ex-
cluded, showing that theN→` andd→` limits do not com-
mute. In all other cases, the variance of the ground-s
energy grows linearly with the system’s volume; this is t
scaling expected from a central limit theorem behavior wh
the different terms contributing to the ground-state ene
are independent. Our results thus tell us that these terms
only weaklycorrelated. This feature is completely missed
both the REM and the DPRM; although a one-parame
scaling picture applies to those two models, it cannot ap
to spin glasses. Note that this central limit behavior sugge
thatPN(EJ) tends to a Gaussian; we now turn to see whet
this is the case.

V. PROBABILITY DISTRIBUTION
OF GROUND-STATE ENERGIES

If the central limit theorem~CLT! were applicable, not
only would we haveQ f5d/2 for the scaling of the fluctua
tions, but also the shape ofPN(EJ) would become Gaussia
at largeL. This behavior indeed arises for the MK lattice
both analytically at largeb and numerically for allb. @In our
numerical study, we find that the skewness and kurto
PN(EJ) decrease fast towards zero asL grows.# Obviously,
the terms contributing to the ground-state energy are not
dependent but their correlations are not strong enough
prevent a CLT largeL scaling.

The question we address here is whether this simple
havior also holds in the other models. Let us begin with
mean-field case. For the fixed connectivity mean-fie
graphs, our data for the skewness and kurtosis ofPN(EJ)
decrease in magnitude asN increases; this decrease is com
patible with an extrapolation to zero asN→` as illustrated
in Fig. 4. @These quantities are difficult to measure to hi
precision, so this should be considered as only suggestiv
a Gaussian limit forPN(EJ).# The SK model however is
clearly in a different class: not only does it haveQ fÞd/2 but
also itsPN(EJ) is not Gaussian. In particular, its skewness
large N stabilizes around20.4360.02, while its kurtosis
stabilizes around 0.4060.03. It is instructive to compare thi
to the values predicted by the REM model whereP(XJ) is a

y FIG. 4. Skewness of the ground-state energy distribution
mean field and EA models with GaussianJi j ’s.
4-5
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Gumbel distribution: there the skewness is21.139 while the
kurtosis is exactly 2.4. Our estimates do not agree either w
the values from the Fisher or Weibull universality classes:
thus conclude that the SK ground-state energy distribu
does not belong to one of the known universality classe
extreme statistics.6

Finally we come to the EA lattices. Given that the M
and diluted mean-field graphs lead to the same conclusio
will come as no surprise that our data for the EA lattices
also compatible with a Gaussian limiting shape forPN(EJ).
Note that this is expected though not proven from the w
of Wehr and Aizenman,11 while it does follow from replica
theory calculations.22 An examination of the skewness an
kurtosis ofPN(EJ) shows that they decay with system siz
both in d52 and ind53. Although our measurements lac
precision when the number of spins is large, the extrap
tions suggest zero limiting values asL→` as one can see in
Fig. 4. Perhaps it is also worth noting that our data arequan-
titatively similar in the different models; for instance, forL
58 andd53 with binary couplings, we find the skewness
be 20.18 in EA and20.21 in MK.

The overall situation indicates thatPN(EJ) is Gaussian.
Furthermore we checked whether the convergence to
Gaussian follows the central limit theorem law. Indeed, t
law predicts for instance that the skewness scales asN21/2;
thus we have plotted in Fig. 4 the skewness for the differ
models as a function of that scale. The data are comple
compatible with alinear convergence to zero, confirming th
CLT scaling. Only in the case of the SK model are the va
ables contributing to the ground-state energy sufficiently c
related to prevent a central limit theorem behavior. A phy
cal interpretation of this is that as soon as there is a kind
locality that allows one to decompose the sample into qu
independent subsystems, the central limit theorem beha
will appear, leading toQ f5d/2 and a GaussianPN(EJ). Of
course, it is not clear why this should apply to the dilut
mean-field graphs.

VI. THE SHIFT EXPONENT Qs

A. Migdal-Kadanoff lattices

We now move on and study the finite-size corrections
the mean energy density. Following Eq. 1, the mean exc
of the ~extensive! ground-state energy is expected to scale
LQs. To have an idea of what this exponent should be, i
again most useful to begin with the hierarchical lattices. T
important prediction of that approach is thatQs5uDW where
uDW is the domain-wall exponent. To see why this is s
reconsider the evolution equation for the energiesEp andEa
as one applies the recursion. First, along a given path,
energy is the sum of the ground-state energies of each o
, segments, the sum being sometimes corrected by the
ergy of the domain wall of the weakest segment in orde
satisfy the boundary conditions. This correction shifts
path’s energy byO(LuDW). Second, adding the energies
the different paths does not change the scale of the shifts
necessarilyQs5uDW . Naturally, we have confirmed this re
lation numerically for different values of, and b by per-
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forming fits to moments ofP(Ep ,Ea) ~determined with no
statistical error for these hierarchical lattices! from which we
extracted estimates forQs anduDW .

Whenb is large, we can derive the analytical expressi
for uDW on these MK lattices. Indeed, in this limit
P(Ep ,Ea) becomes Gaussian and so one can perform a
mulant expansion about this Gaussian, leading to a 1/b se-
ries. This scheme extends the work of Southern and Youn13

who assumed thatP(Ep ,Ea) was Gaussian even for finiteb.
For general, andb we obtain

uDW~,,b!5
d

2
1a0~, !1

a1~, !

b
1OS 1

b2D . ~8!

When,52, we finda0521.2302 anda1520.04573~see
the Appendix for a derivation!. In Fig. 5 we plot the differ-
ence between the numerically obtaineduDW(,52,b) and the
terms of the expansion given in Eq.~8!. This allows us to
determine numerically the next term of the expansion, a
we find 20.04560.001/b2. This value could be obtained
analytically, but we have not pushed the analytical calcu
tion to that order. Note that the 1/b expansion corresponds t
an expansion ine2d whered is the dimension of space. Thi
justifies the fact that the 1/b expansion is quite accurate a
the way down tod53 ~which corresponds tob54). Finally,
when ,→`, we obtaina053/2. These results show tha
Qs5uDW,Q f , justifying the neglect of the ‘‘correction’’
terms in section IV A from which we concluded thatQ f
5d/2.

Before going on to the mean-field case, let us remark t
the MK value foruDW is quite close the actual value in th
EA model. If we use the standard choice ford53, ,52 with
b54, the MK prediction isuDW'0.255. One can also us
the choice,53 with b59 for which uDW'0.242. These
values are to be compared to current estimates foruDW in the
EA model, uDW50.2160.02 ~Ref. 23! and uDW50.19
60.02.24 A similarly good comparison occurs whend52.

FIG. 5. Difference betweenuDW and the first three terms in th
series of Eq.~8! as a function of 1/b2 whereb is the parameter of
the Migdal-Kadanoff lattices. The line is20.045/b2.
4-6
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B. Mean-field models

We have seen that the prediction of the MK approach
Qs5uDW ; in d53, this gives eitherQs50.25 ~the MK
value! or Qs'0.20 ~if one uses thed53 EA model values
for uDW). In the case of the mean-field models, there is
way to introduce domain walls, and so we simply focus
their prediction forQs .

Consider first the finite-size effects in the SK model. P
risi et al.25 have computed analytically how various quan
ties converge to their largeN limit. An N22/3 convergence is
the general rule, though for the energy density they were a
to compute the finite size correction only at the critical te
peratureTc and on the de Almeida-Thouless line. Neverth
less, the natural extrapolation is that this law should apply
all T<Tc , leading to the predictionQs /d51/3. ~Note that
this prediction is very different from that of~Ref. 18! for
which Qs /d5Q f /d51/6.! To our knowledge, the possibil
ity that Qs /d51/3 for the SK ground-state energy was fir
brought up by Palassini26 in his numerical studies. We ca
extend his analysis with our data; identifying as beforeL
with N1/d, we perform fits of the mean ground-state ene
to Eq. ~1!. We then findQs /d50.3460.02, in complete
compatibility with 1/3; note that when plotted as a functi
of N22/3, the data are very linear starting fromN550 ~see
the inset of Fig. 6!. In addition, if we perform the fit while
forcing Qs /d51/3, we find that the ground-state ener
density at N5` is e0520.763760.0002, in very good
agreement with the exact1 resulte0520.7633 . . . .

In contrast to what happens forQ f /d, Qs /d is thesame
in the SK model and in the fixed connectivity models w
have considered; this is illustrated in Fig. 6. For instance,
connectivity 6, a power-law fit givesQs /d50.3560.03
with x259.7 for seven degrees of freedom. In fact, the va
Qs /d51/3 works very well for all four connectivities we
studied, and we are tempted to consider that this value is
exact exponent. The same conclusion was reached
Boettcher.27

C. Edwards-Anderson models

Now it is time to compare the MK and mean-field ‘‘pre
dictions’’ to our measurements ofQs in the EA models. Let

FIG. 6. Mean ground-state energy density vsN22/3 for the di-
luted mean-field model with connectivity 6 and for the SK mod
~inset!. Error bars are included.
22440
s

o
n

-

le
-
-
o

y

r

e

he
by

us begin with the cased52. We fit our 4<L<10 data to Eq.
~1! where e0 , e1, and Qs are adjustable parameters; th
gives us the estimateQs520.3560.01. ~The associatedx2

is 1.9 for five degrees of freedom.! The resulting fit is dis-
played along with the data in the inset of Fig. 7. Given o
statistical error and perhaps more importantly the system
effects associated withL not being very large, this value i
reasonably compatible with the MK predictionQs5uDW
sinceuDW520.28.28–30

A further argument in favor ofQs5uDW is as follows. It
is known that whether one modifies the bounda
conditions31 or increases the size of the system,32 the fractal
dimension of the surface of the clusters of spins that cha
is approximately the same. It is thus likely that the same ty
of excitations are involved in determiningQs anduDW . As a
consequence, we believe that thed52 EA model is de-
scribed by a scaling theory withus5uDW , but also with
Q fÞuDW of course. Note that the mean-field predictio
(Qs52/3) is clearly off; however, one cannot appeal to me
field when d52 because one is below the lower critic
dimension.

Let us now move on to thed53 EA model which is more
challenging and has a spin-glass transition atTc.0. We use
the same fitting function@Eq. ~1!# as before; the best fit the
gives a goodx2 and a mean ground-state energy growing
21.700L311.9LQs with Qs50.1060.03. This fit is dis-
played in the main part of Fig. 7. However this value ofQs
easily changes by 0.1 when removing some of the d
points, and in fact the fit sometimes even leads to nega
values forQs . Thus at best we can say thatQs is small,
somewhere between 0.0 and 0.2. One can compare this r
to ‘‘theory.’’ The mean-field value (Qs51.0) is completely
ruled out, whereas the MK predictionQs5uDW is quite ac-
ceptable sinceuDW'0.2.23,24However, another possibility is
that the discrepancy we find has a physical origin and tha
fact QsÞuDW . Since this issue is important, we push t
analysis a bit further as follows. Given a putative value
Qs , we adjuste0 so that the plot ofEJ(L)2e0L3 vs LQs

passes through the origin. ForQs outside the range

l

FIG. 7. Mean ground-state energy density and the best fits
the d52 ~inset! andd53 EA spin glass with Gaussian coupling
We find Qs(d52)'20.35 andQs(d53)'0.1. These value are
‘‘close’’ to uDW , suggestingQs5uDW . Error bars are included.
4-7
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@0.05,0.2#, the data have visible curvature. In the inset
Fig. 8 we showEJ(L)2e0L3 as a function ofL; we see that
there is no clear trend, so evenQs50 seems possible. Suc
a value could be interpreted from the~mean-field-like! be-
havior of system-size excitations found in this model.33,34

The analogous analysis in thed52 case is shown in the
main part of Fig. 8 when we use the valueQs520.28; there
the expected corrections to scaling work quite well.

Of course, it would be useful to have a significan
smaller error bar forQs but we cannot go much beyond wh
we have done here: the statistical error onĒJ grows asLd/2,
and the amount of computation time grows still faster, so
cannot obtain useful information at largeL.

We have no data ford54, but let us briefly consider the
published work by Hartmann35 where he used theJi j 561
EA model. ~One expects itsQs to be the same as in th
Gaussian case.! Analyzing his values for the mean groun
state energy for 2<L<7, we findQs50.260.1; this does
not compare well with his estimateuDW50.6560.04. But, if
we remove theL52 point from the fit, we findQs50.7
60.2 which is in good agreement withQs5uDW . We have
also analyzed the data of Boettcher and Percus,36 and this
leads to the same conclusion. In summary, we cannot
clude thatQs,uDW , but the MK predictionQs5uDW works
surprisingly well in the finite-dimensional EA models. O
the contrary, the mean-field prediction is definitely off, a
that of the Mattis spin glass is completely wrong since
givesQs52`.

VII. CASE OF ¿ÕÀJ COUPLINGS

It is widely believed that exponents are universal, i.
independent of the detailed microscopic nature of the dis
der.~Note however that there are longstanding claims of u
versality violations in spin glasses.37! In particular, for the
d53 EA, numerical computations ofuDW confirm this to a
large extent: one hasuDW50.2160.02 for the Gaussian23

anduDW50.1960.02 for theJi j 56124 models. However, if
Tc50 as arises ind52, one may expect several universali
classes and thus some influence of the microscopic pro
ties~i.e., the distribution of theJi j ) on the macroscopic prop

FIG. 8. EJ(L)2e0L2 vs L20.28 ~main figure! andEJ(L)2e0L3

vs L ~inset! for the d52 (d53) EA spin glass with Gaussian cou
plings.
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erties ~e.g., exponents!. Note first thatuDW is known to be
different for Gaussian and binary (Ji j 561) couplings29 in
the d52 EA model.A posteriori, that is not so surprising
since the associated quantities~for instance domain-wall en
ergies! go to zero rather than to infinity; they can thus eas
be affected by microscopic details. This issue can be inv
tigated within the framework of MK lattices. We find ident
cal values ofuDW in the Gaussian and theJ561 cases
wheneveruDW.0. However ind52 and usingb5,52,
the Gaussian model givesuDW520.22; on the contrary, the
Ji j 561 case leads touDW52`, meaning that the domain
wall energies decrease exponentially with the size of the s
tem rather than as a power law. Thus either there is viola
of universality~which seems unlikely to us! or there are sev-
eral universality classes whenuDW<0; Amoruso et al.38

have recently given evidence in favor of the latter possibil
Given these amendments to the scope of universality,

microscopic details should indeed be irrelevant for quanti
associated withdivergingenergy scales. The surprising clai
we bring forward here is that this expectation is still to
strong: a counter example is provided byQ f in the mean-
field fixed connectivity graphs. Indeed, we saw in the case
Gaussian couplings thatQ f /d51/2. Now in Fig. 9 we show
the rescaled standard deviation ofEJ for the case whereJi j
561 on fixed connectivity graphs; the standard deviatio
have been divided byN1/4. If Q f /d51/2, we should see a
rapid divergence of the plotted values with increasingN, but
instead the curves are relatively flat and decreasing. In f
when performing fits, we find thatQ f /d is between 1/4 and
1/5.

To give further evidence that the Gaussian andJi j 561
cases scale differently, we plot in the inset of this figure
values of the skewness of the distribution ofEJ using the
same models and values ofN as in the main figure. Although
our data are noisy, the skewness shows no sign of goin
zero whenN→`. Taken at face value, this means that t
distribution ofEJ is not Gaussian in the largeN limit when
Ji j 561, in sharp contrast to what happens in the case
Gaussian couplings. To drive this point home further, we fi
that asz increases, the skewness and kurtosis grow in m
nitude and seem to approach the values we find in the

FIG. 9. Standard deviation ofEJ divided by N1/4 for the z53
and 6 fixed connectivity models, but with binary couplings,Ji j

561. Inset: skewness of the distribution of the ground-state
ergy for these same two models.
4-8
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~But as before, our values become imprecise at largeN.! We
thus conjecture that eachz is associated with a different un
versality class and that, asz→`, one converges to the clas
to which the SK model belongs. One way to justify this is
consider that in these modelsz is related to dimension rathe
than to lattice connectivity; the universality class will the
change withz. To a large extent, all different trends giv
further credence to the claim thatQ f /d51/4 in the SK
model if that is the correct value for the fixed connectiv
models with binary couplings.

How can one understand this ‘‘breakdown’’ of universa
ity when the underlying energies diverge? Recall that for
Ji j 561 spin-glass model on a fixed connectivity graph, t
local environment of a spin has no disorder out to fin
distances: any sign of theJi j can be gauged away so that a
the sample-dependent fluctuations arise ‘‘at infinity.’’ On t
contrary, in the Gaussian case theJi j fluctuations are local,
leading toO(N1/2) fluctuations in the total energy. Taken
face value, this argument also applies tocoordinationfluc-
tuations; if this is true, the61 Viana-Bray model39 will have
Q f5d/2.

To summarize, the exponentQ f depends on the details o
the underlyingJi j distribution even though the energy sca
~of fluctuations! diverges. Not surprisingly, we also find th
PN(EJ) for that system does not become Gaussian. Fina
in spite of this major change of behavior when going fro
GaussianJi j to binary values, we find thatQs /d51/3 very
precisely in both cases.

VIII. DISCUSSION AND CONCLUSION

Let us go over the main results of the present work
spin glasses. First, the sample-to-sample fluctuations of
ground-state energy grow as the square root of the volum
almost all models so the fluctuation exponent satisfiesQ f
5d/2. Furthermore, the distribution over disorder of t
ground-state energy probably tends towards a Gaussia
the large volume limit as suggested by Wehr a
Aizenman.11 There are two notable exceptions to this pictu
the SK model and the fixed connectivity mean-field mod
having Ji j 561. In those two cases, the sample-to-sam
fluctuations are much smaller, and we findQ f'd/4, even
though a still smaller value cannot be excluded.~Note that
fluctuations that are smaller than the square root of the
umeN are also a characteristic of the directed polymer i
random medium.! On the other hand, for finite-dimension
lattices, one expects the finite density of unfrustrated regi
to contributeO(N1/2) fluctuations to the ground-state energ
A trivial example where this is the case is the~unfrustrated!
Mattis model; there the variance of the ground-state ene
is obviously maximal and equal tozN@^J2&2^J&2#/2 for a
connectivityz.

We also studied the exponentQs giving the corrections to
the scaling of the average~extensive! ground-state energy
For the d52 and 3 EA models, we find that the equali
Qs5uDW holds within our limited precision. This means th
corrections to scaling are associated with domain wa
However, we were not able to rule outQs50 in d53, leav-
ing the door open to other interpretations. In the contex
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the MK lattices, the equalityQs5uDW holds exactly. Physi-
cally, this equality corresponds to the fact that in a fin
fraction of the samples, the boundary conditions force
domain-wall ‘‘defect’’ to be present in the ground stat
~Note that the finite-size corrections are indeed always p
tive for fixed and periodic boundary conditions!. Further-
more, we were able to computeuDW analytically to order 1/b
when the dimension becomes large. In the case of the m
field models~SK or diluted graphs!, the situation is quite
different: the corrections to scaling grow asN1/3. Since one
expects uDW;d/2 in large dimensions, the resultQs /d
51/3 for these mean-field models differs from the large
mension limit ofuDW /d.

Finally, we have exhibited examples where the expon
Q f depends on the distribution of theJi j , even though en-
ergy fluctuations diverge with size, i.e.,Q f.0.

Our work suggests several paths for further studies.~a!
Can one establish the value ofQ f /d for the SK model?~b!
Since large fluctuations of orderN1/2 are detrimental in a
numerical determination of the average ground-state ene
is there a way to subtract a~computable! contribution of
satisfied bonds so as to reduce the variance?~c! Is Qs
5uDW in finite-dimensional spin glasses or isQs smaller?
This second possibility could follow from other types of e
citations whose exponents are smaller thanuDW .
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APPENDIX: EXPONENTS IN THE MIGDAL-KADANOFF
LATTICES AND THE LARGE

DIMENSIONAL LIMIT

In this appendix, we focus on the simplest case,52. To
write a recursion relation, one needs to keep track of t
energies,Ep

(r ) and Ea
(r ) that give the ground-state energy

the MK lattice at ther th application of the recursion whe
the two exterior spins are, respectively, parallel and antip
allel. For ab-branch lattice with,52, the ground-state en
ergies at the (r 11)th application of the recursion read

Ep
(r 11)5 (

a51

b

min@Ep
(r )~1,a!1Ep

(r )~2,a!,Ea
(r )~1,a!

1Ea
(r )~2,a!# ~A1!

Ea
(r 11)5 (

a51

b

min@Ep
(r )~1,a!1Ea

(r )~2,a!,Ea
(r )~1,a!

1Ep
(r )~2,a!# ~A2!
4-9
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where indices 1,2 refer to the two bonds in the, direction.
This equation shows that along all theb branches, one has t
choose the orientation of the middle spin~that is decimated!
such that the energy contribution is minimized, given t
orientations of the external spins. Note that all the rand
variables that appear in this equation are independent as
as they live on different bonds.

If one assumes that the distributionP(r )(Ep ,Ea) of ener-
gies at ther th generation can be written for larger in the
scaling form

P(r )~Ep ,Ea!51/s r
2f ~@Ep2Er #/s r ,@Ea2Er #/s r !,

~A3!

then it is immediate to show~using the independence of th
branches! that Er 115(2b)Er and s r 115A2bs r , so thatEr
;(2b) r ands r;(2b) r /2. Since the number of spins is give
by (2b) r , one immediately finds that the ground-state ene
is extensive and that the fluctuations are described
Q f /d51/2.

Define D (r ) as Ep
(r )2Ea

(r ) . It is easy to show thatD (r )

obeys an autonomous recursion relation:13

D (r 11)5 (
a51

b

e~a!min@ uD (r )~1,a!u,uD (r )~2,a!u#, ~A4!

wherea labels branches and

e~a!52sgn@D~1,a!#sgn@D~2,a!#. ~A5!

Using the independence of theD ’s corresponding to differen
branches, one finds thatS r , the RMS of the distribution of
the D ’s, obeys the following equation:

S r 11
2 54bS r

2E
0

`

dxg~x!F E
0

x

dyy2g~y!1x2E
x

`

dyg~y!G ,
~A6!

whereg(.) is the distribution ofD/S that is independent ofr
for large r. From this relation, one finds thatS r;l r with
ics

y
rn

22440
e

on

y
y

l254bE
0

`

dxg~x!F E
0

x

dyy2g~y!1x2E
x

`

dyg~y!G ,
~A7!

where of courseg(.) depends onb. The energy scale for
flipping the relative sign of the exterior spins isS and so the
exponentuDW is given by

uDW5
ln l

ln 2
. ~A8!

In the large dimension limit, for whichb→`, it is clear that,
using the central limit theorem, the distribution ofD is
Gaussian. Sinceg(.) is then known,l can be computed from
Eq. ~A7!, giving

l250.363 38b, ~A9!

a result first obtained by Southern and Young.
Whenb is large but not infinite, the first correction to th

Gaussian is of order 1/b ~because theD have a symmetric
distribution! and reads

g~x!5
1

A2p
F11

k

24b

]4

]x4
1•••Ge2x2/2, ~A10!

where k is the kurtosis of the initial variable, i.e.
emin@uD(1)u,uD(2)u#. To first order in 1/b, this kurtosis can be
computed by assuming that theD are Gaussian, and on
finds k50.434 215. Injecting the expression ofg(x) in Eq.
~A7! then givesl to order 1/b: l250.363 38b20.023 035,
and finally the result given in the main text after Eq.~8!.

This calculation can be extended to next order:k will
acquire a 1/b contribution and there will be corrections t
g(x) of order 1/b2 coming from the nonzero sixth cumulan
of emin@uD(1)u,uD(2)u#, computed as if theD ’s were Gaussian.
One could also, with more work, computel for ,Þ2. In the
limit ,→`, the problem becomes soluble again using
theory of extreme value statistics for handling the varia
min@uD(1)u,uD(2)u, . . . ,uD(,)u#.
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