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We study the probability distributioR(E) of the ground-state enerdy in various Ising spin glasses. In
most modelsP(E) seems to become Gaussian with a variance growing as the system’s WallEreeptions
include the Sherrington-Kirkpatrick modekhere the variance grows more slowly, perhaps as the square root
of the volume, and mean-field diluted spin glasses having couplings. We also find that the corrections to
the extensive part of the disorder averaged energy grow as a power of the system size; for finite-dimensional
lattices, this exponent is equal, within numerical precision, to the domain-wall expépgntWe also show
how a systematic expansion 6f,, in powers ofe” ¢ can be obtained for Migdal-Kadanoff lattices. Some
physical arguments are given to rationalize our findings.
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. INTRODUCTION E,(L)/L9=ep+e,L "+ - )

Exponents and corrections to scaling play a central role imnd sow=d— 0.
disordered systems. Consider for instance the dependence of We will also look at the width ofPy which gives the
thermodynamic quantities on the sizeof a system when scalingof the instance-to-instance fluctuations:
L—oo. In paramagnetic systems, correlations are short range
and thus bulk properties converge rapidly to their thermody- [E§(L)— E,(L) 2] Yoz grgLO1 - . 3
namic limits. On the contrary, in systems such as spin glasses
belowT., correlations are long range and so finite size corwhere @ is the fluctuation exponent. Naturally, one may
rections are “large.” In practice, that means that even if oneextend these types of expansions to any cumulampf a
takes periodic boundary conditions, the disorder average afentral question being wheth@&y has a limiting shape as
an intensive quantity converges to its thermodynamic limitN—o. One motivation for this is the fact that the ground-
slowly: finite-size corrections go to zero as an inverse powestate energy is an extreme statistic: there dfec@nfigura-
of L. This slow convergence is to be contrasted with parations of spins §= +1) and one is interested in that of mini-
magnetic systems where finite-size corrections in disordemum energy.(Note that these "2 random energies are
averages are exponentially small. One can also consider tlwrrelated. Little is known about such statistics except in a
sample-to-sample fluctuations of thermodynamic quantitiesfew solvable case$? The purpose of this work is to deter-
These fluctuations scale in the thermodynamic limit; an in-mine Py (E;) numerically for a variety of spin-glass models.
teresting open question is their limiting distribution, if any. From our measurements we extr&f, ©;, etc, and com-

In this work we consider these issues in the context opare these results to theory.
Ising spin glassés at zero temperature and focus on the  The outline of this paper is as follows. We first consider
ground-state energy. Given a distribution of disorder realizaexpectations arising from analogies with other systems as
tions (each being represented By, the extensive ground- well as some known results. In Sec. Il we describe the dif-
state energyE; is a random variable. We denote bythe ferent types of spin glasses used in this study. Then we give
number of spins in the syste{=L¢ for a d-dimensional in Sec. IV our estimates of the fluctuation expon®nt This
hypercubic lattice. We are interested in the probability distri-is followed by a study of the probability distribution of the
bution Py(E;) and in how the connected momeritsimu-  ground-state energy in Sec. V; for most models we find that
lantg of this distribution depend oN (or L). Denoting dis- it becomes Gaussian in the large system-size limit. Then in

order averages by an overbar, we have Sec. VI we present our results for the shift expon®gt For
all of these studies, we compare talimensional case to
Ej(L)=eoLd+e Lo+ ... ) the theoretical predictions. In Sec. VII we show that these

exponents sometimes depend on the distribution of the dis-
In this expression@ is what we call the shift exponent. To order variablegthe spin-spin couplingsFinally in Sec. VIII
leading order, the energy scales with the volume, while  we discuss and conclude this work. Some details of the ana-
gives the leadingorrectionto scaling. The justification for lytic computations are given in the Appendix.
this notation will become clear later; in the mean time, we
sfhould compare to the us_ual nota_tion invol_ving the correc- Il. CLUES FROM THEORY
tion to scaling exponenb; indeed, in the spin-glass phase,
finite-size corrections ofintensive quantities decay as a What values should be expected for the two exponénts
power ofL.: and ©;? Suppose we start with the random energy mdel
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(REM) as a guide. Its ground-state eneigy has a Gumbel
distribution in the largeN limit® with a variance ofO(1).
Also, the disorder averaged ground-state energy grows a
goN+O(InN) at largeN. These properties show th&,  —  ~ -
=0:=0 and thus in the REM finite size corrections are
“small,” though clearly much larger than in a paramagnetic
system.
Another model that can guide us is the directed polymer FIG. 1. Construction of a@=2 MK hierarchical lattice.
in a random medium{(DPRM).” The problem on a tree is
very similar to the REM, although subtle differences apfear. Hamiltonian for these models is
The two-dimensional cas@vith one space and one “time”
dimension can also be solved in much detail. In these cases,
perhaps surprisingly, single exponentd describes the scal- H=— <.EJ> JiSS, 4)
ing of threea priori unrelated quantitied1) the corrections
to scaling of the disorder averaged ground-state enBsgy where S;=+1 and theJ;; are quenched Gaussian random
(2) the size of sample-to-sample fluctuationskf; (3) the  variables of zero mean and variancéekcept in the case of
typical excitation energy of the lowest “system-size” excita- the Sherrington-Kirkpatrick model which we discuss later
tion, which is an excitation that is maCfOSCOpica”y diﬁerentThe sum 2(”} is over nearest_neighbor spins on a given
from the ground state. These properties lead to the remarkgranh having nodes; the different models we consider vary
able relation®S=®f=_0. The DPRM is thus described by a simply by the nature of that graph.
“one-parameter” scaling theory. . . Our first family of models are of the Edwards-Anderson
It is plausible that an extension of the DPRM scaling g a) typel? the graphs are square or cubic lattices of linear
theory may apply to Ising spin glasses. At the heart of such izeL (thusN=L% when the dimension id), and the edges

theory, initiated by McMillarf developed by Bray and iahb - K iodic bound
Mooré® and extended by Fisher and HUSgs the exponent CONNECt nearest neighbors only; we take periodic boundary
conditions in all directions.

. This exponent is anal f the DPRM, an i .
fow . This exponent is analogous to tHef the , and Our second family of models comes from the Migdal-

ives the scaling of domain wall energiesg,~=YL%w;
g g nw 9'%5pw Kadanoff (MK) approacl® where one performs a bond-

numerical estimates givédp,=~0.20 in d=3 and 6py ; . :
~—0.28 ind=2. (More generally, a number of othet ~ MOViNg real-space renormalization group. This procedure ef-

exponents have been introduced for spin glasses; they are #jctively amounts to computing quantities on hierarchical
associated witrexcitation energies; this is to be contrasted (MK) lattices defined by an iteration procesee Fig. 1
with our ® exponents that are associated wgttound-state The iteration takes one borithat is an edge of the current
energies. If we follow the correspondence with the DPRM, draph into b paths, each made of two segmeitsat is
we expect that® = 6, justifying our use of a “theta” edges, if r is the iteration numbetbeginning withr=0),
notation for®. Physically, this equality corresponds to the the “linear” lattice sizeL grows as 2 and the volumeac-
fact that these systems are sensitive to boundary condition84ally the number of edges and thus the number of terms
for some samples, these conditions are such that a “domaifontributing to the energygrows as (®)". When using¢
wall” must be present in the ground state. However the analsegments instead of 2 in each path, we have

ogy with the DPRM certainly breaks down f@r;: for any o ,

short-range spin glass in dimensidnWehr and Aizenman L=¢" and N=({b) ®)
proved that®;=d/2. This shows that the REM and the g4 that the dimension B=In N/In L=1+In b/ln ¢. The usual
DPRM are not good guides for finite-dimensional spin -hice to obtaind=3 is =2 and b=4, while {=b=2

glasses. o _ n _ corresponds tal=2 as in Fig. 1.
To have more realistic theoretical predictions, and in par- o ; third family of models comes from mean field, and

ticular to preservéd=d/2, it seems necessary to work With pare \we have considered two types of graphs. First, we use
models having a microscopic Hamiltonian defined over con-

. - . k . -“l'complete graphs where all vertices are connected, corre-
figurations ofN spins. One approach is to use h|erarch|calsponding to the Sherrington-KirkpatriglsK) model* To

(Migdal-Kadanofj Iattice_s; there analytical com_putations aS have an extensive energy, one takes the variance df the
well as powerful numerical methods are possible. We shall., 1N second. we also use diluted models for wHich the
also consider mean-field spin glasses where spins arg,nnectivity is fixed and identical for all the vertices of the
coupled amongst one another at random so there is N0 georyz, )h15 The disorder ensemble then consists of the uniform
etry to speak of. Th®\(E,) in such models can be referred gisyripution over all graphs satisfying that constraint in addi-
to as the mean-field prediction. Strangely enough, little is;on to the disorder ensemble in tdg . Such an ensemble

known about these systems so we will have to determin@,, pe used to “model” the Euclidean case by setting the
ordination to that of the lattice of interest. Thus to model

their behavior numerically. In some cases these models le
to surprises as we shall soon see. the d-dimensional EA model on the hypercubic lattice, we
set the coordination to®
For these three families of spin-glass models, we will de-
We focus on three families of Ising spin-glass models sdermine the distribution of the ground-state energies. The hi-
that the effects of geometry and dimension are apparent. Therarchical lattices allow one to write a recursion Ry(E;);

IIl. MODELS AND METHODS
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because of that, there is no needstonplethe disorder vari- E2/ND) — E NN 2112 Oid, ..

ables, we can perform the disorder gverage exactly. On the [E5(N)=Ey(N) ] oNTIT - ©
contrary, for the EA and the mean-field cases, we must conifhe issue here is whether mean field also preditdd
pute the actual ground-state energies for a large number ef 1/2 as it should if one believes that this approach correctly
disorder samples. For that we rely on a previously téSted describes the large dimensional limit of real spin glasses. To
algorithmic procedure where given enough computational refind out, we have performed ground-state computations on
sources, the ground state is obtained with a very high probhoysands of samples of the SK model and of fixed connec-

ability for both Euclidean lattices and for random graphs asjyity spin glasses, and have extracted for each ensemble its
long asN is not too large. For our runs, we used Severalassociate(ﬁf/d.

months of CPU time on Pentium Il personal computers run- First. consider the fixed connectivit : :

. ; . , , y spin glasses with the
E:ng iagggcgmf_(')zr. I\é\t/tlgtcr:]etshlcs)f irigggnfj oftoczF;l(J),(;/r\]/ebg?gagned connectivitiesz=3,4,6, and 10. To estima®®;/d, we de-
:% andd=3) and for mean field raphs Witk Ub to 300 termine when the root-mean-squdRMS) deviation of the

grap P " ground-state energy divided iy 1/® becomes flat as a func-

IV. SAMPLE-TO-SAMPLE FLUCTUATIONS tion of N. (OUF runs were performed for SON<300.) This
AND THE EXPONENT O leads to®;/d~0.5 for z=3, ®;/d~0.49 forz=4, O/d
_ ) ~0.48 forz=6, and®;/d~0.44 forz=10. The drift we

A. Migdal-Kadanoff lattices observe in@;/d is most probably an artifact of our proce-

Let us begin with the Migdal-Kadanoff approach for dure, and simply corresponds to the fact that the corrections
which the important predictio®;=d/2 can be derived. To to the scaling in Eq(6) are important in our data, especially
understand how this relation comes about on the hierarchicalt largez. To get better estimates 6¥; /d, we would need to
lattices, we construct these by “aggregation,” i.e., by recur-control these corrections to scaling but our data are not suf-
sively (and hierarchicallyjoining sublattices togethe(This ficiently precise for that. Nevertheless, it seems very plau-
procedure is to be distinguished from the top-down iteratiorsible that®/d=0.5 in all the fixed connectivity models. In
used in Fig. 1. We work with the distribution of ground-state direct analogy to what was stated previously, we can also say
energiesk, (E,) subject to fixed boundary conditions, the that this result sustains the belief that mean-field models pro-
spins on the ends of the lattice being forced to be parallelige a useful guide to redfinite dimensional spin glasses.
(respectively antiparallel.Let o” be the variance of the | et us now continue and consider the limit of infinite
ground-state energy at some level of the hierarchical CONconnectivity, i.e., the SK model. Since there &EN?) terms
struction. To go to the next level for whidhwill be € times  contributing to the Hamiltonian, a very simple minded guess
larger, first find the ground-state energy in one oflihgaths.  would give®/d=1 and thus larger fluctuations than in the
Clearly, if we take the ground-state configuration in each ofpther models. However the opposite happens, revealing that
the segments of that path, we will have built the ground statgnhe scaling in the SK is quite subtle. One can get some clues
for unconstrainedend spins. If the result does not give the from Kondor’s analytic study performed just below the
imposed values for the end spisarallel or antiparallel  critical temperatureT,. In particular, his results have been
one must add a “correction” term equal to the 5ma||e$tinterpreted by Crisantet al'® who argued that thdree-
domain-wall energy of thé segments of that path. Thus the energyfluctuations should scale &6, which is very small
energy of one path is the sum of the ground state energies @bmpared to the riee estimate. A different estimate was
the £ segments, plus one domain-wall energy half of therecently proposed by Aspelmeiet al'® who argued that
time. Second, we add up tfredependentontributions from  free-energy fluctuations should scale &% Our concern
the b different paths, leading t&, andE, at the new level. pere s the ground-state energy; although there are no ana-
The ground-state energy is then simply rBinE.). If we |ytical calculations, it is plausible that the exponent for en-
neglect the “correction” term, thew? at this new level is ergy fluctuations aff=0 is the same as at that for free-
just£b times larger than at the previous level. At lalgghe  energy fluctuations at9T<T,. (Such an extrapolation to
correction is in fact small and so it can be neglected. Fromr=q is known to apply to the DPRM where the exponent of
one level to the next, the volume grows by a fadtbr just  the free-energy fluctuations at>0 is equal to that of the
aso? does, so the varianceligear in the lattice volume and ground-state energy fluctuationdn that case, we would
thUS®f:d/2. From our numerical Study of these hierarchi- have®f/d: 1/6 according to some authors aﬁkj/d:l/ﬁ]_
cal lattices, we find that this relation holds also for snimll according to others.

and for both¢ =2 and{¢=3. (We did not test for largef.) What do the numerical estimates tell us about this ques-
As mentioned in the Introduction, the Wehr-Aizenmantion? We are aware of a study by Cabasieial?® who
theorent* shows that®¢=d/2 in finite-dimensional spin showed beyond any reasonable doubt @hatd<0.5; in fact
glasses. It is rather comforting that the MK approach alsgneir best fit givesd; /d~0.28. When we consider our data,
leads to this result, sustaining the belief that it is a usefunotivated by Eq(6), we find that the ratio of the left- and
guide for real(finite dimensional spin glasses. right-hand sides is compatible with a constant when we use
0;~0.25 and 46&N=<150, but the two points al=200
and 300 are then below the others as shown in Fig. 2. It is
Next, consider the mean-field prediction fér;. Since difficult to extract an error bar on the value of this exponent,
there is no geometry in our mean field family of models, weand most likely the terms dropped in E@) are important
identify L with N¥ and thus just as was the case in the fixed connectivity models. In fact,

B. Mean-field models
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' ; ' ; ' lations however, this has to be considered as only very indi-
rect evidence in favor 0®;/d=1/6.

0.6 } { 1 1 We conclude that understanding the nontrivial size depen-
{ { } dence of the fluctuations of the ground-state energy in the SK
{ model remains quite a challenge. Let us propose here a

0.95 P ' simple argument suggesting thét;/d=1/4. Imagine that

| ool I P | one ghanges slowly all the coupllingﬁzJﬁll\/N: =3

0.575 | By 1 + 6355, where the order of magnitude éf;; is denoted by
: e. If ¢ is infinitesimal, the ground state remains the same.

0.85 1 i Up to what value ofe will this be true? The change of

s £ local-field induced by the change of couplings for a fixed

configuration{S}} of the spins is of ordei;sJ;S /N
0.55 : : ~¢. Using the fact that the local field distribution vanishes
002 003 004 005 006 007  0.08 linearly for small fields in the SK model, it is easy to show
1/IN?B that the smallest local field is dD(1/\/N). Therefore, the
FIG. 2. Scaled RMS deviation of the around-state enerav in thefirst value ofe that will trigger a change of the ground state
SK model. ;Z‘;aye i as Z"'ﬁj 'nocrt‘ic‘)’n Ne_%s_ Ve fqure, ng’/lls is &* ~1/JN. Flipping the spin with this low local field
divided byNY*: inset, RMS divided byN™®. should lead to a cascade of flips _thf‘;}t lowers _the :angrgy and
thus to a new ground state that is “substantially” different
- . _from the starting one. Furthermore, the variation in the
here the difficulty is even more acute as the standard dev'aground-state energy when going froe=0 to e=g* is
t!on increases only Very slowly with. Neverthele;s, Ietzus probably O(1); indeed, there are excited states of energy
fit the standard deviation to pure power, then using & O(1) above the ground state, and one therefore expects level

analysis we obtai®;/d=0.24+0.005 which is very close . N . .
to the conjectured 1/4 value, a result further supported bfrzgsvsvlﬁgfé tgi;::iztt[i(\;vnhi%g'i/\/oﬁr{elzr;neaellnglordS;i;% iﬁin
ij > .

other numerical work® Note however that throughout this th d-state will ch A/ NOS fi Sin
paper, the error bars given are statistical only. In our fit, ther ange, the ground-state witl changes Imes. ce
are seven degrees of freedom and the resujgfrg.5 is not etween each level crossing, the ground-state energy ran-
. - o P ly changes by an amou@X(1), thetotal expected fluc-
neverthel a critical examination of the figure lead§°™ P
bad; nevertheless, 9 uation of the ground-state energy will (N, so that

one to conclude that the actual uncertainty@g/d is cer- - i . )
tainly much greater than 0.005. Note that this estimate is e@f/q_lm.' More analytlcal work is obviously needed to
confirm this speculative result, but note that at the heart of

tk;gnlgvg‘\?vra??rtotrzat?leoifnejg Ctzuor@afr}?j le;rganl_)( Oﬁgcg?rg \?Viwabur argument lies the fact that the ground-state of the SK

impose ®;/d=1/6, the data are reasonably straight as a{nOdEI is_ particqlarly‘ragile: a relative c_hange of order {N
function of N~23 as shown in the inset of Fig. 2. Because of of the disorder is enough to substantially change the ground

this “good” behavior, we cannot rule o /d=1/6. state.
Given that in the dilute spin glasses we expéxt/d
=0.5, how does one recover the SK caseg-asc? Begin by
recalling that, in the SK model, the variance of the is In the case of the finite-dimensional lattices, we know that
taken to be M to ensure that the ground-state energy is®¢=d/2 holds exactly because of the Wehr-Aizenman
extensive. To maintain this property in the diluted spintheorem!! and recently Aspelmeier and Modfefound that
glasses, we must divide thk; by Jz. The fluctuations for this relation holds within replica theory. In spite of these
largeN andz in these modified spin glasses scale as theoretical results, it is instructive to see how this equality
transpires numerically. We thus follow the procedure used in
—— ——2.p 6. /d the fixed connectivity models where we tested for when the
[E5(N) —Ey(N) ]7*=00(2)N"T Nz+ .- (@) rescaled RMS became size independentdn3, the res-
caled data show no obvious trend when ¥&49;<1.60,
with ®+/d=1/2 from what we saw previously. The SK limit while ind=2 the corresponding range is 18®;<1.02. In
corresponds to setting=N, so we see that smooth larhe  particular, in Fig. 3 we show these ratios whén is set to
andz limits requireoo(z)=z", wherepu is equal to the SK  d/2 (the data displayed are from the models with Gaussian
value of®;/d. We saw that it was difficult to obtai®/d in  J;;s)
the fixed connectivity models, but obtaining the prefactor In principle, it would be interesting to find tterrections
oo(z) is even more difficult. Nevertheless, we have extrapo+to this scaling law. In a renormalization-group picture, cor-
lated our data for the root-mean-square deviation divided byections go as inverse powers lof Furthermore, if one be-
N%Sin the different finite connectivity models. This leads to lieves that the exponerd gives the leading corrections to
the estimatesry(z=3)~0.67, 0¢(z=4)~0.70, 0y(z=6) scaling forall extensive quantities, then those for the vari-
~0.73, andoy(z=10)~0.76. This growth is very slow; itis ance ofE; should go as.®s. To consider this possibility, we
compatible with the valuge=1/6 but much less with the set®;=d/2 and then ask when our data for the rescaled
value n=0.25. Given the large uncertainties in our extrapo-RMS follow approximately a straight line when plotted as a

0 0.02 0.04 0.06 0.08

C. Edwards-Anderson models
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FIG. 3. Standard deviation of the ground-state energy divided by FIG. 4. Skewness of the ground-state energy distribution for
the square root of the volume for the EA modelda-2 and 3, mean field and EA models with Gaussidfs.
Gaussiany;;s.

®;=d/6 was also possible; no matter whét;=d/2 is ex-
function of L~ “ with the expectation thab=d—04. Ind cluded, showing that thid— o andd— < limits do not com-
=3, we findo=1.5, to be compared with the “theoretical” mute. In all other cases, the variance of the ground-state
valuew~2.8(cf. Sec. V). Since® is small and may in fact energy grows linearly with the system’s volume; this is the
be zero, we have performed the analysisdor 3; using the  scaling expected from a central limit theorem behavior when
intercept of the curve with thg axis, we find that the RMS the different terms contributing to the ground-state energy
of E; grows as 0.765%2 In d=2, the rescaled data are too are independent. Our results thus tell us that these terms are
flat and so in practice we cannot give any sensible estimatenly weaklycorrelated. This feature is completely missed by
of w. But we can follow thed=3 procedure, setting this both the REM and the DPRM; although a one-parameter
time w=2 (O is also relatively close to zero ith=2); the  scaling picture applies to those two models, it cannot apply
corresponding fits give that the RMS Bf; grows as 0.725. to spin glasses. Note that this central limit behavior suggests
This leads one to conclude that corrections to scaling are ithatPy(E;) tends to a Gaussian; we now turn to see whether
general very difficult to determine, even if the leading scal-this is the case.
ing law is known exactly. Nevertheless, it seems that the
samew may very well describe the dominant corrections to
scaling of many observables, as expected from the
renormalization-group picture.

To put these last numbers in perspective, consider the If the central limit theorem(CLT) were applicable, not
Mattis model where the couplings are gauge transformeadnly would we have®;=d/2 for the scaling of the fluctua-
from a ferromagnet having; chosen randomly on the posi- tions, but also the shape &f(E;) would become Gaussian
tive side of a Gaussian. The total ground-state energy of sucht largeL. This behavior indeed arises for the MK lattices,
a system is the sum of all these couplings and thus has thsoth analytically at largé and numerically for alb. [In our
expectation valugN2/7 on the hypercubic lattice of di- numerical study, we find that the skewness and kurtosis
mensiond. On the other hand, its variancediN(1—2/7). Pn(E;) decrease fast towards zero lagrows] Obviously,
Thus in this Mattis model, the RMS of the ground-state en-the terms contributing to the ground-state energy are not in-
ergy grows as 1.04%2in d=3, and as 0.892in d=2. As  dependent but their correlations are not strong enough to
expected, the Mattis model has larger absolute fluctuationgrevent a CLT large. scaling.
than the EA model. It is also appropriate to compare the The question we address here is whether this simple be-
relative fluctuationso, , which is the RMS of the ground- havior also holds in the other models. Let us begin with the
state energy divided by its mean. For the Mattis model, wemean-field case. For the fixed connectivity mean-field
find o,=0.434L%?in d=3 ando,=0.534L ind=2. These graphs, our data for the skewness and kurtosi® gfE,)
should be compared to the values we find in the EA modeldecrease in magnitude akincreases; this decrease is com-
0,=0.450L%? in d=3 and 0,=0.551L in d=2. This patible with an extrapolation to zero &s— as illustrated
shows that the relative fluctuations are sligtgtgallerin the  in Fig. 4.[These quantities are difficult to measure to high
Mattis model than in the EA model. Although this is in line precision, so this should be considered as only suggestive of
with what frustration should do, note that the size of thea Gaussian limit forP\(E;).] The SK model however is
effect is about 3% which is very very small. clearly in a different class: not only does it ha@e+ d/2 but

To summarize our study @, for the different spin-glass also itsPy(E;) is not Gaussian. In particular, its skewness at
models, we have found that all the models considered seefarge N stabilizes around-0.43+0.02, while its kurtosis
to satisfy®;=d/2. The notable exception is the SK model stabilizes around 0.490.03. It is instructive to compare this
for which we made the case thét;=d/4 was likely but to the values predicted by the REM model whéX;) is a

V. PROBABILITY DISTRIBUTION
OF GROUND-STATE ENERGIES
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Gumbel distribution: there the skewness-4.139 while the 0 g
kurtosis is exactly 2.4. Our estimates do not agree either with
the values from the Fisher or Weibull universality classes: we -0.0005 ~.
thus conclude that the SK ground-state energy distribution 0.001 | ]3
does not belong to one of the known universality classes of m.
extreme statistic$. o -0.0015 |

Finally we come to the EA lattices. Given that the MK <« m
and diluted mean-field graphs lead to the same conclusion, it -0.002
will come as no surprise that our data for the EA lattices are
also compatible with a Gaussian limiting shape Ry(E;). -0.0025 ¢
Note that this is expected though not proven from the work 0.003 - 1
of Wehr and Aizenmar while it does follow from replica ’ . . . . . g
theory calculation$? An examination of the skewness and 0 001 002 003 004 005 006 007
kurtosis of Py(E;) shows that they decay with system size, 15

both ind=2 and ind= 3. Although our measurements lack

precision when the number of spins is large, the extrapola- FIG. 5. Difference betweefip,y and the first three terms in the
tions suggest zero limiting values bs- as one can see in Series of Eq(8) as a function of 1? whereb is the parameter of
Fig. 4. Perhaps it is also worth noting that our dataquran-  the Migdal-Kadanoff lattices. The line is 0.045b.

titatively similar in the different models; for instance, for

=8 andd=3 with binary couplings, we find the skewness to forming fits to moments oP(E, ,E,) (determined with no

be —0.18 in EA and—0.21 in MK. _ _ statistical error for these hierarchical lattigé®m which we
The overall situation indicates th&y(E,) is Gaussian. extracted estimates @ and py .

Furthermore we checked whgther the convergence to this \yhenb is large, we can derive the analytical expression
Gaussian follows the central limit theorem law. Indeed, that, oy ONn these MK lattices.

law predicts for instance _that the skewness scaIeN‘ef_éz; P(E,,E,) becomes Gaussian and so one can perform a cu-
thus we have plotted in Fig. 4 the skewness for the differen,, ;1ant expansion about this Gaussian, leading tobaset

models as a function of that scale. The data are completely.q This scheme extends the work of Southern and Young

compatible with dinear convergence to zero, confirming the who assumed tha(E,, ,E,) was Gaussian even for finite

CLT scaling. Only in the case of the SK model are the vari-r generall andb we obtain

ables contributing to the ground-state energy sufficiently cor-

related to prevent a central limit theorem behavior. A physi-

cal interpretation of this is that as soon as there is a kind of

locality that allows one to decompose the sample into quasi- Opw(€,b)= 9+a (@)Jral(f) 0

independent subsystems, the central limit theorem behavior pwWh™ 2 b

will appear, leading t®;=d/2 and a GaussiaRy(E;). Of

course, it is not clear why this should apply to the diluted

mean-field graphs. When¢=2, we findag=—1.2302 anda; = —0.04573(see
the Appendix for a derivation In Fig. 5 we plot the differ-
ence between the numerically obtaingg, (¢ =2,b) and the

Indeed, in this limit,

1
b2

. (8

VI. THE SHIFT EXPONENT O, terms of the expansion given in E(B). This allows us to
. ) determine numerically the next term of the expansion, and
A. Migdal-Kadanoff lattices we find —0.045+-0.001b2. This value could be obtained

We now move on and study the finite-size corrections tcanalytically, but we have not pushed the analytical calcula-
the mean energy density. Following Eg. 1, the mean exced#n to that order. Note that theld xpansion corresponds to
of the (extensive ground-state energy is expected to scale agin expansion i~ whered is the dimension of space. This
L%. To have an idea of what this exponent should be, it igustifies the fact that the ti/expansion is quite accurate all
again most useful to begin with the hierarchical lattices. Thehe way down tal=3 (which corresponds tb=4). Finally,
important prediction of that approach is tf&t= 65, where ~ when £ —«, we obtainay=3/2. These results show that
Opw is the domain-wall exponent. To see why this is s0,0s=0pw<Og, justifying the neglect of the “correction”
reconsider the evolution equation for the energigandE,  terms in section IV A from which we concluded théx;
as one applies the recursion. First, along a given path, the d/2.
energy is the sum of the ground-state energies of each of its Before going on to the mean-field case, let us remark that
€ segments, the sum being sometimes corrected by the ethe MK value for 6y is quite close the actual value in the
ergy of the domain wall of the weakest segment in order tdEA model. If we use the standard choice b+ 3, € =2 with
satisfy the boundary conditions. This correction shifts theb=4, the MK prediction isfp~0.255. One can also use
path’s energy byO(L’w). Second, adding the energies of the choice¢=3 with b=9 for which 6p,,~0.242. These
the different paths does not change the scale of the shifts, s@lues are to be compared to current estimategqy in the
necessarily® ;= 6p,,. Naturally, we have confirmed this re- EA model, 6p,=0.21+0.02 (Ref. 23 and 6py=0.19
lation numerically for different values of andb by per-  +0.022*A similarly good comparison occurs wheh=2.
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FIG. 6. Mean ground-state energy densityNs?? for the di- FIG. 7. Mean ground-state energy density and the best fits for
luted mean-field model with connectivity 6 and for the SK modelthe d=2 (insey andd=3 EA spin glass with Gaussian couplings.
(insed. Error bars are included. We find ©,(d=2)~—0.35 and®4(d=3)~0.1. These value are

B. Mean-field models “close” to 6py, suggestingd = 0\ . Error bars are included.

We have seen that the prediction of the MK approach i¢!s begin with the casg=2. We fit our 4<L <10 data to Eq.
Os=6py; in d=3, this gives either®,=0.25 (the MK (1) whereey, e;, and O4 are adjustable parameters; that
valug or ©,~0.20 (if one uses thel=3 EA model values gives us the estimat® = —0.35+0.01. (The associateg?
for Opy). In the case of the mean-field models, there is nas 1.9 for five degrees of freedoniThe resulting fit is dis-
way to introduce domain walls, and so we simply focus onplayed along with the data in the inset of Fig. 7. Given our
their prediction for®;. statistical error and perhaps more importantly the systematic

Consider first the finite-size effects in the SK model. Pa-effects associated with not being very large, this value is
risi et al?® have computed analytically how various quanti- reasonably compatible with the MK predictio® (= 6py
ties converge to their largd limit. An N2 convergence is  since Opy= —0.2828-30
the general rule, though for the energy density they were able A fyrther argument in favor 08 = 6,y is as follows. It
to compute the finite size correction only at the critical ttm-js  known that whether one modifies the boundary
peratureT; and on the de Almeida-Thouless line. Neverthe-cqnitions! or increases the size of the syst&hihe fractal
less, the natural extrapolation is that this law should apply tQjimension of the surface of the clusters of spins that change
all T<T,, leading to the predictio®s/d=1/3. (Note that is approximately the same. It is thus likely that the same type

this prediction is very different from that diRef. 18 for - : : e
which ©_/d=0,/d=1/6.) To our knowledge, the possibil- of excitations are mvolyed in determinirtys and GDW.' As a
consequence, we believe that tde=2 EA model is de-

ity that ®,/d=1/3 for the SK ground-state energy was first __ . . . .
b>rlought usp by Palassiffiin hisg numerical studie?./ We can scribed by a scaling theory withs=tow. bL.Jt also W.'th.
extend his analysis with our data; identifying as befare ©17 fow Of course. Note that the mean-field prediction
with N¥d, we perform fits of the mean ground-state energy(,®s: 2/3) is clearly off; however3 one cannot appeal to mean
to Eq. (1). We then find®./d=0.34+0.02, in complete fleld whend=2 because one is below the lower critical
compatibility with 1/3; note that when plotted as a function dimension. o
of N~23 the data are very linear starting frol=50 (see Let us now move on to theé=3 EA model which is more
the inset of Fig. & In addition, if we perform the fit while challenging and has a spin-glass transitioif at 0. We use
forcing ®/d=1/3, we find that the ground-state energy the same fitting functiofEq. (1)] as before; the best fit then
density atN=c is e,=—0.7637-0.0002, in very good gives a goody? and a mean ground-state energy growing as
agreement with the exdctesulte,=—0.763. .. . —1.700%+1.9.% with ®,=0.10+0.03. This fit is dis-

In contrast to what happens fér;/d, ®,/d is thesame played in the main part of Fig. 7. However this value@f
in the SK model and in the fixed connectivity models weeasily changes by 0.1 when removing some of the data
have considered,; this is illustrated in Fig. 6. For instance, fopoints, and in fact the fit sometimes even leads to negative
connectivity 6, a power-law fit give®¢/d=0.35-0.03  values for®,. Thus at best we can say th@t, is small,
with x*=9.7 for seven degrees of freedom. In fact, the valuesomewhere between 0.0 and 0.2. One can compare this result
®,/d=1/3 works very well for all four connectivities we to “theory.” The mean-field value ® ;=1.0) is completely
studied, and we are tempted to consider that this value is th&led out, whereas the MK predictiof = 6p,y iS quite ac-
exact exponent. The same conclusion was reached kyeptable sinc#p,,~0.2.2?*However, another possibility is
Boettcher’ that the discrepancy we find has a physical origin and that in
fact ®.# 0py . Since this issue is important, we push the
analysis a bit further as follows. Given a putative value for

Now it is time to compare the MK and mean-field “pre- @, we adjuste, so that the plot ofE;(L) —eoL3 vs LOs
dictions” to our measurements @ in the EA models. Let passes through the origin. FoPs outside the range

C. Edwards-Anderson models
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FIG. 8. E5(L) — L2 vs L %28 (main figuré andE (L) — eL® FIG. 9. Standard deviation @&, divided by N** for the z=3

vs L (insed for thed=2 (d=3) EA spin glass with Gaussian cou- and 6 fixed connectivity models, but with binary couplindg,
plings. ==*1. Inset: skewness of the distribution of the ground-state en-

ergy for these same two models.

[0.05,0.2, the data have visible curvature. In the inset of
Fig. 8 we showE (L) —eoL® as a function oL; we see that
there is no clear trend, so evén,=0 seems possible. Such
a value could be interpreted from tlimean-field-like be-
havior of system-size excitations found in this motfet?
The analogous analysis in tlee=2 case is shown in the

erties(e.g., exponenjs Note first thatfpyy is known to be
different for Gaussian and binary(=*1) coupling$® in

the d=2 EA model. A posteriori that is not so surprising
since the associated quantitigsr instance domain-wall en-
ergies go to zero rather than to infinity; they can thus easily
be affected by microscopic details. This issue can be inves-

main part of Fig. 8 when we use the valg=—0.28; there  joataq within the framework of MK lattices. We find identi-
the expected corrections to scaling work quite well. cal values offpy in the Gaussian and thé=+1 cases

Of course, it would be useful to have a significantly wheneverfp,,>0. However ind=2 and usingb=¢=2,
smaller error bar fo® ¢ but we cannot go much beyond what the Gaussian model gives,,= — 0.22; on the contrary, the

we have done here: the statistical errorngrows as.%?, Jj;=+1 case leads t6py= 2, meaning that the domain-
and the amount of computation time grows still faster, so weyal| energies decrease exponentially with the size of the sys-
cannot obtain useful information at large tem rather than as a power law. Thus either there is violation

We have no data fod=4, but let us briefly consider the of universality(which seems unlikely to 0®r there are sev-
published work by Hartmarii where he used thé;=+1  eral universality classes whefip,y<0:; Amoruso et al®
EA model. (One expects it9 to be the same as in the have recently given evidence in favor of the latter possibility.
Gaussian caseAnalyzing his values for the mean ground-  Given these amendments to the scope of universality, the
state energy for ZL<7, we find®;=0.2+0.1; this does microscopic details should indeed be irrelevant for quantities
not compare well with his estimati,,=0.65+0.04. But, if  associated witldivergingenergy scales. The surprising claim
we remove theL =2 point from the fit, we find®s=0.7  we bring forward here is that this expectation is still too
+0.2 which is in good agreement with;= 6p,,. We have  strong: a counter example is provided By in the mean-
also analyzed the data of Boettcher and Peffumd this field fixed connectivity graphs. Indeed, we saw in the case of
leads to the same conclusion. In summary, we cannot exGaussian couplings thé;/d=1/2. Now in Fig. 9 we show
clude that® < fp\y, but the MK predictior®s= fp,y Works  the rescaled standard deviation®f for the case wherd;;
surprisingly well in the finite-dimensional EA models. On =+1 on fixed connectivity graphs; the standard deviations
the contrary, the mean-field prediction is definitely off, andhave been divided b4 If ®/d=1/2, we should see a
that of the Mattis spin glass is completely wrong since itrapid divergence of the plotted values with increadigdut
givesOg= —o. instead the curves are relatively flat and decreasing. In fact,
when performing fits, we find tha;/d is between 1/4 and
1/5.

To give further evidence that the Gaussian dfe- +1

It is widely believed that exponents are universal, i.e.,cases scale differently, we plot in the inset of this figure the
independent of the detailed microscopic nature of the disorvalues of the skewness of the distribution Bf using the
der.(Note however that there are longstanding claims of unisame models and values Nfas in the main figure. Although
versality violations in spin glassé$. In particular, for the our data are noisy, the skewness shows no sign of going to
d=3 EA, numerical computations dfp,y, confirm this to a zero whenN—c. Taken at face value, this means that the
large extent: one ha#p,=0.21+0.02 for the Gaussi@h distribution of E; is not Gaussian in the largé limit when
andfpy=0.19*0.02 for theJ;; = +1%*models. However, if Jij==1, in sharp contrast to what happens in the case of
T.=0 as arises inl=2, one may expect several universality Gaussian couplings. To drive this point home further, we find
classes and thus some influence of the microscopic propethat asz increases, the skewness and kurtosis grow in mag-
ties(i.e., the distribution of thé;;) on the macroscopic prop- nitude and seem to approach the values we find in the SK.

VIl. CASE OF +/—J COUPLINGS

224404-8



ENERGY EXPONENTS AND CORRECTIONS TO SCALING . .. PHYSICAL REVIEW @B, 224404 (2003

(But as before, our values become imprecise at latg&Ve  the MK lattices, the equalit) ;= 6p\y holds exactly. Physi-
thus conjecture that eaahs associated with a different uni- cally, this equality corresponds to the fact that in a finite
versality class and that, @0, one converges to the class fraction of the samples, the boundary conditions force a
to which the SK model belongs. One way to justify this is to domain-wall “defect” to be present in the ground state.
consider that in these modedss related to dimension rather (Note that the finite-size corrections are indeed always posi-
than to lattice connectivity; the universality class will then tive for fixed and periodic boundary conditiong-urther-
change withz. To a large extent, all different trends give more, we were able to computg,, analytically to order 1
further credence to the claim th&;/d=1/4 in the SK when the dimension becomes large. In the case of the mean-
model if that is the correct value for the fixed connectivity field models(SK or diluted graphs the situation is quite
models with binary couplings. different: the corrections to scaling grow B¢%. Since one
How can one understand this “breakdown” of universal- expects 6p,~d/2 in large dimensions, the resué./d
ity when the underlying energies diverge? Recall that for the=1/3 for these mean-field models differs from the large di-
Jij=*1 spin-glass model on a fixed connectivity graph, themension limit of fp,/d.
local environment of a spin has no disorder out to finite Finally, we have exhibited examples where the exponent
distances: any sign of thi; can be gauged away so that all ®; depends on the distribution of thk , even though en-
the sample-dependent fluctuations arise “at infinity.” On theergy fluctuations diverge with size, i.@;>0.
contrary, in the Gaussian case thg fluctuations are local, Our work suggests several paths for further studias.
leading toO(N?) fluctuations in the total energy. Taken at Can one establish the value ©f /d for the SK modelZb)
face value, this argument also appliescwordinationfluc- Since large fluctuations of ordéd? are detrimental in a
tuations; if this is true, the- 1 Viana-Bray modéf will have  numerical determination of the average ground-state energy,
0;=d/2. is there a way to subtract @omputablé contribution of
To summarize, the expone@t; depends on the details of satisfied bonds so as to reduce the varian@?Ils O
the underlyingJ;; distribution even though the energy scale = 6,y in finite-dimensional spin glasses or & smaller?
(of fluctuations diverges. Not surprisingly, we also find that This second possibility could follow from other types of ex-
Pn(E;) for that system does not become Gaussian. Finallygitations whose exponents are smaller tiiag, .
in spite of this major change of behavior when going from
GaussianJ;; to binary values, we find thad¢/d=1/3 very ACKNOWLEDGMENTS
precisely in both cases.
We thank A. Billoire, K. Binder, D. S. Fisher, M. \ard,
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ground-state energy grow as the square root of the volume iR002-00319. F.K. acknowledges financial support from the
almost all models so the fluctuation exponent satislgs MENRT. The LPTMS is an Unitede Recherche de
=d/2. Furthermore, the distribution over disorder of thel'Universite Paris XI assoCie au CNRS.
ground-state energy probably tends towards a Gaussian in

the large volume limit as suggested by Wehr and zppenpix: EXPONENTS IN THE MIGDAL-KADANOFF

VIIl. DISCUSSION AND CONCLUSION

; 11 ; e i .
Aizenman.” There are two notable exceptions to t_hls picture: LATTICES AND THE LARGE
the .SK model and the fixed connectivity mean-field models DIMENSIONAL LIMIT
having Jjj==*1. In those two cases, the sample-to-sample
fluctuations are much smaller, and we fiflid~d/4, even In this appendix, we focus on the simplest cése2. To

though a still smaller value cannot be excludédote that  write a recursion relation, one needs to keep track of two
fluctuations that are smaller than the square root of the volenergiesE{? andEY that give the ground-state energy of
umeN are also a characteristic of the directed polymer in ahe MK lattice at therth application of the recursion when
random medium.On the other hand, for finite-dimensional the two exterior spins are, respectively, parallel and antipar-
lattices, one expects the finite density of unfrustrated regionallel. For ab-branch lattice with¢ =2, the ground-state en-
to contributeO(NY?) fluctuations to the ground-state energy. ergies at the (+ 1)th application of the recursion read

A trivial example where this is the case is tamfrustrated

Mattis model; there the variance of the ground-state energy b
is obviously maximal and equal toN[(J%)—(J)?]/2 for a E(HD=2 minES (La)+EL(2.),EL(1a)
connectivityz. a=1

We also studied the expone@t giving the corrections to + Eg)(z,a)] (A1)
the scaling of the averag@xtensive ground-state energy.
For thed=2 and 3 EA models, we find that the equality b
= Opy holds within our limited precision. This means that r+1)_ . r r r
ccfrrec?ivovns to scaling are assopciated with domain walls. E‘g‘ )_C,Zl mm[EE’)(l'aHEg)(z’a)’Eg)(l’a)
However, we were not able to rule o@t,=0 ind=3, leav-

ing the door open to other interpretations. In the context of +EQ(2,0)] (A2)
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where indices 1,2 refer to the two bonds in thelirection.
This equation shows that along all théranches, one has to
choose the orientation of the middle sjthat is decimated

such that the energy contribution is minimized, given the

PHYSICAL REVIEW B68, 224404 (2003

)\2=4bJ0 dxg(x)

Joxdyyzg(y)ﬂzf;dyg(y)}
(A7)

orientations of the external spins. Note that all the randonyvhere of courseg(.) depends orb. The energy scale for
variables that appear in this equation are independent as so8iPping the relative sign of the exterior spinsisand so the

as they live on different bonds.

If one assumes that the distributi®”(E, ,E,) of ener-
gies at therth generation can be written for largein the
scaling form

PO(E,,Ea) = U ([Ep— &0y [Ea— &0y,
(A3)
then it is immediate to shovwsing the independence of the

branchesthat &, ;= (2b)&, and o, 1= \2bo,, so thaté,
~(2b)" ando,~(2b)"2. Since the number of spins is given

exponentépyy is given by

) _Inx A8
DW= 2 (A8)
In the large dimension limit, for which— oo, it is clear that,
using the central limit theorem, the distribution af is
Gaussian. Sincg(.) is then known) can be computed from
Eq. (A7), giving

A?=0.3633®, (A9)

by (2b)", one immediately finds that the ground-state energy result first obtained by Southern and Young.
is extensive and that the fluctuations are described by Whenb is large but not infinite, the first correction to the

®,/d=1/2.
Define A® asE(’—EY). It is easy to show that ("
obeys an autonomous recursion relatton:

b

A= e(aymin[AD(L@)][A02a)[], (A%)

wherea labels branches and

€(a)=—sgriA(la)lsgiA(2,a)]. (A5)

Using the independence of tieés corresponding to different
branches, one finds that, , the RMS of the distribution of
the A’s, obeys the following equation:

foxdyyzg(y)ﬂzfdyg(y)}.
(AG)

whereg(.) is the distribution ofA/3, that is independent of
for larger. From this relation, one finds that. ~\" with

37,,=4b37 f “dxg(x)
0

Gaussian is of order ii/(because thé\ have a symmetric
distribution and reads

(94

g(x) = S PRI P (A10)
2 24b ox4 ’
where k is the kurtosis of the initial variable, i.e.,

emin[]A(1)|,]A(2)[]. To first order in 1, this kurtosis can be
computed by assuming that the are Gaussian, and one
finds k=0.434 215. Injecting the expression @fx) in Eq.
(A7) then gives\ to order 1b: A?=0.363 3% —0.023 035,
and finally the result given in the main text after E§).

This calculation can be extended to next orderwill
acquire a 13 contribution and there will be corrections to
g(x) of order 1b? coming from the nonzero sixth cumulant
of emin[|A(1)|,]A(2)[], computed as if tha’s were Gaussian.
One could also, with more work, computefor € #2. In the
limit {—o, the problem becomes soluble again using the
theory of extreme value statistics for handling the variable
minf|AL)AQ)) - . . JA(O)]].

IM. Mézard, G. Parisi, and M. A. Virasor&pin-Glass Theory and
Beyond Lecture Notes in Physics, Vol. @Vorld Scientific, Sin-
gapore, 198\

2Spin Glasses and Random Fieldslited by A. P. YoungWorld
Scientific, Singapore, 1998

3J. GalambosThe Asymptotic Theory of Extreme Order Statistics

(Krieger Publishing, Malabar, FL, 1987

“D. Carpentier and P. Le Doussal, Phys. Re63:026110(2001).

5B. Derrida, Phys. Rev. B4, 2613(1981).

6J.-P. Bouchaud and M. fi¢ard, J. Phys. /80, 7997 (1997.

T. Halpin-Healy and Y.C. Zhang, Phys. R&54, 215(1995.

8W.L. McMillan, Phys. Rev. B29, 4026(1984.

9A. J. Bray and M. A. Moore, iHeidelberg Colloquium on Glassy
Dynamics edited by J. L. van Hemmen and |. Morgenstern,
Lecture Notes in Physics, Vol. 24Springer, Berlin, 1986 pp.
121-153.

10D s, Fisher and D.A. Huse, Phys. Rev. L&®, 1601(1986.

113, Wehr and M. Aizenman, J. Stat. Phg§, 287 (1990.

125 F. Edwards and P.W. Anderson, J. Phys. F: Met. Phy965
(1975.

13B.W. Southern and A.P. Young, J. Phys1G, 2179(1977.

14D, Sherrington and S. Kirkpatrick, Phys. Rev. Le®5, 1792
(1975.

15C. de Dominicis and Y. Goldschmidt, J. Phys23 L775(1989.

165, Houdayer and O.C. Martin, Phys. Rev6E 056704(2009).

17|, Kondor, J. Phys. AL6, L127 (1983.

18A. Crisanti, G. Paladin, J.-J. Sommers, and A. Vulpiani, J. Phys. |
2, 1325(1992.

19T, Aspelmeier, M.A. Moore, and A.P. Young, Phys. Rev. L&,
127202(2003.

203, Cabasino, E. Marinari, P. Paolucci, and G. Parisi, J. Phg4, A
4201(1988.

21M. Palassini(private communication

227, Aspelmeier and M. Moore, Phys. Rev. Lé3f), 177201(2003.

224404-10



ENERGY EXPONENTS AND CORRECTIONS TO SCALING . .. PHYSICAL REVIEW @B, 224404 (2003

23M. Palassini and A.P. Young, J. Phys. Soc. J#%).165 (2000. 3IM. Palassini and A.P. Young, Phys. Rev. L&8, 5126(1999.

24A K. Hartmann, Phys. Rev. B9, 84 (1999. 32, Middleton, Phys. Rev. Leti83, 1672(1999.
25G. Parisi, F. Ritort, and F. Slanina, J. Phys26, 3775(1993. 33F, Krzakala and O.C. Martin, Phys. Rev. Le86, 3013(2000.
28M. Palassini, Ph.D. thesis, Scuola Normale Superiore, Pisa, Italy*M. Palassini and A.P. Young, Phys. Rev. L&8, 3017(2000.
2000 (unpublishegl 35A K. Hartmann, Phys. Rev. BO, 5135(1999.
27s, Boettcher, Eur. Phys. J. &L, 29 (2003. 365, Boettcher and A. Percus, Phys. Rev. L&6, 5211 (2001).
28H. Riegeret al,, J. Phys. A29, 3939(1996. 37p. Mari and I. Campbell, Phys. Rev.39, 2653(1999.
29A K. Hartmann and A.P. Young, Phys. Rev6B, 180404(200).  38C. Amoruso, E. Marinari, O.C. Martin, and A. Pagnani, Phys.
30A.C. Carter, AJ. Bray, and M.A. Moore, Phys. Rev. Le8, Rev. Lett.91, 087201(2003.
077201(2002. 39, Viana and A.J. Bray, J. Phys. ©8, 3037(1985.

224404-11



