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Width of the critical region at incommensurate phase transitions
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Using the self-consistent phonon theory and the renormalization-group theory we have studied the critical
behavior of systems with incommensurately modulated structure and especially the width of the critical region
near structural phase transitions, where nonclassical critical exponents are valid. The critical region can be
large if the dispersion of the soft mode is small~very ‘‘soft’’ mode! and/or if the anharmonic interaction
constant is large. Taking parameters appropriate to rubidium tetrachloro zincate, rubidium tetrabromo zincate,
and bis~4-chlorophenyl!sulfone we obtain results which are in good agreement with the experimental data.

DOI: 10.1103/PhysRevB.68.224109 PACS number~s!: 68.35.Rh, 64.70.Rh
su
sti
ar
-

fo
n
te

e

r.
n
er

av
po

rit
ab
c

r

-

p

b
th
e
e

a-
7

d
up

s in
t
gh

ap-
e
au

the
uld
an-

e-

’s,
ret-
the

to

-
d
the
h is
and
is.
e
an

ass
n
ch
ex-
I. INTRODUCTION

In recent years the properties of structurally incommen
rately ~IC! modulated crystals have been frequently inve
gated by magnetic resonance spectroscopy. Particul
nuclear quadrupole resonance~NQR! and quadrupolar per
turbed nuclear magnetic resonance~NMR! and spin-lattice
relaxation studies have been shown to be powerful tools
investigating the statics and dynamics of several compou
of the A2BX4 type such as rubidium tetrachloro zinca
@Rb2ZnCl4 (RZO)#, rubidium tetrabromo zincate
@Rb2ZnBr4 (RZB)#, betaine calciumchloride dihydrat
@(CH3)3NCH2COO"CaCl2"2H2O (BCCD)#, and bis~4-
chlorophenyl!sulfone @(C6H4Cl)2SO2) (BCPS)], where
transitions from a normal~N! phase to an IC phase occu
The critical behavior close to the second-order phase tra
tion ~PT! between the N and IC phases was studied exp
mentally by several authors.1–9 The results of NMR studies
showed that for a broad variety of crystals the critical beh
ior can be described by genuine nonclassical critical ex
nents of the appropriate three-dimensional~3D! XY model.
Especially, the values obtained in various papers for the c
cal exponents reveal a basic argument against the applic
ity of the Landau theory. These values include, for instan
the critical exponentsb50.3560.01 andb̄50.8360.03 of
the order parameter~OP! and its square, respectively, fo
RZC1,6 and for RZB,6,8 the exponentz fml52g23n50.625
60.025 of the critical contributionT1 to the spin-lattice re-
laxation time@in the fast motion limit, fml; for RCZ~Ref. 8!,
RZB ~Refs. 6 and 7!, and for BCCD~Ref. 8!#, and the criti-
cal exponentzn5g51.31760.03 of the OP relaxation fre
quency in the crystals RZC~Ref. 9! and RZB~Refs. 6 and 7!.
X-ray diffraction measurements resulted in the same ex
nentsb̄ for BCCD ~Ref. 10! and K2SeO4 ~Ref. 11! as men-
tioned above. In particular, large critical regions were o
served in NMR line shape studies in the IC phase and
spin-lattice relaxation measurements in the N phase clos
the N-IC PT. Note that a typical value of the width of th
critical region of RZC and RZB from NMR line shape me
surements is as large asDT'50 K ~see, e.g., Refs. 6 and
0163-1829/2003/68~22!/224109~5!/$20.00 68 2241
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and further references cited herein!. Diffraction synchrotron
measurements12 gave a critical region of the order oft5uT
2Ti u/Ti'0.1. Specific heat measurements were reporte13

which agree with the expected critical behavior in a range
to t'0.2. Recently, Martin-Olallaet al.14 have determined
the asymptotic critical behavior of the functionDs/Q2 near
PT’s, whereDs is the excess entropy andQ is the order
parameter. The results also support the claim that IC PT’
general and theA2BX4 compounds in particular, in contras
with most structural PT’s, have critical regions large enou
to be observable.

However, other authors doubted the existence of the
parently broad critical regions15–17 and have interpreted th
NMR experiments in these compounds within a Land
approach.18 The Ginzburg-Landau-Levanyuk criterion19,20

states that only near to the critical temperature should
nonclassical critical exponents be valid. Fluctuations sho
contribute only near the critical point and change the me
field picture.

The aim of the present paper is to study the critical b
havior of IC systems such asA2BX4 and, especially, to
evaluate the width of the critical region near structural PT
where nonclassical critical exponents are valid. The theo
ical analysis will be based both on an approach using
self-consistent phonon theory~SCPT! ~in Sec. II! and on a
renormalization-group~RG! analysis~in Sec. III!.

With respect to the SCPT the calculations mainly refer
previous publications by Plakida and co-workers~see, e.g.
Refs. 21 and 22! and Bruce and Cowley~independent mode
coupling theory23!. In these calculations the role of correla
tion effects will be of particular interest and it will be prove
how they are determined by the interaction radius and by
strength of anharmonic interaction. The second approac
essentially based on the more recent work by Schwabl
co-workers using the renormalization-group analys
Schorgg and Schwabl24,25 have presented a theory for th
attenuation of ultrasound close to the N-IC PT based on
order parameter model appropriate for a universality cl
containing theA2BX4 family. It was shown that the phaso
modes lead to a singularity of the scaling function, whi
describes the crossover from the critical region to the co
©2003 The American Physical Society09-1
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istence regime. Moreover, using an extended renormaliza
scheme Kaufmannet al.26 have studied the critical dynamic
at N-IC PT’s and the crossover from the nonclassical criti
behavior to the mean-field regime. Specifically, the result
width of the critical region was investigated and compa
with NMR relaxation experiments on RZC by Mischoet al.4

The crossover from the nonclassical critical exponents
RZC to the mean-field ones was found26 to take place be-
tween DT'5 and 20 K in very good agreement with th
experimental NMR data. An important role in this approa
plays the strength of the isotropic anharmonic interaction
the Landau-Ginzburg-Wilson free-energy functional. Th
finding suggests to check the influence of anharmonicity
the calculation of the nuclear spin lattice relaxation rate
more detail~Sec. III!.

II. SELF-CONSISTENT PHONON THEORY

Unlike to the mean-field approximation the SCPT tak
into account the critical fluctuations of the order parame
which play an important role by the second-order PT’s. T
results in the renormalization of the phenomenological L
dau expansion,

F~h!5F01A~T!h21
1

2
Bh41Dh6, ~1!

for the free energy, in the renormalized harmonic approxim
tion ~or SC1!:

F5
1

b (
qW

lnS 2 sinh
bVqW

2 D2(
qW

VqW

4
coth

bVqW

2
1Ũ~xW i !,

~2!

whereh i(T) are some finite displacements of atoms bel
the critical temperature of the PT,VqW denotes the soft mod
frequency, andŨ(xW i) is the renormalized potential energy
the SC1.

For the renormalized coefficients one gets

A~T!5S dF1

dh2D
h50

5
1

2
VqW c

2 ~h50!, ~3!

B~T!5S d2F1

d~h2!2D
h50

5B0~T!1B1~T!, ~4!

whereB0(T) has no features atT→TC , whereasB(T) near
the PT has the form

B1~T!523B0j~T!/@11j~T!#, ~5!

with the correlation parameter

j~T!52
1

2
V4~qW c!(

qW

]

]VqW
2 F 1

2VqW
coth

bV q̈

2 G , ~6!

whereV4 is the renormalized quartic anharmonic interactio
qW c indicates the wave vector at the critical temperatureTC
~incommensurate wave vector!. The correlation lengthj(T)
diverges fort5uT2TCu/TC→0 due to the critical fluctua-
tions, as the usual estimation shows:19,20
22410
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j~T!'
b

N
(

qW

T

VqW
4 '

bTC

8p

a3

v0s3At
'

v0

v̄

1

8pR̄0
3At

, ~7!

with

b5
N

2
V4~qW c!, TC'

1

b
v0

2v̄2.

Here the soft mode frequency was approximated by
equation

VqW
25v0

2t1s2qW 2, ~8!

where here and in the following the wave vectorqW has to be
understood as the deviation from the incommensurate w
vectorqW c . The dimensionless radiusR̄05R0 /a ~or the effec-
tive radiusR̄0) of the interatomic interaction was defined b
the dispersion of the soft mode atuqW u→0: s25R0

2v̄2

5R̄0
2a2v̄2, wherea is the lattice constant andv̄ is the aver-

age frequency,

1

v̄2 5
1

N (
qW

1

s2qW 2 '
1

s2q0
2 , q0'

2p

a
, ~9!

and v0
252v0

2(qc) is the so-called ‘‘unstable harmonic fre
quency:’’ i.e., the soft mode frequencyVqW c

(h50)

5V(qc ,TC) can tend to zero at a critical temperatureTC

only in that case, if the square of the phonon frequencyv0
2 in

the harmonic approximation for the soft mode frequency
negative. Hence, the lattice in the symmetrical phase in
harmonic approximation is unstable.

In the following discussion we restrict ourselves to co
sideration of coupled anharmonic oscillators (f4 model!
with the model interaction~see Ref. 22!

wqW5w0 exp~2R0
2qW 2!, ~10!

where iswqW the interaction parameter. In this model the ph
non frequency is determined by the relation

VqW
25D21~w02wqW !, ~11!

whereD is the width of the spectrum gap. Then one obta
for j(T) in the case ofD→0

j~T!'
3B

N
(

qW

T

VqW
4 '

3BT

3pw0
3/2

1

D
'

1

8pAw0 /A

1

R̄0
3At

.

~12!

For the dispersion of the soft mode frequency@see Eq.~8!#
we have s2qW 25w02w(qW )'w0R0

2qW 2, i.e., s2'w0R0
2 ~Ref.

20!, andD corresponds tov0
2t.

Expression~7! reveals that the correlation effects becom
significant in the temperature regiont<(v0 /v̄)(8pR̄0

3)22,
whenj(T)>1, and are mainly determined by the dimensio
less interaction radiusr 0 and by the relationv0 /v̄.

Some experiments report large regions in which nonc
sical exponents for the temperature dependence of the re
ation rate are observed.5,17 Diffraction synchrotron
9-2
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WIDTH OF THE CRITICAL REGION AT . . . PHYSICAL REVIEW B 68, 224109 ~2003!
measurements21 give a critical region of the order of«
'0.1. Specific heat measurements were also reported22 to
agree with the expected critical behavior in a range up t«
'0.2. Equation~7! shows, if v0'v̄, then for an effective
radiusR̄0'1

t<S 1

8pR̄0
3D 2

'
1

64p2R̄0
6U

R̄051

'1023. ~13!

But if the dispersion is small~very ‘‘soft’’ mode!, s2q2

!v0
2, then the critical region can be large. Forv̄'0.1v0

one gets

t<S 10
1

8pR̄0
3D 2

'102
1

64p2R̄0
6U

R̄051

'10231.631023

50.16. ~14!

In conclusion, the critical region can be large ifv0
2@v̄2,

wherev̄2's2q0
2'w0

2R0
2q0

2, i.e., if the dispersion of the sof
mode frequency is small,s2q2!v0

2, or if the restoring forces
in the lattice are weak,w0!v0

2.
It is worthwhile to point out that in the critical regio

wherej(T).1 both the Ginzburg-Landau theory and SCP
are not applicable. However, in the former theory the criti
fluctuations are ignored and the structural phase trans
appears to be of second order. Contrary to that, in the SC
the critical fluctuations are overestimated, which results
the first-order phase transition since the quartic coeffic
becomes negative in the limitT→Tc , j→`, whenB5B0
23B0522B0,0. Therefore, by applying the SCPT we ca
easily obtain the region of strong fluctuations giv
by the anomalous behavior of the order parameter, while
the Ginsburg-Landau theory the Levanyuk criterion sho
be used to specify the critical region. There is an exac
solvable model for structural PT’s where an anharmo
interaction has an infinite range~see, e.g., Ref. 21!. The
SCPT gives an exact description of this model and
structural PT within this theory is of second order in sp
of strong critical fluctuations atT→Tc being rigorously
taken into account.27 For example, taking into accoun
electron-phonon interactions one obtains for the correla
length22

j~T!'Al21~8prR̄0
3At !21, ~15!

wherel is the electron-phonon interaction constant; i.e.,
critical region could be large forl@1:

t<~l21!
1

64p2R̄0
6

. ~16!

Let us consider the width of the critical regionDT at a PT
from a normal to a structurally incommensurately modula
phase~at temperatureTi). IC systems such asA2BX4 are
characterized by extremely soft modes. For example,
RZB v̄'0.1v0 holds,7 i.e., t5uT2Ti u/Ti5DT/Ti'0.16.
22410
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With Ti5350 K one obtainsDT556 K. In the case of
RZC, where we also havev̄'0.1v0 ~Ref. 4! and where
Ti5303 K, we find DT548 K. For BCPS it holdsv̄
'0.17v0 ~Ref. 28!, i.e.,DT50.06315059 K. These results
are in good agreement with the experimental data, t
the width of the critical region for RZB isDT'50– 60 K,7

while for BCPS the valueDT is smaller: DT'10 K
~Ref. 29!.

III. RENORMALIZATION-GROUP ANALYSIS

Kaufmannet al.26 have studied second-order PT’s from
high-temperature N phase to a structurally IC modula
phase at the critical temperatureTi . The real-space displace
ment field corresponding to the one-dimensional IC modu
tion can be represented by its normal-mode coordina
Q(qW ). UsingQ(qW ) as a primary order parameter of the N-I
PT in the Landau-Ginzburg-Wilson free-energy function
the diagonalization leads to26

H@$c0
a%#5

1

2 (
a5f,A

E
kW
~r 01k2!c0

a~kW !c0
a~2kW !

1
u0

4! (
a,b5f,A

E
kW1 ,kW2 ,kW3 ,kW4

c0
a~kW1!c0

a~kW2!

3c0
b~kW3!c0

b~kW4!dS (
l 51

4

kW l D , ~17!

with new Fourier coordinatesc0
f(kW ) andc0

A(kW ) in the order
parameter space.u0 characterizes the strength of the isotr
pic anharmonic interaction. The parameterr 0 is proportional
to the distancet from the critical temperaturetC and
corresponds tov0

2t in Eq. ~8!. Following the notation
of Kaufmannet al., the wave vectorkW indicates the deviation
from the incommensurate wave vector. In Ref. 26 t
dependence of the relaxation timeT1 on DT was only
calculated for a fixed coupling constantu0}u(1)50.6.
But as was already shown by Frey and Schwabl,30 choice
of the valuesu(1) affects the form of the crossover effectiv
critical exponent for the longitudinal static susceptibili
geff5] ln x21/] ln r. Therefore, using the extended renorm
ization scheme of Kaufmannet al.,26 we calculate
T1(DT) numerically for different values of the anharmon
interaction constantu(1) which is not small for the
compounds of theA2BX4 family. We start from Eq.~4.27! in
Ref. 26,

1

T1

}
1

m l

1

l
E k̃2dk̃

1

ṽL
21@ k̃21 t̃~ l !#2

, ~18!

wherem, l, andl are scale and flow parameters, respective
t̃( l ) is a renormalized quantity describing the flow
dependent coupling,ṽL5vL /lm2l 2 is the renormalized Lar-
mor frequency, andk̃5k/m l is the renormalized wave vec
tor. In Fig. 1 the dependence ofT1(t) on the physical
temperature26
9-3
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t5t~1!}T2Ti5DT ~19!

is shown for different values ofu5u(1). Very close
to Ti—i.e., for very small values oft—there is a
temperature-independent region, where the OP relaxa
frequency @2ptOP(0)#215vw(0) @see Eq. ~4.3! in Ref.
26 and Fig. 2 in Ref. 7# is comparable or smaller tha
the Larmor frequency, the so-called slow-motion ca
~see also Fig. 3!. With increasingt, where T1 increases
too, a temperature dependence with a nonclassical cri
exponent

z52d~ ln T1!/d~ ln t! ~20!

appears. For still higher temperatures one finds a cross
to the mean-field exponent. With increasing anharmonicitu
the relaxation timeT1 decreases whereas the width of t
critical region increases. In Fig. 2 the effective exponen
i.e., the slope of the curve in Fig. 1—is plotted versus
logarithm oft. A crossover takes place from the critical b
havior with nonclassical critical exponents ofz50.625 to the
mean-field regime with a value of 0.5. More clearly than
Fig. 1 it may be inferred from Fig. 2 that with increasin

FIG. 1. Plot of the relaxation timeT1 ~logarithmic base! vs the
quantityt}(T2Ti) ~logarithmic base! for different anharmonic in-
teraction constantsu50.2 ~1!, 0.4 ~2!, 0.6 ~3!, 0.75 ~4!.

FIG. 2. Dependence of the effective exponent according to
~20! on the renormalized temperaturet ~logarithmic base! for dif-
ferent anharmonic interaction constants:u50.2 ~1!, 0.4 ~2!, 0.6 ~3!,
0.75 ~4!.
22410
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anharmonicity the width of the critical region increases, to
For example, foru50.2 we find a nonclassical critical expo
nent between lnt2523 and lnt1523.5. If we choose the
constant in Eq.~19! according totk5tk5(Tk2Ti)/Ti (k
51,2) and if we takeTi5303 K ~for RZC!, we find an in-
terval of DT'0.2 K above the crossover to the slow-motio
limit, whereas foru50.75 we obtainDT'30 K. This in-
crease ofDT with increasing constantu is in agreement with
the expression~7! or ~13! obtained from the self-consisten
phonon theory~having in mind thatu corresponds tob in the
SCPT!.

The T1(t) dependence for different Larmor frequenci
ṽL is shown in Fig. 3. The transition from the temperatu
dependent~fast-motion limit! to the temperature-independe
~slow-motion limit! region may be clearly inferred. A simila
T1(ṽL) behavior was found by Deckeret al.7 on the basis of
a conventional approach by the numerical simulation of
temperature dependence of the critical relaxation ti
T1critical for various Larmor frequencies.

IV. CONCLUSION

We have studied the critical behavior of incommensur
systems such as RZC, RZB, and BCPS and especially
width of the critical region near structural phase transitio
where nonclassical critical exponents are valid, using
self-consistent phonon theory and the renormalization-gr
theory. The calculation reveal that the critical regio
may be large if the dispersion of the soft mode is small~very
‘‘soft’’ mode! or if the anharmonic interaction constant
large. Taking parameters appropriate to these compound
find that the width of the critical region for RZB/RZC i
DT'30– 50 K. For BCPS a smaller critical regionDT
'10 K, is estimated in good agreement with the experim
tal data.
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