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Width of the critical region at incommensurate phase transitions
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Using the self-consistent phonon theory and the renormalization-group theory we have studied the critical
behavior of systems with incommensurately modulated structure and especially the width of the critical region
near structural phase transitions, where nonclassical critical exponents are valid. The critical region can be
large if the dispersion of the soft mode is smalery “soft” mode) and/or if the anharmonic interaction
constant is large. Taking parameters appropriate to rubidium tetrachloro zincate, rubidium tetrabromo zincate,
and big4-chlorophenyisulfone we obtain results which are in good agreement with the experimental data.
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[. INTRODUCTION and further references cited hergiDiffraction synchrotron
measurement$ gave a critical region of the order of=|T
In recent years the properties of structurally incommensu—T;|/T;~0.1. Specific heat measurements were repbtted
rately (IC) modulated crystals have been frequently investi-which agree with the expected critical behavior in a range up
gated by magnetic resonance spectroscopy. Particularlyo t~0.2. Recently, Martin-Olalleet al'* have determined
nuclear quadrupole resonant¥QR) and quadrupolar per- the asymptotic critical behavior of the functidrs/Q? near
turbed nuclear magnetic resonan@®MR) and spin-lattice PT’s, whereAs is the excess entropy ar@ is the order
relaxation studies have been shown to be powerful tools foparameter. The results also support the claim that IC PT's in
investigating the statics and dynamics of several compoundgeneral and thé\,BX, compounds in particular, in contrast
of the A,BX, type such as rubidium tetrachloro zincate with most structural PT’s, have critical regions large enough
[Rb,ZnCl, (RZO)],  rubidium  tetrabromo  zincate (© be observable. _
[Rb,ZnBr, (RZB)], betaine calciumchloride dihydrate However, othe_r_authors_, dothed the existence of the ap-
[(CHy)sNCH,COO-CaCh-2H,0 (BCCD)], and big4- parently broad cnncgl region¥ 1’ and have m_terpreted the
chlorophenylsulfone [ (C4H,4Cl),SO,) (BCPS)], where NMR expéarlments.m these compounds Wlthln. a.Lanau
o approach® The Ginzburg-Landau-Levanyuk criteritrf
transitions from a normalN) phase to an IC phase occur.

The critical behavior close to the second-order phase transs-tates that only near to the critical temperature should the
: pn honclassical critical exponents be valid. Fluctuations should
tion (PT) between the N and IC phases was studied experi-

: contribute only near the critical point and change the mean-
mentally by several authofs® The results of NMR studies y P g

. o field picture.
showed that for a broad variety of crystals the critical behav- The aim of the present paper is to study the critical be-

ior can be described by genuine nonclassical critical expo;

) ; ; havior of IC systems such a&,BX, and, especially, to
nents .Of the appropriate three-_dlmer?sm([m) XY model. ...evaluate the width of the critical region near structural PT’s,
Especially, the values obtained in various papers for the criti

. X " "where nonclassical critical exponents are valid. The theoret-
cal exponents reveal a basic argument against the appllcab| al analysis will be based both on an approach using the

ity of the Landau theory. These values include, for 'nStanceself-consistent phonon theofCPT (in Sec. 1) and on a

the critical exponent$3=0.35ip.01 and,BzO.83tQ.03 of renormalization-grougRG) analysis(in Sec. 1))

the %der parametegr(gP) and its square, respectively, for  \jth respect to the SCPT the calculations mainly refer to
RZC™® and for RZB;*® the exponen{™=2y—-3v=0.625  previous publications by Plakida and co-workésee, e.g.
+0.025 of the critical Contributioﬁ-l to the Spin-lattice re- Refs. 21 and zpand Bruce and Cowleyndependent mode
laxation time[in the fast motion limit, fml; for RCZARef. 8,  coupling theor§?). In these calculations the role of correla-
RZB (Refs. 6 and ¥, and for BCCD(Ref. 8], and the criti-  tjon effects will be of particular interest and it will be proved
cal exponenzy=y=1.317+0.03 of the OP relaxation fre- how they are determined by the interaction radius and by the
quency in the crystals RZQRef. 9 and RZB(Refs. 6and Y. strength of anharmonic interaction. The second approach is
X-ray diffraction measurements resulted in the same expoessentially based on the more recent work by Schwabl and
nentsB for BCCD (Ref. 10 and K,SeQ, (Ref. 1) as men- co-workers using the renormalization-group analysis.
tioned above. In particular, large critical regions were ob-Schorgg and Schwalii?® have presented a theory for the
served in NMR line shape studies in the IC phase and thattenuation of ultrasound close to the N-IC PT based on an
spin-lattice relaxation measurements in the N phase close wrder parameter model appropriate for a universality class
the N-IC PT. Note that a typical value of the width of the containing theA,BX, family. It was shown that the phason
critical region of RZC and RZB from NMR line shape mea- modes lead to a singularity of the scaling function, which
surements is as large asT~50 K (see, e.g., Refs. 6 and 7 describes the crossover from the critical region to the coex-
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istence regime. Moreover, using an extended renormalization

26 . - . b T bTC a3 (O] 1
scheme Kaufmanat al=® have studied the critical dynamics ET)=~ —Z — = ~— , (7
at N-IC PT’s and the crossover from the nonclassical critical NG 0f 87 wesPVr ® 8RN~

behavior to the mean-field regime. Specifically, the resulting .
width of the critical region was investigated and compareglvIth

with NMR relaxation experiments on RZC by Misckoal* N 1

The crossover from the nonclassical critical exponents for b=-Vi(Ge), T~ wi0.

RZC to the mean-field ones was fodfdo take place be- 2 b

tweenAT~5 and 20 K in very good agreement with the Here the soft mode frequency was approximated by the
experimental NMR data. An important role in this approachequation

plays the strength of the isotropic anharmonic interaction in

the Landau-Ginzburg-Wilson free-energy functional. This Q§= w§r+ s2G2, (8)
finding suggests to check the influence of anharmonicity in ) ]

the calculation of the nuclear spin lattice relaxation rate inwhere here and in the following the wave veotphas to be

more detail(Sec. Il). understood as the deviation from the incommensurate wave
vectord,. The dimensionless radilg=R,/a (or the effec-
Il. SELF-CONSISTENT PHONON THEORY tive radiusR,) of the interatomic interaction was defined by

; : C 2_p22
Unlike to the mean-field approximation the SCPT takesthe dispersion of the soft mode 4|—0: s*=Rgw

. - . — 22 : . . .
into account the critical fluctuations of the order parameter=Ro@ @, wherea is the lattice constant and is the aver
which play an important role by the second-order PT’s. Tha@gde frequency,

results in the renormalization of the phenomenological Lan-

: 1 1 27
dau expansion,

G SZ_qCZ)' do~ 9)

q
1
F(7)=Fo+A(T) 5%+ EBn4+Dn6, (1)  andwi=—w3(q.) is the so-called “unstable harmonic fre-
quency:” i.e., the soft mode frequencﬁdc(rFO)
for the free energy, in the renormalized harmonic approxima= ()(q.,T.) can tend to zero at a critical temperatufe

SUES
Z| -

tion (or SCI: only in that case, if the square of the phonon frequengyn
1 B Q- 8Os the harmonic approximation for the soft mode frequency is
F==> In(2 sinh—q) - “Heoth—2+T(x), negative. Hence, the lattice in the symmetrical phase in the
B°g 2 g 4 2 harmonic approximation is unstable.

2 In the following discussion we restrict ourselves to con-
where 7,(T) are some finite displacements of atoms belowsideration of coupled anharmonic oscillatorg*( mode)
the critical temperature of the PQ,4 denotes the soft mode With the model interactiortsee Ref. 2P

frequency, andJ (X;) is the renormalized potential energy in

the SC1. 9= o exp(—R5G?), (10)
For the renormalized coefficients one gets where is¢g the interaction parameter. In this model the pho-
dF 1 non frequency is determined by the relation
1 2
AM=|5=| =50;(n=0), 3
(1 dnz) o 279 ® 02= A2+ (pp—og), (1)
d2F whereA is the width of the spectrum gap. Then one obtains
B(T)= (W) =By(T)+B4(T), (4)  for &(T) in the case oA —0
n=0
whereB(T) has no features &t— T, whereasB(T) near g(T)%S—BE l% 3BT iw 1 L )
the PT has the form N Qf 3med?A 87\ g /A RV~
By(T) =~ 3Bo£(T)/[1+ £(T)], ©) (12

For the dispersion of the soft mode frequerisge Eq.(8)]
we have s?G2= po— ¢(G) ~ ¢oR3G2, i.e., s°~@oR3 (Ref.
20), andA corresponds t@} .
; (6) Expression(7) reveals that the correlation effects become
significant in the temperature regiom(wola)(Swﬁg)*z,
whereV, is the renormalized quartic anharmonic interaction.when&(T)=1, and are mainly determined by the dimension-
. indicates the wave vector at the critical temperaflige  less interaction radius, and by the relationvg /.

with the correlation parameter

1 BQG
20; coth 5

1 . d
ET)=— §V4(qC)§ &Qg

(incommensurate wave vecjoihe correlation lengtig(T) Some experiments report large regions in which nonclas-
diverges forr=|T—Tc|/Tc—0 due to the critical fluctua- sical exponents for the temperature dependence of the relax-
tions, as the usual estimation shot?g® ation rate are observed’ Diffraction synchrotron
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measurement$ give a critical region of the order of With T;=350K one obtainsAT=56 K. In the case of
~0.1. Specific heat measurements were also repdrted RZC, where we also have~0.1w, (Ref. 4 and where
agree with the expected critical behavior in a range up to T,=303 K, we find AT=48K. For BCPS it holdsw
~0.2. Equation(7) shows, if wg~w, then for an effective ~0.170, (Ref. 28, i.e.,, AT=0.06x 150=9 K. These results
radiusRy~1 are in good agreement with the experimental data, that

the width of the critical region for RZB ia T~50-60 K,

while for BCPS the valueAT is smaller: AT~10K
~10°°. (13 (Ref. 29.

2
N
87RS/  64m°R§

Ry=1
But if the dispersion is smallvery “soft” mode), s?q? lll. RENORMALIZATION-GROUP ANALYSIS
< w3, then the critical region can be large. For=0.1w, Kaufmannet al?® have studied second-order PT’s from a
one gets high-temperature N phase to a structurally IC modulated

phase at the critical temperaturge. The real-space displace-

1 \? 1 . ment field corresponding to the one-dimensional IC modula-
T= 10——3 ~10° =% ~10Px1.6x10 tion can be represented by its normal-mode coordinates
87Ro 647 Ro & -1 Q(d). UsingQ(d) as a primary order parameter of the N-IC
PT in the Landau-Ginzburg-Wilson free-energy functional,
=0.16. (14 the diagonalization leads %

In conclusion, the critical region can be Iargeaiﬁ»ﬁz, 1

where w?~s?g5~ ¢§R303, i.e., if the dispersion of the soft HI{y& =5 > f‘(r°+ k2) & (K) & (— K)
mode frequency is smat?q?< w3, or if the restoring forces 2a%3n Ji

in the lattice are weakpy< 3.

It is worthwhile to point out that in the critical region + % 2 f L. wg(lzl)wg(lzz)
where£(T)>1 both the Ginzburg-Landau theory and SCPT FaB=dA Tk kg ks ks
are not applicable. However, in the former theory the critical 4
fluctuations are ignored and the structural phase transition ><¢€(|23) ¢g(|24) 5( 2 E|). (17
appears to be of second order. Contrary to that, in the SCPT =1

the critical fluctuations are overestimated, which results in . .

the first-order phase transition since the quartic coefficienwith new Fourier coordinateg(k) and (k) in the order
becomes negative in the limft—T,, &—«, whenB=B, parameter spacel, characterizes the strength of the isotro-
—3By=—2B,<0. Therefore, by applying the SCPT we can pic anharmonic interaction. The parametgiis proportional
easily obtain the region of strong fluctuations givento the distancer from the critical temperaturerc and
by the anomalous behavior of the order parameter, while itorresponds tOw(Z)T in Eq. (8). Following the notation
the Ginsburg-Landau theory the Levanyuk criterion shouldof Kaufmannet al, the wave vectok indicates the deviation
be used to specify the critical region. There is an exacthfrom the incommensurate wave vector. In Ref. 26 the
solvable model for structural PT's where an anharmonicdependence of the relaxation tinle; on AT was only
interaction has an infinite rangesee, e.g., Ref. 21 The  calculated for a fixed coupling constamiyocu(1)=0.6.
SCPT gives an exact description of this model and theBut as was already shown by Frey and Schwikihoice
structural PT within this theory is of second order in spiteof the valuesu(1) affects the form of the crossover effective
of strong critical fluctuations all—T. being rigorously critical exponent for the longitudinal static susceptibility

taken into accourft’ For example, taking into account y .=glny Ydlnr. Therefore, using the extended renormal-
electron-phonon interactions one obtains for the correlatioization scheme of Kaufmannetal,’® we calculate

lengttt? T1(AT) numerically for different values of the anharmonic
- interaction constantu(l) which is not small for the
ET)~ N —1(8mrR31) %, (15  compounds of thé\,BX, family. We start from Eq(4.27) in
Ref. 26,

where\ is the electron-phonon interaction constant; i.e., the

critical region could be large fax>1: 1

_— —— —

kKdk——, (18)
Ty wl AJ D2+ [K2+7(1)7?

t=(\—1)

(16)

64m2RS .
wherepu, \, andl are scale and flow parameters, respectively,

Let us consider the width of the critical regiaviT at a PT 7(I) is a renormalized quantity describing the flow-
from a normal to a structurally incommensurately modulateciependent couplinga, = | /\pu?1? is the renormalized Lar-
phase(at temperatureT;). IC systems such a8,BX, are  mor frequency, ant=k/ul is the renormalized wave vec-
characterized by extremely soft modes. For example, fotor. In Fig. 1 the dependence d&f(7) on the physical
RZB w~0.lw, holds! i.e., t=|T—T,|/T;=AT/T;=~0.16. temperaturé
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FIG. 1. Plot of the relaxation tim&, (logarithmic basgvs the
quantity 7« (T—T;) (logarithmic basgfor different anharmonic in-
teraction constants=0.2 (1), 0.4(2), 0.6 (3), 0.75(4).

7=7(1)xcT—T;=AT (19

is shown for different values ofu=u(1). Very close
to T,—i.e., for very small values ofr—there is a
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FIG. 3. Dependence of the relaxation tiffig (logarithmic basg
on the renormalized temperature(logarithmic basgfor u=0.6
and for different renormalized Larmor frequencies=1 (1), 10
(2), 100(3).

anharmonicity the width of the critical region increases, too.
For example, fou= 0.2 we find a nonclassical critical expo-
nent between Im=-3 and In/;=—3.5. If we choose the

temperature-independent region, where the OP relaxatiof,stant in Eq.19) according tom.=t,=(T,—T:)/T; (k

frequency [2776p(0)] '=w,(0) [see Eq.(4.3 in Ref.

=1,2) and if we takel;=303 K (for RZC), we find an in-

26 and Fig. 2 in Ref. Jis comparable or smaller than oo of AT~0.2 K above the crossover to the slow-motion
the Larmor frequency, the so-called slow-motion casqyt \hereas foru=0.75 we obtainAT~30 K. This in-

(see also Fig. B With increasingr, where T, increases

crease oA T with increasing constant is in agreement with

too, a temperature dependence with a nonclassical criticg,q expressiori7) or (13 obtained from the self-consistent

exponent

{=—d(InTy)/d(In7) (20

phonon theoryhaving in mind thati corresponds tb in the
SCPT).
The T,(7) dependence for different Larmor frequencies

appears. For still higher temperatures one finds a crossov@y, is shown in Fig. 3. The transition from the temperature-
to the mean-field exponent. With increasing anharmonicity dependentfast-motion limi) to the temperature-independent
the relaxation timeT,; decreases whereas the width of the (slow-motion limid region may be clearly inferred. A similar
critical region increases. In Fig. 2 the effective exponent—T,(@,) behavior was found by Decket al.” on the basis of
i.e., the slope of the curve in Fig. 1—is plotted versus thea conventional approach by the numerical simulation of the
logarithm of 7. A crossover takes place from the critical be- temperature dependence of the critical relaxation time
havior with nonclassical critical exponents&#0.625to the T, ;i fOr various Larmor frequencies.

mean-field regime with a value of 0.5. More clearly than in

Fig. 1 it may be inferred from Fig. 2 that with increasing V. CONCLUSION

08 i ' ' T : We have studied the critical behavior of incommensurate
07k - systems such as RZC, RZB, and BCPS and especially the
05 . . width of the critical region near structural phase transitions,

where nonclassical critical exponents are valid, using the

Effective Exponent

FIG. 2. Dependence of the effective exponent according to Eq.

0.5
04
0.3
0.2

0.0

0.1

logt

self-consistent phonon theory and the renormalization-group
theory. The calculation reveal that the critical region
may be large if the dispersion of the soft mode is srhadty
“soft” mode) or if the anharmonic interaction constant is
large. Taking parameters appropriate to these compounds we
find that the width of the critical region for RZB/RZC is
AT~30-50 K. For BCPS a smaller critical regionT
~10K, is estimated in good agreement with the experimen-
tal data.
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