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Simulations of cubic-tetragonal ferroelastics
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We study domain patterns in cubic-tetragonal ferroelastics by solving numerically equations of motion
derived from a Landau model of the phase transition, including dissipative stresses. Our system sizes, of up to
2563 points, are large enough to reveal many structures observed experimentally. Most patterns found at late
stages in the relaxation are multiply banded; all three tetragonal variants appear, but inequivalently. Two of the
variants form broad primary bands; the third intrudes into the others to form narrow secondary bands with the
hosts. On colliding with walls between the primary variants, the third either terminates or forms a chevron. The
multiply banded patterns, with the two domain sizes, the chevrons and the terminations, are seen in the
microscopy of zirconia and other cubic-tetragonal ferroelastics. We examine also transient structures obtained
much earlier in the relaxation; these show the above features and others also observed in experiment.
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I. INTRODUCTION

Ferroelastics1–3 are crystalline solids that undergo
shape-changing, structural phase transition with decrea
temperatureT. The high-T or parentphase distorts spontane
ously at the transition temperatureTc to form one or more
productsor variantswith identical energies but different ori
entations. In cubic-tetragonal~CT! ferroelastics for example
only one of three fourfold axes is retained belowTc , giving
three variants.

Due to constraints imposed by neighboring material
single variant is found only rarely, perhaps only in very sm
grains; the displacement resulting from a strain of 1024 in a
grain of size 10mm ~both typical values! is an order of mag-
nitude too large to be accommodated by atomic rearran
ments at grain boundaries. Multiple variants can arise a
from independent nucleation events. An external stress
move the walls that separate the variants, so converting
variant to the other~s! at little cost in energy; the process h
been observed for example by neutron diffraction
zirconia.4 Related phenomena are strongly hysteretic stre
strain relations, shape-memory effects, etc.3

Pockets of the parent phase can persist belowTc , until
the gain in condensation energy overcomes the cost of in
ducing domain walls. Compositional inhomogeneities co
bined with a strong dependence ofTc on composition can
also smear the transition, in cases to over 100 K; it is co
mon to speak instead of a transformation.

Domain patterns in ferroelastics have nothing in comm
with those in conventional order-parameter systems. T
dimensional~2D! patterns in tetragonal-orthorhombic~TO!
ferroelastics such as YBa2Cu3O72d resemble not at all thos
in 2D Ising models, though both have two variants; neith
can 2D patterns in hexagonal-orthorhombic~HO! ferroelas-
tics be understood from 2D three-state Potts models, b
with three. The difference arises because~a! in order to
maintain a coherent interface~no dislocations or disclina
tions!, ferroelastic domain walls rotate the variants as wel
0163-1829/2003/68~22!/224104~7!/$20.00 68 2241
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join them, and~b! order-parameter strains alone are insu
cient to understand the patterns. Disclinations, which h
no counterpart in Ising and Potts systems, are genera
however, by wall collisions; they dominate patterns es
cially in HO-like systems~e.g., trigonal-monoclinic lead
orthovanadate!.

Much of ferroelastic theory follows Barsch an
Krumhansl5 in expanding the free-energy density in powe
of the strains and their derivatives. Analytical results are p
sible in a few cases,5,6 but structures formed by colliding
walls require numerical effort for their understanding. Su
studies7–9 in 2D gave static and transient domain patter
that reproduced nearly all aspects of those observed in
like and TO ferroelastics. Reference 10 obtained similar
sults.

An alternative approach, phase-field theory,11 predates
Ref. 5 and has also been used extensively to understand
main patterns in HO-like materials,12 CT materials,13,14 etc.
Reference 15 discusses differences between the two
proaches. And other lines have been pursued.

In CT ferroelastics, the domain walls joining two tetra
onal variants lie optimally in the cubic 110 planes16 and are
then twin walls. In the solutions,5,17,18the strains depart only
locally from their bulk values, decaying exponentially wi
distance from the wall. Of course domain walls need not
in the cubic 110 planes; they are then not twin walls, and
departures decay algebraically.19

Optical and electron microscopy of zirconia,20–22

leucite,23,3 barium titanate,2 and other CT ferroelastics24 re-
veals a variety of patterns. The structures2 of small and large
grains are respectively lamellar~with only two variants! and
banded~with all three!;2 the latter seems unique to CT ma
terials. The lamellar↔ banded transition is understood,2,25

though the analysis is apparently limited to variants orien
at p/2. Other aspects of the domain patterns have also b
explained analytically.20,26,2,25The character of the pattern
depends also on the thickness of the sample and on whe
the surface examined is part of a clamped specimen, or a
©2003 The American Physical Society04-1
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surface, or representative of the bulk.2,25The highly sensitive
technique of birefringence imaging27 promises to reveal fur-
ther details of these patterns.

The following presents results from simulating the tim
evolution of CT materials. We obtain the equations of mot
by expanding the free-energy density and the Rayleigh
sipation density to lowest possible order in the strains
their derivatives. We solve numerically for the displaceme
using periodic boundary conditions and omitting the iner
term. Our late-time structures reproduce most features of
banded patterns found in CT materials.2,3,20–24These struc-
tures were not found in the smaller systems used in the
vious CT simulations of Refs. 28 and 29; some were found
a phase-field study.14 Our transient structures show in add
tion other wall configurations observed experimentally.

II. LANDAU THEORY AND EQUATIONS OF MOTION
OF ELASTICS

The displacementu(r ) of a material point is defined rela
tive to its position r in the parent phase. The symmetr
strain tensor in this Lagrangian description ish i j 5

1
2 (ui , j

1uj ,i1uk,iuk, j ), whereui , j5]ui /]xj . We neglect the non-
linear term inh because it has no known qualitative effect
the domain patterns. The strains~all of which vanish in the
parent phase! are defined by

e15u1,11u2,21u3,3, ~1!

e25
1

2
~u1,12u2,2!, ~2!

e35
1

2A3
~u1,11u2,222u3,3!, ~3!

e45
1

2
~u2,31u3,2!, ~4!

e55
1

2
~u3,11u1,3!, ~5!

e65
1

2
~u1,21u2,1!; ~6!

these definitions differ slightly from those in Ref. 18. Th
deviatoric strainse2 and e3 form the two-component orde
parameter of the transition. The other strainse1 ~the dilata-
tional strain in the small-strain limit! and the shear strain
e4 , e5, and e6 are identically zero in the uniform produc
phase; they are required however to understand domain
terns, even for a single twin wall.5,17,18

The six strains are obtained from the three component
the displacementu and so are not independent when th
vary spatially; the second derivatives of the strains are lin
by compatibility relations, necessary and sufficient cond
tions that the strains be derivable fromu. We satisfy these
relations implicitly by working with the componentsui . Ref-
erences 30,29,10, which work directly with the strains, s
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isfy them explicitly by imposing them to obtain nonloc
relations between the order-parameter strainse2 ande3; the
anisotropic, oscillatory nature of the kernels, obtained also
Ref. 15, provides much insight into domain structures a
their relaxation. Nonlocal relations were developed mu
earlier,11 though there appear to be differences.15

In the Landau expansion of the free-energy density in
strains and their derivatives, the cubic symmetry of the p
ent phase permits three invariants to second order in
strainse1

2, e2
21e3

2 ande4
21e5

21e6
2. The corresponding stiff-

ness coefficientsA1 , A2, andA4 are linear combinations o
the Voigt coefficients. The order-parameter stiffnessA2 soft-
ens with decreasingT as A25a(T2T0). To describe the
phase transition, one adds a term cubic ine2 and e3 @this
term breaks the rotational symmetry in (e2 ,e3) space#, and a
quartic term for stability. The minimal density, that contai
only essential terms, is

F5
A1

2
e1

21
A2

2
~e2

21e3
2!2

B2

3
~e3

323e2
2e3!1

C2

4
~e2

21e3
2!2

1
A4

2
~e4

21e5
21e6

2!1
D2

2
@~¹e2!21~¹e3!2#; ~7!

the last term gives the domain-wall energy~which prevents
the system from dividing into arbitrarily small domains!. We
omit all unnecessary terms, namely, higher-order terms
also some of the same order as those kept~a second invariant
in the order-parameter derivatives18,29 and other derivative
invariants!.

The coefficientsA2 , B2, andC2 determine the transition
temperatureTc and the spontaneous straine30 in the product
phase. WhenA2.B2

2/4C2, the free energy has only the cub
minimum ate25e350. For A2,B2

2/4C2, it has also three
degenerate tetragonal minima located at

e250, e35e30, ~8!

e252A3e30/2, e352e30/2, ~9!

e25A3e30/2, e352e30/2 ~10!

with ~we assumeB2.0)

e305
B21~B2

224A2C2!1/2

2C2
. ~11!

The phase transition, which is first order, occurs whenA2

5 2
9 B2

2/C2. The cubic phase is unstable forA2,0.
The symmetric stress tensors i j is defined by

s i j 5dF/dh i j 5Gkdek /dh i j ~12!

with Gk[dF/dek ; explicitly,

G25~A22D2¹2!e212B2e2e31C2e2~e2
21e3

2!, ~13!
4-2
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SIMULATIONS OF CUBIC-TETRAGONAL FERROELASTICS PHYSICAL REVIEW B68, 224104 ~2003!
G35~A22D2¹2!e31B2~e2
22e3

2!1C2e3~e2
21e3

2!,
~14!

s115A1e11
1

2
G21

1

2A3
G3 , ~15!

s225A1e12
1

2
G21

1

2A3
G3 , ~16!

s335A1e12
1

A3
G3 , ~17!

s235A4e4 , ~18!

s315A4e5 , ~19!

s125A4e6 . ~20!

Stresses arise also from dissipative mechanisms.
same symmetry considerations as used for the free en
give the Rayleigh dissipative density as

R5
A18

2
ė1

21
A28

2
~ ė2

21ė3
2!1

A48

2
~ ė4

21ė5
21ė6

2! ~21!

to lowest order in the time derivativesėj of the strains. The
dissipative stressess i j8 are found from

s i j8 5dR/dḣ i j 5Gk8dėk /dḣ i j , ~22!

whereGk8[dR/dėk : G185A18ė1 , . . . ,G685A48ė6.
Our interest is in static states and in states where w

move slowly~rather than in effects associated with motion
or near the sound velocity! and so we assume isotherm
conditions. The equations of motion follow from Newton
second law

f i5rüi5s i j , j8 1s i j , j . ~23!

In the overdamped limit, the inertial termrüi is dropped and
Eq. ~23! simplifies tos i j , j8 52s i j , j . In terms of the displace
ment, this is

@A8]1
21B8~]2

21]3
2!#u̇11C8~]1]2u̇21]1]3u̇3!

52~A2 1
3 D2¹2!]1

2u12B~]2
21]3

2!u12~C1 1
6 D2¹2!

3~]1]2u21]1]3u3!1R1
NL ~24!

for i 51, with obvious forms fori 52,3. The coefficients are
A85A181 1

3 A28 , B85 1
4 A48 , and C85A182 1

6 A281 1
4 A48 ; the

definitions for A, B and C are obtained by dropping th
primes. The nonlinear terms

R1
NL52]1S 1

2
G 2

NL1
1

2A3
G 3

NLD , ~25!

R2
NL52]2S 2

1

2
G 2

NL1
1

2A3
G 3

NLD , ~26!
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R3
NL52]3S 2

1

A3
G 3

NLD ~27!

on the right-hand sides involve the nonlinear parts ofG2 and
G3, namely, the terms with coefficientsB2 and C2 in Eqs.
~13! and ~14!.

The matrix on the left-hand side of Eq.~24! must be in-
vertible. Special handling is required when the strains
constant~that is ]15]25]350) since both sides are the
zero. Examining the full equation of motion~23!, we see that
the proper way to account for the constant strains is to le
them constant at all times. The interpretation is physica
piece of strained material does not move unless there
differential strain. Another case of interest isA185A4850,
which may be a reasonable choice given that it is the or
parameter, and not the other strain components, wh
changes most quickly in time. Then the matrix is not inve
ible for ]150 or ]250 or ]350, but again Eq.~23! tells us
how to handle this case.

The equations of motion~24! can be solved under a var
ety of boundary conditions. Wishing to examine domain p
terns, we used periodic boundary conditions~which allow no
length change in any direction! in order to force domain
walls into the low-T phase; all three variants are require
since two variants can satisfy the constraint in only two
rections. A second important consideration is that these c
ditions allow use of the fast Fourier transform, which
much faster than real-space methods. We should, howe
voice our concern that these conditions may lead to spur
correlations between relaxation events at large relative
tances. Of other choices, clamped conditions (u50 on and
outside the boundaries, as in Ref. 8! would also force domain
walls into the low-T phase, but are less attractive becau
they usually give complex structures near the edges. O
conditions are not useful for our purpose, for the syst
would go to a single variant for almost any initial state. Y
another possibility corresponds to applied stresses at
boundaries.

In Fourier space, Eqs.~24! are identical to the equation
of time-dependent Ginzburg-Landau~TDGL!.10,29,30 In real
space, Eqs.~24! contain extra space derivatives on both sid
relative to TDGL theory and so appear more general~they
can be applied, for example, to systems with impos
strains!. The neglect of the inertial terms both here and
Refs. 30, 29, 10 is problematic for the relaxation.

III. DOMAIN PATTERNS

We solved Eqs.~24! numerically, as described in the Ap
pendix, starting usually from random displacements.
present fully converged31 results for 3D grids of 1283 points
and quasistatic31 results for 2563 points. We present also
transient structures in systems of 2563 points. Systems of
these sizes reveal features not seen in previous studies, w
used at most 643 points.
4-3
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FIG. 1. ~Color! Late-time domain patterns. The faces of each display cube are cubic 100 planes; the red, green, and blue
correspond to the three tetragonal variants; the domain walls~black! lie optimally in cubic 110 planes. Parts~a! and~b! show fully converged
~Ref. 31! patterns~both att'70) obtained in 1283 systems using different starting configurations but otherwise identical parametersA1

5A45100); pattern~b! is a metastable state with higher energy than pattern~a!. Part~c! shows a quasistatic~Ref. 31! configuration in a
2563 system att5140 with stiffer parameters (A15A45500). The temperature parameter isA25220 for all three parts.
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The nature of the patterns depends in part on the stiffn
coefficientsA1 and A4. The dilatational and shear energi
are minimized when the walls lie in cubic 110 planes, and
the parametersA1 and A4 control the energy cost incurre
when the walls depart from their optimal orientations. In s
systems, with largeA1 and A4, the domain walls must lie
close to the 110 planes, whereas in soft systems they
depart from these optimal orientations at small cost in
ergy. We have, however, no quantitative way to distingu
stiff from soft systems; comparingA1 andA4 with the order-
parameter stiffnesses7 found from the curvatures of the fre
energy about the tetragonal minima is not an effect
means.

A. Late-time structures

We made extensive studies of late-time domain structu
at A2522 andA25220; the spontaneous straine30 at these
temperatures is respectively twice and four times the valu
Tc . We present results at only the lower~latter! value, where
the order parameters inside the domains are more well
veloped.
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Most of '200 simulations gave multiply banded or he
ringbone structures similar to those shown in Fig. 1.32 These
patterns, which seem at first glance to reflect more the p
odic boundary conditions than any physics, are in fact fou
in the microstructure of polydomain zirconia@examples are
Figs. 4~a!, 5~a!, 6, and 7 of Ref. 20, Fig. 3 of Ref. 21, an
Figs. 1 and 2 of Ref. 22# and other CT materials.24 Similar
patterns appear also in the well known ferroelectric BaTiO3,
specifically Figs. 2~a! and 8~b! of Ref. 2; they should appea
in other elastic/electric and elastic/magnetic ferroics p
vided that the elastic energy dominates the electric and m
netic energies, as it does2 in BaTiO3. Banded structures wer
found also in a phase-field study.14

All three variants appear in Fig. 1, but not equivalent
The structures consist of two primary bands, here red
green; the width of the primaries is determined by the sys
size in Fig. 1 and, one assumes, by the grain size in exp
ment. Each primary is penetrated by the third variant, h
blue; neither primary contains domains of the other. With
each primary, the host and the third variant form second
bands; the ratio of the width of the host variant to the wid
of the third variant in the secondary bands is ideally 2:1
s. The
FIG. 2. ~Color! Snapshots of a 2563 system as it relaxes from random initial displacements. The faces are cubic 100 plane
temperature parameter isA25220 and the stiffnesses areA15A45100. Parts~a! and ~b! are transient structures at timest52.2 and 3.6,
respectively; part~c! is a quasistatic pattern att530.
4-4
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SIMULATIONS OF CUBIC-TETRAGONAL FERROELASTICS PHYSICAL REVIEW B68, 224104 ~2003!
that the three variants appear with equal volume fr
tions.20,26 The same ratio was found in Refs. 2,25, whi
found also the optimal value of the period of the prima
bands to that of the secondary bands.

Figure 1~a! shows a fully converged31 structure; it has the
lowest energy of seven states found in 24 quenches with
same parameters. The front face shows chevron~or herring-
bone! structures; the blue domains are continuous across
red-green boundaries, where they bend through 90° and
slightly distorted as well.

Figure 1~b! shows another fully converged structure o
tained with the same parameters as part~a!; it has a higher
energy~the third lowest of the seven states! and so is meta-
stable. Some of the blue variants form chevrons, as in
~a!, but some terminate at the red-green boundaries; the w
occasionally deviate from the 110 planes. Presumably
higher energy relative to part~a! results in part from the
terminations and the deviations; both are seen experim
tally, for example in Figs. 4~a!, 5~a!, and 6 of Ref. 20.

Figure 1~c!, for a 2563 system with stiffer parameters
shows a quasistatic31 configuration with a mixture of con
tinuing and terminating variants. The system is large eno
to show the secondary banding clearly, but it is too small a
has too many imperfections to display well the 2:1 ratio d
cussed above. Of the two other simulations performed w
the same parameters, one gave no terminations and no
prisingly a lower energy, and the third gave more termin
tions and a larger energy.

In addition to these banded structures, we found lame
structures in smaller systems (643), particularly for stiffer
parameters; the agreement with the lamellar↔ banded tran-
sition analyzed in Refs. 2, 25 is, however, largely illuso
for the order parameters cannot approach their optimal
ues due to the length constraint in the third direction.
found also intermediate structures in which the narrow v
ant appears in only one of the two primary bands. Finally
few systems gave very different tweedlike or basket-we
structures, of all three variants, that seem not to be obse
in experiment.

B. Transient structures

In all our late-time banded structures~not just those of
Fig. 1!, walls collide only at boundaries between the prima
bands. Within each primary red~green! band,~a! the red-blue
~green-blue! walls adopt only one of the two possible o
thogonal orientations,16 and ~b! the other primary, the gree
~red! variant, is absent.

Walls colliding within the primary bands are however o
served; examples are theA3 band in Fig. 6 of Ref. 20, Fig
7~b! of Ref. 20, Fig. 3 of Ref. 21, and Fig. 11 of Ref. 2
Because we obtain only two primary bands, neither did
observe theA2 and A4 bands in Fig. 6 of Ref. 20; thes
contain the same two variants as theA1 band but with the
orthogonal wall orientation.

Perhaps our systems are too small to show these eff
perhaps the experimental systems are incompletely rela
that different experimental conditions can give differe
patterns2 may be relevant here. We have however fou
22410
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some of these features in transient structures of a 2563 sys-
tem; 1283 systems are too small to show interesting featu
clearly.

The important aspects of Figs. 2~a! and 2~b! are the fol-
lowing.

~1! Needle twins: The top face of part~a! shows a band of
green needle twins in the red primary band, and also a b
of blue needle twins in the green primary band; needles
pear also elsewhere. In part~b!, some needles have advanc
and some have retracted. Needle twins are found for exam
in leucite ~Fig. 3 of Ref. 23!.

~2! Collisions of identical variants: In the green prima
band on the top face, green/blue walls collide with gre
blue walls of the other orientation, forming modulated stru
tures. Figure 11 of Ref. 22 shows a similar pattern in zirc
nia, ‘‘a rather exceptional case,’’ also formed by orthogon
colliding walls. As in Refs. 8,9, we ascribe these modu
tions, and also the structures in Fig. 3~b! of Ref. 23, to for-
mation of wedge disclinations between two identical but d
ferently rotated variants; the same explanation applies to
splitting, in some cases.

~3! A split tip: Tip splitting seems to occur only rarely i
CT materials~relative to TO materials!, presumably becaus
of the extra freedom afforded by three variants; an exam
is Fig. 3 of Ref. 23. We found only one split tip, an indistin
one at that, at the right side of the top face in part~a!; this is
of course a transient configuration. Split tips appear in
statics of some simulations,8,14 but only at the interface with
parent material; they are more frequent in transi
structures.9

~4! Collisions of different variants: In the top faces o
both parts~a! and ~b!, green needle twins collide orthogo
nally with, or come near, blue variants; collisions occur a
in the lower front face of part~a!. No special features resu
from the collisions, which have not been noted in any expe
ment known to us.

Figure 2~c! shows the same system at the later timet
530. Many of the defects in part~b! have disappeared in thi
quasi-static wall configuration; the walls are straighter, bu
this relatively soft system they still bend where the th
variant ~here blue! terminates.

Inspection of the dilatational and shear strains of late-ti
structures shows, not surprisingly, that their magnitude
maximum in the wall-collision regions. We investigated al
the early stages of growth initiated by locally perturbing t
parent phase at a temperature well belowTc ; the growth
occurs predominantly along spikes in the 111 directions
planes in 110 directions, producing a noncompact object
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APPENDIX

We solved Eqs.~24! using periodic boundary condition
on the displacementu. Since only qualitative compariso
with experiment seems possible at present, and becaus
wished to obtain results qualitatively applicable to many
materials, we scaled the energy, the strains and the len
this scaling requires neglect of the nonlinear term in
strain tensorh. We chose the valuesB2533103 and C2
523106 so that the transition occurs atA251, and the
scaled strain atTc is e30(Tc)51023, an arbitrary value. We
choseD251 to set the scale for the domain-wall width.18

The number of parameters in the free-energy density is t
reduced from six to three, the scaled stiffnessesA1 and A4
and the scaledT-like variableA2. Results for other param
eter values are easily obtained by scaling back to the orig
variables.

The viscosity coefficientsAj8 appearing in Eq.~24! are not
known from microscopic theory. Neither we expect can th
be determined from experiments such as ultrasonic atte
tion that operate on time scales very different from tho
governing domain-wall motion~as distinct from the ‘‘twin
cry’’ in some materials!. Lacking experiments that might de
termine the relevant coefficients, we chose the unit of time
that A2851; lacking a reason to do otherwise, we choseA18
5A4851 also.

Each time step began with the Fourier coefficientsũ j (k,t)
at time t. The left-hand sides of Eqs.~24! are linear in the
strains and so the space derivatives are obtained by mul
cation in Fourier space; our approximations for the deri
tives are described below. The linear terms on the right-h
sides are found in the same way. To obtain the nonlin
termsRi

NL in Fourier space, we formed the Fourier coef
cients of the strainse2 ande3, transformed them to find the
strains in real space, found the nonlinear termsG 2

NL andG 3
NL

by multiplication~replacing the strains point by point!, trans-
formed the two terms back to Fourier space, and multipl
to obtain the space derivatives in Fourier space. The s
tions were advanced in time by an Euler step~usually Dt
5431023); solution of three linear algebraic equations th
gives the three componentsũ j (k,t1Dt) in Fourier space. To
monitor the convergence, we found the energy, the ro
mean-square order-parameter strains and right-hand sid
Eq. ~24!, etc., every 10 or 20 time steps.

The above computational scheme requires storage of
matrices, three for theũ j (k,t) and two for the strainse2 and
e3 ~or G 2

NL andG 3
NL). The fast Fourier transforms were pe

formed using the Numerical Recipes routine fourn,33 which
deals with complex matrices. The full executable file for
2563 system requires 1.35 GB of storage. Savings of ab
two in storage and execution time would be obtained by
of routines for real matrices, at though some expense in c
ing and clarity. We have also obtained static structures
conjugate-gradient minimization of the energy.33 The latter
method is preferable in some respects to solving the eq
tions of motion, and we have used it to verify the correctn
of some of our 643 results; it requires, however, roughly
times as much storage, well in excess of that available to
for 2563 systems.
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The first and second derivatives were obtained fr
obvious generalizations of the 1D finite-difference appro
mations

d f~0!

dx
'

2

3h H @ f ~h!2 f ~2h!#2
1

8
@ f ~2h!2 f ~22h!#J ,

~A1!

d2f ~0!

dx2 '
4

3h2 H @ f ~h!1 f ~2h!22 f ~0!#

2
1

16
@ f ~2h!1 f ~22h!22 f ~0!#J . ~A2!

If the Fourier coefficients are defined by

f ~r !5(
jkl

ajkle
2p i ( jx1ky1 lz)/L ~A3!

with periodL5Nh in each variable, then the first and seco
derivatives are approximated by

]

]x
→ i

3h
sin~2p jh/L !@312 sin2~p jh/L !#, ~A4!

]2

]x2 → 24

3h2 sin2~p jh/L !@31sin2~p jh/L !# ~A5!

in Fourier space. In obtaining second-derivative terms s
as]1

2 in Eq. ~24!, it is important to use Eq.~A5! rather than
Eq. ~A4! twice, for the latter vanishes atj 5N/2.

The space step sizeh must be chosen as a reasonab
compromise between the conflicting demands of large ph
cal sizeL5Nh on the one hand and accuracy on the oth
Our valuesh50.5 at A2522 and h50.25 at A25220
were established as follows.

We first performed 48 quenches atA25220 with A1
5A45100 on systems of identical linear sizeL5Nh; 24 of
these quenches used (N,h)5(128,0.125) and 24 use
(N,h)5(64,0.25). The larger step size gave four states, e
of which was clearly identified with a state found for th
smallerh. The energies of the four states common to the t
sets of quenches agreed to better than 1 part in 2000~relative
to the uniform product phase! and the relative frequencies o
occurrence were comparable. The smaller step size g
however, three additional states, each once. Sinceh50.25 is
satisfactory atA25220 and since the variational wa
width18 scales as 1/e30, one expectsh50.5 to be satisfactory
at A2522 wheree30 is half the value atA25220. Less
extensive tests carried out atA2522 with A15A45100
gave comparable results for (N,h)5(128,0.25) as agains
(64,0.5). Similar tests withA15A451000 at both values o
A2 gave the same conclusions. In passing, we remark tha
number of metastable states found in the quenches of
previous paragraph and in the quenches used for parts~a! and
~b! of Fig. 1 is smaller than found in a TO study8 of clamped
systems of comparable linear size; the difference is due
the different boundary conditions.
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