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We study domain patterns in cubic-tetragonal ferroelastics by solving numerically equations of motion
derived from a Landau model of the phase transition, including dissipative stresses. Our system sizes, of up to
256° points, are large enough to reveal many structures observed experimentally. Most patterns found at late
stages in the relaxation are multiply banded,; all three tetragonal variants appear, but inequivalently. Two of the
variants form broad primary bands; the third intrudes into the others to form narrow secondary bands with the
hosts. On colliding with walls between the primary variants, the third either terminates or forms a chevron. The
multiply banded patterns, with the two domain sizes, the chevrons and the terminations, are seen in the
microscopy of zirconia and other cubic-tetragonal ferroelastics. We examine also transient structures obtained
much earlier in the relaxation; these show the above features and others also observed in experiment.
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[. INTRODUCTION join them, and(b) order-parameter strains alone are insuffi-
cient to understand the patterns. Disclinations, which have
Ferroelastics® are crystalline solids that undergo a no counterpart in Ising and Potts systems, are generated,
shape-changing, structural phase transition with decreasirigowever, by wall collisions; they dominate patterns espe-
temperaturdl. The highT or parentphase distorts spontane- cially in HO-like systems(e.g., trigonal-monoclinic lead
ously at the transition temperatuiig to form one or more orthovanadate
productsor variantswith identical energies but different ori- Much of ferroelastic theory follows Barsch and
entations. In cubic-tetragonéCT) ferroelastics for example, Krumhanst in expanding the free-energy density in powers
only one of three fourfold axes is retained bel®w, giving  of the strains and their derivatives. Analytical results are pos-
three variants. sible in a few case%® but structures formed by colliding
Due to constraints imposed by neighboring material, awalls require numerical effort for their understanding. Such
single variant is found only rarely, perhaps only in very smallstudied™® in 2D gave static and transient domain patterns
grains; the displacement resulting from a strain of 46 a  that reproduced nearly all aspects of those observed in HO-
grain of size 10um (both typical valuekis an order of mag- like and TO ferroelastics. Reference 10 obtained similar re-
nitude too large to be accommodated by atomic rearrangesults.
ments at grain boundaries. Multiple variants can arise also An alternative approach, phase-field thebrypredates
from independent nucleation events. An external stress caRef. 5 and has also been used extensively to understand do-
move the walls that separate the variants, so converting onaain patterns in HO-like material8,CT materials:>* etc.
variant to the othés) at little cost in energy; the process has Reference 15 discusses differences between the two ap-
been observed for example by neutron diffraction ofproaches. And other lines have been pursued.
zirconia? Related phenomena are strongly hysteretic stress- In CT ferroelastics, the domain walls joining two tetrag-
strain relations, shape-memory effects, ®tc. onal variants lie optimally in the cubic 110 plah®and are
Pockets of the parent phase can persist below until  then twin walls. In the solutions!”*8the strains depart only
the gain in condensation energy overcomes the cost of intrdecally from their bulk values, decaying exponentially with
ducing domain walls. Compositional inhomogeneities com-distance from the wall. Of course domain walls need not lie
bined with a strong dependence ©f on composition can in the cubic 110 planes; they are then not twin walls, and the
also smear the transition, in cases to over 100 K; it is comdepartures decay algebraicalfy.
mon to speak instead of a transformation. Optical and electron microscopy of zircorffa??
Domain patterns in ferroelastics have nothing in commorieucite?® barium titanaté, and other CT ferroelastitbre-
with those in conventional order-parameter systems. Twoveals a variety of patterns. The structdressmall and large
dimensional(2D) patterns in tetragonal-orthorhomhb(€O) grains are respectively lamellawvith only two variant$ and
ferroelastics such as YB&u;O,_ 5 resemble not at all those banded(with all threg;? the latter seems unique to CT ma-
in 2D Ising models, though both have two variants; neithetterials. The lamellar~ banded transition is understo6&
can 2D patterns in hexagonal-orthorhomftO) ferroelas-  though the analysis is apparently limited to variants oriented
tics be understood from 2D three-state Potts models, botht /2. Other aspects of the domain patterns have also been
with three. The difference arises becaus in order to  explained analyticallj®?%22°The character of the patterns
maintain a coherent interfac@o dislocations or disclina- depends also on the thickness of the sample and on whether
tions), ferroelastic domain walls rotate the variants as well aghe surface examined is part of a clamped specimen, or a free
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surface, or representative of the béf The highly sensitive isfy them explicitly by imposing them to obtain nonlocal
technique of birefringence imagifigpromises to reveal fur- relations between the order-parameter strainande,; the
ther details of these patterns. anisotropic, oscillatory nature of the kernels, obtained also in
The following presents results from simulating the timeRef. 15, provides much insight into domain structures and
evolution of CT materials. We obtain the equations of motiontheir relaxation. Nonlocal relations were developed much
by expanding the free-energy density and the Rayleigh disearlier! though there appear to be differenées.
sipation density to lowest possible order in the strains and In the Landau expansion of the free-energy density in the
their derivatives. We solve numerically for the displacementstrains and their derivatives, the cubic symmetry of the par-
using periodic boundary conditions and omitting the inertialent phase permits three invariants to second order in the
term. Our late-time structures reproduce most features of thetrainse?, e5+e3 ande>+e2+eZ. The corresponding stiff-
banded patterns found in CT materi&f?°~>*These struc- ness coefficient#,, A,, andA, are linear combinations of
tures were not found in the smaller systems used in the prehe Voigt coefficients. The order-parameter stiffnsssoft-
vious CT simulations of Refs. 28 and 29; some were found irens with decreasing as A,=a(T—T,). To describe the

a phase-field stud{? Our transient structures show in addi- phase transition, one adds a term cubicejnand e; [this

tion other wall configurations observed experimentally. term breaks the rotational symmetry |e2(ea) Spacé, and a
quartic term for stability. The minimal density, that contains
Il. LANDAU THEORY AND EQUATIONS OF MOTION only essential terms, is
OF ELASTICS

The displacement(r) of a material point is defined rela- At , A, L, By 4 5 C , 2
. X " \ . =—ef+—(e5+e5)— —(e5— + —(e5+
tive to its positionr in the parent phase. The symmetric F=g et 5 (& €3) 3 (837 3€285)+ (&7 F )
strain tensor in this Lagrangian description ﬁz%(ui,j
+Uj i +UgUy;), whereu; j=4du;/dx;. We neglect the non- i ﬁ(e2+e2+e2)+ E[We )2+ (Ves)?]: )
linear term iny because it has no known qualitative effect on 2 4 2 z &

the domain patterns. The straital of which vanish in the

parent phaseare defined by the last term gives the domain-wall energyhich prevents

the system from dividing into arbitrarily small domajngVe
€=Uy 1+ Uy o+ Uz 3, (1) omit all unnecessary terms, namely, higher-ordgr terms and
' ' ' also some of the same order as those kagecond invariant
1 in the order-parameter derivati8$® and other derivative
ezzi(ul,l— Uz, (2)  invariants.
The coefficientsA,, B,, andC, determine the transition
1 temperaturd . and the spontaneous strag in the product
3= ——(Uy 1+ Uy~ 2Ugg), 3) phase. Whei\,> B§/4C2, the free energy has only the cubic

2\/§ minimum ate,=e;=0. For A,< B§/4CZ, it has also three
degenerate tetragonal minima located at
1
== +
€4 2 (u2,3 u3,21 (4) 82: 0’ e3: esoy (8)
1
€5 =5 (U1t Uy, (5) &= — V3632, e3=—ey2, (9)
1 e,=3e302, 3= —eyy2 (10)
8= (ULt Uz1); (6)
with (we assuméd,>0)
these definitions differ slightly from those in Ref. 18. The
deviatoric straing, ande; form the two-component order B,+ (B2—4A,C,)?
parameter of the transition. The other straims(the dilata- €30= 5C . (11
2

tional strain in the small-strain limitand the shear strains

€4, €5, andeg are identically zero in the uniform product The phase transition, which is first order, occurs wien
phase; they are required however to understand domain pat-2B2/C,. The cubic phase is unstable fap<0.

terns, even for a single twin wat: "8 The symmetric stress tensoy; is defined by
The six strains are obtained from the three components of
the displacementi and so are not independent when they B _
vary spatially; the second derivatives of the strains are linked 01 = 8F1 57 =Gy Sl Sy (12)

by compatibility relations necessary and sufficient condi- \y;itn G=6F15e,; explicitly,

tions that the strains be derivable fraim We satisfy these

relations implicitly by working with the components. Ref- 5 5
erences 30,29,10, which work directly with the strains, sat- Go=(A—D,V?)e,+2Byese3+ Coen(es+e3), (13
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G3=(A;—D,V?)e3+B,(e5—e5) +Coeq(es+€j), NL 1 W
(14 R3~=—ds| — ﬁ% (27)
A+ 1g + ! g (15
o11=Ae;+ = ——Ga,
R 23 s on the right-hand sides involve the nonlinear partgotnd

Gs, namely, the terms with coefficien&, and C, in Egs.
(13) and (14).
§g2+ mg& (16) The matrix on the left-hand side of E(R4) must be in-
vertible. Special handling is required when the strains are
constant(that is ¢,=d,=d3=0) since both sides are then
—Gs, (17)  zero. Examining the full equation of moti@@3), we see that
V3 the proper way to account for the constant strains is to leave
them constant at all times. The interpretation is physical: a
023~ Ag€s, (18) piece of strained material does not move unless there is a
(19 differential strain. Another case of interest A§=A;=0,
which may be a reasonable choice given that it is the order
010=As8s. (200  Pparameter, and not the other strain components, which
changes most quickly in time. Then the matrix is not invert-
Stresses arise also from dissipative mechanisms. Thigle for 9,=0 or d,=0 or 9;=0, but again Eq(23) tells us
same symmetry considerations as used for the free energyow to handle this case.
give the Rayleigh dissipative density as The equations of motiof24) can be solved under a vari-
, , , ety of boundary conditions. Wishing to examine domain pat-
R= %'954‘ %(é§+ &2)+ %(é§+ 2+ed) (21 ;terns, we used periodic boundary conditigwich allow no
ength change in any directiprin order to force domain
to lowest order in the time derivatives of the strains. The Walls into the lowd phase; all three variants are required

2= A€~

033= A€~

031=Ay€s,

dissipative stresses!; are found from since two variants can satisfy the constraint in only two di-
N rections. A second important consideration is that these con-
oy = ORI 575 = Gy &/ 7y (22)  ditions allow use of the fast Fourier transform, which is

much faster than real-space methods. We should, however,
voice our concern that these conditions may lead to spurious
Torrelations between relaxation events at large relative dis-
tances. Of other choices, clamped conditions-Q on and
outside the boundaries, as in Refv®uld also force domain
walls into the lowT phase, but are less attractive because
they usually give complex structures near the edges. Open
fi:pui:g'i,j'j—‘rg'ij’j_ (23 conditions are not useful for our purpose, for the system
would go to a single variant for almost any initial state. Yet
another possibility corresponds to applied stresses at the
boundaries.
In Fourier space, Eq$24) are identical to the equations
of time-dependent Ginzburg-Land&liDGL).1>?°|n real
space, Eq924) contain extra space derivatives on both sides
= —(A— 3 D,V?)2u;— B(d2+ 3 u;— (C+ 1 D,V?) relative to TDGL theory and so appear more genétiaty
can be applied, for example, to systems with imposed
X (910,Up+ 9193u3) + RY- (24)  straing. The neglect of the inertial terms both here and in

. . . ) . Refs. 30, 29, 10 is problematic for the relaxation.
for i=1, with obvious forms for =2,3. The coefficients are

A'=Al+3A,, B'=%A), and C'=A]—;A,+3iA,; the
definitions for A, B and C are obtained by dropping the
primes. The nonlinear terms

whereGy=6R/5ey: Gi=A1e1, ... ,Gi=A,8.

Our interest is in static states and in states where wall
move slowly(rather than in effects associated with motion at
or near the sound velocityand so we assume isothermal
conditions. The equations of motion follow from Newton’s
second law

In the overdamped limit, the inertial terpi); is dropped and
Eq. (23) simplifies too; ;= —oy; ;. In terms of the displace-
ment, this is

[A’92+B'(95+ 93)1uy+ C' (910,Up+ 9193U3)

IIl. DOMAIN PATTERNS

We solved Eqgs(24) numerically, as described in the Ap-
pendix, starting usually from random displacements. We
’ (25 present fully converged results for 3D grids of 12Bpoints

and quasistatit results for 258 points. We present also
1 1 transient structures in systems of 356oints. Systems of
NL_ _ —_gNLy _— N these sizes reveal features not seen in previous studies, which
Ry =—d,| — 505+ ——=g3" |, (26) !

2 23 used at most 64points.

1 1
NL_ o[ TANL, = oNL
Ry = 31<292 +2 3g3

5
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FIG. 1. (Color Late-time domain patterns. The faces of each display cube are cubic 100 planes; the red, green, and blue regions
correspond to the three tetragonal variants; the domain wa#sK lie optimally in cubic 110 planes. Parts) and(b) show fully converged
(Ref. 31 patterns(both att~70) obtained in 128systems using different starting configurations but otherwise identical paramagers (
=A,=100); pattern(b) is a metastable state with higher energy than pat@rnPart(c) shows a quasistatidRef. 31 configuration in a
256° system at= 140 with stiffer parametersA;=A,=500). The temperature parametedis= — 20 for all three parts.

The nature of the patterns depends in part on the stiffness Most of ~200 simulations gave multiply banded or her-
coefficientsA; and A,. The dilatational and shear energies ringbone structures similar to those shown in Fig? These
are minimized when the walls lie in cubic 110 planes, and s@atterns, which seem at first glance to reflect more the peri-
the parameteré\; and A, control the energy cost incurred odic boundary conditions than any physics, are in fact found
when the walls depart from their optimal orientations. In stiff in the microstructure of polydomain zirconjaxamples are
systems, with larged; and A,, the domain walls must lie Figs. 4a), 5(a), 6, and 7 of Ref. 20, Fig. 3 of Ref. 21, and
close to the 110 planes, whereas in soft systems they cdfigs. 1 and 2 of Ref. 2Rand other CT materiafé. Similar
depart from these optimal orientations at small cost in enpatterns appear also in the well known ferroelectric BaJiO
ergy. We have, however, no quantitative way to distinguishspecifically Figs. £a) and &b) of Ref. 2; they should appear
stiff from soft systems; comparingy; andA, with the order-  in other elastic/electric and elastic/magnetic ferroics pro-
parameter stiffnessé$ound from the curvatures of the free vided that the elastic energy dominates the electric and mag-
energy about the tetragonal minima is not an effectivenetic energies, as it doem BaTiO;. Banded structures were
means. found also in a phase-field studfy.

All three variants appear in Fig. 1, but not equivalently.
The structures consist of two primary bands, here red and
green; the width of the primaries is determined by the system

We made extensive studies of late-time domain structuresize in Fig. 1 and, one assumes, by the grain size in experi-
atA,=—2 andA,= —20; the spontaneous stragg, at these ment. Each primary is penetrated by the third variant, here
temperatures is respectively twice and four times the value dilue; neither primary contains domains of the other. Within
T.. We present results at only the lowgatten value, where each primary, the host and the third variant form secondary
the order parameters inside the domains are more well ddsands; the ratio of the width of the host variant to the width
veloped. of the third variant in the secondary bands is ideally 2:1 so

FIG. 2. (Colon Snapshots of a 286system as it relaxes from random initial displacements. The faces are cubic 100 planes. The
temperature parameter #s,= — 20 and the stiffnesses afg=A,=100. Partda) and(b) are transient structures at times 2.2 and 3.6,
respectively; parfc) is a quasistatic pattern &t 30.

A. Late-time structures
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that the three variants appear with equal volume fracsome of these features in transient structures of & 2§6-

tions?>%° The same ratio was found in Refs. 2,25, whichtem; 128 systems are too small to show interesting features

found also the optimal value of the period of the primaryclearly.

bands to that of the secondary bands. The important aspects of Figs(a2 and 2b) are the fol-
Figure Xa) shows a fully convergeld structure; it has the lowing.

lowest energy of seven states found in 24 quenches with the (1) Needle twins: The top face of pad) shows a band of

same parameters. The front face shows cheyoorherring-  green needle twins in the red primary band, and also a band

bone structures; the blue domains are continuous across thef blue needle twins in the green primary band; needles ap-

red-green boundaries, where they bend through 90° and apeear also elsewhere. In p&k), some needles have advanced

slightly distorted as well. and some have retracted. Needle twins are found for example
Figure Ib) shows another fully converged structure ob-in leucite (Fig. 3 of Ref. 23.
tained with the same parameters as pgartit has a higher (2) Collisions of identical variants: In the green primary

energy(the third lowest of the seven statemd so is meta- band on the top face, green/blue walls collide with green/
stable. Some of the blue variants form chevrons, as in pathlue walls of the other orientation, forming modulated struc-
(a), but some terminate at the red-green boundaries; the waltsires. Figure 11 of Ref. 22 shows a similar pattern in zirco-
occasionally deviate from the 110 planes. Presumably thaia, “a rather exceptional case,” also formed by orthogonal
higher energy relative to pafg) results in part from the colliding walls. As in Refs. 8,9, we ascribe these modula-
terminations and the deviations; both are seen experimenions, and also the structures in FighBof Ref. 23, to for-
tally, for example in Figs. @), 5(a), and 6 of Ref. 20. mation of wedge disclinations between two identical but dif-
Figure Xc), for a 256 system with stiffer parameters, ferently rotated variants; the same explanation applies to tip
shows a quasistafit configuration with a mixture of con- splitting, in some cases.
tinuing and terminating variants. The system is large enough (3) A split tip: Tip splitting seems to occur only rarely in
to show the secondary banding clearly, but it is too small andCT materials(relative to TO materials presumably because
has too many imperfections to display well the 2:1 ratio dis-of the extra freedom afforded by three variants; an example
cussed above. Of the two other simulations performed withs Fig. 3 of Ref. 23. We found only one split tip, an indistinct
the same parameters, one gave no terminations and not swnre at that, at the right side of the top face in gajt this is
prisingly a lower energy, and the third gave more termina-of course a transient configuration. Split tips appear in the
tions and a larger energy. statics of some simulatiofs:* but only at the interface with
In addition to these banded structures, we found lamellaparent material; they are more frequent in transient
structures in smaller systems 4 particularly for stiffer  structures.
parameters; the agreement with the lameifabanded tran- (4) Collisions of different variants: In the top faces of
sition analyzed in Refs. 2, 25 is, however, largely illusory,both parts(a) and (b), green needle twins collide orthogo-
for the order parameters cannot approach their optimal valrally with, or come near, blue variants; collisions occur also
ues due to the length constraint in the third direction. Wein the lower front face of parta). No special features result
found also intermediate structures in which the narrow varifrom the collisions, which have not been noted in any experi-
ant appears in only one of the two primary bands. Finally, anent known to us.
few systems gave very different tweedlike or basket-weave Figure Zc) shows the same system at the later time
structures, of all three variants, that seem not to be observed 30. Many of the defects in pafib) have disappeared in this
in experiment. quasi-static wall configuration; the walls are straighter, but in
this relatively soft system they still bend where the third
variant(here blué terminates.
B. Transient structures Inspection of the dilatational and shear strains of late-time

In all our late-time banded structurésot just those of Structures shows, not surprisingly, that their magnitude is
Fig. 1), walls collide only at boundaries between the primarymaximum in the wall-collision regions. We investigated also
bands. Within each primary rédreen band,(a) the red-blue ~ the early stages of growth initiated by locally perturbing the
(green-blug walls adopt only one of the two possible or- parent phase at a temperature well beldw; the growth
thogonal orientation¥ and (b) the other primary, the green Occurs predominantly along spikes in the 111 directions and
(red) variant, is absent. planes in 110 directions, producing a noncompact object.

Walls colliding within the primary bands are however ob-
served; examples are th#g band in Fig. 6 of Ref. 20, Fig.
7(b) of Ref. 20, Fig. 3 of Ref. 21, and Fig. 11 of Ref. 22.
Because we obtain only two primary bands, neither did we Some of the numerical simulations were performed at the
observe theA, and A, bands in Fig. 6 of Ref. 20; these Computation and Visualisation Center at Memorial Univer-
contain the same two variants as the band but with the sity of Newfoundland. We are grateful to E. H. Kisi for
orthogonal wall orientation. pointing out the similarity of our patterns to those observed

Perhaps our systems are too small to show these effects zirconia and for informing us of Refs. 20—22 and 26, to J.
perhaps the experimental systems are incompletely relaxe#reisel for informing us of Ref. 27, to T. Hahn for informing
that different experimental conditions can give differentus of Ref. 2, to M. Hayakawa for discussions, and to NSERC
patterné may be relevant here. We have however foundof Canada for financial support.
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APPENDIX The first and second derivatives were obtained from
obvious generalizations of the 1D finite-difference approxi-

We solved Eqs(24) using periodic boundary conditions mations

on the displacement. Since only qualitative comparison

with experiment seems possible at present, and because Wedf(o) 2 1
wished to obtain results qualitatively applicable to many CT |[f(h)— f(—h)]- g[f(2h)— f(—2h)]] ,

materials, we scaled the energy, the strains and the length; dx 3h

this scaling requires neglect of the nonlinear term in the (A1)
strain tensory. We chose the valueB,=3x10° and C, )

=2X1C° so that the transition occurs &,=1, and the d f(O)Ni [f(h)+f(—h)—2f(0)]

scaled strain al . is eso(T,) =102, an arbitrary value. We dx®  3h?

choseD,=1 to set the scale for the domain-wall width.

The number of parameters in the free-energy density is then _ i[f(Zh)+f(—2h)—2f(0)]]. (A2)
reduced from six to three, the scaled stiffneségsand A, 16
and the scaled-like variable A,. Results for other param-

eter values are easily obtained by scaling back to the origina” the Fourier coefficients are defined by

variables.
The viscosity coeff|c.|entA]-’ appearing in Eq(24) are not f(r)= 2 a2 (XL (A3)
known from microscopic theory. Neither we expect can they ikl

be determined from experiments such as ultrasonic attenua-, . ) . .

tion that operate on time scales very different from thoseVith periodL=Nh in each variable, then the first and second
governing domain-wall motiorfas distinct from the “twin ~ derivatives are approximated by

cry” in some materials Lacking experiments that might de-

termine the relevant coefficients, we chose the unit of time so i_} ;—hsin(Zth/L)[3+2 si(mh/iL)],  (A4)

that A;=1; lacking a reason to do otherwise, we chdége X
=A,=1 also.
Each time step began with the Fourier coeffician(,t) ? -4 . . .
at timet. The left-hand sides of Eq$24) are linear in the W—)WSIHZ(WJh/L)[3+S|n2(7Tjh/L)] (A5)

strains and so the space derivatives are obtained by multipli-
cation in Fourier space; our approximations for the derivain Fourier space. In obtaining second-derivative terms such
tives are described below. The linear terms on the right—handsaf in Eq. (24), it is important to use Eq/A5) rather than
sides are found in the same way. To obtain the nonlineaEq. (A4) twice, for the latter vanishes at= N/2.
terms RiNL in Fourier space, we formed the Fourier coeffi-  The space step size must be chosen as a reasonable
cients of the straing, andez, transformed them to find the compromise between the conflicting demands of large physi-
strains in real space, found the nonlinear tegs andGy-  cal sizeL=Nh on the one hand and accuracy on the other.
by multiplication(replacing the strains point by pojntrans-  Our valuesh=0.5 at A,=—2 and h=0.25 atA,=—-20
formed the two terms back to Fourier space, and multipliedvere established as follows.
to obtain the space derivatives in Fourier space. The solu- We first performed 48 quenches At=—20 with A;
tions were advanced in time by an Euler sigually At =A,=100 on systems of identical linear sike=Nh; 24 of
=4x10"3); solution of three linear algebraic equations thenthese quenches usedN,h)=(128,0.125) and 24 used
gives the three componeriig(k,t+ At) in Fourier space. To (N,h)=(64,0.25). The larger step size gave four states, each
monitor the convergence, we found the energy, the rootef which was clearly identified with a state found for the
mean-square order-parameter strains and right-hand sides srhallerh. The energies of the four states common to the two
Eq. (24), etc., every 10 or 20 time steps. sets of quenches agreed to better than 1 part in 2@0&ive

The above computational scheme requires storage of five the uniform product phasand the relative frequencies of
matrices, three for th&;(k,t) and two for the strains, and  occurrence were comparable. The smaller step size gave,
e; (or G5 andGjyh). The fast Fourier transforms were per- however, three additional states, each once. Sire8.25 is
formed using the Numerical Recipes routine fotitiyhich  satisfactory atA,=—20 and since the variational wall
deals with complex matrices. The full executable file for awidth® scales as &4y, one expectd=0.5 to be satisfactory
256° system requires 1.35 GB of storage. Savings of abouat A,=—2 whereeg, is half the value atA,=—20. Less
two in storage and execution time would be obtained by usextensive tests carried out &,=—2 with A;=A,=100
of routines for real matrices, at though some expense in codyave comparable results folN(h)=(128,0.25) as against
ing and clarity. We have also obtained static structures by64,0.5). Similar tests witth;=A,=1000 at both values of
conjugate-gradient minimization of the enefdyThe latter A, gave the same conclusions. In passing, we remark that the
method is preferable in some respects to solving the equasumber of metastable states found in the quenches of the
tions of motion, and we have used it to verify the correctnesgrevious paragraph and in the quenches used for @rasd
of some of our 6% results; it requires, however, roughly 7 (b) of Fig. 1 is smaller than found in a TO stubigf clamped
times as much storage, well in excess of that available to usystems of comparable linear size; the difference is due to
for 256° systems. the different boundary conditions.
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