PHYSICAL REVIEW B 68, 224101 (2003

Atomistic simulations of kinks in 1/2a{111) screw dislocations in bcc tantalum
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Two types of equilibrium core structurédenoted symmetric and asymmetrfor 1/2a(111) screw dislo-
cations in bcc metals have been found in atomistic simulations. In asymrt@tpolarized cores, the central
three atoms simultaneously translate along the Burgers vector direction. This collective displacement of core
atoms is called polarization. In contrast, symmeimonpolarizedl cores have zero core polarization. To
examine the possible role of dislocation core in kink-pair formation process, we studied the multiplicity,
structural features, and formation energies ofal132) kinks in 1/22(111) screw dislocations with different
core structures. To do this we used a family of embedded atom model potentials for taffaluath of which
reproduce bulk propertie@lensity, cohesive energy, and elastic consjainten quantum mechanics calcula-
tions but differ in the resulting polarization of H2111) screw dislocations. For dislocations with asymmetric
core, there are two energy equivalent core configuratjarith positive (P) and negativgN) polarization,
leading to 2 types ofpolarization flips, 8 kinds of isolated kinks, and 16 combinations of kink pairs. We find
there are only two elementary kinks, while the others are composites of elementary kinks and flips. In contrast,
for screw dislocations with symmetric core, there are only two types of isolated kinks and one kind of kink
pair. We find that the equilibrium dislocation core structure ofa{i21) screw dislocations is an important
factor in determining the kink-pair formation energy.
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[. INTRODUCTION plastic flow behavior of crystal were first treated mathemati-
cally in the framework of elasticity theory by Seeger and
Plastic deformation in metals and semiconductors is conSchiller!® Kolar et al1* made the first direct observation of
trolled by the properties of dislocations and the interactionghe dislocation kinks using atomic resolution transmission
of dislocations with each other and with other defects in theslectron microscopyTEM) on partial dislocations in Si. In
crystal. Hence, knowledge of the structure, self-energy, anthe last two decades, many mesoscale plasticity matais
evolution patterns of dislocations is essential for understandnstance, Ref. Yuse the kink-pair mechanism to describe the
ing plastic deformation of materials and for developing me-motion of dislocations. These theoretical models require an
soscopic models of deformation processésUseful infor-  accurate description of dislocation kinks, which can be pro-
mation on dislocations has been obtained from such highvided by atomistic simulations.
resolution experimental techniques as high-resolution Based on atomistic simulations, Seegemal ® proposed
transmission electron microscofdRTEM) and scanning that the dislocation cores for H2111) screw dislocations in
tunneling microscopySTM), however, many important de- «-Fe were polarized and then explained the multiplicity of
tails of the structural and energetic properties of dislocationginks and the existence gpolarization flips. In two classi-
remain beyond the resolution of current experimental metheal papers®!’ Duesbery studied the structures, Peierls
ods. Thus atomistic computer simulations are needed to prestresses, and formation energies of the isolated kinks in
vide insight about the nature and properties of dislocatidns. 1/2a({111) screw dislocations in K and-Fe. Later, Duesbery
In bcc metals at low temperatures, the crystal lattice reand Basinskf showed that the atomistic simulation results
sists to the motion of screw dislocations more strongly tharfor kink pair generation and migration agreed with the ex-
to edge dislocation§.Thus, the mobility of screw disloca- perimental flow stress data for potassi(k). Recently, the
tions governs the plastic deformation behavior of these maformation energies of kinks in screw dislocations in(fRef.
terials in this temperature range. In previous atomistic simu9) and Mo(Ref. 19 have been determined much more accu-
lations at zero temperatufel! the screw dislocation has rately in simulations using Green’s function boundary condi-
been considered to move in a rigid, collective fashion leadtions.
ing to Peierls stresses of about Z0u (wherep is the shear In bcc metals, two types of screw dislocation cores have
modulus of the crystal However, the observation of a rapid been found in atomistic simulationgsymmetric cores in
decrease of the Peierls stress with increasing temperature irRefs. 20, 21, and 22 and symmetric cores in Refs. 9, 22, 23,
plies that at finite temperatures the screw dislocations movand 24. In this paper, we investigate how the character of
by formation and subsequent migration of kinks pairs rathethe equilibrium core structur@symmetric or symmetriaf-
than by translation of a straight dislocatitiiThe kink is a  fects the properties of the kinks in H111) screw disloca-
piece of dislocation connecting a dislocation segment that iions using Ta as a model bcc metal. To do that, we devel-
in an equilibrium position to another segment in a neighbor-oped a family of first-principles-based force fields9 for
ing equilibrium position. Ta. Each force field is optimized to fit a range of properties
The concept of kinks and the role of kinks in describingfrom the ab initio calculations, but adjusted to have very
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— FIG. 1. The schematic representation of the
model system used in simulations. In this model,
regionsA and C contain the equilibrium disloca-
— tion quadruples. Atomic positions in regi@are
- determined based on elasticity theory to smooth
v out the configuration misfit. The vector starts
— = from the center of the dislocation in regiénand
B ==V points to the dislocation in the regiad. In our
simulations,» can only be O(flips), 1/3a[112]
(right kinks) or 1/3[112] (left kinks). The
| A B C shaded regions indicate the fixed boundaries,
which are % thick, in the simulation. The cell
o] parameters are &112], 9a[110], and

i‘ 1508/2[ 111].
[111]

different dislocation core characters. This leads to three forcéons of the dislocations in regiodsandC differ by a vector
fields, which we denote afEAMI (i=1, 2, and 3. We have v (pointing from the equilibrium dislocation center in region
recently used this family of force fields to study the relationA to the equilibrium dislocation center in regi@ as indi-
between Peierls stresses and core properties @&f(114)  cated in Fig. 1
screw dislocations in bcc Ta.In this paper, we show how The initial atomic displacements relative to the perfect
the multiplicity, structural features, and formation energies ofcrystal for atoms in regiorB (representing the unrelaxed
1/3a{112) kinks for 1/2a(111) screw dislocations depend on kink) were obtained from elasticity theory by the following
the charactefasymmetric or symmetriof dislocation cores. equations:

The remainder of the paper is organized as follows. Sec-
tion Il describes the details of the periodic/fixed boundary AdB (N=(1—a)-AdY, (1) +a-AdS, 1(r) (D
simulation models used in the calculations. Section Il de- (] [ (]
scribes the different core configurations of 4211) screw  \ith
dislocations and the differences in ogEAM FFs. Section
IV reports our results on the multiplicity, structural features, h(r)
and formation energies of the isolated kinks in &k/211) a=—", 2)
screw dislocations with asymmetric cores. Section IV also hg
summarizes and explains the trend of the kink formation
energy for screw dislocations with asymmetric core. Furthetvhere Ad[lll](r) and Ad[lll(r) are the atomic displace-
we discuss the inherent relationship between different kinksnents determined from elasticity theory for the atom posi-
Section V reports our results of kink properties for tioned atr in the regionB caused by the periodic dislocation
1/2a(111) screw dislocations with symmetric core. Finally, quadruples in regioné andC, respectively. The origin of
our conclusions and further discussion are given in Sec. VIis set as the left-front corner of the regiBnhg is the height
of the regiorB in the[111] direction, anch(r) is the distance
in the[111] direction from this atom to the interface between
the regionsA and B. Thus, Ad[m](r) Ad[lll](r) at the
boundary between regions and B, Ad[lll](r) Ad[m](r)
A. Description of simulation model at the boundary between regioBsand C, Adfy(r) is a

To study kinks in dislocations, we use the simulationlinear combination ofAd[m](r) and Ad[m](r) depending
model shown schematically in Fig. 1. The madel is_ortho-on h(r)/hg inside the regiomB. Therefore, the central region
rhombic and the three axes are aligned with[thE2], [110], B is constructed to smooth out the interfacial misfit between
and[111] crystal directions. To construct kinks we consider regionsA andC.
three distinct region&enoted a#\, B, andC in Fig. 1) in the After constructing the initial kink as described above, we
[111] direction. relaxed the whole model crystal to its minimum energy state.

RegionsA andC contain four equilibriuma/2(111) screw  The obtained kinks in the screw dislocations are found to be
dislocations arranged as a quadrupole, in which there are orsgnooth and continuous. In these simulations, we imposed
pair of dislocations with Burgers vectdr=a/2[111] and periodic boundary conditions on both ()1and (1D) sur-
one pair of dislocations with Burgers vectbe=a/2[111]. faces and fixed boundary conditions on both ends of the
The atomic positions in regiond and C were obtained by simulation cell in the[111] direction. The fixed regions are
energy minimization using thejEAM FFs for a three- 5b (~14.4 A) thick [larger than the cutoff radiu® A) of the
dimensional periodic cell containing perfect straight disloca-qEAM FFs| and the atomic positions there correspond to the
tions initially constructed with elasticity theory. The posi- equilibrium dislocation quadruples. Thus, the movable atoms

[112]

Il. THE PERIODIC /FIXED BOUNDARY SIMULATION
MODEL
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interacting with the fixed boundaries in the simulation effec- 1 1 _ .
tively interact with an infinite equilibrium dislocation qua- AE¢= [Ea(cel) —Ey(cell)]— 7 [Eq(inter) — Ey(inten ].
druple. 3

Our studies employed a simulation cell whose geometry, = 3) 4o first terma [ Eq(cell)— E,(cell)] (the differen-
was [112], 9a[110], and 15@/2[111]. As indicated in  {j5| cell energy is obtained directly from the simulations

Fig. 1, the length of regions, B, andC areL,=70b, L while the second term- [ Eq(inter)— E,(inter)] (the inter-
=10b, and Lc=70b, respectively. Our model contains action correctiopis nonzero only for kinkga flip does not
40500 atomg37 800 movablgin the simulation cell. affect the elastic behavior of a dislocatjcaind in this work
is obtained from elasticity theory.

The interaction energy between two dislocations with
kinks and the interaction energy between two straight dislo-
cations can be calculated by summing the interaction contri-

The atomic strain energy is defined to be the energy fobutions from all piecewise straight segments. This approach
each atom in the model system minus the atomic cohesivBas been used to derive the elastic energy of the kink pair in
energy in perfect bcc crystal. We calculated the total strairﬁ)hnedsgpne] ?ASlgg?g;ﬁﬁ-;—:%% tg;giﬁg\ée[%egﬁlrﬁng ttrr:: ?)?;r
?hneegtgrg{c:tt;?r;\?rllagﬁgrs;gsuflﬁgZﬂ fnei‘ggle; lgt:%:lijr:nt?emsgimui_nteractions in the 2D periodic quadruple of the kinked dis-

i ) ) ; locations and the straight dislocations.

Iathn ceI.I. This energy mclgdes the self-energles. of the de- Approximating the shape of the kink as straight disloca-
fgcnve (kink or flip) dlslocanons[Ed(self)] and the interac-  tjon segment with widthw along the dislocation line and
tion energy between therpEy(inter)]. In the case of a heighth normal to the dislocation and using isotropic elas-
quadrupole of perfectstraighy dislocations in equilibrium, ticity, we calculated the interaction energy difference be-
the total energyE(cell)] can also be calculated with simple tween a pair of dislocations with kink and a pair of straight
3D periodic boundary conditionghe fixed boundaries in dislocations, denoted a®V(L,,L,), using the following
Fig. 1 are removed This total energyE(cell) can also be €quations:

expressed as the self-energy of the perfect dislocation _ 2. 2 Ry

[Ey(self)] plus the interaction energy between the perfect Ro(L1L2)=2\Li+Lo =L+ (Lo—h)
dislocationd E(inter)]. — ‘/|_12+(|_2+ h)2, (4a)

The dislocation defectkink or flip) formation energy is
the self-energy difference between the isolated dislocation Ru(L1,Lo)=2{L2+ L2~ w2+ L2+ (L,—h)?
with the defect and the perfect dislocation. Thus the intrinsic

B. Evaluation of the kink formation energy

defect formation energyAE;) is expressed as — VW2 LS+ (Lp+h)2, (4b)
I(Ly,Ly)=Ry(Ly,L,) Gl S Ny L +hL2+W2+h2| W L2+ (L +h)2+hL2+WZH'2
, = , — —— 1IN nf yw —_—
O N Vv St LT Wl n? JwZ+h2 e JwZ+h2
hL,—w?—h? hL,—w?—h?
+—————In| yWW2+ LI+ (L,—h)2 4+ ———c—|, 4¢
e N WL L e 4o
_ upbib, w? pbiby [M2LE[1(Ly,Lo)+Ry(Ly,Lo)]
W(Ll’LZ)_T[RO(L”LZHW'(L“LZ) T an(1-v) h2L2+w2(L2+12)
h2w2L3-1(Ly,L,)
+22222 12222- (4d)
W2+ h2)[h2L2+w?(L2+ L2)]
[
In the above equationg,; andL, are the separation dis- Ill. EQUILIBRIUM DISLOCATION CORE STRUCTURES

tances between dislocations in {id.2] and[110] directions;
w andh are the kink width and kink height, respectiveby;
andb, are the Burgers vectors of the two dislocations. The We used elasticity theory to construct the initial simula-
shear modulusu is equal toCy and the Poisson rati@  tion cell with a screw dislocation quadruple. Then, we used
=C/(C11+Cqy). the variousgEAM FFs (see Sec. Il Bto minimize the total

A. Asymmetric core and symmetric core
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FIG. 2. The differential displacement maps for the equilibrium
dislocation core configurationga) N-type asymmetric core(b) FIG. 3. The relaxation maps for the equilibrium dislocation core
P-type asymmetric core, an@) symmetric core. Th¢l1l] direc- o qiqrations{a) N-type asymmetric coreb) P-type asymmetric
tion is normal to the paper. qu clarlty, the relative dlsplacement%ore, and(c) symmetric core. Th¢111] direction is normal to the
less than 1/12 are not shown in the figures. paper. The magnitudes of such relaxatianA) for the central six

energy of the quadruple to obtain the equilibrium disIocationCOIum“S of atpms{the relaxation for the ot_her atoms is less than
configuration. We find for 14(111) screw dislocations that 0-05 A are printed next to the corresponding atom.

gEAM1 FF leads to an asymmetric screw dislocation core . . , .

while both theqEAM2 andqEAM3 FFs lead to symmetric simulations. '_I'hese f|gures_sho_vv that the asymmetric core
dislocation core configurations. In the following we show thespreads OUt. n thf9¢112> d|rect.|ons_ on the{110 pla_nes.
difference between two types of core structures by using dh{l’here are six equwaler(ﬂlZ}_dlrecnons on thg projected
ferential displacement maps, relaxation maps, planar dis(—lm plane, leading to two kinds of asymmetric core con-

placement maps, and atomic strain energy distributions. figurations that are energy dggener_ate. In contrast, k. 2
shows that the equilibrium dislocation core predicted from

1. Differential displacement maps both qgEAM2 and qEAM3 FFs are symmetric and compact
with no preferential extension in any direction. Thus, this

(o)

The differential displacemerbD) map<°in Fig. 2 show . ) . ’
the strain field generated by the screw dislocations. In thesté(pe of the dislocation core is cal_led symmetric core.
plots, the circles represent atomic positions projected in the In. bec crystalsf, the asymmetric core breaks_the.twofold
(11D plane and the arrows indicate the relative displace-mtatlon .symmetrlest)' arour]d the .threé'110> directions .
ments in the{111] direction of the neighboring atoms with perpendicular to the dlsloacatlon axis while the symmetric
reference to their positions in the perfect bcc crystal. AmongCore has fullD; symmetry:
the projected atoms, black circles stand for the atoms farthest
from the reader while shaded circles represent the atoms
closest to the reader in ti&11] direction, which is perpen- Figures 3a) and 3b) depict the differences in thigl11]
dicular to the map. Thdirection of the arrow represents the displacement for each atom between the relaxed positions
sign of the relative displacement and thagnitudeis pro-  obtained withgEAM1 FF and those calculated using elastic-
portional to the relative displacement between the correity theory. In these plots, the circles represent the same pro-
sponding atoms. When the arrow touches the centers of thjected atoms in th€l1l) plane as those in Figs(& and Zb)
two atoms, the relative displacement between these two a&nd only the direction and magnitude of tl1] displace-
oms isb/3. ment differences for the central six columns of atoms are
Figures 2a) and 2b) show the DD maps for two equilib- displayed. The magnitude of tH&11] displacement differ-
rium asymmetric dislocation cores from tlfEAM1 FF  ences for all other atoms except the six columns closest to

2. Relaxation maps
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the dislocation line is less than 0.05 A (0.®)7 The most w o O € &€ w» % O e ¢
important result in these maps is that the three central atom
of the dislocation relax simultaneously by 0.267 A (P9 v e ¢« Y e e &
in the[111] direction for anN- (negative type core[shown
in Figs. 2a) and 3a)] or in the[111] direction for theP- e ‘\C) il “ o N0 e
(positive case[shown in Figs. #b) and 3b)]. This phenom- -© \ o o J o
enon is called dislocation polarizatidnWe find_that the B ﬂ" \ i
P-type dislocation cores spread along fié 2], [12 1], and e © v Q °© e § ? e o
[2 1 1] directions while theN-type dislocation cores spread fi\
along the[1 1 2], [1 2 1], and[2 1 1] directions in the DD O ¢ § © o e § ©
maps, regardless of the orientation of Burgers vector.

We define the magnitude of the dislocation core polariza- (a) (b)
tion by Eq.(5):

Y © O e &«

dgc—dap| +|dpe—dcp| +|dea—d
p=| sc—dag| *|dpe—dep|+|dpa—deel () ~ e e & <110>

b ;
~N o e
wheredyy (X, Y=A, B, C, D, E, or F) is the relative dis- ¢cC D E
placement between two neighboring atoms in the two col- O % g O
umns denoted aX andY in Fig. 3(c) andb is the magnitude N <111>
of the dislocation Burgers vector. Using E®), the polar- e o <IA ¢ o
ization for the asymmetric core from ttgEAM1 FF isp o o
=0.81. Our definitior{ Eq. (5)] of dislocation polarization is ’ T
equivalent to the previous definition proposed in Ref. 9. We
favor the definition presented here because it is solely base ()
on the relaxed atomic positions of the central six atoms in the
dislocation core. In contrast, the previous definition only FIG. 4. The planar displacement maps for the equilibrium dis-
considers the relaxation of the central three atoms and rdecation core configurationga) N-type asymmetric coreb) P-type
quires a comparison with the elasticity theory solution. asymmetric core, andc) symmetric core. Th¢111] direction is

On the other hand, the relaxation map for the Symmetridwrmal to .the paper. To show clearly the spatial dISt!’I.bUtIOH of the
cores does not show any major relaxation in [th&l] direc- m-plan_e dlsplacemgnts, the arrows have been magnified by a_factor
tion between the atomistic results and the elasticity theor)Zf 20 m_asymmetnc_core@(a) and (b)] and_a factor of 200 in

I . . NN ymmetric cord(c)] with reference to the lattice constant. For clar-

predICtlops[SGe Fig. B(?)]' Using the definition in Eq(5) the ity, the atomic displacements less than 0.04 A are not showa) in
Symmetrlc_cor_es obtained from tigeAM2 or qEAM$ F'_:S and the displacements less than 0.004 A are not showi).in
have polarization of only about I6. Thus, polarization is a
useful quantity to distinguish the asymmetric and symmetric
dislocation cores.

<112>

In addition to the magnitudes, the in-plane atomic dis-
placements for asymmetric cores and symmetric cores have
different spatial distributions. All the in-plane atomic dis-
placements around a symmetric core are in the radial direc-

Planar displacement maps display the atomic displacetion starting from the dislocation center. However, the dis-
ments in the(111) plane for the atoms close to the disloca- placements around the asymmetric cores deviate from the
tion line. Figure 4 shows the planar displacement maps foradial direction originating from the dislocation center. For
1/2a(111) screw dislocations with amN-type asymmetric instance, th€111) atomic displacements for ator8s D, and
core[Fig. 4a)], a P-type asymmetric corfFig. 4b)], and a  F rotate by about 81¢fclockwise for theN-type asymmetric
symmetric cordFig. 4(c)]. In these maps, the circles repre- core and anticlockwise for the-type asymmetric cojerom
sent the same atoms as those in the DD m#&pg. 2 and  the radial direction; while the displacements for the atéms
relaxation mapsFig. 3). The arrows here indicate the atomic C, andE rotate by a smaller angle of about 1&fnticlock-
displacement for each atom in tli¢11) plane between the wise for theN-type asymmetric core and clockwise for the
relaxed screw dislocation and the perfect bcc lattice. P-type asymmetric coje

In the asymmetric dislocation cores from @EAM1 FF There is not yet any convincing experimental evidence
simulations, the central three atoifagomB, D, andF in the  showing whether the core of H2111) screw dislocations is
figure) are displaced in thél1l) plane by 0.08 A, the atoms asymmetric or symmetric in bcc metals. These planar dis-
A, C, andE by 0.09 A, and all the other atoms by less thanplacement maps should be helpful for interpreting the high-
0.06 A. resolution transmission electron microsco#iRTEM) char-

In contrast, the planar atomic displacements for the symacterizations of screw dislocation core structures in bcc
metric core are much small¢®.003 A for the atoms, D, metals. For example, to reach a concrete conclusion, the pre-
andF, 0.011 A for the atom#, C, andE, and less than 0.009 vious experimental results in Ref. 27 should be analyzed by
A for the other atomks focusing only on the central six atoms.

3. Planar displacement maps
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TABLE |. Experimental and theoretical values of lattice param- ' r ‘ | ' T ' | '
eter a(A), elastic moduliC,; (GP3, C,, (GPa, andC,, (GP3, and 0071~ [(O FPLMTO (Yangetal.)| T .
the shear modulus in th@11) direction G (GPa [G=(C,,—Cy, - a
+C,4)/3] for bcc Ta from ourgEAM force fields, the MGPT FF, 0.06 - gEAMI1 {112}/<111>~
and experiments. - L J

Ei\t 0.05 - O, =7 N -
a Cll C12 C44 G % | qEAM2 ~, i

< N
qEAM1 3.32 273 138 69.6 68.2 Eﬁ 0.04 - qEAMS3 // \ -
qEAM2 3.35 255 148 60.2 55.7 = r / 7
gqEAM3 3.32 257 148 77.3 62.1 g 003+ / \ T
MGPT? 3.30 266 161 825 62.5 E r /; §
Expt? 3.30 266 158 87.4 65.1 0.02~
®Reference 9. 001 |
bReference 40. i |

0 . ! P . P | .

4. Atomic strain energy distribution 0 0.2 0.4 0.6 0.8 1

As already mentioned the strain energy associated with ~ (a) Normalized Displacement o

each atom in the simulations is calculated as the difference
between the atomic energy in the model crystal compared to i
the atomic energy in the perfect bcc cryst)alll. We ca?culated 007 [O FPLMTO (Yangetal)| Ta |
the atomic strain energy distributions for the relaxed disloca-
tion quadruple with 5670 atomgwith cell size X
=9(112a, Y=15110a, andZ=7/2(111)a). In the asym-
metric dislocation cordobtained using thgEAM1 FF), a
group of six atoms has atomic strain energies between 0.155
to 0.175 eV, a second group of six atoms has atomic strain 0.04 = Vil
energies ranging from 0.065 to 0.085 eV, and the other atoms

have atomic strain energies less than 0.05 eV. In comparison, 0.03— / -
in the symmetric dislocation cordobtained using the - \ T
gEAM2 FF), there is only one group of six atoms with 0.02 - -
atomic strain energies higher than 0.05 eV. Their atomic - .
strain energies range from 0.175 to 0.195 eV, which is larger 0.01 | -
than the energy range of the first group of six atoms in an L i
asymmetric core. In both types of dislocation cores, the six 0 T S S IS B
atoms with the highest atomic strain energies are closest to 0 02 04 06 08 !
the dislocation line corresponding to the six atoms lettered in ~ ® Normalized Displacement o

Fig. 3(c).

006 grAM {110}/<111> |

0.05— qEAM =
- qEAM3 ~ 1

27
2
[

Fault Energy (eV/A2)

FIG. 5. (a) The (111 line in the {112 plane and(b) the (111
line in the {110 plane y surface energies for bcc Ta as calculated
with the gEAM potentials and theb initio method. In thegEAM

In our study, the interactions among atoms are describegglculations, fixed boundary conditions are applied after either 48
using a family of embedded atom model potenti@enoted {112 atomic planes or 16110 atomic planes on both sides of the
qEAM FFs) developed to reproduce a large quantity of data faulted surface.
obtained from quantum mechanics calculations. The func-
tional form is based on that proposed by Chantasiriwan andirection in the{112 plane and Fig. &) for the (111) direc-
Milstein.?® All the qEAM FFs were parametrized to the tion in the{110 plane. The results fqfEAM1 FF agree very
same set ofb initio data that includesi) zero temperature well with the accuratab initio data® The y surface, which is
energy and pressure as a function of voluiineluding large  the energy profile of two semi-infinite half crystals first dis-
compressions and expansiprisr various phases bcc, fcc, placed relative to each other by a vector on a crystallographic
andA15, (ii) elastic constantgjii) vacancy and surface for- plane and then relaxed only in the direction perpendicular to
mation energies, an@v) energetics of a shear deformation in the plane, is considered as an important validation for the
the twinning direction that takes the bcc crystal back to itselfaccurate modeling bce screw dislocation behaffidgince
Reference 29 gives the details of the force field optimizatiorthe y surfaces(111/{112 and (11D/{110 are low energy
procedure. processes, the quantitative agreement in these two cases is

Table | shows that the thregEAM FFs lead to similar  expected to be most importaht.
lattice parameters and elastic constants for bcc Ta at 0 K. As described above thegEAM FFs were devised to pro-
Moreover, they also lead to similar generalized staking faulduce bulk properties results in good agreement with QM
(also known asy surface energies in Fig. &) for the (111) calculations. Furthermore, we deliberately constraint these

B. Differences in our three qgEAM FFs
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02 T S relaxed atomic configurations obtained from tfeAM1 FF.

i ¢ These calculations used Hamann type generalized norm-
Ta M, conserving gseudopotential for Ta with nonlinear core
0.15 - - correction>>**We used eighk points in the direction of the
dislocation line and ond point in the normal directions.
- O qEAMY These calculations predict the symmetric core with the low-
@ 28 est energy, which is consistent with the previals initio
> ' s results from direct minimizatiof?* Although we did not
o > qEAM2] optimize the atomic configurations in the DFT-LDA calcula-
~ P~ tions, the fact that the relative energies change very little
R 0.05 - o= - when using thelEAM FFs (dashed lines represent the unre-
< = laxed FF calculations in Fig.)6ndicates that fully optimiza-
tion is unnecessary.
o _ In summary, the three force fields lead to similar proper-
ties for Ta except with regard to dislocation core polarization
- qEAMI] behavior:
T T . (1) gAML leads to an equilibrium asymmetric core with
0055 0.2 0.4 06 0.8 1 the polarization of 0.81 and the core polarization curvature
. . (second derivative of core energy with respect to polarization
Polarization around the equilibrium core configuratjoof 0.171 eV.
FIG. 6. The dependence of the dislocation core energy with its (2) qEAM2 is adjusted to predict a symmetric dislocation

- - core but with the core polarization curvature of 0.127 eV,
olarization from ougEAM FFs and from DFT-LDA calculations. e ’
poarze o et which is close to thefEAM1 FF.

The solid lines in the figure show the energy difference for the . .
g 9 (3) qgEAM3 leads to a symmetric core with the core po-

relaxed structures using thgEAM FFs, while the dashed lines larizati t £0.285 eV imilar to that f
show the results from the energy evaluation of the relaxed strucarzation curvature oru. ev very similar to that from our

; ab initio calculation.
tures from thegEAM1 FF. The QM results are shown as circles. .
« Q We have used thesgEAM FFs to predict the core energy

and Peierls stresses for &(211) screw dislocations and the

force fields to provide different core polarization behaviorsresults are in Table Il. The dislocation core energy was ob-
for screw dislocations. Figure 6 shows the relative energyained using the relaxed dislocation quadruple arrays with
(the energy difference between the polarized asymmetrigystem sizes ranging from 1890 to 5670 atoms and the
cores and the zero polarization symmetric ¢g@ga function Peijerls stress was determined by applying pure shears in
of polarization for the various|EAM FFs. To obtain the various orientations for periodic simulation cells containing a
energies for the nonequilibrium core configurations, we fixed110] screw dislocation dipole with 11 466 atoms. More de-
the positions of the six atonjstomsA to F in Fig. 3(c)] in  tails on the computation procedure are in Refs. 11, 25, and
the direction of the dislocation line and optimized the energy34. All threeqgEAM FFs lead to a larger core energy than the
for all other atoms. All calculations_used a periodic simula-ab initio calculatiorf® (E.=0.86 eVhb, using a core radius
tion cell with parameters of=3a[112], Y=5a[110], and r.=2b), but the symmetric cores from thgEAM2 and
Z=1/2a[111] (90 atoms per celland the quadruple disloca- qEAM3 FFs have similar core energies-(.154 eVb),
tion arrangement. only slightly lower than 1.297 e\ (the core energy for the

The open circles in Fig. 6 show the energiggthout  asymmetric core witlyEAM1 FF). Despite their similar dis-
structural relaxationfrom density-functional theoryDFT)  location core structures and energies, thH)EAM2 and
with the local density approximatiofLDA)3%3! using the gEAM3 FFs lead to dramatically different Peierls stresses,

TABLE Il. The calculated core energy (eby and Peierls stresséim unit of shear modulu§) for 1/2a
(112) screw dislocations in bcec Ta using ogEAM FFs, the MGPT FF and thab initio methods.y is the
angle between the plane with the maximum shear stress and the neighdid@hglane.

Core energy (e\d) Peierls stres$G)
Force fields r.=17% r.=2b x=—30° x=0° x=30°
qEAM1 1.190 1.297 0.0085 0.0117 0.0170
qEAM2 1.054 1.147 0.0065 0.0068 0.0108
qEAM3 1.063 1.161 0.0132 0.0138 0.0512
MGPT? 0.60 0.0096 0.0102 0.0223
ab initio 0.86 0.012 0.027 0.064

8Reference 9.
bReference 23.
‘Reference 41.

224101-7



WANG, STRACHAN, QA\éIN, AND GODDARD PHYSICAL REVIEW B 68, 224101 (2003

especially in the antitwinning directiony&30°). On the (a) Flips

other handgEAM1 FF leads to a Peierls stress similar to

gEAM2 FF for all shearing orientations even though they

predict dramatically different core configurations. Reference

25 shows that the dominant factor underlying the magnitude

of the Peierls stress in bcc materials is the core polarizatior

curvature(defined abovebecause both symmetric and asym- PN N-P
metric cores require changes in the core polarization as ¢ AFE=0.005 eV AE=0572 ¢V
dislocation migrates from one equilibrium site to the next.

Thus, the structure of the equilibrium dislocation core con- (b) Right kinks ( v-—a[112])
figurations has little effect on the Peierls stresses. The rel-

evant quantity is how hard it is to change the polarization. In

the next sections, we will explore the relationship between

the dislocation core properties and the kink properties using

these thregEAM FFs. Note that thggEAM2 in this work is

actually theqEAM3 in Ref. 25 and thelEAM3 in this work NRP NRN PRP PRN
is the q EAM4 in Ref. 25. AE=0.654 eV AE=0.634 eV AE=0.634 eV AE=0.612¢V

Left kinks (+ =§ [112

IV. KINKS IN ASYMMETRIC CORE SCREW
DISLOCATIONS
A. Multiplicity

The two degenerate structures of the asymmetric core fol
1/2a(111) screw dislocation$N andP) lead to two possible
configurations of polarization flipgrom P to N and fromN
to P) along the straight screw dislocation line. TReN and FIG. 7. The schematic drawing, nomenclature and calculated
N-P are two distinct flip configurations as shown in Figa)7  formation energies of the flips and kinks in the asymmetric core
with different formation energies. Regarding kinks, we fo-screw dislocations. In the figures, the triangle repres@atgpe
cused our interest on those for which the dislocation segdislocation and the upside down triangle represéhtgpe disloca-
ments are separated by eitherdl/B12] [called the rightR) tion. (a) Two kinds of flips exist in screw dislocation. The core
kinks] or —1/3a[112] [called the left(L) kinks]. Figure 7b) configuration along a straight dislocation line can flip either fildm
shows in each categofyight or left) of the kinks there are t© N (denoted a®-N) or from N to P (denoted af\-P). (b) There
four combinations of the dislocation core configurations.2r€ four kinds of right kinksNRP, NRN PR, andPRN and four
This leads to eight possible kinkSIRP, NRN PRP, PRN kinds (_)f Ie_ft kln_ks(NLP, NLN, PITP, anPLN). The vectory (indi-
NLP, NLN, PLP, andPLN. Note that theNRNandPRPkinks c_ated in Fig. 1is 1/3[112] for right kinks and 1/8[112] for left
are energy degenerate, so &teN and PLP. kinks.

PLP PLN
AE=1.153 eV AE=0.632 eV AE=0.632 eV AE=0.137 eV

height. We find the kink widthv is about 10.8 for all kinds
of right kinks and 9.b for all kinds of left kinks.

We chose the twelve atoms closest to the dislocation line

Following the descriptions in Sec. Il B, Table Ill gives the with the highest atomic strain energies to represent the asym-
calculated differential cell enerdyirst term of the Eq(3)] metric dislocation core. This provides a definition of the dis-
from the simulation and the interaction correctighe sec- location core consistent with the atomic strain energy distri-
ond term of the Eq(3)] from Egs.(4). To determine the kink  bution for the equilibrium dislocation in Sec. Il C. We also
height h and the kink widthw, we calculated the atomic- found in Ref. 34 that the twelve atoms with higher atomic
strain-energy-weighted center of the twelve atoms with thestrain energy describe well the variation in the asymmetric
highest strain energies for each Burgers vector thick slicelislocation core during its translation. Although our results
along the dislocation line. Our results show that the dislocafor the kink geometrical parameters might depend on the
tion is in its equilibrium position in regions far away from definition of dislocation core, the calculated kink formation
the kink formation region. The kink formation region is the energies are insensitive to it. Indeed, we find that the values
region 7d=<Z=<80b shown in Fig. 1. Thus, the average dis- of the interaction correction from the “inclined” modgEq.
tance between two equilibrium positions on the two sides of4)] deviate by only 0.001 eV for left kinks from the 0.030
kink is the kink heighth, which is equal to 2.71 A eV obtained assuming the “perpendicular” kink model, in
(|2/3a(112)]) in our gEAM1 FF simulations. The kink which the kink is a pure edge segment that is 2.71 A
width w can be estimated in the following way: the part of (|1/3a(112)|) long in the(112 direction. This indicates that
the dislocation in the kink formation region was fitted to aeven ignoring the real geometry of the kink causes only a
straight line, then the kink widthv is the distance in the marginal error in determining the kink formation energy
[111] direction between two intersections of this line with (e.g., 0.7% for thePLN kink). We find that theNRP kink
two equilibrium dislocation lines separated by the kinkformation energy changes by 0.0003 eV and BieN kink

B. Kink and kink pair formation energy
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TABLE Ill. The differential cell energieseV) from theqEAM1 FF simulations, interaction corrections
(eV) from continuum theory using the inclined mod&lg. (4)], and the intrinsic formation energiésV) of
the defectgflips and single isolated kinksn 1/2a (111) screw dislocations in Ta. THeRPkink (not shown
has the same formation energy with tR&Nkink, so does thé’LP kink (not shown with the NLN kink.

Differential cell energy Interaction correctioh Intrinsic formation enerdy

Configuration i[Ea(cel)—Ey(cell)]  —Z[Eq(inter)—E,(inter)] AE;
N-P(flip) 0.572 0 0.572
P-N(flip) 0.005 0 0.005
N R P(right kink) 0.624 0.030 0.654
NRN(right kink) 0.604 0.030 0.634
PRN(right kink) 0.582 0.030 0.612
N L P(left kink) 1.122 0.031 1.153
NLN(left kink) 0.601 0.031 0.632
PLN(left kink) 0.106 0.031 0.137
&The perpendicular model gives 0.030 eV.
bSee Eq(3).

formation energy by 0.006 eV when we increase the length C. Relation of kinks

of the simulation cell from 136 (L,=63b, Lg=10b, and
Le=63b) to 150 (L,=70b, Ly=10b, and Lo=70b). _ _ _ _ o
Thus our calculated kink formation energies are well con- Figure 9 displays the strain energy profile for dislocation

verged with the length of the simulation cells in tfery] ~ duadruples containing various right kinks along the disloca-
direction tion lines. The strain energy is computed by summing the

. - . . . atomic strain energies for all atoms in each thick slice
Akink pair in 1/22(111) screw dislocations consists of & (aqion along the dislocation line. For comparison, the strain

left kink and a right kink. If the separation between the leftgnergy distribution of a perfect dislocation quadruple in the
and right kink is sufficiently large, the formation energy of a same 'size simulation cell is also plotted. These figures show
kink pair is just the sum of the formation energies of the twothe following.

component kinks. Since there are 4 kinds of left kinks and 4 (1) The NRP kink [Fig. 9a)] has a single strain energy
kinds of right kinks, there are 16 ways to combine pairs ofmaximum at its formation region.

kinks. In some cases, one or two flips are required to fulfill  (2) The NRNkink [Fig. 9b)] has a strain energy maxi-
the requirement of the dislocation core configuration whermum at the formation region and a strain energy minimum
the kink pair nucleates from a perfect dislocation. Figure 8above its formation region.

schematically lists 16 kinds of kink pairs and their formation  (3) The PRN kink [Fig. 9(c)] has a strain energy maxi-
energies. mum at the kink formation region and strain energy minima

NRP p PRP P NRN n PRN n
n P n Y
1.893 n
n x p
nxp
1.816 n
n
nxp
P 1.291 P 1.266 P 1.843 4 1.816 P
p P P n X p| n x p|
PLP pxn p pxn p
1.765 4
pxn pxn n n
pxn P pxn |4
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1. Structural analysis

FIG. 8. Calculated formation energies of all
kink pairs in the asymmetric core screw disloca-
tions in Ta. The kink pair formation energy is the
summation of the formation energies of the com-
ponent single kinks and the required flips. Note
that the kink pairPLN-NRPhas the lowest for-
mation energy, which is 0.475 eV lower than the
second lowest kink pair formation energy.
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FIG. 9. The strain energy distribution for dislocation quadruples with right ki@sThe NRPkink, (b) the NRNkink, and(c) the PRN
kink.

on both sides of the formation region. rations at the center of the kinksvhere the center of the

A similar analysis in Fig. 10 shows the strain energy dis-screw dislocation lies just in between two neighboring equi-
tributions along the dislocation quadruples with various leftlibrium positions. In fact, we find that all types of kinks
kinks. These figures show a strain energy minimum at théave identical DD maps at this position. Figuresbland
PLN kink formation region and a superficial resemblance of11(c) show DD maps in the regions surrounding the kink
the strain energy distributions for tHeéLN and NLP kinks ~ center(indicated asP-N in Fig. 9 andN-P in Fig. 10. We
(i.e., there is only a strain energy maximum at the kink for-find that the dislocation core configurations in Figs(tl1
mation region. and 11c) resemble that in the center of the fligsig. 11(d)]

Figure 11 shows the DD maps with various features of thétd are similar to the nonpolarized symmetric core. Hence,
core configurations in the screw dislocation with kinks and\llzviz fls;lié?ua;lIg]?:osrireigoir:jetrgyarlrgwneﬁefrogr ylt\lhﬁiglgvk:/tekz!\?sks in
flips. Figure 11a) displays the dislocation core configuration . 2: A - :
in the central region of the kinksZ& 75b of the simulation f'n%tnh?h'\é_E;lé?s'rc])fsg:geafétvlé'gﬁs;wls‘g’ soﬁéiqggff'e com-
?rf)lrli). tﬁ‘ghgulilr;bt:uemd';?;g(égzoo; ?eentkel?kinvfgt(i)(fzfilotg]t;gge p_osed_ of a kink and fIips..The rglation of the right a_nd left

1 tne equ : ) ; 919 - kinks in 1/2a(111) screw dislocations can be summarized as
equilibrium dislocation center in regio@ as indicated in

in the followi ions:
Fig. 1 for the left and right kinks are different, the left and 'n the Tollowing equations
right kinks could have the similar dislocation core configu- NRN=NRP+P-N, (6a)
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FIG. 10. The strain energy distribution for the dislocation quadruples with left kiakghe PLN kink, (b) the NLN kink, and(c) the NLP

Kink.
PRP=P-N+NRP, (6b)
PRN=P-N+NRP+P-N, (60)
NLN=N-P+PLN, (6d)
PLP=PLN+N-P, (60
NLP=N-P+PLN+N-P. (6f)

These equations indicate that tNR&Pkink is the elemen-
tary right kink with all other right kinks being composites
consisting of theNRP kink plus one or twoP-N flips; the
PLN kink is the basic left kink with all other left kinks being
combinations of thd®LN kink plus one or twoN-P flips.

2. Comparison to other calculations

The kink relationship for asymmetric core dislocations in
Eq. (6) provides the first such connection from atomistic
level simulations. Although these relations were obtained us-
ing theqEAML1 FF for Ta, they provide a universal pattern
for all bcc metals. To prove this point, we compared all avail-
able kink formation energy data in bcc metals from the lit-
erature.

A direct corollary of Eq.(6) is that the kink formation
energy differenceA ENRN— AENRP AEPRN_ AENRN " ang
(AEPRN—AENRP)/2 should be nearly equal and close to the
P-N flip formation energyAEPN and the kink formation
energy differenceAENEN—AEPEN AENLP— AENLN and
(AENP—AEPNY/2 should be similarly close to the forma-
tion energy of theN-P flip (AEN-P). It should be mentioned
that the flip in the composite kinkdéNRN PRP, PRN NLN,
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e © O e ;@& 0«0 @ relation of the flip formation energies. We used tiieAM1

. ':_ ‘_" o e o ' 4_‘@ o  FF for Ta as well as the periodic/fixed boundary conditions

f\ ZE S in this work, while Ref. 19 employed the MGPT FF for the

0 D e O e=» ° Mo and Green’s function boundary conditions. The agree-
v\ YAX N N/ o ment between these two simulations indicates that the rela-

¢~0 ®~9% O @ @& O=@=0 O  t{ponof Eq.(6) is independent of the employed force fields

C e ® O e O e © O e and boundary conditions.
However, the results by Yanet al® using the MGPT FF
(@) (b) for Ta do not show the expected behavior of the flip forma-
tion energies. Neither do the older -calculations by

e<o O © O -@®@=-=o O Duesbery’ for K and a-Fe. There are two possible reasons
-’ N\ - 4 N\ for this discrepancy. First, the equilibrium dislocation core in
. f’\"ﬁ'_,.\ . O - ,@{_ ‘7‘\ ,° our study and Ref. 19 has a large polarization while the
o S0 e o \/ o dislocation polarization is very smah-0.0043 in Ref. 9. A
LR N | . \7/ 7 smaller polarization of the dislocation implies a smaller dif-
® 6+-0+-0 © O e e—+O=+e0 o ference among the kinks in the same catedteaft or right).
The composite kinks might not dissociate into a flip and an
elementary kink when the dislocation core is only weakly
(c) (d) polarized. The second reason could be the incomplete relax-
ation of the atomistic structures. Duesbery in Ref. 17 used
FIG. 11. The differential displacement maps of the dislocationfixed boundaries where atoms are fixed at the positions de-
core at the regions with characteristic features along the asymmetrigrmined by anisotropic elasticity theory in the simulation.
core 1/2[111] screw dislocation. The figure) shows the atomic  Thege fixed boundaries could introduce bias in the atomistic
relative displacements at the center of the kink formation regiong|axation if the simulation cells were not sufficiently large
(Z=75b) while (b) and(c) indicate the flips in the kink formation in three dimensions.
region(indicated a$>-N in Figs. 9 andN-P in Figs. 10 at different Reference 35 found the following order of kink pair for-
dislocations(d) The DD map for the isolated flips along the asym- mation energies:
metric core screw dislocations.

cC e e O e ) ® @ O

) , ) PLN-NRP<NLN-NRN<NLP-PRN. 7
PLN, andNLP) is under the different environments from the

isolated flip. The kinks and the flips are only separatediby 3 However, no atomistic explanation was proposed. It is
in the composite kinks. The close interaction between the flistraightforward to interpret the above equation using the
and the kink might relax the total strain energy, such that théinks relations. The kink paiNLN-NRNcan be considered
kink formation energy differences could be smaller than theas the combination of the kink pa#LN-NRPwith a pair of
corresponding isolated flip formation ener(pee Table ). N-P andP-N flips. Similarly, the kink pailNLP-PRNcan be
Table IV compares the formation energies of the isolatecconsidered as the kink paiLN-NRNplus a pair of theN-P
flips and the flips in the composite kinks. Both our resultsand P-N flips. Therefore, assuming that a pair NfP and
(for Ta) and those by Raet al1° (for Mo) show the expected P-N flips contributes positive strain energy to the composite

TABLE IV. Comparison of the formation energiéis eV) of the flips under different environments.

K2 a-Fe MoP Ta® Ta

Materials (Duesbery (Duesbery (Raoet al) (Yanget al) (present work

P-N flip
AEPN 0.048 0.300 0.00 0.03 0.005
AENRN_ AENRP 0.043 0.267 —-0.16 -0.11 —0.020
AEPRN_ AENRN -0.022 —-0.085 -0.15 0.20 -0.022
1 0.011 0.091 —-0.16 0.05 -0.021
E (AEPRN—AENRP)

N-P flip
AENP 0.018 0.408 0.21 0.23 0.572
AENSN— AEPLN 0.028 -0.322 0.18 0.19 0.495
AENLP— AENEN 0.045 0.126 0.21 0.08 0.521
2 (AENLP— AEPHY) 0.037 —0.098 0.20 0.14 0.508

®Reference 17, using a first-principle interatomic potential for potassium and an empirical interatomic potential for iron.
bReference 19, using the MGPT FF.
‘Reference 9, using the MGPT FF.
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TABLE V. Comparison of formation energies of kink pairs. In TABLE VI. Comparison of the kink height, the kink widthw,
the table, “yes/no” indicates whether the calculated kink pair for- the isolated kink formation energies, and the kink pair formation
mation energies do or do not obey the ruleEP'N-NRP energies from the variougEAM FFs calculations. ThRLN is con-

< AENUN-NRN A ENLP-PRN sidered as the left kink and ttdRPas right kink in theg EAM1 FF
simulations. The kink formation energies have been corrected for
Materials AEPLN-NRP - AENLN-NRN - A ENLP-PRN kink-kink interactions using Eq4).
(eV) (eV) (eV) yes/no
Force fileds gqEAM1 gEAM2 gEAM3
K? (Duesbery 0.076 0.147 0.170 Yes
a-Fé* (Duesbery 0.241 0.186 0.227 No Left kink
MoP (Raoet al)) 1.62 1.64 1.70 Yes  heighth () 2.71 2.74 2.71
Ta® (Yanget al,) 0.96 1.04 1.32 Yes  width w (b) 9.1 11.4 11.3
Ta (present work 0.791 1.266 1.765 Yes formation energ\AE (eV) 0.137 0.304 0.373
a-Fé (Wenetal)  0.84 1.29 1.94 Yes Right kink
8Reference 17, using a first-principle interatomic potential for po-hEighth &) 2.71 2.74 2.71
tassium and an empirical interatomic potential for iron. width w (b) 10.4 13.6 14.0
PReference 19, using the MGPT FF. formation energyAE (eV) 0.654 0.124 0.269
ZReference 9, using the MGPT FF. Kink pair
Refergnce 35, using a nudged elastic band method and an EA%rmation energy\E (eV) 0.791 0.428 0.642
potential.
kinks leading to the increasing order in E@). Indeed, Eq. Comparing the results in Table VI for the asymmetric core

(7) is universal as demonstrated by Table V. All availablekinks and the symmetric core kinks, we find that the sym-
kink pair formation energies, except far-Fe in Ref. 17,  metric core kinks span a larger distance (bifdr the left
follow the same trend. Since this sole exceptthre empiri-  kink and 13.® for the right kink in averagealong the dis-
cal potential for iron yields negative formation energy for |gcation line than the asymmetric core kinks (9.for the
two kinds of kinks, we consider this potential to be flawed. |eft kink and 10.4 for the right kink. Most importantly, the
On the other hand, the kink pair formation energies in K,kink pair formation energies for the symmetric core disloca-

Mo, Ta, anda-Fe all obey the rulé?). tions (0.428 eV from theyEAM2 FF and 0.642 eV from the
gEAM3 FF) are smaller than 0.791 eV from tigEAM1 FF
V. KINKS IN SYMMETRIC CORE SCREW DISLOCATIONS for the asymmetric core dislocations. This is reasonable be-

) o ] cause that the polarization of the asymmetric dislocation core

The symmetric core has zero polarization and is nontg,ses some atoms to be in compression or tension in the
degenerate. As a result there are only two types of kiléts  yink formation region(this has been pointed out and dis-
kink and right kink and no(polarization flip in 1/2a(111)  cyssed in Ref. J6and would lead to higher kink pair forma-
symmetric core screw dislocations. We obtained relaxed Kinkjgn energy for the asymmetric core dislocation than the
configurations for the symmetric core screw dislocations USsymmetric core dislocation. Although thgEAM2 and
ing the gEAM2 and qEAM3 FFs and the same periodic/ qEAM3 FF predict similar equilibrium symmetric core
fixed boundary simulation technique. _ structures, they lead to different kink pair formation energies.

Table VI gives our results of the height, width, and for- Thjs implies besides the equilibrium dislocation core struc-
mation energies for various kinks in the symmetric coreyyre some other factors also underlie the kink pair formation
screw dislocations. To evaluate the kink geometrical paramprocess. In this work, we observed that increasing the core
eters, we derived the line shape of the kinks by Ca":u'ati”%olarization curvature from thqEAM2 FF to theqEAM3
th.e atomiq—strain ene.rgy—weig'hted center of 'the twelve atomgr |eads to increase the kink pair formation energy by 0.214
with the highest strain energies for each dlice along the gy This correlates with the fact the Peierls stress for straight

dislocation line. This way to define the dislocation position gisjocations also increases with increasing core polarization
might seem inconsistent with the observation in Sec. Il A4dcyryature(see Ref. 25

that a symmetric dislocation core has only six atoms with

highest atomic strain energies in a straight screw dislocation. VI. CONCLUSIONS AND DISCUSSIONS

However, we must also describe the dislocation core con-

figurations in the kink region, such as the state shown in Fig. This paper reports our calculations on the multiplicity,
11(a). For the latter case, using the twel(rather than six  structural features, and formation energies ofa{l32)
highest energy atoms allows a better description. Indeed, uginks in 1/2a(111) screw dislocations with different core
ing the twelve-atom definition does not lead to any problenstructuresasymmetric core and symmetric chre

in calculating the equilibrium symmetric core dislocation po- Two degenerate asymmetric cores for &/211) screw
sition since the central six atoms have atomic strain energiedislocations lead to 2 types @bolarization flips, 8 kinds of
four times larger than others. The calculated heights of thésolated kinks and 16 combinations of kink pairs. Among the
symmetric core kinks are exactly equal|id3a(112)| (2.74  eight isolated kinks, we find that tiéRPkink is the elemen-
A for the qgEAM2 FF and 2.71 A for thgEAM3 FF). tary right kink, thePLN kink is the basic left kink, and the
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others are the composites of the elementary kinks and flipsunction of volume(including large compressions and ex-
In contrast, for screw dislocations with symmetric corepansion$ for various phases bcc, fcc, afdl5, (ii) elastic
there is only one right kink, one left kink, and one kind of constants(iii) vacancy and surface formation energi@s)
kink pair. We find the kink pair formation energies for the energetics of a shear deformation in the twinning direction
symmetric core dislocation®.428 eV from thegEAM2 FF  that takes the bcc crystal back to itself, afwd the (111)/
and 0.642 eV from theEAM3 FF) are smaller than 0.791 {112 and(111)/{11Gy surfaces. However, onlyEAM2 and
eV from the qEAM1 FF for the asymmetric core disloca- dEAM3 FFs lead to the symmetric core structures for
tions, indicating the equilibrium dislocation core structure is1/2a(111) screw dislocations, similar to tha initio results.
an important factor in determining the kink pair formation Furthermore, the curves of core energy variations with polar-
energy in bcc Ta. Furthermore, we find that the calculated?ation in F'g'. 6 show'thgt the results using 4EAM3 FF
kink pair formation energies for the two symmetric cores2dree be_st with thab initio results among _the thre:EA_M
studied differ by as much as 0.214 dWased on the two FFS n this work. Therefor_e, ”‘F‘*’EAW FF is the best first-
force fields leading to similar equilibrium symmetric cores principle pqten'ual for Ta n thIS.WOI‘k and suitable to study
but different core polarization curvatyranplying that core the properties of screw dislocations. _
polarization curvature may also be a critical quantity in de- Table !l shows that th«qEAM3 FF. I.e_ads fo the Peierls
termining kink formation energies. stresses in best agreement with #ieinitio results compar-
All our calculated kink pair formation energies are lower N9 10 all other potentialMGPT, gEAM1, and gEAM2).
than the experimental resy®.98 eV (Ref. 36]. However, Hence, we expect the kink pair formatloq enefgys42 eV
the determined kink height in that measurement was 1'71{9m OUY‘JEAW FF to be accurate and_m glose agreement
times the valuga/3(112)| for the unit kink height in our with ab initio calculations. Since thg equmbrlum dislocation
study. Thus the experimental formation energy for a pair ofcore structure and the core p(_)lz_;mzat_lon curvature .bOth are
kinks connecting the nearest neighboring positions might pgnportant in accurately dete_ff‘"_"”'”g Kink-pair formatlon_en-
lower than 0.98 eV and might agree with our result. In the€'9y, We propose that thab initio dgta of the energy varia-
mesoscopic simulation by Tareg al3” the zero temperature tion with d|sloc_at|on core polar|zat|o(shown_|n Fig. 6 for
kink pair activation enthalpy was determined to be 1.08 eV,Ta) should be included in the future potential development
much higher than our results. Stainitral® found that the 07 PCC metals.
kink pair formation energy of 0.70 eXonly 9% higher than
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