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Electron-phonon vertex in the two-dimensional one-band Hubbard model
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Using quantum Monte Carlo techniques, we study the effects of electronic correlations on the effective
electron-phonon~el-ph! coupling in a two-dimensional one-band Hubbard model. We consider a momentum-
independent bare ionic el-ph coupling. In the weak- and intermediate-correlation regimes, we find that the
on-site Coulomb interactionU acts to effectively suppress the ionic el-ph coupling at all electron and phonon
momenta. In this regime, our numerical simulations are in good agreement with the results of perturbation
theory to orderU2. However, entering the strong-correlation regime, we find that the forward-scattering
process stops decreasing and begins to substantially increase as a function ofU, leading to an effective el-ph
coupling which is peaked in the forward direction. Whereas at weak and intermediate Coulomb interactions,
screening is the dominant correlation effect suppressing the el-ph coupling, at largerU values irreducible
vertex corrections become more important and give rise to this increase. These vertex corrections depend
crucially on the renormalized electronic structure of the strongly correlated system.
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The role of the el-ph interaction in the physics of t
high-Tc cuprate superconductors remains unclear. On the
hand, the linearT dependence of the resistivity up to hig
temperatures and the small value of the isotope coefficien
the optimally doped materials suggest that the el-ph inte
tion plays a secondary role.1 The fact that the undoped cu
prates are Mott antiferromagnetic insulators supports the
tion that strong Coulomb interactions are dominant and
the essential physics is contained in the Hubbard andt-J
models.2 On the other hand, however, a variety of expe
ments also display pronounced phonon and electron-la
effects in these materials: superconductivity-induced pho
renormalization,3 large isotope coefficients away from opt
mal doping,4 tunneling phonon structures,5 etc., give evi-
dence of significant el-ph coupling. Recently, photoemiss
data indicated a sudden change in the electron disper
near a characteristic energy scale,6 which is possibly caused
by coupling of electronic quasiparticles to phonon modes

To elucidate the effects of strong electronic correlatio
on the el-ph interaction, several authors have calculated
el-ph vertex function in the one- and three-band Hubb
models based on (1/N) expansion within slave-boson7,8 and
X operator9 formalisms. One finding9 is that for the ionic,
i.e., on-site, el-ph coupling in the underdoped regime,
backward scattering with large phonon momentum transfe
suppressed much more than the forward scattering w
small phonon momentum transfer. Based on this finding
was argued that a forward peaking of the renormalized e
vertex could account for the absence of phonon feature
the transport data. In addition, an el-ph interaction which
peaked at small phonon momentum transfer contributes t
attractive interaction in thedx22y2-pairing channel.9,10 One
should note that these previous calculations were limited
the approximate nature of 1/N and slave-boson treatment
moreover, they were carried out forU→`.
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Here, we would like to use a more accurate numeri
method to gain further insight into the way in which stron
electron correlations dress the el-ph coupling for a range
values ofU from weak to strong correlation. This analysis
important since it turns out that theU dependence of the
el-ph coupling shows a dramatic change as a function oU
~see below!. Specifically, we apply the determinantal Mon
Carlo11 algorithm to find the single-particle response to e
ternal phonon fields in the one-band Hubbard model. In p
ticular, we will calculate an effective el-ph coupling12

g(p,q) ~effective el-ph vertex! for scattering quasiparticle
near the Fermi surface~which includes screening, vertex co
rections, and the quasiparticle renormalization! produced by
the HubbardU.

Our principle findings are the following.
~1! Initially ~up to the value ofU'6t), as the Hubbard-

Coulomb interactionU increases, the el-ph coupling issup-
pressedby electronic correlations for all phonon and electr
momenta, and in particular for the backward scatter
aroundq5(p, p). The suppression is due to the conve
tional screening term.

~2! The behavior changes even qualitatively in the stro
correlation regime (U>6t). Here, the effective el-ph cou
pling atsmallphonon momentum transferincreaseswith in-
creasing U, while the one at large phonon momentu
transfer appears to saturate~see Fig. 3!. The increase of the
el-ph coupling in the forward direction is due to irreducib
vertex corrections, which become the dominant correlat
effects at strong Coulomb interactions. These vertex cor
tions are intimately connected with the renormalized el
tronic structure. It is argued that the picture of a ‘‘spin-ba
quasiparticle can explain the qualitatively different el-
couplings for small and large phonon momenta. Furth
more, we would like to stress that our numerical results
the charge compressibility, which decreases monotonic
with increasingU, rule out the explanation of the increase
©2003 The American Physical Society07-1
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the el-ph vertex at smallq as a function ofU in terms of a
close-by phase separation or charge instability.13

Our starting point is the one-band Hubbard model,

H52t (
^ i j &,s

~cis
† cj s1cj s

† cis!1U(
i

ni↑ni↓ . ~1!

The operatorscis
† and cis as usual create and destroy

electron with spins at sitei, respectively, and the sum̂i j &
is over nearest-neighbor lattice sites. Here,U is the on-site
Coulomb interaction and we will choose the neare
neighbor hoppingt as the unit of energy.

In our simulations, we have used the linear-response te
nique in order to extract the el-ph vertex function. In th
method, one formally adds to Eq.~1! the interaction with a
momentum- and~imaginary-! time-dependent lattice distor
tion ~phonon! field uqe

2 iq0t in the form12,14

Hel-ph5(
kqs

gkq
0 ck1qs

† cksuqe
2 iq0t, ~2!

wheregkq
0 is the bare el-ph coupling. One then considers

‘‘anomalous’’ single-particle propagator in the presence
this perturbation defined as12

GA~p,q![2E
0

b

dt ei (p01q0)t^Ttcp1qs~t!cps
† ~0!&H1Hel-ph

,

~3!

where ^&H1Hel2ph
is Green’s function evaluated with th

HamiltonianH1Hel-ph . DiagrammaticallyGA(p,q) has the
structure shown in Fig. 1 so that the el-ph vertex funct
G(p,q) can be expressed quite generally in terms ofGA and
of the single-particle Green’s functionG(p) in the form

G~p,q!5 lim
uq→0

1

uq

GA~p,q!

G~p1q! G~p!
. ~4!

It is, thus, sufficient to calculate the leading linear respo
of GA to Hel-ph, which is given by

FIG. 1. Diagrammatic representation ofGA(p,q) within linear
response touq . The thick solid lines represent dressed sing
particle Green’s functions of the Hubbard model. The wavy l
denotes the external perturbation in Eq.~2!.
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GA~p,q!5uqE
0

b

dtei (p01q0)tE
0

b

dt8e2 iq0t8

3 (
kqs8

gkq
0 ^Ttck1qs8

†
~t8101!

3cks8~t8!cp1qs~t!cps
† ~0!&H , ~5!

where 01 is a positive infinitesimal. The two-particle
Green’s function in Eq.~5! is evaluated with respect to th
pure Hubbard Hamiltonian@Eq. ~1!#. Since we have only
considered the linear-response contribution from the pho
field, the el-ph vertexG contains full contributions from
Coulomb interactions only.15

Close to the Fermi energy, the single-particle Gree
function can be written as

G~p!5
1

Z~p!~ i p02Ep!
, ~6!

whereZ(p) is the wave-function renormalization andEp the
quasiparticle excitation energy.16 Then for electron-scattering
processes which involve states near the Fermi surface,
effective el-ph coupling reads

g~p,q!5
G~p,q!

AZ~p! Z~p1q!
. ~7!

In the following, we will focus on the case of anionic
el-ph coupling, in which the bare couplinggpq

0 is a constant
g0. Since we are considering linear terms ing0 only, we can
set g0 equal to 1. This corresponds to the simple Holste
form of the el-ph interaction, which is an important limitin
case. Moreover, having the bare interaction independentp
andq makes it easier to see modifications, which arise fr
the strongU correlation effects.

The low-orderU and U2 vertex contributions toG are
displayed in Fig. 2. The diagrams shown at the bottom
Fig. 2 are the leading terms of the random-phase approxi
tion @12 1

2 U P0(q)#21 to the polarization correction, with
P0(q) the contribution from the single bubble. The exa
Monte Carlo result for the polarization correction is
1 1

2 U P(q) with

-

FIG. 2. Low-order Feynman diagrams for the irreducible el-
vertexL(p,q) ~top! and low-order polarization graphs~lower! that
enter the full vertexG. The thin solid lines are the noninteractin
Green’s functions and the dashed lines represent the Hubbard i
action U. The thin ~thick! wavy lines stand for the bare~screened
phonon! fields.
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P~q!52E
0

b

dte2 iq0t^Ttrq~t!rq
†~0!&,

and

rq
†5

1

AN
(
ks

ck1qs
† cks . ~8!

With this in mind,G can be written in terms of the screenin
factor and an irreducible vertexL(p,q), which is the sum of
graphs that cannot be separated into two pieces by cutti
single dashed Coulomb interaction lineU ~see Fig. 2!, i.e.,

G~p,q!5~11 1
2 UP~q!!L~p,q!. ~9!

Thus, the strong-correlation effects associated with
Hubbard-Coulomb interactionU lead to an effective el-ph
coupling which can be expressed in the canonical form

g~p,q!5
@@11 1

2 UP~q!#L~p,q!

@Z~p!Z~p1q!#1/2
, ~10!

and one sees that it consists of a product of an irreduc
vertexL(p,q), a screening factor@11 1

2 UP(q)#, and a qua-
siparticle renormalization@Z(p)Z(p1q)#21/2 factor.

Our numerical Monte Carlo simulations were perform
on an 838 lattice at an inverse temperatureb52 and a
filling ^n&50.88. We have set the frequencies to their mi
mum values, i.e.,p05pT for fermions and q050 for
bosons. We have checked some special cases for which
can reach lower temperatures, namely, a two-dimensio
system at weak correlation and/or with large doping (^n&
50.65). For these systems, we have found that the real
of the vertex functionG„(pT,p),(0,q)… depends only weakly
on temperature, and the imaginary part always vanishe
T→0. In the following we will, therefore, focus on the re
part of the vertex function atp05pT. Comparison with ex-
act diagonalization on a four-site ring demonstrates that
difference inG(p,q) between the two results is less than 2
up to U58.

We are interested in el-ph scattering processes in wh
the incoming and the outgoing electron momentap and p
1q are close to the Fermi surface. For an 838 lattice doped
near half filling, theq andU dependence ofg(p,q) for the
scattering processes on the half-filled diamond Fermi sur
is studied. In particular, we will examine initial states corr
sponding to p5(2p, 0) and p5(2p/2,p/2). Other
choices ofp andp1q close to the half-filled diamond Ferm
surface give qualitatively similar results to those repor
here.

Monte Carlo results forg(p,q) and for the polarization
factor (11 1

2 UP) are shown in Fig. 3. The left-hand sid
Fig. 3~a!, shows the behavior in the weak- and intermedia
correlation regimes. The right-hand side of the figure, F
3~b!, shows similar results when the system enters
strong-correlation regime. One can clearly see that when
Hubbard U is smaller thanU'6, g(p,q) decreasesas a
function of U from its bare valueg051, for all momentum
transfers. Then, as the interactionU increases to the strong
22050
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correlation case (U;W58t), the effective el-ph coupling
begins toincrease. This behavior is particularly evident a
smaller values of momentum transfer. Our finding at la
phonon momentum is similar to that of Deppeleret al.’s
work,17 which shows that the local el-ph interaction is su
pressed by both electronic correlations and dynamic pho
vertex corrections. In the strong-correlation regime, the ov
all q dependence of the el-ph coupling agrees reason
well with the results of the 1/N expansion9 which are ob-
tained for theU→` limit. However, in our case the interes
ing behavior is that the effective el-ph coupling as a funct
of U is nonmonotonic, first decreasing and then, at physic
interesting values ofU, increasing. This finding deviate
from the prediction of a Fermi-liquid analysis.8 According to
this analysis, limq→0,q050 g(p,q)}1/(11F0

s) with F0
s the

zero-harmonic symmetric Landau amplitude so that the
fective el-ph coupling decreases monotonically with incre
ing U since F0

s becomes larger withU ~except when ap-
proaching a charge instability!.

From Fig. 3, one can see that the polarization factor a
quite generally to suppress the el-ph coupling. At large m
mentum transfer, this quantity saturates asU increases, while
at small momentum transfer it continues to decrease. C
parison betweeng(p,q) and the polarization factor indicate
that at weak correlation screening is the dominant correla
effect suppressing the el-ph coupling. On the other ha
with an increasing HubbardU, the vertex correctionsL be-
come more important, making the effective el-ph coupli
peaked in the forward-scattering direction.

In order to see theU dependence more clearly, in Fig.
quantum Monte Carlo~QMC! calculations are compare
with perturbation theory for different values ofU. Here, the
solid symbols are Monte Carlo results and the open symb
show the results obtained by evaluatingG(p,q) perturba-
tively with the diagrams of Fig. 2. In the perturbative calc
lations,g(p,q) is calculated by using wave-function reno
malizationsZ(p) andZ(p1q) extracted from Monte Carlo
data. As one can see, in the weak-correlation regime,

FIG. 3. Real part of the effective el-ph couplingg(p,q) and the
polarization factor 11 1

2 UP vs q for ~a! U<6 and~b! U>6. Here
q5p(h,h) with h the tick label of thex axis. The incoming elec-
tron carries momentump5(2p, 0) and the value ofU is indicated
by the shape of the symbol.
7-3
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perturbative calculations are in good agreement with Mo
Carlo simulations. However, when the HubbardU exceeds
U'4 (;W/2), perturbation theory appears to break dow

QMC calculations of the doping, temperature andU de-
pendence of the vertex enhancement and itsq dependence
which will be presented in more detail in a longer paper, g
a physical picture for both the unexpected increase of
vertex as a function of largerU-values for small phonon
momenta and also the suppression of the vertex for la
phonon momenta: It is well established, in particular in ter
of QMC work on the single-particle spectral function of th
Hubbard model,18 that the single-particle excitations as
function of increasingU-values undergo~at lower enough
temperatures, aroundb52 –3) a crucial physical transition
into a strong-correlation regime aroundU'6t: the electroni-
cally filled valence band of widthW, which is essentially
given by the bare bandwidthW58t, splits into two ‘‘bands.’’
The physical picture behind this splitting is the formation

FIG. 4. Real part ofg(p,q) as a function ofU for ~a! p
5(2p, 0) and~b! p5(2p/2,p/2). The value ofq is indicated by
the shape of the symbol. The solid circles are Monte Carlo res
and the open symbols show the perturbation-theory contribut
shown in Fig. 2.
fr
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a spin-bag quasiparticle, i.e., of the bare particle~hole!
dressed with a spatially~typically a few lattice constants!
extended spin cloud, which is due to the frustration of t
local antiferromagnetic order. The spin bag moves cohere
and ‘‘slowly’’ with an energy scaleJ54t2/U within the new,
strongly renormalized quasiparticle band of width;J. This
coherent motion couples effectively~with small energy de-
nominators! to longer wavelength lattice displacemen
whose wavelength is typically longer than the spin-bag ‘‘
ameter.’’ On the other hand, there is at largerU-values also
an incoherent lower Hubbard band whose higher ene
scale corresponds to the ‘‘rattling around’’ of the bare p
ticle within the spin bag.18 Only large momenta phonons
i.e., with wavelength smaller than the ‘‘extension’’ of th
spin bag, can couple to these incoherent electronic degre
freedom. Their coupling is weak because of the combin
effects of the incoherent motion and the large (;scaleW)
energy denominators.

In summary, based on QMC simulations, we have stud
the el-ph vertex function in the two-dimensional Hubba
model. We find that in the weak-correlation regime, the
fects of the Hubbard interactionU are tosuppressthe ionic
el-ph coupling at all phonon momenta, with backwar
scattering processes being more strongly suppressed
forward ones. On the other hand, in the strong-correlat
regime, the vertex at smaller phonon momentum trans
anomalouslyincreasesas a function ofU. We also find that
screening is the dominant contribution to the vertex corr
tions at weak correlation, while at strong correlation the
reducible vertex corrections are crucial.

We would like to acknowledge useful discussions with D
R. Zeyher and C. Castellani. The Wu¨rzburg group would like
to acknowledge support by the DFG under Grant No.
1537/20-1 and by a Heisenberg grant~Grant No. AR 324/3-
1!, and by the Bavaria California Technology Center~Ba-
CaTeC!, the KONWHIR projects OOPCV and CUHE. D.J.S
acknowledges support from the US Department of Ene
under Grant No. DOE85-45197. The calculations were c
ried out at the high-performance computing centers HL
~Stuttgart! and LRZ ~München!.
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