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Using quantum Monte Carlo techniques, we study the effects of electronic correlations on the effective
electron-phonortel-ph) coupling in a two-dimensional one-band Hubbard model. We consider a momentum-
independent bare ionic el-ph coupling. In the weak- and intermediate-correlation regimes, we find that the
on-site Coulomb interactiob) acts to effectively suppress the ionic el-ph coupling at all electron and phonon
momenta. In this regime, our numerical simulations are in good agreement with the results of perturbation
theory to orderU?. However, entering the strong-correlation regime, we find that the forward-scattering
process stops decreasing and begins to substantially increase as a funtifideaiing to an effective el-ph
coupling which is peaked in the forward direction. Whereas at weak and intermediate Coulomb interactions,
screening is the dominant correlation effect suppressing the el-ph coupling, at larggues irreducible
vertex corrections become more important and give rise to this increase. These vertex corrections depend
crucially on the renormalized electronic structure of the strongly correlated system.
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The role of the el-ph interaction in the physics of the Here, we would like to use a more accurate numerical
high-T, cuprate superconductors remains unclear. On the onmethod to gain further insight into the way in which strong
hand, the lineaim dependence of the resistivity up to high electron correlations dress the el-ph coupling for a range of
temperatures and the small value of the isotope coefficient ofalues ofU from weak to strong correlation. This analysis is
the optimally doped materials suggest that the el-ph interadmportant since it turns out that the dependence of the
tion plays a secondary rofeThe fact that the undoped cu- el-ph coupling shows a dramatic change as a functiob of
prates are Mott antiferromagnetic insulators supports the ndsee below. Specifically, we apply the determinantal Monte
tion that strong Coulomb interactions are dominant and tha€arlo™ algorithm to find the single-particle response to ex-
the essential physics is contained in the Hubbard &dd ternal phonon fields in the one-band Hubbard model. In par-
models? On the other hand, however, a variety of experi-ticular, we will calculate an effective el-ph couplitfg
ments also display pronounced phonon and electron-lattic@(P.d) (effective el-ph vertexfor scattering quasiparticles
effects in these materials: superconductivity-induced phonofi€a' the Fermi surfadevhich includes screening, vertex cor-
renormalizatior?, large isotope coefficients away from opti- "€Ctions, and the quasiparticle renormalizatiproduced by
mal doping? tunneling phonon structurésetc., give evi- the Hubb_arc_U. - .
dence of significant el-ph coupling. Recently, photoemission E)ll)nlﬂ'lgl(l:lpl(e ﬂr:gl?r?j aarue (tahce)thoﬂ%vtv)m%s the Hubbard-
data indicated a sudden change in the electron dispersio(g0 tmafy up vaiu R u

L S ) ulomb interactiorJ increases, the el-ph coupling ssip-
near a characterlstlc energy sg%lmhwh Is possibly caused pressedy electronic correlations for all phonon and electron
by coupling of electronic quasiparticles to phonon modes.

To elucidate the effects of st lectroni lati momenta, and in particular for the backward scattering
0 elucidate the efiects of strong €lectronic correla IOnSaroundqz(a-r, 7). The suppression is due to the conven-
on the el-ph interaction, several authors have calculated thg, - screening term.

el-ph vertex function in the one- and three-band Hubbard (2) The behavior changes even qualitatively in the strong-
models based on (W) expansion within slave-bosbhand  orrelation regime Y =6t). Here, the effective el-ph cou-

X operatof formalisms. One findingis that for the ionic, pling atsmallphonon momentum transfércreaseswith in-

i.e., on-site, el-ph coupling in the underdoped regime, thereasing U while the one at large phonon momentum
backward scattering with large phonon momentum transfer igansfer appears to saturdsee Fig. 3. The increase of the
suppressed much more than the forward scattering witlel-ph coupling in the forward direction is due to irreducible
small phonon momentum transfer. Based on this finding, itvertex corrections, which become the dominant correlation
was argued that a forward peaking of the renormalized el-pleffects at strong Coulomb interactions. These vertex correc-
vertex could account for the absence of phonon features itions are intimately connected with the renormalized elec-
the transport data. In addition, an el-ph interaction which igronic structure. It is argued that the picture of a “spin-bag”
peaked at small phonon momentum transfer contributes to aguasiparticle can explain the qualitatively different el-ph
attractive interaction in thel,2_2-pairing channe!!® One  couplings for small and large phonon momenta. Further-
should note that these previous calculations were limited bynore, we would like to stress that our numerical results for
the approximate nature of M/and slave-boson treatments, the charge compressibility, which decreases monotonically
moreover, they were carried out fof— . with increasingU, rule out the explanation of the increase of
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FIG. 2. Low-order Feynman diagrams for the irreducible el-ph
FIG. 1. Diagrammatic representation Gfy(p,q) within linear vertexA(p,q) (top) and low-order polarization grapfi®wer) that
response taug. The thick solid lines represent dressed single-enter the full vertex". The thin solid lines are the noninteracting
particle Green’s functions of the Hubbard model. The wavy lineGyeen's functions and the dashed lines represent the Hubbard inter-
denotes the external perturbation in E2). action U. The thin (thick) wavy lines stand for the bar@creened
phonon fields.

the el-ph vertex at smalf as a function olU in terms of a

close-by phase separation or charge instabifity. B (po+ao) B g
Our starting point is the one-band Hubbard model, Ga(p,a)=Uq . dre'tPo™ o . dr'e '
0 T ’ +
H=—t<u> (chCistClCin) +UX nini . (D) quE/ Ok{ TrCys gor (7' +07)
1]),0 i (o
X Cer (7')Cp 1 g TICh (0 (5)

The operator| and c;, as usual create and destroy an _ o _

electron with spino at sitei, respectively, and the sutij ) where 0 is a positive '|nf|n|te3|mal. The two-particle

is over nearest-neighbor lattice sites. Hddeis the on-site  Green’s function in Eq(5) is evaluated with respect to the

Coulomb interaction and we will choose the nearestPure Hubbard HamiltoniaiEq. (1)]. Since we have only

neighbor hopping as the unit of energy. considered the linear-response contribution from the phonon
In our simulations, we have used the linear-response tecHield, the el-ph vertex” contains full contributions from

nique in order to extract the el-ph vertex function. In this Coulomb interactions onfy

method, one formally adds to E¢l) the interaction with a Close to the Fermi energy, the single-particle Green's

momentum- andimaginary) time-dependent lattice distor- function can be written as

tion (phonon field uge™ %7 in the form***

G(p)= ©6)

Z(p)(i po—Ep)’
whereZ(p) is the wave-function renormalization akg the
quasiparticle excitation enerd§Then for electron-scattering

wheregﬁ is the bare el-ph coupling. One then considers thdProcesses which involve states near the Fermi surface, the
q )

“anomalous” single-particle propagator in the presence ofeffective el-ph coupling reads
this perturbation defined s
I'(p,q)

=
AP S Zora

In the following, we will focus on the case of a@anic
e!)—ph coupling, in which the bare couplirﬁ%is a constant
. , . . . Since we are considering linear termsginonly, we can
where <>H+He|—ph is Green’s function evaluated with the getg0 equal to 1. This corrgsponds to t%:]e simyple Holstein
HamiltonianH +He,.p . DiagrammaticallyGa(p.q) has the  form of the el-ph interaction, which is an important limiting
structure shown in Fig. 1 so that the el-ph vertex functioncase, Moreover, having the bare interaction independent of
I'(p,q) can be expressed quite generally in term&gfand  andq makes it easier to see modifications, which arise from

_ 0 .t -
Hel—ph_g OkqCh+ qoCkalq® 07, 2
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B )
GA(FLQ)E_IO dr el(p0+q0)T<TTCP+QU(T)C;0(0)>H+H

of the single-particle Green’s functicB(p) in the form the strongU correlation effects.
The low-orderU and U? vertex contributions td™ are
1 Ga(p,q) displayed in Fig. 2. The diagrams shown at the bottom of
Fpg)=Im———-+<— 4 Fig. 2 are the leading terms of the random-phase approxima-

ug—0'a Glp+a) G(p) tion [1—3 UIly(q)] * to the polarization correction, with

ITo(q) the contribution from the single bubble. The exact
It is, thus, sufficient to calculate the leading linear responséonte Carlo result for the polarization correction is 1
of Ga t0 Heppn, Which is given by +3 UTI(q) with
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With this in mind,I" can be written in terms of the screening
factor and an irreducible verteX(p,q), which is the sum of
graphs that cannot be separated into two pieces by cutting a

@
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single dashed Coulomb interaction likk(see Fig. 2, i.e., 04 s 04 —aUs
+—oU=6 —¥ U=10
I'(p,q)=(1+ % UII(g))A(p,q). 9) %325 050 075 oo 025 050 075 Loo
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Thus, the strong-correlation effects associated with the
Hubbard-Coulomb interactio) lead to an effective el-ph
coupling which can be expressed in the canonical form

FIG. 3. Real part of the effective el-ph coupliggp,q) and the

polarization factor 3 %UH vsq for (a) U<6 and(b) U=6. Here

g=(h,h) with h the tick label of thex axis. The incoming elec-
1 tron carries momentump=(— 7, 0) and the value o) is indicated

_ [[1+ 2 UTI(q)]A(p,q) (10 by the shape of the symbol.

9(p.a)
[Z(p)Z(p+a)]** correlation case Y ~W=8t), the effective el-ph coupling
and one sees that it consists of a product of an irreduciblbegins toincrease This behavior is particularly evident at
vertexA(p,q), a screening factdrl+ 2UII(q)], and a qua- Smaller values of momentum transfer. Our finding at large
siparticle renormalizatiofZ(p)Z(p+q)]~ *? factor. phonon momentum is similar to that of Deppeletral’s

Our numerical Monte Carlo simulations were performedwork,'” which shows that the local el-ph interaction is sup-
on an 8<8 lattice at an inverse temperatufe=2 and a Pressed by both electronic correlations and dynamic phonon
filling (n)=0.88. We have set the frequencies to their mini-vertex corrections. In the strong-correlation regime, the over-
mum values, i.e.,p,==T for fermions andq,=0 for all g dependence of the el-ph coupling agrees reasonably
bosons. We have checked some special cases for which oméll with the results of the N expansiof which are ob-
can reach lower temperatures, namely, a two-dimensiondpined for theU— o limit. However, in our case the interest-
system at weak correlation and/or with large dopirg)( ing behavior is that the effective el-ph coupling as a function
=0.65). For these systems, we have found that the real pa@f U is nonmonotonic, first decreasing and then, at physically
of the vertex functiod ((#T,p),(0,9)) depends only weakly interesting values olJ, increasing. This finding d_eviates
on temperature, and the imaginary part always vanishes 4£0m the prediction of a Fermi-liquid analysisiccording to
T—0. In the following we will, therefore, focus on the real this analysis, lig_oq -0 9(p,a)=1/(1+Fg) with Fg the
part of the vertex function gio=7T. Comparison with ex- zero-harmonic symmetric Landau amplitude so that the ef-
act diagonalization on a four-site ring demonstrates that théective el-ph coupling decreases monotonically with increas-
difference inl'(p,q) between the two results is less than 2%ing U since F; becomes larger witlJ (except when ap-
up toU=8. proaching a charge instability

We are interested in el-ph scattering processes in which From Fig. 3, one can see that the polarization factor acts
the incoming and the outgoing electron momeptandp  quite generally to suppress the el-ph coupling. At large mo-
+q are close to the Fermi surface. For ad 8 lattice doped mentum transfer, this quantity saturatedkisicreases, while
near half filling, theq andU dependence of(p,q) for the  at small momentum transfer it continues to decrease. Com-
scattering processes on the half-filled diamond Fermi surfacparison between(p,q) and the polarization factor indicates
is studied. In particular, we will examine initial states corre-that at weak correlation screening is the dominant correlation
sponding to p=(—,0) and p=(—w/2,7/2). Other effect suppressing the el-ph coupling. On the other hand,
choices ofp andp+q close to the half-filled diamond Fermi with an increasing Hubbard, the vertex correctiond be-
surface give qualitatively similar results to those reportedcome more important, making the effective el-ph coupling
here. peaked in the forward-scattering direction.

Monte Carlo results fog(p,q) and for the polarization In order to see th& dependence more clearly, in Fig. 4
factor (1+3UII) are shown in Fig. 3. The left-hand side, quantum Monte CarldQMC) calculations are compared
Fig. 3@, shows the behavior in the weak- and intermediatewith perturbation theory for different values bf Here, the
correlation regimes. The right-hand side of the figure, Figsolid symbols are Monte Carlo results and the open symbols
3(b), shows similar results when the system enters thahow the results obtained by evaluatifigp,q) perturba-
strong-correlation regime. One can clearly see that when thévely with the diagrams of Fig. 2. In the perturbative calcu-
HubbardU is smaller thanU~6, g(p,q) decreasesas a lations,g(p,q) is calculated by using wave-function renor-
function of U from its bare valugg’=1, for all momentum malizationsZ(p) andZ(p+q) extracted from Monte Carlo
transfers. Then, as the interactibhincreases to the strong- data. As one can see, in the weak-correlation regime, the
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038 @) a spin-bag quasiparticle, i.e., of the bare partihole)
0.6 i dressed with a spatiallytypically a few lattice constants
5 B = g=(r;1) extended spin cloud, which is due to the frustration of the
N R\ local antiferromagnetic order. The spin bag moves coherently
g 02 and “slowly” with an energy scald=4t/U within the new,
0.0 g e strongly renormalized quasiparticle band of widtd. This
TSy T® coherent motion couples effective(with small energy de-
-0 - nominator$ to longer wavelength lattice displacements,
05 (b)  e—eqg=(wama whose wavelength is typically longer than the spin-bag “di-
PR S ameter.” On the other hand, there is at largewalues also
g 04 an incoherent lower Hubbard band whose higher energy
P scale corresponds to the “rattling around” of the bare par-
« N ticle within the spin bad® Only large momenta phonons,
00 E'\\::\f, i.e., with wavelength smaller than the “extension” of the
025 . p . == 0 spin bag, can couple to these incoherent electronic degrees of
U freedom. Their coupling is weak because of the combined

effects of the incoherent motion and the largescaleW)

FIG. 4. Real part ofg(p,q) as a function ofU for (&) p energy denominators.
=(—m, 0) and(b) p=(—=/2, m/2). The value ofj is indicated by In summary, based on QMC simulations, we have studied
the shape of the symbol. The solid circles are Monte Carlo resultghe el-ph vertex function in the two-dimensional Hubbard
and the open symbols show the perturbation-theory contributiong,adel. We find that in the weak-correlation regime, the ef-
shown in Fig. 2. fects of the Hubbard interactiod are tosuppresshe ionic
el-ph coupling at all phonon momenta, with backward-
escattering processes being more strongly suppressed than
forward ones. On the other hand, in the strong-correlation
. . regime, the vertex at smaller phonon momentum transfer

QdMC calcf:ul;la\tlons of thehdoplng, tempergt;;re a(rjhdje- anomalouslyincreasesas a function olJ. We also find that
pendence of the vertex enhancement anditependence, screening is the dominant contribution to the vertex correc-

which will be presented in more detail in a longer paper, giVejqng ot weak correlation, while at strong correlation the ir-
a physical picture for both the unexpected increase of the,q ible vertex corrections are crucial

vertex as a function of larged-values for small phonon

momenta and also the suppression of the vertex for large We would like to acknowledge useful discussions with Dr.
phonon momenta: It is well established, in particular in termsR. Zeyher and C. Castellani. The'Wburg group would like
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temperatures, around=2-3) a crucial physical transition CaTeQ, the KONWHIR projects OOPCV and CUHE. D.J.S.
into a strong-correlation regime aroubds 6t: the electroni- acknowledges support from the US Department of Energy
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Carlo simulations. However, when the Hubbaddexceeds
U~4 (~WI/2), perturbation theory appears to break down.
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