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Quasiclassical fluctuations of the superconductor proximity gap in a chaotic system
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We calculate the sample-to-sample fluctuations in the excitation gap of a chaotic dynamical system coupled
by a narrow lead to a superconductor. Quantum fluctuations of the order of magnitude of the level spacing,
predicted by random-matrix theory, apply iftE!\/ET ~with tE the Ehrenfest time andET the Thouless
energy!. For tE*\/ET the fluctuations are much greater than the level spacing. We demonstrate the quasiclas-
sical nature of the gap fluctuations in the large-tE regime by correlating them to an integral over the classical
dwell-time distribution.
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The universality of statistical fluctuations is one of t
most profound manifestations of quantum mechanics in
soscopic systems.1 Classically, the conductanceg of a disor-
dered metal~measured in the fundamental unit 2e2/h) would
fluctuate from sample to sample by an amount of or
( l /L)3/2!1, with l the mean free path andL the length of the
conductor.2 Quantum-mechanical interference increases
fluctuations to order unity, independent of disorder or sam
length. This is the phenomenon of universal conducta
fluctuations.3,4 The same universality applies to a variety
other properties of disordered metals and superconduc
and random-matrix theory~RMT! provides a unified
description.5

Chaotic systems~for example, a quantum dot in the sha
of a stadium! share much of the phenomenology of diso
dered systems: The same universality of sample-to-sam
fluctuations exists.6–8 What is different is the appearance of
new time scale, below which RMT breaks down.9,10 This
time scale is the Ehrenfest timetE , which measures how
long it takes for a wave packet of minimal size to expa
over the entire available phase space. IftE is larger than the
mean dwell timetD in the system~the reciprocal of the
Thouless energyET5\/2tD), then interference effects ar
inoperative. A chaotic system with conductanceg(2e2/h),
level spacing d, and Lyapunov exponentl has tD
52p\/gd andtE5l21ln(gt0 /tD), with t0 the time of flight
across the system.11 The defining characteristic of the Ehre
fest time is that it scales logarithmically with\, or, equiva-
lently, logarithmically with the system size over Ferm
wavelength.12

The purpose of this paper is to investigate what happ
to mesoscopic fluctuations if the Ehrenfest time becom
comparable to, or larger than, the dwell time, so one ente
quasiclassical regime where RMT no longer holds. This q
siclassical regime has not yet been explored experiment
The difficulty is thattE increases so slowly with system siz
that the averaging effects of inelastic scattering take o
before the effect of a finite Ehrenfest time can be seen.
computer simulation inelastic scattering can be exclu
from the model by construction, so this seems a promis
alternative to investigate the crossover from universal qu
tum fluctuations to nonuniversal quasiclassical fluctuatio
Contrary to what one would expect from the disorder
metal,2 where quasiclassical fluctuations are much sma
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than the quantum value, we find that the breakdown of u
versality in the chaotic system is associated with anenhance-
mentof the sample-to-sample fluctuations.

The quantity on which we choose to focus is the exci
tion gap«0 of a chaotic system which is weakly coupled to
superconductor. We have two reasons for this choice. F
there exists a model~the Andreev kicked rotator! which per-
mits a computer simulation for systems large enough t
tE*tD . So far, such simulations have confirmed the mic
scopic theory of Ref. 11 for the average gap^«0&.

13 Second,
there exists a quasiclassical theory for the effect of a fin
Ehrenfest time on the excitation gap and its fluctuation14

This allows us to achieve both a numerical and an analyt
understanding of the mesoscopic fluctuations when R
breaks down.

We summarize what is known from RMT for the ga
fluctuations.15 In RMT the gap distributionP(«0) is a uni-
versal function of the rescaled energy («02Eg)/Dg , where
Eg50.6ET is the mean-field energy gap andDg
50.068g1/3d determines the mean level spacing just abo
the gap. The distribution function has mean^«0&5Eg

11.21Dg and standard deviation (^«0
2&2^«0&

2)1/2[d«RMT

given by

d«RMT51.27Dg51.09ET /g2/3. ~1!

The RMT predictions forP(«0), in the regimetE!tD ,
were confirmed numerically in Ref. 13 using the Andre
kicked rotator.

We will use the same model, this time focusing on the g
fluctuationsd«0 in the regimetE*tD . The Andreev kicked
rotator provides a stroboscopic description~periodt0) of the
dynamics in a normal region of phase space~areaM\eff)
coupled to a superconductor in a much smaller region~area
N\eff , 1!N!M ). We refer to this coupling as a ‘‘lead.’
The effective Planck constant is\eff51/M . The mean dwell
time in the normal region~before entering the lead! is tD
5M /N and the corresponding Thouless energy isET
5N/2M . We have sett0 and\ equal to 1. The dimension
less conductance of the lead isg5N. The product d
54pET /g52p/M is the mean spacing of the quasienerg
«m of the normal region without the coupling to the supe
conductor. The phase factorsei«m (m51,2, . . . ,M ) are the
eigenvalues of the Floquet operatorF, which is the unitary
©2003 The American Physical Society01-1
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matrix that describes the dynamics in the normal region
the model of the kicked rotator the matrix elements ofF in
momentum representation are given by16

Fnm5e2( ip/2M )(n21m2)~UQU†!nm , ~2a!

Unm5M 21/2e(2p i /M )nm, ~2b!

Qnm5dnme2( iMK /2p)cos(2pn/M ). ~2c!

The coupling to the superconductor doubles the dim
sion of the Floquet operator to accommodate both elec
and hole dynamics. The scattering from electron to ho
known as Andreev reflection, is described by the matrix

P 1/25S 12S 12
1

2
A2D PTP 2 i

1

2
A2PTP

2 i
1

2
A2PTP 12S 12

1

2
A2D PTP

D ,

~3!

with the projection operator

~PTP!nm5dnm3H 1 if L<n<L1N21

0 otherwise.
~4!

Since we work in momentum representation, the lead defi
by Eq.~4! is a strip in phase space of widthN parallel to the
coordinate axis. One could alternatively consider a lead
allel to the momentum axis, if one would work in coordina
representation. We do not expect any significant differen
between the two alternatives. Putting all this together
arrive at the Floquet operator of the Andreev kicked rotato13

F5P 1/2S F 0

0 F* DP 1/2. ~5!

The matrixF can be diagonalized efficiently using the Lan
zos technique in combination with the fast-Fourier-transfo
algorithm.17 This makes it possible to calculate the qua
energies«m and eigenfunctionscm for systems of sizes up to
M553105. The gap value«0 is given by the eigenphase o
F closest to zero.

The Floquet operator~5! provides a stroboscopic descrip
tion of the electron and hole dynamics, which is believed
be equivalent to the true Hamiltonian dynamics on long ti
scalest@t0. The support for this comes from two sides.

~i! In the absence of superconductivity, and for varyi
parametersK and \eff , the one-dimensional kicked rotato
correctly reproduces properties of localized,18 diffusive,19

and even ballistic20 quasiparticles in disordered media.
~ii ! In the presence of superconductivity, the kicked A

dreev rotator, and extensions thereof, adequately desc
quantum dots in contact with a superconductor,13 and gives a
proper description of quasiparticles in dirtyd-wave
superconductors.21

Since we will be giving a classical interpretation of o
results, we also describe the classical map correspondin
the Andreev kicked rotator. The map relates the dimens
22050
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less coordinatexnP(0,1) and momentumpnP(0,1) at time
(n11)t0 to the values at timent0:

pn115pn6~K/2p!sinF2pS xn6
pn

2 D G , ~6a!

xn115xn6
pn

2
6

pn11

2
. ~6b!

The upper and lower sign correspond to electron and h
dynamics, respectively. Periodic boundary conditions h
both for x and p. The quasiparticle reaches the superco
ductor if upn112pleadu,N/2M , whereplead is the center of
the lead. At the next iteration the electron is converted int
hole and vice versa.

We study a system with kicking strengthK514 ~fully
chaotic, Lyapunov exponentl51.95) and vary the leve
spacing d52p/M at fixed dwell time tD5M /N55.
Sample-to-sample fluctuations are generated by varying
position plead of the lead over some 400 locations. The r
sultingM dependence ofd«0 is plotted in Fig. 1 on a double
logarithmic scale. We have divided the valued«0 resulting
from the simulation by the RMT predictiond«RMT from Eq.
~1!. The numerical data follow this prediction forM&103,
but for largerM the fluctuations are bigger than predicted
RMT. For M*104 the ratiod«0 /d«RMT grows asM2/3 ~solid
line!. Sinced«RMT}M 22/3, this means thatd«0 is indepen-
dent of the level spacingd52p/M at fixed dwell timetD
5M /N. This suggests a quasiclassical explanation.

To relate the fluctuations of«0 to the classical dynamics
we first examine the corresponding wave functionc0. In the
RMT regime the wave functions are random and show
features of the classical trajectories. In the quasiclassica
gime tE*tD we expect to see some classical featur
Phase-space portraits of the electron componentscm

e of the
wave functions are given by the Husimi function

H~nx ,np!5u^cm
e unx ,np&u2. ~7!

The stateunx ,np& is a Gaussian wave packet centered ax
5nx /M , p5np /M . In momentum representation it reads

FIG. 1. Root-mean-square valued«0 of the gap divided by the
RMT prediction d«RMT , as a function of the system sizeM for
dwell time M /N55 and kicking strengthK514. The data points
result from the numerical simulation of the Andreev kicked rotat
The solid line has slope 2/3, indicating thatd«0 depends only on
M /N and not onM or N separately in the large-M regime.
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^nunx ,np&}e2p(n2np)2/Me2p inxn/M. ~8!

In Fig. 2, left panels, the Husimi function ofc0 is shown
for two lead positions. A logarithmic gray scale density p
of the Husimi function is shown, with light~dark! areas cor-
responding to low~high! density. The lead is visible as
light strip parallel to thex axis. It is clear that these wav
functions are not random. We expect that the structure
one sees corresponds to long classical trajectories, sinc
wave functions are for the lowest quasienergy. To test
expectation, we show in the right panels~on a linear gray
scale! the corresponding classical density plots for all traje
tories with dwell timet.t* . A total of 33105 initial condi-
tions (x0 ,p0) for these trajectories are chosen uniformly
the lead. Each new iteration of the map~6! gives a point
(xn ,pn) in phase space, which is kept if the time of return
the lead is greater thant* . We taket* 57, somewhat larger
than the Ehrenfest timetE5l21ln(N2/M)54.4. The plot is
not particularly sensitive to the value oft* , as long ast*
.tE . There is a clear correspondence between the quan
mechanical Husimi function and the classical density p
We conclude that the wave function of the lowest excitat
covers predominantly that part of phase space where
longest dwell times occur.

To make this more quantitative we show in Fig. 3 the g

FIG. 2. Left panels: Husimi function~7! for the electron com-
ponent of the ground-state wave functionc0 of the Andreev kicked
rotator, for two different positions of the lead. The parameters
M5131 072, tD5M /N55, K514. The calculated values ar
scaled by a factor 0.019 (0.017) in the top~bottom! panel, so that
they cover the range (0,1), indicated by the gray scale at the
Right panels: The corresponding classical density plots of all
jectories which have a timet.7 between Andreev reflections. Th
calculated values are rescaled by a factor 0.30 (0.32) in the
~bottom! panel.
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value from the quantum simulations as a function of the le
position. The solid curve results from a classical calculat
of the mean dwell time of those trajectories witht.t* , for
the same valuet* 57 used in Fig. 2. More precisely, it is
plot of

1

^t&*
5

E
t*

`

P~ t !dt

E
t*

`

tP~ t !dt

, ~9!

with P(t) the classical dwell-time distribution. We see th
the sample-to-sample fluctuations in the gap«0 correlate
very well with the fluctuations in the sample-to-sample me
dwell time of long trajectories. Again, the correlation is n
sensitive to the choicet* .tE . Such a correlation is in ac
cord with the recent theoretical work,14 in which an effective
RMT description is expected to hold for the part of pha
space with dwell times greater than the Ehrenfest time.
we should emphasize that the agreement is only qualitat
In particular, the relation«0'1.5/̂ t&* 20.07 that we infer
from Fig. 3 is different from the relation«050.3/̂ t&* that
would be expected from RMT. While the theory of Ref. 1
has been found to be in good agreement with the average
value ^«0&,

13 it is not clear how it compares to the data
Fig. 3.

In conclusion, we have investigated the transition fro
quantum-mechanical to quasiclassical gap fluctuations in
superconductor proximity effect. The transition is accomp
nied by a loss of universality and a substantial enhancem
of the fluctuations. Our numerical data provide qualitati
support for an effective random-matrix theory in a reduc
part of phase space,14 as is witnessed by the precise corre
tion which we have found between the value of the gap a
the dwell time of long classical trajectories~see Fig. 3!. It
would be of interest to investigate to what extent quasicl
sical fluctuations of the conductance in a ballistic chao
system are similar or different from those of the superc
ducting gap studied here.

We have benefitted from discussions with J. Tworzyd
This work was supported by the Dutch Science Founda
NWO/FOM and the Swiss National Science Foundation.
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FIG. 3. The data points~left axis! are the quantum-mechanica
gap values«0 of the Andreev kicked rotator as a function of th
position plead of the lead for parameter valuesM5131 072, tD

5M /N55, K514. The solid line~right axis! is the reciprocal of
the mean dwell timê t&* 5* t*

` tP(t)dt/* t*
` P(t)dt of classical tra-

jectories longer thant* 57.
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