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Quasiclassical fluctuations of the superconductor proximity gap in a chaotic system
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We calculate the sample-to-sample fluctuations in the excitation gap of a chaotic dynamical system coupled
by a narrow lead to a superconductor. Quantum fluctuations of the order of magnitude of the level spacing,
predicted by random-matrix theory, apply #{£<#/E; (with 7z the Ehrenfest time an&; the Thouless
energy. For 7e=%/E+ the fluctuations are much greater than the level spacing. We demonstrate the quasiclas-
sical nature of the gap fluctuations in the largeregime by correlating them to an integral over the classical
dwell-time distribution.
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The universality of statistical fluctuations is one of the than the quantum value, we find that the breakdown of uni-
most profound manifestations of quantum mechanics in meversality in the chaotic system is associated witleahance-
soscopic systemsClassically, the conductangeof a disor-  mentof the sample-to-sample fluctuations.
dered meta{measured in the fundamental un&’2h) would The quantity on which we choose to focus is the excita-
fluctuate from sample to sample by an amount of ordetion gapeg of a chaotic system which is weakly coupled to a
(1/L)%?<1, with| the mean free path ardthe length of the  superconductor. We have two reasons for this choice. First,
conducto Quantum-mechanical interference increases théhere exists a modéthe Andreev kicked rotatpmwhich per-
fluctuations to order unity, independent of disorder or samplégnits a computer simulation for systems large enough that
length. This is the phenomenon of universal conductanceg= 7. So far, such simulations have confirmed the micro-
fluctuations>* The same universality applies to a variety of scopic theory of Ref. 11 for the average dap).** Second,
other properties of disordered metals and superconductortere exists a quasiclassical theory for the effect of a finite
and random-matrix theory(RMT) provides a unified Ehrenfest time on the excitation gap and its fluctuatidns.
descriptior? This allows us to achieve both a numerical and an analytical

Chaotic systemgor example, a quantum dot in the shape understanding of the mesoscopic fluctuations when RMT
of a stadium share much of the phenomenology of disor- breaks down.
dered systems: The same universality of sample-to-sample We summarize what is known from RMT for the gap
fluctuations exist§-8What is different is the appearance of a fluctuationst® In RMT the gap distributiorP(g,) is a uni-
new time scale, below which RMT breaks dowt. This  versal function of the rescaled energy, Eg)/Ag, where
time scale is the Ehrenfest timg, which measures how E,=0.6E; is the mean-field energy gap and,
long it takes for a wave packet of minimal size to expand=0.068g3s determines the mean level spacing just above
over the entire available phase spacerdfis larger than the the gap. The distribution function has medag)=E,
mean dwell timerp in the system(the reciprocal of the +1.21A; and standard deviation(s{é)—(so)z)l’zE SERMT
Thouless energ¥r=7%/27p), then interference effects are given by
inoperative. A chaotic system with conductargi2e?/h),
level spacing 8, and Lyapunov exponeni has p Sepur=1.27A4=1.09E/g*2. 1)
=27hlgé and =\ "tIn(g7y /), with 7, the time of flight
across the systeft.The defining characteristic of the Ehren- The RMT predictions forP(e), in the regimerg<mp,
fest time is that it scales logarithmically with, or, equiva- ~Were confirmed numerically in Ref. 13 using the Andreev
lently, logarithmically with the system size over Fermi kicked rotator.
wavelength'? We will use the same model, this time focusing on the gap

The purpose of this paper is to investigate what happenuctuationsée, in the regimerg= 7. The Andreev kicked
to mesoscopic fluctuations if the Ehrenfest time becomesotator provides a stroboscopic descriptiperiod 7o) of the
comparable to, or larger than, the dwell time, so one enters @ynamics in a normal region of phase spdaeeaM7 )
quasiclassical regime where RMT no longer holds. This quacoupled to a superconductor in a much smaller regarea
siclassical regime has not yet been explored experimentallfN7i ¢, 1<N<M). We refer to this coupling as a “lead.”
The difficulty is thatrg increases so slowly with system size The effective Planck constant#g4=1/M. The mean dwell
that the averaging effects of inelastic scattering take ovefime in the normal regioribefore entering the leads =y
before the effect of a finite Ehrenfest time can be seen. In & M/N and the corresponding Thouless energy Hs
computer simulation inelastic scattering can be excluded=N/2M. We have sety and% equal to 1. The dimension-
from the model by construction, so this seems a promisindess conductance of the lead g=N. The producté
alternative to investigate the crossover from universal quan=4wE+/g=2x/M is the mean spacing of the quasienergies
tum fluctuations to nonuniversal quasiclassical fluctuationse, of the normal region without the coupling to the super-
Contrary to what one would expect from the disorderedconductor. The phase factoe€m (m=1,2,... M) are the
metal?> where quasiclassical fluctuations are much smalleeigenvalues of the Floquet operafey which is the unitary
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matrix that describes the dynamics in the normal region. In [T
the model of the kicked rotator the matrix elementg~aih L
momentum representation are givertbhy 10
Fan=e (7O mUQUY, (22 s | ]
| g | -
Upm=M —1/26(277|/M)nm’ (2b) E | .
Qu= 8y~ (IMK/2m)cos(2m/M) (20) lpem o7/ = = = = =
_ _ 10> 10> 10 10°
The coupling to the superconductor doubles the dimen- M

sion of the Floquet operator to accommodate both electron N
and hole dynamics. The scattering from electron to hole, FIG. 1. Root-mean-square valde, of the gap divided by the

known as Andreev reflection, is described by the matrix ~ RMT prediction deryr, as a function of the system si2é for
dwell time M/N=5 and kicking strengtiK =14. The data points

1 1 result from the numerical simulation of the Andreev kicked rotator.
1- ( 1- E\/E PTP —i E\/EPTP The solid line has slope 2/3, indicating thé, depends only on

pl2— M/N and not onM or N separately in the larghkt regime.
1 T 1 T '
_'E\EP P 1- 1_5\/5 PP less coordinate,, € (0,1) and momentunp, e (0,1) at time
©)) (n+1)7, to the values at timar:
with the projection operator ] P
Pni1=Pnx (K/27)sin 27 XnE 50| (6a)
. 1 ifLsnsL+N-1
P'P)nm= ShmX . 4
(P™P)m=dnm 0 otherwise. @ Pn Prsi

Xn+1=xni?i7. (6b)

Since we work in momentum representation, the lead defined

by Eq.(4) is a strip in phase space of widthparallel to the  The upper and lower sign correspond to electron and hole
coordinate axis. One could alternatively consider a lead paidynamics, respectively. Periodic boundary conditions hold
allel to the momentum axis, if one would work in coordinate both for x and p. The quasipartide reaches the supercon-
representation. We do not expect any significant differenceguctor if |p,,; ; — piead <N/2M, Wherepjeaqis the center of
between the two alternatives. Putting all this together wehe |ead. At the next iteration the electron is converted into a
arrive at the Floquet operator of the Andreev kicked rot&tor, hole and vice versa.
We study a system with kicking strength= 14 (fully

)771/2 (5) chaotic, Lyapunov exponent=1.95) and vary the level

' spacing 6=2n/M at fixed dwell time rp=M/N=5.
Sample-to-sample fluctuations are generated by varying the
position pjeaq Of the lead over some 400 locations. The re-

The matrixF can be diagonalized efficiently using the Lanc-

zos technique in combination with the fast-Fourier-transform,sumng M dependence o, is plotted in Fig. 1 on a double
algorithm:" This makes it possible to calculate the quaskogarithmic scale. We have divided the valde, resulting

energies:,, and eigenfunction.tylfm _for systems qf sizesupto ¢.om the simulation by the RMT predictiod ryr from Eq.
M=5x10". The gap value, is given by the eigenphase of (1). The numerical data follow this prediction fol <102,
J closest to zero. _ _ _ but for largerM the fluctuations are bigger than predicted by
The Floquet operatdi5) provides a stroboscopic descrip- RMT. ForM = 10" the ratiode / 8& ryr grows asM 22 (solid
tion of the electron and hole dynamics, which is believed Wine). Since SepyrocM 23, this means thabs, is indepen-
be equivalent to the true Hamiltonian dynamics on long timeya ¢ of the IesgrspacinéZZTr/M at fixed dwell fimery
sca_lest>ro. The support for this comes .from two sides. . =M/N. This suggests a quasiclassical explanation.
(i) In the absence of superconductivity, and for varying To relate the fluctuations ofy to the classical dynamics,

param;zteré( ar:jd fier, the or;e-dlm]cerr5|orl1_2llél(j<lglffred_ r°§%‘°f we first examine the corresponding wave functign In the
correctly reproduces properties of localiz€adifusive, RMT regime the wave functions are random and show no

andﬂexenﬂ?alhstr’c? quasu:;artmles m(;ﬂsci_rqteret?] mlsd:?. dA features of the classical trajectories. In the quasiclassical re-
(ii) In the presence of superconductivity, the kicked An-., e Te=7p We expect to see some classical features.

dreev rotator, 'and extensions thereof, adequately' describ ase-space portraits of the electron compongfitef the
quantum dots in contact with a superconduétamnd gives a : ; o .
- S . . wave functions are given by the Husimi function

proper description of quasiparticles in dirtg-wave
superconductors: Hne no=(ueln. nol2. 7

Since we will be giving a classical interpretation of our (M) (gl p>| 0
results, we also describe the classical map corresponding fthe state|n, ,n,) is a Gaussian wave packet centerec at
the Andreev kicked rotator. The map relates the dimension=n,/M, p=n,/M. In momentum representation it reads
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FIG. 3. The data pointdleft axis) are the quantum-mechanical
gap valuese of the Andreev kicked rotator as a function of the
position peaq Of the lead for parameter valuéd =131 072, 7
=M/N=5, K=14. The solid ling(right axig is the reciprocal of
the mean dwell timgt), = [;.tP(t)dt/ [ P(t)dt of classical tra-
jectories longer that* =7.

value from the quantum simulations as a function of the lead
position. The solid curve results from a classical calculation
of the mean dwell time of those trajectories witht*, for

the same valu¢* =7 used in Fig. 2. More precisely, it is a

plot of
FIG. 2. Left panels: Husimi functiok7) for the electron com- J P(t)dt
ponent of the ground-state wave functigp of the Andreev kicked 1 _ t (9)
rotator, for two different positions of the lead. The parameters are (t)s * ’
M=131072, rp=M/N=5, K=14. The calculated values are t*tP(t)dt

scaled by a factor 0.019 (0.017) in the tdttom) panel, so that  jth P(t) the classical dwell-time distribution. We see that
they cover the range (0,1), indicated by the gray scale at the togpe sample-to-sample fluctuations in the gap correlate
Right panels: The corresponding classical density plots of all tra-very well with the fluctuations in the sample-to-sample mean
jectories which have a time>7 between Andreev reflections. The dwell time of long trajectories. Again, the correlation is not
calculated values are rescaled by a factor 0.30 (0.32) in the togensitive to the choict* > 7¢. Such a’ correlation is in ac-
(bottom panel. cord with the recent theoretical wotkjn which an effective
) _ RMT description is expected to hold for the part of phase

(n[ny,np)oce™ TN IMgZTIna/M, (8)  space with dwell times greater than the Ehrenfest time. But
we should emphasize that the agreement is only qualitative.
In particular, the relatioreg~1.5(t), —0.07 that we infer
from Fig. 3 is different from the relatiomy=0.3(t), that
would be expected from RMT. While the theory of Ref. 11

lr'ei;:or;qmg to IIIO\INEhIQt]r?) den.sn);.t Thel Iea(:hlst \t/;‘S'ble as & pas been found to be in good agreement with the average gap
Ight Strip parafiel to thex axis. 1L 1S clear that these wave value (s)," it is not clear how it compares to the data of
functions are not random. We expect that the structure th iq. 3

one sees corresponds to long classical trajectories, since t
wave functions are for the lowest quasienergy. To test thi
expectation, we show in the right panétn a linear gray
scale the corresponding classical density plots for all trajec-
tories with dwell timet>t*. A total of 3x 10° initial condi-
tions (Xq,po) for these trajectories are chosen uniformly in
the lead. Each new iteration of the mép) gives a point
(Xn,pn) in phase space, which is kept if the time of return to
the lead is greater thari. We taket* =7, somewhat larger
than the Ehrenfest timez=\"1In(N’’M)=4.4. The plot is

In Fig. 2, left panels, the Husimi function af, is shown
for two lead positions. A logarithmic gray scale density plot
of the Husimi function is shown, with lighidark) areas cor-

In conclusion, we have investigated the transition from
%]uantum—mechanical to quasiclassical gap fluctuations in the
superconductor proximity effect. The transition is accompa-
nied by a loss of universality and a substantial enhancement
of the fluctuations. Our numerical data provide qualitative
support for an effective random-matrix theory in a reduced
part of phase spacé,as is witnessed by the precise correla-
tion which we have found between the value of the gap and
the dwell time of long classical trajectoriésee Fig. 3. It

. o «_would be of interest to investigate to what extent quasiclas-
not particularly sensitive to the value of, as long ad sical fluctuations of the conductance in a ballistic chaotic

> 7e. There is a clear correspondence between the quantudygiem are similar or different from those of the supercon-
mechanical Husimi function and the classical density plc’t'ducting gap studied here.

We conclude that the wave function of the lowest excitation

covers predominantly that part of phase space where the We have benefitted from discussions with J. Tworzydto.

longest dwell times occur. This work was supported by the Dutch Science Foundation
To make this more quantitative we show in Fig. 3 the gapNWO/FOM and the Swiss National Science Foundation.
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