
RAPID COMMUNICATIONS

PHYSICAL REVIEW B 68, 220405~R! ~2003!
Singular Fermi liquid behavior in the underscreened Kondo model
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Using the Schwinger boson spin representation, we reveal a new aspect to the physics of a partially screened
magnetic moment in a metal, as described by the spin-SKondo model. We show that the residual ferromagnetic
interaction between a partially screened spin and the electron sea destabilizes the Landau Fermi liquid, forming
a singular Fermi liquid with a 1/@T ln4(TK /T)# divergence in the low-temperature specific heat coefficient
CV /T. A magnetic fieldB tunes this system back into Landau Fermi liquid with a Fermi temperature propor-
tional to B ln2(TK /B). We discuss a possible link with field-tuned quantum criticality in heavy-electron mate-
rials.
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Heavy-electron materials are the focus of renewed at
tion because of the opportunity1–4 they present to understan
the physics of matter near a quantum critical point. One
the unexplained properties of these materials is that the c
acteristic temperature scale of heavy-electron Fermi liqui
driven to zero at quantum critical point.5–9 When either the
paramagnet or antiferromagnetic heavy-electron phas
warmed above this temperature scale, it enters a ‘‘n
Fermi-liquid’’ phase. These results suggest that insight i
the non-Fermi-liquid behavior of heavy-electron syste
might be obtained by studying the breakup of the antifer
magnetic state.

Traditionally, ordered moment antiferromagnetism is d
scribed using a bosonic representation of the ordered
ments. In this paper we examine the underscreened Ko
impurity model~UKM ! and we demonstrate that the esse
tial physics of the underscreened Kondo effect is captured
a Schwinger boson representation of the local moments
the course of our study we obtained an unexpected new
sight. The UKM describes the screening of a local mom
from spin S to spin S* 5S2 1

2 .12 At low temperatures, this
residual moment ultimately decouples from the surround
Fermi sea. The UKM has been studied using the stro
coupling expansion,13 numerical renormalization group,14

and diagonalized using the Bethe ansatz,15,16 but the possi-
bility of a breakdown of Landau Fermi liquid behavior wa
not addressed. In this paper, we show that a field-polar
underscreened moment forms a Fermi liquid with a
Fermi temperature that is proportional to the magnetic fie
going to zero when the field is removed. At zero field, t
residual coupling of the electron fluid to the degenerate st
of the underscreened moment violates the strict phase s
restrictions required for formation of a Landau Fermi liqu
leading to a strongly divergent specific heat coefficient~Fig.
1!:

CV

T
;

1

T ln4~TK /T!
. ~1!

The UKM is model is written
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H5(
ka

ekcks
† cks1JSW •ca

†sW abcb , ~2!

whereS denotes a spinS. 1
2 , cka

† creates a conduction elec
tron with wave vector k, spin componenta, and ca

†

5Skcka
† creates a conduction electron at the impurity site

We begin by reformulating the UKM as a
SU(N)-invariant Coqblin-Schrieffer model, which enable
us to carry out a large-N expansion of the physics. We writ

H5(
ka

ekcka
† cka1

J

N (
ab

~cb
†bb!~ba

†ca!2MB, ~3!

where the spin indices run overN independent valuesa, b
P(1,N) and the constraintnb52S is imposed to represen
spin S. HereM5gN@b↑

†b↑2S̃# is the local moment magne
tization, where we denote the first spin component bys51
[↑, andS̃52S/N. The prefactorgN5N/2(N21) is chosen
so that at maximum polarization, whenn↑52S, M5S. A
multichannel formulation of the above model has previou
been treated within an integral equation formalism.17

Next, we cast the partition function as a path integral a
factorize the interaction

HI→@f̄bs
†cs1cs

†bsf#2
N

J
f̄f. ~4!

FIG. 1. Schematic phase diagram of the large-N limit of the
underscreened Kondo model.
©2003 The American Physical Society05-1
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We shall show how the physics of the underscreened Ko
model is obtained by examining the Gaussian fluctuation
the field f about the mean-field theory obtained by taki
N→` at fixed S̃. This mean-field theory describes a fre
moment, with free energy

FLM5 (
s51

N

T ln@12e2b~l2ds↑B̄!!] 22S l2
B̃

N
DS. ~5!

where B̃5gNB. The mean-field constraint̂nb&52S be-
comes

^nb&5n@l2B̃#1~N21!n@l#52S, ~6!

where n@x#5@ebx21#21 is the Bose-Einstein distribution
function. There are then two types of mean-field so
tion: ~i! ‘‘paramagnet’’ where^b1&50 and n(l)5S̃ and
~ii ! ‘‘polarized’’ moment where^b1&5A2M condenses to
produce magnetizationM. The second phase develops
temperatures belowT5Tc5B/z, z5 ln@111/S̃# ~Fig. 1!.
The mean-field value ofl in these two phases is given b
l5l05max(Tz,B̃).

To examine the fluctuations around the mean-field the
we integrate out the electrons and bosons, and write the
fective action so obtained in terms of the Fourier coefficie
fn5b21/2*0

bdt f(t)eivnt. To quadratic order, the effectiv
action is given by

S@f̄,f#52(
vn

f̄nJn
21fn . ~7!

The propagatorJn for thef field is determined by the Feyn
man diagrams shown in Fig. 2~a!. When we compute thes
Feynman diagrams, we find thatJn5N21J( ivn1l0),
where

FIG. 2. Feynman diagrams for the large-N limit. ~a! Feynman
diagrams for thef propagator, where solid and wavy lines repres
conduction electron and Schwinger boson propagators, respect
The bubble diagram involves a sum over alls8Þ↑ and the crosses
in the second diagram denote the Schwinger boson conden
^b↑&5A2M . ~b! Effective Kondo interaction is mediated by thef
propagatorJn . ~c! In the polarized phase, thet matrix of the ↑
electrons is determined by thef propagator.
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rJ~z!5FcS 1

2
1

z

2p iT D2 ln
TK

2p iT
1 ipS̃G21

. ~8!

Here TK5De21/rJ is the Kondo temperature, expressed
terms of the bandwidthD and density of statesr. This propa-
gator mediates the interaction between the spin bosons
electrons@Fig. 2~b!# and describes the frequency-depend
Kondo coupling constant. The asymptotic behavior of t
function,

rJ~v,T!;
1

lnS max~v,2pT!

TK
D ,

describes a coupling constant which is small and antife
magnetic~positive! at high energies, while small and ferro
magnetic~negative! at low energies. The crossover from a
tiferromagnetic behavior at high energies to ferromagne
behavior at low energies is a well-known feature of th
model.2,13–16

By carrying out the Gaussian integral over the fluctuatio
of the f field, we are able to compute the correction to t
free energyFLM due to the Kondo effect,

Fi5FLM~T,B!1E dv

p
f ~v!a@v1max~Tz,B̃!#, ~9!

where the phase shifta(v)5Im ln@J21(v1 id)#. In zero
field FLM52TS0 , where

S0@S̃#5N@~11S̃!ln~11S̃!2S̃ ln S̃#2
1

2
ln@2pNS̃~11S̃!#

1O~1/N! ~10!

is the entropy of a free SU(N) spin. In the polarized phase

FLM5~N21!T ln~12e2bB̃!2SB. ~11!

We now use these results to characterize the nature of
excitation spectrum.

At zero field, the second term in Eq.~9! can be expanded
at low temperatures as a power series in the small param
g5rJ51/ln(2pT/TK). We find that the leading order contr
bution to the entropy is given by

ST505S0@S̃#2z22p2S̃~S̃11!g~T!31O~g4!

5S0F S̃2
1

NG1
2p2S̃~S̃11!

ln3S TK

2pTD 1O~g4!. ~12!

From this result, we see that the entropy at low temperatu
is that of a spinS* 5(N/2)(S̃21/N)5S2 1

2 , quenched by
one half unit. Theg3 term is the leading perturbative corre
tion to the entropy of a Kondo problem, but with the ba
antiferromagnetic coupling constantrJ replaced by the run-
ning ~ferromagnetic! coupling constantrJ. We alse see tha
the logarithm in rJ also generates a divergent low
temperature specific heat coefficient~Fig. 3!
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CV

T
5

]S

]T
56p2

S̃~S̃11!

T ln4
TK

2pT

. ~13!

This observation of a singular specific heat coefficient
new, and it indicates that the fluid of excitations in zero fie
has a singular density of states: it cannot be a Lan
Fermi liquid. These singularities are not a consequence o
large-N limit, but are a generic consequence of the singu
energy and temperature dependence of the coupling cons

Let us now examine the effects of a magnetic field. Wh
we differentiate the free energy~9! to obtain the magnetiza
tion, the combination of frequency and magnetic field in t
phase shifta(v1gNB) enables us to replace the field d
rivative with a frequency derivative inside the integral,
that, atT50,

M52
]F

]B
5S2

gN

p
a~B̃!

5S2
1

2p Fp

2
2tan21S ln@B/2TK#

pS̃
D G , ~14!

where we have replacedgN→ 1
2 in the large-N limit. M (B)

evolves fromS at high fields toS2 1
2 at low fields~Fig. 4!,

with a weak ferromagnetic correctionDM;S̃/ ln(TK /B) at
low fields.

FIG. 3. Zero-field specific heat capacity of the underscree

Kondo model for the caseS̃51/2, showing the 1/T ln4(TK /T) diver-
gence at low temperatures. Inset: the singular density of st
N* (v).

FIG. 4. Ground-state magnetizationDM5S2M of the under-

screened Kondo model for the caseS̃50.5. Inset: the field-
dependent linear specific heat capacityg(B).
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Once the local moment becomes polarized, the spec
heat becomes linear at low temperatures, and a Landau F
liquid is formed. In a field at absolute zero, the Bose field
condensed witĥb↑&5A2S so that now

HI→ (
sÞ↑

@f̄bs
†cs1H.c.#1A2S~f̄c↑1H.c.!2

N

J
f̄f,

thereby giving rise to aresonant elastic couplingbetween the
f field and the conduction electrons, so that thet matrix
t↑(v) for the ‘‘up’’ electrons is now@Fig. 2~c!#

t↑~v!5
2S

N
J~v1B̃!. ~15!

Now sinceJ5uJue2 ia(v), we can identifyd↑52a(B) as
the elastic scattering phase shift of the ‘‘up’’ electron at t
Fermi surface. By linearizing aroundv50 at zero tempera-
ture, we obtain

t↑~v2 id!5
ZS̃

v2j
, ~16!

whereZ51/@]vJ21(v)#uv5B̃5B̃/r and

j52ZJ21~B̃2 id!5B̃ ln
TK

B̃
1 ipS̃B̃. ~17!

In other words, the polarized spin generates a resonant s
tering pole of strengthZ5B̃/r, with phase shiftd↑5

2a(B̃) and a widthD5pS̃B̃, which defines the characte
istic energy scale of the field-tuned Fermi liquid. We m
associate a density of statesN* (v1B̃) with the resonance
that is formed, where

N* ~v!5
1

p
a8~v!5

1

pv

pS̃

F lnS TK

v D G2

1~pS̃!2

. ~18!

Notice how, in a finite field, the density of statesN* (B̃) is
nonsingular at zero energy and we can identify

TF* ;N* ~B!215B ln2S TK

B̃
D ~19!

as the Fermi temperature, showing that in a finite field
characteristic temperature of the Fermi liquid is the field
self. At temperaturesT&B̃, the specific heat capacity wil
become linear, CV5g(B̃)T, where g5(p2kB

2/3)N* (B)
~Fig. 4!. As the field is reduced to zero, the temperatu
window for Fermi liquid behavior narrows to zero. At zer
field N* (v) is singular, and a Fermi liquid expansion of th
thermodynamics is no longer possible: the fluid is best
scribed as a singular Fermi liquid.

Certain aspects of these results will change at finiteN.
One of the most important changes concerns the value
the phase shifts. In the large-N limit, the asymptotic low-field
limit of the d↑ phase shift is2p. At finite N, by relating the
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change in magnetization to the phase shift,DM5gNd↑ /p
51/2, we deduce that the asymptotic low-field phase s
for the ‘‘up’’ electrons at finiteN is d↑52p(121/N). Since
the sum of all the phase shifts for elastic spin scattering m
equal zero, this implies thatd↑1(N21)d↓50 or d↓5p/N
(s8Þ↑). We see that modulo thep shift, when B→0,
dsmod(p)5p/N, the same phase shift as found in the fu
screened Kondo model.13

The singular Fermi liquid behavior of the underscreen
Kondo model follows quite generally from the singular e
ergy dependence of the Kondo coupling constant. For SU~2!,
we expect that at a finite, but small energy, the phase s
will have the form ds(e);p/21spg(e) so that ds(e)
;p/21sp/ ln(TK /e) and the derivative of the phase sh
diverges as 1/e, preventing the normal Landau expansion
the phase shift in terms of quasiparticle occupancies. I
field we must replacee→e1sB, so that

ds~e!5
p

2
1s

p

ln~TK /B!
1e

p

B ln2~TK /B!
1O~e2!

~20!

can now be expanded in a power series in energy and qu
particle occupancies. It follows that, quite generally,

x~B!;2g* ~B!;
1

B ln2~TK /B!
. ~21!

This type of singular behavior can also occur in the fer
magnetic Kondo model,18 but here the effective Kondo tem
o

ir

O

22040
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peratureTK→De11/rJ@D is exponentially larger than the
bandwidth, driving the effect to weak coupling.

Our results do not yet give us a precise understanding
the nature of the singular Fermi liquid that forms for tem
peraturesT.B. The large-N treatment suggests the intrigu
ing possibility that the fermionic resonance associated w
the binding of the spin to conduction electron degrees
freedom breaks up at energy scales aboveT;B, as if the
heavy quasiparticle splits up into a ‘‘spinon’’b and a charged
spinless ‘‘holon’’f.

In conclusion, we have shown how the treatment of
underscreened Kondo model using Schwinger bosons
ables us to recover the well-known properties of this mod
in the course of which our results reveal a hitherto unnotic
singular Fermi liquid state at zero field. The model provid
an elementary example of a field-tuned Fermi liquid with
characteristic scale which grows linearly with the appli
magnetic field. Intriguingly, the low-temperature upturn
the specific heat and the appearance ofB as the only scale in
the problem are both features observed in quantum crit
heavy-electron systems,6,10,11leading us to speculate that th
model may provide a useful starting point for future und
standing of these systems.
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