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Singular Fermi liquid behavior in the underscreened Kondo model
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Using the Schwinger boson spin representation, we reveal a new aspect to the physics of a partially screened
magnetic moment in a metal, as described by the Sidiondo model. We show that the residual ferromagnetic
interaction between a partially screened spin and the electron sea destabilizes the Landau Fermi liquid, forming
a singular Fermi liquid with a [T In*T,/T)] divergence in the low-temperature specific heat coefficient
Cy/T. A magnetic fieldB tunes this system back into Landau Fermi liquid with a Fermi temperature propor-
tional to B In?(T/B). We discuss a possible link with field-tuned quantum criticality in heavy-electron mate-
rials.
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Heavy-electron materials are the focus of renewed atten- .
tion because of the opportuntty they present to understand H= kZ 6ChoChot IS PG g, ()
the physics of matter near a quantum critical point. One of “
the unexplained properties of these materials is that the chafzhares denotes a spis>1 Cl creates a conduction elec-
acteristic temperature scale of heavy-electron Fermi liquid i T

fron with wave vectork, spin componente, and i
driven to zero at quantum critical poitit® When either the _s.cl creates a conduc;tiorf)electronpat theai,m urit wgite
paramagnet or antiferromagnetic heavy-electron phase is 7k ke . . punty :

We begin by reformulating the UKM as an

warmed above this temperature scale, it enters a “non-

Fermi-liquid” phase. These results suggest that insight into>(N)-Invariant Cogblin-Schrieffer model, which enables

the non-Fermi-liquid behavior of heavy-electron systemsus to carry out a largék expansion of the physics. We write
might be obtained by studying the breakup of the antiferro-
magnetic state.

Traditionally, ordered moment antiferromagnetism is de-
scribed using a bosonic representation of the ordered mo-
ments. In this paper we examine the underscreened Kondwshere the spin indices run ovét independent values, 3

impurity model(UKM) and we demonstrate that the essen- (1,N) and the constrainh,=2S is imposed to represent
tial physics of the underscreened Kondo effect is captured bgpin S HereM =gN[b¥bT—~S] is the local moment magne-

a Schwinger boson representation of the local moments. Ifization, where we denote the first spin componenwtyl

the course of our study we obtained an unexpected new inéT andS=2S/N. The prefactogy=N/2(N—1) is chosen

sight. The UKM describes the screening of a local moment " 1o+ ot maximum polarization, when=2S, M=S. A

i inS*=s—1 12 i : . .
fmf.“ spin S to splnS_ =S-3.7 At low temperatures, th's_ multichannel formulation of the above model has previously
residual moment ultimately decouples from the surroundlngbeen treated within an integral equation formalim

Ferm[ sea. The .UK3M has peen studied using the strong- Next, we cast the partition function as a path integral and
coupling expansioh® numerical renormalization group, factorize the interaction

and diagonalized using the Bethe ansat? but the possi-
bility of a breakdown of Landau Fermi liquid behavior was N
not addressed. In this paper, we show that a field-polarized H|—>[$b3%+ b, b]— —bo. (4)
underscreened moment forms a Fermi liquid with a the J

Fermi temperature that is proportional to the magnetic field,

J
H=20 aClaCiat [y 25 (Vp0p)(bLt0)~MB, (3

going to zero when the field is removed. At zero field, the b = 0 S
residual coupling of the electron fluid to the degenerate states T - \g?"
of the underscreened moment violates the strict phase space ,@,\?*
restrictions required for formation of a Landau Fermi liquid, Co/T 4 s
. . I L v/ T~ 1/ [T In* (T /T

leading to a strongly divergent specific heat coefficigtig.
1); SROENVA

Cv ! (1) QCP

T TInYT/T)" Tz~ B In’ (T /B)

FIG. 1. Schematic phase diagram of the lakgdimit of the
The UKM is model is written underscreened Kondo model.
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1 z T« . |t
l//(§+m)—ln27ﬂ_r+l778} . (8)
Here Tc=De 7 is the Kondo temperature, expressed in
terms of the bandwidt® and density of states This propa-
gator mediates the interaction between the spin bosons and
electrong[Fig. 2(b)] and describes the frequency-dependent
Kondo coupling constant. The asymptotic behavior of this

pI2)=

(b

function,
© Ktk o bk, pro2M oM gy pTw,T)~

max w,27T)\’
Ty .

~ FIG. 2. Feynman diagrams for the larjelimit. (&) Feynman  describes a coupling constant which is small and antiferro-
dlagram_s for theb propagator, v_vhere solid and wavy lines repres_entmagnetic(positive) at high energies, while small and ferro-
conduction electron and Schwinger boson propagators, reSpeCt'Ve%agnetic(negative) at low energies. The crossover from an-

The bubble diagram involves a sum overall* | and the crosses irarromagnetic behavior at high energies to ferromagnetic
in the second diagram denote the Schwinger boson condens havior at low energies is a well-known feature of this
(by)=v2M. (b) Effective Kondo interaction is mediated by tite model213-16

g;ggt&rlgr?éoig&étfa?rr:ir;(:geb p?;rlzrid apF::cS)f, thematrix of the 1 By carrying out the Gaussian integral over the fluctuations
y g propagaor. of the ¢ field, we are able to compute the correction to the
gee energyF v due to the Kondo effect,

We shall show how the physics of the underscreened Kond

model is obtained by examining the Gaussian fluctuations of dw 5

the field ¢ about the mean-field theory obtained by taking Fi=F.u(T,B)+ f —f(w)a[w+maxTL,B)], (9

N—o at fixedS. This mean-field theory describes a free 4

moment, with free energy where the phase shifi(w)=ImIn[7 Y(w+id)]. In zero
field F y=—-T%, where

N ~
= B
FLu= Tin[1—e PR~ %1B))] -2 A——)S. 5 ~ ~ -~ -~ =1 ~ ~
=2, Th1-e ] NS © SUBI=N[(1+8)n(1+3)~BInS] - S IN[27NE1+5)]
where B=g\B. The mean-field constraintn,)=2S be- +O(1/N) (10)
comes
is the entropy of a free SW) spin. In the polarized phase,
(np)=n[A=B]+(N-1)n[x]=2S, (6)

Fim=(N—-1)TIn(1—e #B)—SB. (12)
where n[x]=[ef*—1]"! is the Bose-Einstein distribution
function. There are then two types of mean-field solu-_"~. .

excitation spectrum.

tion: (i) “paramagnet” where(b;)=0 andn(A)=S and At zero field, the second term in E(P) can be expanded
(ii) “polarized” moment where(b,)= V2M condenses to ¢ jow temperatures as a power series in the small parameter
produce magnetizatioM. The second phase develops atg—_ , 7— 1/In(2T/T). We find that the leading order contri-
temperatures belowl =T.=B/{, {=In[1+1/S] (Fig. 1).  bution to the entropy is given by
The mean-field value ok in these two phases is given by
A=No=max(T¢B). Sr—0=So[ S]—¢—27°S(S+1)g(T)*+0(g*)

To examine the fluctuations around the mean-field theory,

We now use these results to characterize the nature of the

we integrate out the electrons and bosons, and write the ef- _s|3 1] 27°S(5+1) o(a® 5
fective action so obtained in terms of the Fourier coefficients =So| S— N + o Tk +0(gY). (12
én=B"Y2[Ed7 $(7)e'“n". To quadratic order, the effective In (m)

action is given by
From this result, we see that the entropy at low temperatures
- — 1 is that of a spinS* = (N/2)(5—1/N)=S—1, quenched by
Sé.4]= _% Pndn " n- @) one half unit. Theg® term is the leading perturbative correc-
tion to the entropy of a Kondo problem, but with the bare
The propagatoy7, for the ¢ field is determined by the Feyn- antiferromagnetic coupling constapd replaced by the run-
man diagrams shown in Fig(&. When we compute these ning (ferromagnetig coupling constanp.7. We alse see that
Feynman diagrams, we find thaf,=N"17(iw,+\o), the logarithm in pJ also generates a divergent low-
where temperature specific heat coefficidfig. 3
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Once the local moment becomes polarized, the specific
heat becomes linear at low temperatures, and a Landau Fermi
liquid is formed. In a field at absolute zero, the Bose field is
condensed witl{b, ) = y/2S so that now

Cy/T*

_ B N
HI_:;T [ @bl ,+H.cl+2S( i +H.c)— 5 b,

thereby giving rise to asonant elastic couplingetween the
¢ field and the conduction electrons, so that thmatrix
FIG. 3. Zero-field specific heat capacity of the underscreenedi(«) for the “up” electrons is now[Fig. 2(c)]

Kondo model for the casg=1/2, showing the T In*(T /T) diver-
gence at low temperatures. Inset: the singular density of states
N* (o).

02 04 0.6 038 1.0

2S ~
tT(w)=Wj(w+B). (15

Now since J=|Jle”"*(“), we can identifys,= — a(B) as

Cy 4S ) 5(5+1) the elastic scattering phase shift of the “up” electron at the
T ﬁzeﬂ T (13 Fermi surface. By linearizing arounsl=0 at zero tempera-
Tin*— ture, we obtain
27T
This observation of a singular specific heat coefficient is t (w—i5)=ﬁ (16)
new, and it indicates that the fluid of excitations in zero field f w—§&’
has a singular density of states: it cannot be a Landau 1 o~
Fermi liquid. These singularities are not a consequence of th&hereZ=114,7 *(»)]|,-5=B/p and
largeN limit, but are a generic consequence of the singular
energy and temperature dependence of the coupling constant. ¢=—727 YB-i6)=B In¥ +imSB. (17)

Let us now examine the effects of a magnetic field. When B
we differentiate the free enerd®) to obtain the magnetiza-
tion, the combination of frequency and magnetic field in theln other words, the polarized spin generates a resonant scat-
phase shifta(w+gyB) enables us to replace the field de- tering pole of strengthZz=B/p, with phase shift o=

rivative with a frequency derivative inside the integral, SO _ (B) and a widthA = 73B, which defines the character-

that, atT=0,

M=— " =5 NuB
0B wa( )
:S—i Z_ n—l(w) , (14)
2 S

where we have replacegl— 3 in the largeN limit. M(B)
evolves fromS at high fields toS— 3 at low fields(Fig. 4),
with a weak ferromagnetic correctiomM~§/ln(TK/B) at
low fields.

AM(B)
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FIG. 4. Ground-state magnetizatideM =S—M of the under-

screened Kondo model for the cas=0.5. Inset: the field-
dependent linear specific heat capacitiB).

istic energy scale of the field-tuned Fermi liquid. We may

associate a density of statB& (w+B) with the resonance
that is formed, where

1 1 TS
N*(U-)):;a/(w):_ TK >
In(—)
w

(18
mTw ~
+(7S)?

Notice how, in a finite field, the density of statbis (B) is
nonsingular at zero energy and we can identify

T’F‘~N*(B)1=Bln2(¥) (19
B

as the Fermi temperature, showing that in a finite field the
characteristic temperature of the Fermi liquid is the field it-
self. At temperatureé’sﬁ, the specific heat capacity will
become linear,Cy=y(B)T, where y=(mw?k3/3)N*(B)
(Fig. 4). As the field is reduced to zero, the temperature
window for Fermi liquid behavior narrows to zero. At zero
field N* (w) is singular, and a Fermi liquid expansion of the
thermodynamics is no longer possible: the fluid is best de-
scribed as a singular Fermi liquid.

Certain aspects of these results will change at fihite
One of the most important changes concerns the values of
the phase shifts. In the lardeélimit, the asymptotic low-field
limit of the &, phase shift is-. At finite N, by relating the
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change in magnetization to the phase shifVl =gy, /m peratureTy—De"Y>D is exponentially larger than the
=1/2, we deduce that the asymptotic low-field phase shifbandwidth, driving the eﬁept to weak co_upling. _

for the “up” electrons at finiteN is 6, = — 7(1—1/N). Since Our results do not yet give us a precise understanding of
the sum of all the phase shifts for elastic spin scattering mughe nature of the singular Fermi liquid that forms for tem-
equal zero, this implies that, +(N—1)8,=0 or §, = a/N peraturesT>B. The largeN treatment suggests the_ intrigu-
(o’ #1). We see that modulo ther shift, when B—0, ing possibility that the fermionic resonance associated with
8,mod(m) = /N, the same phase shift as found in the fully the binding of the spin to conduction electron degrees of
screened Kondo modé&t. freedom breaks up at energy scales abdveB, as if the

The singular Fermi liquid behavior of the underscreenecr'e.a\lly qu%siﬁ)ar,t,icle splits up into a “spinob’and a charged
Kondo model follows quite generally from the singular en- Spl&ecssncll?s?gn ¢’\'Ne have shown how the treatment of the
ergy dependence of the Kondo coupling constant. FA2§U '

we expect that at a finite, but small energy, the phase Shiftgnderscreened Kondo model using Schwinger bosons en-
will have the form 6, (e)~m/2+ omg(e) So that 8, (e) bles us to recover the well-known properties of this model,

~ 2+ omlin(Te/e) and the derivative of the phase Shift in the course of which our results reveal a hitherto unnoticed

diveraes as K preventing the normal Landau expansion 0fsingular Fermi liquid state at zero field. The model provides
9 ) P 9 S pan an elementary example of a field-tuned Fermi liquid with a
the phase shift in terms of quasiparticle occupancies. In

. Bharacteristic scale which grows linearly with the applied
field we must replace— e+ 0B, so that magnetic field. Intriguingly, the low-temperature upturn in
, the specific heat and the appearanc® af the only scale in

+o +e€ +0(€%) the problem are both features observed in quantum critical
27 In(Tx/B) " BIn“(Ty/B) ( oo  Neavy-electron systemis®tleading us to speculate that this
(20 model may provide a useful starting point for future under-
can now be expanded in a power series in energy and quastanding of these systems.
particle occupancies. It follows that, quite generally,

a aa a

d,(€)=
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