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Strong-coupling expansion for the pairing Hamiltonian for small superconducting metallic grains
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The paper is devoted to the study of the effects due to superconducting pairing in small metallic grains. We
explicitly determine the low-energy spectrum of the problem at strong superconducting coupling and in the
limit of large Thouless conductance. We start with the strong-coupling limit and develop a systematic expan-
sion in powers of the inverse coupling constant for the many-particle spectrum of the system. The strong-
coupling expansion is based on the formal exact solution of the Richardson model and converges for realistic
values of the coupling constant. We use this expansion to study the low-energy excitations of the system, in
particular energy and spin gaps in the many-body spectrum.
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[. INTRODUCTION be regular and relatively simple. Here we use the exact so-
lution to obtain an explicit expansion in powers of\ lfor
Since the mid-1990’s, when Ralph, Black, and Tinkhamthe ground state and low-lying excitation energies.
succeeded in resolving the discrete excitation spectrum of We will distinguish between two types of excitations:
nanoscale superconducting metallic grdirkere has been ones that preserve the number of Cooper péhe number
considerable effort to describe theoretically superconductingf doubly occupied orbitajsand ones that do not. Only the
correlations in such graingsee, e.g., Ref. 2 for a revigw latter excitations are capable of carrying nonzero spin. It
However, very few explicit analytical results relevant for the turns out that forJ=0 to the lowest order in 4/both types
low-energy physics of superconducting grains have been olsf excitations are gapped with the same gaypd. We com-
tained, since, in contrast to bulk materials, the discreteness giute explicitly the two gaps to the next nonzero order i 1/
single-electron levels plays an important role. In this papeand find the gap for pair-breaking excitations to be larger.
we address this problem in the regime of well-developedrhe difference between the two gaps turns out to be of the
superconducting correlations. order of d?/A, whered is the mean single-particle level
The electron-electron interactions in weakly disorderedspacing andA is the BCS energy gap, i.e., the difference
grains with negligible spin-orbit interaction are described byvanishes in the thermodynamical limit. We were not able to

a simple Hamiltoniar, determine the convergence criteria for the strong-coupling
expansion exactly; however, we present evidence that the
Hunv=Hgcs—IS(S+1), (1) expansion converges up to realistic valuesobetween

Ne1~1 and\,~1/7.
+ t ot The Hamiltonian(2) was studied extensively in 1960s in
HBCS:% éiciacia_kdijzzl Ci1CitCirCiL» (2) the context of pair correlations in nuclear mattsee, e.g.,

' ' Ref. 7). A straightforward but important observation was that
where €; are single-electron energy leveld,is the mean singly occupied levels do not participate in pair scattefing.
level spacingp?a andc;, are creation and annihilation op- Hence, the labels of these levels are good quantum numbers
erators for an electron on levglandS andN are the total and their contribution to the total energy is only through the
spin and number of levels, respectively. There are only twdinetic and the spin-exchange terms in Et). Due to this
sample-dependent coupling constantsandJ, which corre-  “blocking effect” the problem of diagonalizing the full
spond to superconducting correlations and spin-exchange ifdamiltonian(1) reduces to finding the spectrum of the BCS
teractions, respectively. Throughout the present paper, for thidamiltonian(2) on the subspace of either empty or doubly
sake of brevity, we consider only the less trivial case ofoccupied(“unblocked”) orbitals. The latter problem turns
ferromagnetic exchangd>0. out to be solvabRby Bethe’sAnsatz The spectrum is ob-

Although Hamiltonian(1) is integrablé® and solvable by tained from the following set of algebraic equations for un-
Bethe'sAnsatz the exact solutichyields a complicated set known parameterk; :
of coupled polynomial equatiorisee Eq.(3) below]. As a

N

consequence, very few explicit results have been derived and 1 M 2 n 1
most studies resorted to numerics based on the exact solu- — — + 2’ = z , i=1,...m
tion. The purpose of the present paper is to remedy this situ- A5 BBy k=1 Ei—2e

ation and to build a simple and intuitive picture of the low-
energy physics of isolated grains in the superconductingvherem is the number of pairs and is the number of un-
phase. blocked orbitalse,. Bethe's Ansatzequations(3) for the

It is well known that physical observables of a supercon-BCS Hamiltonian(2) are commonly referred to as Richard-
ductor are nonanalytic in the coupling constanat A =0. son’s equations. The eigenvalues of the full Hamiltor({an
On the other hand, the opposite limit of largeurns out to  are known to be related to Richardson parameters,via
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m
E=> Ei+> e—JS(S+1), (4)
i=1 B
whereXgeg is a sum over singly occupiedblocked”) or-
bitals andSis the total spin of blocked orbitalge., the total
spin of the system

BCS results for the energy gap, condensation energy, ex-
citation spectrum, etc., are recovered from the exact solutior

(3) in the thermodynamical limit® The proper limit is ob-
tained by taking the number of levelN, to infinity, so that
Nd— 2D =const, m=n/2=N/2, whereD is an ultraviolet
cutoff usually identified with Debye energy. In particular, for
equally spaced levels;, the energy gaj\ and the ground
state energy in the thermodynamical limit are

Eg °=—Dmcoth1IN).  (5)

A= Sy
Since the BCS Hamiltoniaf2) contains only three energy
scalesD, A, andd, there are only two independent dimen-
sionless parameter®d and N. The perturbation theory in
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FIG. 1. Results of exact numerical diagonalization. Energies of
the BCS Hamiltonian(2) for m=4 pairs andn=8 unblocked
single-particle levelg; versus coupling constaint All energies are
measured in units of the mean level spacthd he single-particle
levels €; are computer-generated random numbers. As the strength
of the coupling\ increases, the levels coalesce into narrow well-
separated rayghands. The width of these bands vanishes in the
limit A—o [see Eq.47) and the discussion around.iSlopes of

small N breaks down in the superconducting state as is alg, rays and the number of states in each ray are given by(Bgs.

ready suggested by BCS formulé®. Thus, it is natural to
consider the opposite limit of large and treat the kinetic
term in Hamiltonian(1) as a perturbation.

(15), and (12). The ground state is nondegenerate, while the first
group of excited states contains- 1="7 states. Note also the level
crossings foi~1 (see the inset on the above graph

The paper is organized as follows. In Sec. Il we consider

the limit A —o<0, which is the zeroth order of our expansion.

In this limit one can determine the spectrum straightfor-

wardly by representing the BCS Hamiltonié®) in terms of
Anderson pseudospin operatdtdn particular, one finds that

shown in Fig. 1. In the crossover regime the spectrum dis-
plays numerous level crossings that reflect the breakdown of
perturbation theory il. The fact that the crossings occur for
random single electron levels, i.e., in the absence of any

atJ=0 excitations with nonzero spin to the lowest order inspatial symmetry, is a characteristic feature of quantum

1/\ have the same ga(the spin gapas spinless excitations.

integrability*

Next, we rederive the same results from Richardson’s equa- The lowest order of the strong-coupling expansion is ob-

tions (3) and also show that in the limik— o the roots of

Richardson’s equations are zeros of Laguerre polynomials.

In Sec. Il Bethe'sAnsatzequations(3) are used to ex-

tained by neglecting the kinetic energy term in the BCS
Hamiltonian(2). This limit can in principle be realized in a
grain of an ideal regular shape.In this case the single-

pand the ground state and low-lying excitation energies irelectron levels are highly degenerate and if the energy dis-

series in IX. We write down several lowest orders explicitly
and give recurrence relations that relate ktie-order term to

tance between degenerate many-body levels is much larger
than Ad, only the partially filled Fermi level is relevant.

preceding terms. These relations can be used to readily efhen, the kinetic term in Eq2) is simply a constant propor-

pand up to any reasonably high order i\ 1/Finally, we
compute the spin gap to the next nontrivial order in &hd
demonstrate that at=0 the first excited state always have
zero spin.

tional to the total number of particles and can be set to zero.
An efficient way to obtain the spectrum of Hamiltonian

(1) in the strong-coupling limit is by representing the inter-

action term in the BCS Hamiltonian in terms of Anderson

pseudospin-1/2 operatots:

Il. THE STRONG-COUPLING LIMIT t t
z ClTC|T+C|lC|l_l
In this section we analyze the lowest order of the strong- Ki - 2
coupling expansion. As the strength of the coupling constant

\ increases, the spectrum of the BCS Hamiltor@runder- ~ The pseudospin is defined only on unblocked levels, where it
goes dramatic changes as compared to the spectrum of nopas all properties of spin 1/2, i.e., proper commutation rela-
interacting HamiltoniatHg g\ =0). First, there is a region tions and definite values &5:3/4_

of smallX where the superconducting coupling causes only The interaction term in the BCS Hamiltonid®) takes a
small perturbatl_ons in the electron_lc system. T_hls regionsimple form in terms oK :

shrinks to zero in the thermodynamical limit and is roughly
determined by the conditiom(\)<d,'? where A(\) is
given by Eq.(5). For larger\ the perturbation theory in R _
breaks dowl? and strong superconducting correlations de-whereK =3K; is the total pseudospin of the unblocked lev-
velop in the system. A representative energy level diagram isls. Thez projection of the total pseudospin according to Eq.

K =(K)T=clic;;. (6

Hpcs= —ANdK K™= —\d[K(K+1)—(K?*2+K?], (7)
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(6) is K=m—n/2, wherem andn are the total number of K=0 and the total spin has the maximum possible v&8ue
pairs and unblocke¢either doubly occupied or emptyev- =M in the ground state, i.eJ=\d is the threshold of
els, respectively. It is simple to check that replacing a doublyStoner instability in the strong-coupling limit.

the differencem—n/2. As a result, solution (3). Moreover, individual parametefs can also be
determined and, since eigenstates of the BCS Hamiltonian
n N (2) are given in terms oE; (see Ref. § this can be used to
Ki=m-5=M-7, (8) lcul i lation functions in th ~coupli
2 2 calculate various correlation functions in the strong-coupling
limit.
whereM is the maximum possible number of pairs adds The value of the total pseudospinturns out to be related

the total number of levels, respectively. Hence, the last twqg the numberr, of those roots of equation8) that diverge

of blocked levels. This constant can be set to zero by aRan neglect single-electron levets in Egs. (3) for these
overall shift of all energies. Therefore, the full Hamiltonian (ot

(1) in the strong-coupling limit is

Him=—AdK(K+1) ~IS(S+1). © O T T IUOUP S CT:

Since there aran pseudospin 1/2's the total pseudospn
takes values betwedi? andn/2, wheren’=n+2r—2m and the summation excludgs=i.
For the remainingn—r roots we have
Ez K=m- 5

2 2 1 _
z =0, i=r+1,...m—r. (14
while the total spinS ranges from 0(1/2) to M —m(M—m k=1 BEi—2¢

+1/2) for even(odd) total number of electrons. For the sake Multiplying each equation irf13) by E; and adding all Egs.

of blreV|ty,bIet ufs flrom now%r]\ conﬁder onlyftrrl]e casT of.even(%13), we obtain the eigenenergies of the BCS Hamiltonian
total number of electrons. Then, the sum of the total spin and> "¢ "\ nblocked levels aneh pairs:

pseudospin is constrained by

n

: (10

E=—-Ndr(n—2m+r+1). (15

N
K+s<-. (1D comparing this to Eqs(7) and (8), we find the relationship

betweenr andK:
The degree of degenera®(K,S,n) of each level i&®

r=K+m-—n/2. (16)
nl(2K+1)
D(K,S)= N2+ K+ D)1 (n/2—K)] Since the total pseudospiK, is constrained by relatiof10),
the numberyr, of diverging Richardson parameteis;, is
(N—n)!1(25+1) also constrained:

“TIN—m/2+ St A]I[(N—m)2—S]T -
(12)
The ground state of Hamiltonia@®) has the maximum pos- Osr=m if n=2m. (17)

sible pseudospinK=N/2, and minimal possible spifS  Below in this section we show that E¢4.3) have a unique

fO, provided thatd>J (recall tha.t we consider only posi- ggjytion. As a result, the degeneracy of energy leves is

tive values of the exchange couplidy. ~ equal to the number of solutions of Eq&4) for the remain-
There are two ways to create an elementary excitationng E; . This number can be computéd®directly from Eg.

First, one can decrease the total pseudoBpivhile keeping (14) and indeed coincides with E(L2).

the total number of pairé unchanged. The second type of Finally, Egs.(13) can be solved to determine parameters

excitations corresponds to breaking pairs and blocking Somg. {5 the lowest order in 4/ (see also Refs. 19 and 2070
of the single-electron levels. These excitations can contributg,is end it is convenient to introduce a polynomigk) of

to the total spin of the grais They also affect the pseu- .qerr with zeros ax=x =E, /(\d)

dospin since its maximal valué,,,,=n/2 is determined by

the number of unblocked levels. The lowest-lying excitations r

correspond t&K=N/2—1, which can be achieved both with f(x)= H (X—=X;). (18
and without breaking a single Cooper pair. Therefore, we =1

find from Eq. (9) that the pair-conserving excitations are ygjng

separated by a gafy,,;=NAd while pair-breaking excita-

2m—n<r=m if n<2m

tions can lower their energy by having nonzero éﬁilSin_ce (%) 2
the maximum value ofS for two unpaired electrons iS lim ——=2, ——,
=1, we getAg,,=NAd—2J. In the opposite casé>\d, x—x F1(X) IF XX
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one can rewrite Eqg13) as puted exactly by, e.g., solving Eg®) with the result

F(x;)=0 where F(x)=xf’(x)—xf”(x)+n’f’(x)(.lg) Eér=—d(7\+m)- (22

SinceF(x) andf(x) are two polynomials of the same degree
r with the same rootg; , they are proportional to each other.
The coefficient of proportionality is the ratio of coefficients
at x" and, according to Eq(19), is equal tor. Therefore,
F(x)=rf(x), or equivalently

In this case the expansion of the ground-state en&gyin
1/\ converges fon>1. In general, we believe that strong-
coupling expansion yields convergent rather than asymptotic
series with the radius of convergence betwaep~1 and
)\02% 1/’7T

X" —(x+n")f' +rf=0. (20) Later in this section we develop an efficient algorithm for

) ) _ o calculating the low-energy spectrum to any order in.1/

The only polynomial solution to this equation is the Laguerre\yhijle the pseudospin representation detailed in the preced-
polynomial Lr’l’”' . Thus, to the ordek the nonvanishing ing section provides a simple and intuitive description of the
roots of Richardson’s equation(8) in the strong-coupling strong-coupling limit, the usual perturbation theory becomes
limit are determined by unmanageable beyond the first two orders in.1An ap-
proach based on Bethefsatzequations, on the other hand,
turns out to be well suited for the purposes of systematic
expansion.

E;

—-1-n'| =1
L Ad

r

)=O, n'=n+2r—2m, (21

wherer is the number of nonvanishing roots to the order
This number and the total pseudospin are related by Eg). A. The ground state
The ground state has=m, the first degenerate group of
excited states corresponds tesm—1, etc. The constraint

r=2m-n in relation(17) follows from the requirement that
the roots of Eq(21) be nonvanishing® Moreover, it can be

showrt® using condition§17) that all Richardson parameters

E; are complex for even values of while for oddr there is  ioned above we take the number of electrons to be even and

a single real(negative root. The fact that th_e roots of Ed. .gnsider only the case whevd>J. As we have seen in the

(13) are generally complex was also noted in Ref. 18 on th, eceding section, this inequality ensures that in the ground

basis of the numerical solution of Richardson’s equations. giae gl levels are unblocked and all electrons are paired, i.e.,
Richardson’s equation@) should be solved at

Here we expand the ground-state energy in. Richard-
son’s equationg3) lead to recurrence relations for the coef-
ficients of the expansion. From these relations the ground-
state energy can be computed to any reasonably high order in
1/\, e.g., we write down the energy up ton1/ As men-

Ill. THE STRONG-COUPLING EXPANSION

Now we turn to the expansion in powers oflaround m=M, n=N.
the strong-coupling limit. The evolution of energy levels
with N can be viewed as a motion of one-dimensional par-
ticles whose positions are the energies of the BCS Hamil-
tonian (2) (see, e.g., Refs. 21 and)1& hen, single-electron N
levels € determine the initial conditions at=0. As the B o B 1
coupling N increases beyond the crossover between the Sp:gl (20", Upzzl E (23
weakly perturbed Fermi gas and the regime of strong super- :
conducting correlations, the particles gradually lose the{/ . . S .
memory of their initial positions and eventually the spectrum ‘?‘”ablesap can be expanded into series in the inverse cou-
becomes independent ef. In this limit, the excited levels PliNg constant:
coalesce into highly degenerate rays with a universal slope
[see Fig. 1 and Eq.15)]. In the strong-coupling expansion *
the system of one-dimensional particles evolves from larger op= 2 a‘,§7\7k7’)- (24)
to smallern. One expects this evolution to be nonsingular k=0

until we come close to the level crossingee the beginning ) . , . .
of the preceding sectioni.e. the crossover region, where Next, we rewrite Richardson's equatio(® in a form more

both expansions i and in 1A break down. suitable for our purpose. We divide the equationEpby EP
A guantitative estimate of the convergence of the ax- ~ With p=—1 and add alM equations for eacp. Expanding

pansion can be obtained by considering various limitingl/(1—2€x/E;) in 2€(/E; and using an identity

cases. In the thermodynamical limit the ground-state energy

is given by BCS expressio(b). This limit is equivalent to 2

keeping only the terms of ordét in the 1A expansion. We E

observe from BCS expressio(f) that the expansion in 1/ =) Bi—E;

converges fol>1/r. In the opposite case of one pair and

two levels, 21 =N=2, the ground-state energy can be com-we obtain

We begin by introducing a convenient set of variables:

1 1 P
— — — | = PO - Opn_— Oy,
Eip EJp) p p+1 kgl p—k+1Yk

214509-4
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<

©

$1S,| M(N—M)(N—2M)
(M,N,s =2 =—M(N=M+1)\d— >, s +(s——) .
Eq p)= 2 = N IN3(N=1)(N—2)(rd)?
=—M(N-M+1)\d (28)
0 j+1
—d> ( > skaf'(k“) A (25) From Eq.(28) one can make several observations.
i= = (1) For N=M the first two terms give the exact energy.
This is seen by noting thal=M means that all levels are
o P * doubly occupied, i.e., there is only one state. Averaging
)\dp kz Tpk+10k=(N— p)0'p+1+2 S{0j+pt1s Hamiltonian(1) over this state gives the exact energy of the

system, which turns out to be equal to the first two terms in

Eq. (28). Therefore, the remaining terms in the\ deries for
p=0. (26)  the ground-state energy are proportionaNte M.

(2) WhenN=2M, all terms with even nonzero powers of
Now plugging op= S 0p K\ "K=P into the last equation 1/ vanish. This can be demonstrated, e.g., by writing the

and setting the coefficient at P Lo zero, we obtain kinetic term in the BCS Hamiltonia() in terms of pseu-

dospin operator¢t)
h

p h
EJFKE Z p— k+1ak+2 skap+k+1 (N—p)aBH- N s,
27) H(A=0)= E 26Ki+ —H0+ 5 (29)

Note that fromao=M it follows thatad=M anda&=0 for

k=1. The values ofak serve as boundary conditions for and noting thalN=2M correspond to the zerp projection
recurrence relation$27). Note also that according to Eqg. of the total pseudospin. In this case, by Wigner-Eckart's
(27) the coefficientsa} do not depend on as expected from theorent? K{ has nonzero matrix elements only for transi-
their definition (24). Coeﬁicientsag determineo, for the tions K—K=1, while matrix elements for transitionk
ground state to the lowest nonvanishing order in &hd —K are equal to zero. The terms with even nonzero powers
therefore can be expressed in terms of zeros of the Laguer@d 1/\ vanish because they contain at least one matrix ele-

polynomial (21) with r=M. Using Eq.(21), we obtain ment of Hy from Eq. (29) between states with the sarie
These terms are therefore proportional No-2M. Even
dP terms also vanish wheug;’s are distributed symmetrically
agdpz (—1)P—In L,f,ll’N(x)Ix:o. with respect to zero. Hence, they reflect an asymmetry in the
dx? distribution of ¢; . For example, the ground-state energy for

N=2M and equidistant single-electron levels distributed
According to Eq(25) in order to determine the ground-state symmetrically between: D = = (m—1/2)d is

energy to order M one has to calculate the firgt-p+2
coeff|C|entsa in the expansmn ofr,. To do this, we first

computea for p<j+1, thena for p<j, thena for p 2m+2 2m+1 16m2+22m-+7
ES"=—Dm[ A + -
<j—1, etc In other words, we start from thd element of 0 2m-1 " 3(2m-1)\ 1802m—1)2\3
matrix ap and use recurrence relaﬂo(@?) to move down
the first column of this matrix unthH, then to move down 128’n3+ 380m2+ 344m+ 93
the second column froral to a?, etc. +O(IM) . (30)
1509 7560 2m—1)3\5

While we were not able to exprea$ in terms ofp andk
explicitly, the above procedure allows for an efficient calcu-
lation, e.g., USiINGMATHEMATICA , of the ground-state energy One can check that in the limih— o this expression repro-
to any glven order. For example, the ground-state energy tduces the BCS resu(b) for the ground-state energy up to
order 1k? terms of order N’, while for m=1 we recover Eq(22).
Note also that the cage=N in Eq. (27) does not seem to be

s;M problematic as ap=N the factors of 1/—p) in Egs.(28)
Eg(M,N,s,)=—M(N-M+1)\d+ N and (30) are always compensated by a factor bf{p) in
the numerator of the corresponding term.
Si M(N—M) (3) Richardson’s equation@®) remain invariant if single-
—( 5 N)2— electron levelse, are shifted byés and parameterg; are
N*(N—1)nd shifted by 25. The total energye= 2 _,E; then shifts by
2 2M 6. Note that this shift is entirely contalned in the second
_ ( S,— i) . M(N—M)(N—2M) term of expansiori28). Thus, the remaining combinations of
N N4(N—1)(nd)? s, at each power of A are “shiftless.” For example,
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s —S—ias +285;+N&%—(s2+ 2N s, + N282)/N ﬁ ! =—i—2
2 N 2 1 1 1 & 7]_2€k \d

One can seg¢by, e.g., sketching the LHS of E@37)] that
this equation hadl—1 roots with thekth root lying between

2¢, and 2. ;. To the lowest order in 4/ this equation
reads

01— 2n0,—29%05— (37)
S%
:SZ_ —N .

B. Excited states

Let us now expand energies of low-lying excitations in
1/N. These expansions turn out to be analogous to that for
the ground-state energy. We begin with the excitations that
conserve the number of pairs and then turn to the simpler

(39

case of pair-breaking excitations.

It was demonstrated in Sec. Il that fed>J lowest pair-
conserving excitations correspond to total pseudodfin
=N/2—1 and total spinS=0, whereN is the total number

of single-particle levels. The number of such states accordin

to degeneracy formul@l?) is N—1 and their energy is
—ANdK(K+ 1) according to Eq(9). We also know from Sec.
Il that for these states one of the parametgrssay Ey,;)
remains finite a3 — o, while all others diverge in this limit.

To distinguishEy, from the rest of parameters;, we
denote it by#. Richardson’s equation®) read

M-1

N
1 2 >
_HJFE 215 %, E—p M
(31
M-1 N
1 2
- i=M. (32
AN = Ejg k§=:177 2¢’ (32

Expanding the left-hand sidg&.HS) of Egs. (31) in 2¢,/E;

Equations(34) and(37) are to be solved iteratively order
by order in 1X. The procedure is similar to that for the
ground state, e.g., recurrent relations analogous to(Zgj.
can also be derived. The only difference is that the coeffi-
ients at powers of 4/now depend also o, which has to
e obtained from Eq.38). For example, the excitation ener-
gies (36) to the first two orders in A are

($1=27m09)(M—1)

palr —(M—=1)(N-=M)rd+ N—2 + 70,
(39
Epair_ Egr: NAd+ no(1—2f), (40)
where
f=(M—-1)/(N=-1)~M/N (41

is the filling ratio.
Energies of higher excitations can be computed in the
same way by solving 2,3,4.. coupled equations of the

and»/E; and performing the same manipulations that lead tdype (38). For instance, energies of the next group of excited

Eqs.(25) and(26) for the ground state, we obtain

)

2 (M=1)(N=M)Nd— X (8270,
(33
P
g
_)\—dp_gltfp—kﬂﬂ'k
=(N=p=2)0p1+ 2 (5-27)0)spes, =0
(34)

where nowo,==M7"1/EP. We see that replacements

M—M-1, N-N-2, Sp—>Sp—277p (35

transform Eqs(33) and(34) into Eqgs.(25) and(26) for the
ground state. Thus, energies of the fikst 1 excited states
are

palr 2

Ei+Ew=Eg(M—1N-25,-27°)+7. (36

Let us also rewrite Eq.32) for 7 as

levels to the first two orders in X/are determined by solu-
tions of the system

2
2€k o

S

2€k m—n k=1 M

%

Now let us consider pair-breaking excitations. Fod
>J low-energy excitations of this sort correspond to break-
ing a single pair of electrons thereby decreasing the number
of pairs by 1 and the number of unblocked levels by 2. Let
the single-electron levels occupied by two unpaired electrons
have energies, ande, . Since the lowest energy is achieved
by having the unpaired electrons in a triplet statall that
J>0 corresponds to the ferromagnetic exchante energy
of lowest pair-breaking excitations according to E4). is

Eepin= €at €5~ 23+ Eg(N—2M — 1.5, (2€,)"— (2€;)P).
(42

Note that, unlikezn in Eg. (36), single-electron energies,
ande, do not depend oi. Therefore, to compute the energy
of pair-breaking excitations we need only recursion relations
(27) for the ground state wittN'=N—-2, M'=M -1, and
Sp=Sp— €5~ €p. In particular, to the first two orders inX./
we get from Eq.(28)
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(s1—2€,—2€,)(M—1) 0<J<Ad andJ/(N\d) remains finite as.— o, spin-1 exci-

Espin= —(M—1)(N—M)g+ N_2 tations have lower energy as compared to pair-conserving
excitations. If, howeverJ~d or smaller, keeping to the
+e,t e,— 27, lowest order in I in excitation energy4?2) is not justified.

In this case the two gaps are the same to this order. There-
Espin— Eg=NNd+ (€2 + €)(1-2F)—2J. (43 fore, it is interesting to set=0 and evaluate the gaps to the

It is instructive to compare the above results with the BCShext nonzero order.

theory? For this purpose let us write the energies of the Depending on the filling ratid [see Eq.(41)] we can

pair-conserving excitations for lardé andN up to the order  distinguish two different cases.

1N. (1) f#1/2. Lowest-lying excitations correspond to small-

f(1—f) est or largest possible values p§ and e, + €, depending on
ST (44)  the sign of (+2f). To determine the maximal and minimal

. . ) ) 79, Note that thekth root of Eq.(38) lies between 2, and

whereD=Nd, f is the _fll_llng ratio (41), and 7K IS the kth 2¢€,,1. If Nis large ande,— €, ;—0 asN—, the smallest

root of Eq.(37). In d_erlvmg thg above equation from Egs. gng largest solutions of Eq38) are 7T"~2¢, and 77

gO) and (28) we shifted the single-electron levels so that _, ¢, respectively. We have from relatiot40) and (43)

€=(=N,6)/N=0. In BCS theory(i.e., in the limit N, M

Epair— Egr=2DN + (1 - 2f) + 77E

—o0) pair-conserving excitation energies Yre Agpin— Apai=d[1—2f|>0, (48
2. e— )2+ AZ, (45) where we _have use},— e,_1~e€,— €,~d andd is the mean
) ) ) ) level spacing.
where u is the chemlcal potential andl is the gap. In the (2) f=1/2. To the first two orders in 1/ Agyn—Apar
strong-coupling regime botp and A are of order\. EX-  _( |4 the next order we obtain from Eqe9), (36), and

panding the square root in expressi@®) in small €, up to (42)
eﬁ, we see that ternid5) and relation(44) coincide to this ) ) )
order if we identify Mo~ 2€5— 2€,

Apair_Aspin: 2NNd )
mw=2¢ A=DNJ4f(1—f), u=(2f—1)DN\. _
where we shifted single electron levels so that

The first of the_:se equations_follows from E§7) i_n the limit =(2i’\':16i)/N=0. We show in the Appendix using E¢g8)
gggr%%tlézvoh#ef(;:]?h;er;:;,ng]ng dt\gﬁeﬁzgepggpgeﬂ%g.tm for 7q that2 thezminimal value ofr;é is always smaller than
Ref. 10. Similarly one can check that pair-brgakiné exci,.ta— tha_f_r?ljsz (;"E“]Jr:eob) t'hzhe;ﬁfgrrZ’aAksiﬂP (i(%?itrétions alwavs have a
tions (42) correspond to two Bogoliubov quasiparticles with larger g’ap in the stfong-couplin% limit. Note thatyf)m:O

total ener IO . .
4 the situation is opposite as it always costs less energy to
J(ea— )2+ A2+ (eg— )2+ A2, (46) ~move one of the two electrons on the highest occupied
_ o _ ~ single-electron levels to the next available level. Since ac-
Note that in the BCS limit the difference between pair-cording to BCS expressiofs) the energy gap in the strong-
breaking and pair-conserving excitations disappears and e¥oupling limit is 2A~2DA=N\d, we see from Eq(49)
pression(45) simply corresponds to two quasiparticles in athat at half—fillingA pa— A g d?/A, i.e., the difference be-

(49)

singlet state, each having the enerdle, — u)2+AZ. tween the two gaps vanishes in the thermodynamical limit.
We have seen in Sec. ($ee also Fig. Jithat in the strong-
coupling limit many-particle energy levels of the BCS IV. CONCLUSION

Hamiltonian (2) coalesce into narrow well-separated bands.
Expression(44) can be used to estimate the ratio of the width ~We determined the spectrum of the universal Hamiltonian
of the first band,W;, to the single-particle bandwidt® (1) in the strong superconducting coupling.#1) limit
=Nd: [Egs.(9), (12), and(21)] and developed a systematic expan-
W f(1-1) sion in 1A around this limif Egs.(27), (28), (36), and(42)]
_1%2(1_21’)4_ , (47)  for the ground state and low-lying excitation energies. We
D detailed an algorithm by which these energies can be explic-
whereW, is the width. Note that at half fillingf =1/2, the itly evaluated up to arbitrary high order in\LAnd estimated
width of the first band goes to zero as—. In general, it that the expansion converges o\, wherel. lies be-
follows from the Wigner-Eckart theorém[see the discus- tween\g~1 and\.,~1/7. Technically, this expansion is
sion in item(2) under the ground-state formu{a8)] that at  based on the existence of the exact solitiofithe BCS
half-filling widths of higher bands also vanish s~ . Hamiltonian(2). We found that in the strong-coupling limit
According to the BCS equations for the excitation ener-Richardson parameters are zeros of appropriate Laguerre
gies (44) and (46) the gapsA gpin=[ Espin— Egrlmin @nd Ap;  polynomials(21) and analyzed their behavior at large enough
=[Epair— Egrlmin for the two types of excitations coincide in but finite \.
the thermodynamical limit. We have also seen in Sefséke We found that it is important to distinguish between two
the discussion bellow degeneracy formyl®)] that when types of excitations in the problem: those that conserve the
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total number of paired electrons and those that do not. We g(x)u
determined the energy gaps for both types and found that at |
zero spin-exchange constadt= 0, in contrast to the weak
superconducting coupling limit, the gap for pair-breaking ex-
citations is always largdiEgs. (48) and(49)].
We believe there are two physically motivated questions 1
within the scope of validity(see Ref. B of the universal . . —
Hamiltonian(1) that still need further clarification. The first -C 2a +c
problem is to develop a quantitative description of the cross- |
over between a perturbed Fermi gas and the region of strong
superconducting correlatiorisee Ref. 13 and the discussion
in the beginning of Secs. Il and )IIThe second problem is |
to study analytically the interplay between superconducting FIG. 2. A schematic plot of the functiog(x)=Z3}_,[1/(x

correlations and spin exchangeee, e.g., Ref. 23 —2¢,)] on the interval from- ¢ to ¢, wherec= y2(a?+b?), aand
b are the two smallest in absolute value single-electron lewels
APPENDIX and|a|<|b|. Note that since (b|>c there is only one pole on this

interval. In the vicinity of 22 we haveg(x)~1/(x—2a) and there-

We show here using Eq38) for 7, that the minimal fore g(x) is positive on the immediate right af=2a and negative

value of 73 is always smaller than that of 21+ €2), i.e., on the left.
x53<2(a’+b?), (A1)
wherex, is the smallest in the absolute value solutiofid. First, note thatg(x) has a single pole at=a on this

(39)], a andb are the two smallest in absolute value single-interval from —c to ¢, andg(a+)>0, while g(a—)<0.

electron levels; , and|a|<|b|. Indeed, consider a function (S€e Fig. 2. Hence, there is a zero betweerand —c if
N eitherg(c)<0 org(—c)>0. To show that this is the case it

is sufficient to demonstrate thg{c) —g(—c)<0. We have
9<X>=§1x_zek- g{c)—g(-¢)

(A2)

To prove relation(Al) we need to show thaf(x) has a zero N
on the interval (c,c), where g(C)—g(—C):_zl
=

c=+2(a’+b?).

For N=2 there is only one zeroso=e;+€,, and relation which is indeed negative sina@g<4e? for all € excepte;

2c 2c

02—4ei2 €#a,b C2—46i2

(A1) clearly holds. ConsideN>2. =a,b.
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