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Condensation energy in strongly coupled superconductors
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We consider the condensation energyEc of strongly coupled magnetically mediated superconductors within
the context of the spin-fermion model. We argue that the actual physics behind the condensation energy is
much richer than in BCS theory, and that it is vital to take both the fermionic and bosonic contributions to the
condensation energy into account. We argue that at strong couplingl@1, the gain in the condensation energy
is a result of the feedback on spin excitations, while the fermionic contribution toEc is positive due to an
‘‘undressing’’ feedback on the fermions. In addition we argue that the same feedback effect accounts for a gain
in the kinetic energy at strong coupling. We also found that the BCS relationEc}D2, whereD is the pairing
gap, only holds forl<1. At largerl, D keeps increasing and eventually saturates, whileEc passes through a
maximum atl;2 and then exhibits adecreasein the strong-coupling regime.
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I. INTRODUCTION

Understanding the origin of the condensation energy is
important step towards identifying the mechanism of hig
temperature superconductivity in the cuprates. In a BCS
perconductor, the condensation energyEc—the energy gain
in a superconductor compared to the normal state at the s
T—smoothly increases belowTc and atT50 reachesEc

BCS

52VNfD
2/2, whereV is the volume,D is the superconduct

ing gap, andNf5mpF /(2p2\3) is the fermionic density of
states.1 The decrease in the total energy upon pairing res
from a fine competition between an increased kinetic ene
and a decreased potential energy, both of which are m
larger thanEc . The BCS condensation energy can be exp
mentally extracted from the jump of the specific heat atTc as
within the BCS theoryCs2Cn'6.08Ec /Tc .

Since the fermionic density of states is only weakly d
pendent on doping, the application of the BCS formula
the condensation energy to cuprate superconductors w
imply that Ec and D2 scale in the same way. However, th
measured gap increases monotonically with decrea
doping,2 while the jump of the specific heat has a nonmon
tonic doping dependence. In the overdoped regime it initia
increases with reduced doping, but below optimal dop
further underdoping leads to adecreasein the specific heat
jump.3 This discrepancy between the trends inCs2Cn and in
D as functions of doping clearly makes the applicability
the BCS formula to the cuprates questionable.

A large number of researchers believe that the cupr
are strongly-coupled systems. It therefore comes as no
prise that effort has already been made to explain the
crepancy between the doping dependence ofD andCs2Cn
as a result of non-BCS physics. Scalapino and White4 con-
jectured that at strong coupling, the dominant contribution
the condensation energy comes from a feedback effect on
magnetic excitations of the system. On the other hand, Hi6

and later Normanet al.5 argued that the condensation ener
likely has an electronic origin, and is driven by a gain in t
kinetic energy which at strong coupling is negative~in con-
trast to BCS theory! because of a strong ‘‘undressing’’ o
0163-1829/2003/68~21!/214508~20!/$20.00 68 2145
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fermions which bear a greater resemblance to free parti
in the superconducting state than they do in the normal st
A somewhat different idea, related to the lowering of t
Coulomb energy in the superconducting state has been
posed by Leggett.7 @An alternative point of view, which we
do not share, is that the large gap observed in, e.g., an
resolved photoemission spectroscopy~ARPES! and tunnel-
ing experiments, is entirely distinct from the pairing gap.8#

In this paper we argue that these apparently dispa
viewpoints regarding such non-BCS physics are in fact c
sistent with each other, and describe the same stro
coupling physics. We argue that at strong coupling, the re
tion betweenEc and D is qualitatively different from BCS
theory and is consistent with the experimental trends in
underdoped cuprates. We show furthermore that the stro
coupling effects are in large part the result of mutual fee
back between the fermions and bosons. We make the
that the contributions to the condensation energy from th
two channels may not be considered independently fr
each other, and that only the sum of the two contributio
has physical meaning.

Our point of departure is the general equation for the f
energy of an interacting electron system, derived by L
tinger and Ward9 for the normal state and extended to a s
perconductor by Eliashberg.10 We first briefly review
strongly coupled phonon superconductors and discuss
BCS, Bardeen-Stephen,12 and Wada13 expressions for the
condensation energy~for a review, see Ref. 14!. The BCS
expression neglects both bosonic and fermionic self-ener
~apart from a trivial renormalization of the dispersion!. The
Bardeen-Stephen and Wada expressions include the fe
onic self-energy and its change between the normal and
perconducting states, but neglect the feedback from su
conductivity on phonons. The two expressions are gener
considered to be identical, however, we argue that this
only true as long as the feedback from fermions on
phonons is neglected. We review the arguments of Bard
and Stephen for the validity of this approximation for ph
non superconductors.

We next modify the Eliashberg equation forEc to the case
of magnetically mediated superconductors. We argue tha
©2003 The American Physical Society08-1
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qualitative distinction to the phonon case, the feedback ef
from the superconductivity onto the bosons may not be
glected if the pairing is magnetic. We derive the releva
equations and explicitly computeEc assuming that the pair
ing is due to spin-fluctuation exchange and is described
the spin-fermion model. We show that when the feedback
bosons is non-negligible, the calculations require care
both electronic and spin parts of the condensation energy
ultraviolet divergent. We explicitly show that these dive
gences are canceled out between the two terms, and the
Ec ~which turns out to be the only physically meaningf
quantity! is free from divergences. We furthermore demo
strate that one can avoid the divergences by performing
computations in real frequencies. We apply the results to
cuprates and show that our theoreticalEc agrees with the
data both in magnitude and in the doping dependence.
view this agreement as support for the spin-fluctuation s
nario for the cuprates.

A short summary of the results for the spin-fluctuati
condensation energyEc has been published in Ref. 11. In th
current paper, we provide an in-depth account of how o
actually calculatesEc in both the Matsubara and retarde
formalisms. Such calculations are nontrivial as the electro
and spin components of the condensation energy contain
traviolet divergences which must be canceled out in the
expression forEc . We also compare the condensation ene
for spin-fluctuation and phonon-induced superconductors

II. CONDENSATION ENERGY

The condensation energyEc is the difference between th
free energies in the normal and superconducting states:

Ec5Fs2Fn . ~1!

In the Greens function technique one evaluates the grand
energyV. The differenceFs2Fn coincides withVs2Vn
provided that the chemical potentialm does not change be
tween the two states. In the Eliashberg theory that we will
using, this is the case as the Fermi energy is assumed t
much larger thanD, and the corrections tom due to pairing,
which scale as powers ofD/EF , are neglected.12

There are two ways to computeEc using Green’s func-
tions. The first approach is to use the general formula for
ground-state energy of the interacting fermionic system
terms of the integral over the running coupling constant15

V5V02 iT(
k
E

0

l dl8

l8
G~k,l8!S~k,l8!, ~2!

whereV0 is the Free energy for free fermions,S is the full
self-energy, andG5$ i @v1S(k,l8)#2ek%

21 is the full
Green’s function. Both are functions of a four vector of m
mentum and Matsubara frequencyk5(k,vn) and the run-
ning coupling constantl8. Note that here and below w
defineS with an extra factor ofi.

Equation~2! is applicable to both normal and superco
ducting states@for the latter,S(k,l8) has a pole#, however, is
not convenient for our purposes as numerical calculati
then require solving the Eliashberg equations for a large
21450
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of coupling values. Still, we tried this formalism, and wi
discuss the results in the Appendix A. The approach wh
we will be using in the bulk of the paper was suggested
Luttinger and Ward9 who demonstrated that it is possible
reexpressV in the normal state via a series of closed link
skeleton diagrams with fully dressed fermionic and boso
propagators. Their approach was extended to the super
ducting state by Eliashberg.10 We refer the reader to Refs.
and 10 for the details of the derivation, and here just pres
the result. In the superconducting state,V has the form

V522T(
k

H 1

2
ln@ek

21S̃2~k!1F2~k!#2 iS~k!G~k!

1 iF~k!F~k!J 1
1

2
T(

q
$ ln@D21~q!#1P~q!D~q!%

1T2(
k,k8

ak2k8
2 $G~k!D~k2k8!G~k8!

1F~k!D~k2k8!F~k8!%1••• . ~3!

The last term in the above equation is the sum of the first
closed linked skeleton diagrams, the dots stand for high
order diagrams. The functionsG(k) andF(k) are the normal
and anomalous Greens functions given by

G~k!52
ek1 i S̃~k!

ek
21S̃~k!21F2~k!

,

F~k!5 i
F~k!

ek
21S̃~k!21F2~k!

, ~4!

whereF(k) is the pairing vertex andS̃(k)5vn1S(k). The
conventionally defined pairing gapD(k) is the ratio of the
anomalous vertex and the self-energy:D(k)
5F(k)vm /S̃(k). Finally, ak is the electron-boson couplin
and D(q) is the dressed boson propagator given
D21(q)5D0

21(q)2P(q), where P(q) is the polarization
bubble andD0(q) is the bare propagator. A careful read
may note that we defineD(q) as a dimensionless quantit
@see Eq.~3!#, while the actual boson propagator has a dime
sion of inverse energy. This does not cause problems, h
ever, asD appears only in a combination witha2, and the
extra overall energy factor can be absorbed ina2.

Equation~3! is quite general. Its use for the calculation
Ec takes into account not just the introduction of the pairi
vertexF but also changes in the fermionic self-energyS and
the polarization bubbleP. Thus it calculates the contribu
tions to Ec from both the fermionsand bosons. We will be
using Eq.~3! as the point of departure for our analysis. W
first briefly review phonon superconductors and then disc
in more detail magnetically mediated superconductivity.

III. PHONON SUPERCONDUCTORS

Phonon superconductivity has been discussed in grea
tail in the past.14,15,17 In order that the distinctions betwee
8-2
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the phonon mediated and magnetically mediated super
ductors may be properly appreciated, we briefly review
this section the results which will be important to us for t
comparison of the two cases. We also present an interp
tion of the physics behind Eliashberg theory, as well as
expression for the Free energy, valid for arbitraryD(v).

The approximations made in the phonon case are ass
ated with the smallness of the sound velocityvs compared to
the Fermi velocityvF . It turns out that higher-order close
linked diagrams form series in powers oflvs /vF , wherel
is the dimensional coupling constant which scales w
ak2k8 ~see below!. The approximation, attributed t
Migdal16 and Eliashberg,17 is to neglectO(lvs /vF) terms
without assuming thatl is by itself small. This would imply
neglecting all terms labeled as dots in Eq.~3!.

The physics behind the Migdal-Eliashberg approximat
is best revealed by analyzing the perturbation series forS(k)
andF(k). These series can be separated into terms that s
as powers ofl and terms that scale as powers oflvs /vF .
The perturbative series in powers oflvs /vF arises from the
actual electron-phonon scattering, and the factorvs /vF re-
sults from the fact that in this process electrons are force
vibrate at phonon frequencies far from their own resonan
This gives rise to vertex corrections~at typical pairing fre-
quencies!, and to an equal renormalization of fermionicv
andek , i.e., the quasiparticle residue is renormalized, but
quasiparticle mass remains a bare one. The vertex corre
diagrams forS(k) and F(k), embedded into the close
linked diagrams, gives rise to higher-order skeleton diagra
for the Free energy, and it is these diagrams which
dropped.

The terms that form series inl are different and they are
not considered to be small. In the normal state, they can
understood as coming from phonon-induced interactions
tween electrons and their own zero-sound collective mod
These terms do not contribute to the vertex renormaliza
~at typical frequencies for the pairing!, and give rise to a
S(k) that only depends on frequency. TheO(l) terms also
contribute to the pairing problem and in the superconduc
state give rise toF(k) that again depends only on frequenc

Neglecting the higher order skeleton diagrams, Eliashb
obtained the closed-form expression forVs given in Eq.~3!.
The closed form, coupled equations for the fermionic se
energy S(k)5S(v) and the pairing vertexF(k)5F(v)
then follow from the condition thatVs given by Eq.~3! is
stationary with respect to variations inS(k) andF(k). The
conditionsdVs /dS(k)5dVs /dF(k)50 yield

S̃~k!5v1 iT(
k8

ak2k8
2 G~k8!D~k2k8!,

F~k!52 iT(
k8

ak2k8
2 F~k8!D~k2k8!. ~5!

The Migdal-Eliashberg approximation has two further im
plications. First, the fermionic dispersion may be appro
mated by ek5vF(k2kF), as typical pairing frequencie
should be much smaller thanEF if lvS /vF is to be small.
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Second, the momentum integration overk8 can be factor-
ized: the integration over momentum transverse to the Fe
surface involves only normal and anomalous fermio
propagators, viaek , while the integration along the Ferm
surface involves only the bosonic propagator in which o
can setuku5uk8u5kF , i.e., deviations from the Fermi surfac
are neglected leading to a bosonic propagator dependent
on frequency. Corrections to this approximation again sc
aslvs /vF . Finally, it is assumed~without justification! that
the Fermi surface is isotropic in the sense thatvF is consid-
ered to be independent ofk. Under these approximations, th
momentum integration in the equations forS(v) andF(v)
can be performed exactly. Approximating the momentu
sum by an integral over energy and an associated densi
statesNf as

(
k

→NfE
2`

`

de, ~6!

inserting Eqs.~4! into ~5!, and performing the integration w
obtain

S̃~v!5v1pTNf(
v8

av2v8
2 D~v2v8!

3
S̃~v8!

AD2~v8!1S̃2~v8!
,

F~v!5pTNf(
v8

av2v8
2 D~v2v8!

F~v8!

AD2~v8!1S̃2~v8!
.

~7!

An essential feature of the above equations is that a
from the assumption of the smallness oflvs /vF , it is as-
sumed that the phonon polarization bubbleP(k), which ac-
counts for the effects of the electrons on phonons, may
neglected. Analogously to the derivation of Eq.~5!, an ex-
pression forP(k) can be formally obtained from the featur
that Vs given by Eq.~3! is also stationary with respect t
variations inP(k). The conditiondVs /dP(k)50 yields

P~k!522TD~0!(
k8

ak2k8
2

@G~k!G~k2k8!

1F~k!F~k2k8!#. ~8!

The fact thatP(k) is irrelevant to the phonon problem is no
immediately apparent and this issue must be considered c
fully. In the normal state,

P~k!}l
vs

vF

vm

vD

pF

uku
~9!

reflecting the decay of a low-energy bosonic mode into
fermionic particle-hole pair. This decay term obviously ca
not be neglected at the lowest frequencies as it accounts
the leading low-frequency dependence ofD(vm). That is,
for an Einstein phonon,D0(vm)52vD

2 /(vD
2 1vm

2 ), where
8-3
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ROBERT HASLINGER AND ANDREY V. CHUBUKOV PHYSICAL REVIEW B68, 214508 ~2003!
vD is the Debye frequency@we recall thatD(vm) is dimen-
sionless, henceD21(vm)5D0

21(vm)2P(k)'12P(k) at
the lowest frequencies#. However, forl5O(1), thefrequen-
cies relevant to the pairing problem are of ordervD , typical
momenta are of orderpF , and henceP(k) at typical fre-
quencies is small to the same extent aslvs /vF and other
similar terms in the Eliashberg theory. In the supercondu
ing state, the low-energy phonons are gapped, and at
quencies smaller thanD,

P~k!}l
vs

vF

vm

D

vm

vD

pF

uku
. ~10!

This difference betweenP(k) in the normal and supercon
ducting states reflects a fundamental change in the bos
dynamics at small frequencies due to the gapping of lo
energy fermionic excitations. Still, however, at typical fr
quencies for the pairing,v;D;vD ,P(k);lvs /vF!1,
and the polarization operator can be neglected compare
the bare phonon propagator. This was shown explicitly
Bardeen and Stephen12 who evaluated the contribution toEc
from the change of the bosonic dynamics between nor
and superconducting states and demonstrated that in the
non problem the bosonic piece inEc is small compared to
the electronic piece and hence can be safely neglected.

We will see below that neglecting the bosonic contrib
tion to Ec is not a justifiable approximation if one is dealin
with magnetic superconductors where the bosonic mode
collective mode of the fermions. This is the main differen
between phonon and magnetic superconductors, and we
examine this issue in the next section.

For completeness, we present several useful forms forVS
andEc for the phonon case. For simplicity, we assume t
the electron-phonon coupling is independent of frequen
and the phonon spectrum consists of a single Einstein bo
with a frequencyvD;vspF , i.e.,

av5a,

D~q!5D~vm!5
2vD

2

vm
2 1vD

2
. ~11!

Integrating over momentum in Eq.~3! as before, we ob-
tain

V52NfH 2pT(
m

vmS̃vm

AS̃vm

2 1Fvm

2
1T2p2ā2

3 (
m,m8

S̃vm
S̃vm8

1Fvm
Fvm8

AS̃vm

2 1Fvm

2 AS̃vm8

2 1Fvm8

2

3
1

~vm2vm8!
21vD

2 J , ~12!

where we introducedā252a2NfvD
2 . The dimensionless

couplingl introduced above is related toā2 as
21450
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ā2

vD
2

. ~13!

Equation~12! may be simplified by making the standa
substitutions S̃vm

5vm1Svm
5vmZvm

and Fvm

5Dvm
S̃vm

/vm5Dvm
Zvm

. Substituting these forms into Eq
~12! we obtain

V52NfH 2pT(
m

vm
2

Avm
2 1Dvm

2
1T2p2ā2

3 (
m,m8

vmvm81Dvm
Dvm8

Avm
2 1Dvm

2 Avm8
21Dvm8

2

3
1

~vm2vm8!
21vD

2 J . ~14!

Thus we see that the free energy for a phonon superc
ductor is dependent only upon the form of the gapDvm

and
is not explicitly upon the self-energySvm

.
A comment is in order here. The Luttinger-Ward result f

the Free energy as a series of closed linked skeleton
grams is, strictly speaking, only valid for the minimum ofV,
i.e., for the self-energy that satisfies the stationary condit
Otherwise, the Luttinger-Ward generating functional~which
is what they actually calculated! does not necessarily coin
cide with the Free energy. In the normal state, this does
cause a problem with Eq.~14! as VN does not explicitly
depend onSN . ~We use the capital subscripts ‘‘S’’ and ‘‘ N’’
to denote superconducting and normal states, respectiv!
In the superconducting state, Eq.~14! does not imply thatVS
is at a minimum, i.e.,dVS /dD50. We did not analyze in
detail the corrections to Eq.~14! which would stem from the
difference between the Luttinger-Ward-Eliashberg functio
and the actual Free energy, but the estimates show that t
corrections would again be small inlvs /vF . If this is the
case, then Eq.~14! can be used for the study of the profile
the free energy, i.e., how it evolves for different solutions
the gap. In particular, we verified that for the BCS case,
expansion of Eq.~14! nearD50 to orderD2 yields the sign
change of the slope at exactly the BCS transition tempera
Tc .

For the remainder of this paper, we will only be consi
ering V evaluated at the equilibrium solution ofDvm

when
the applicability of the Luttinger-Ward formalism is rigor
ously justified. To this end, the Eliashberg equation for
equilibrium solutionDvm

may be obtained by minimizing

Eq. ~14! with respect toD. This yields

Dvm
5pTā2(

m8

1

~vm2vm8!
21vD

2

1

Avm8
2

1Dvm8

2

3H Dvm8
2

vm8

vm

DvmJ . ~15!
8-4
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This solution forD must then be substituted into Eq.~14!
allowing the calculation of the free energy at its minimu
and henceEc5VS2VN whereVN is obtained fromVS by
settingD50. Performing the computations, we obtained E
~17! below.

There is, however, a simpler way to proceed towardsEc .
In this approach, one specifies at the outset that one is
interested in the Free energy at equilibrium. In this case,
fact that Eq.~3! should be stationary with respect to vari
tions inS andF can be invoked even before the momentu
integration is performed.12–14 Substituting Eq.~5! into Eq.
~3! and dropping the phonon piece, we obtain

V52T(
p

$ ln@ek
21S̃vm

2 1Fvm

2 #2 iSvm
G~k!1 iFvm

F~k!%.

~16!

Introducing a density of statesNf , integrating overek and
subtracting the normal-state result from the superconduc
result gives an expression for the condensation energy
derived by Wada:13

Ec52NfpT(
m
S AS̃S,vm

2 1Fvm

2

2uS̃N,vm
u1uvmu

uS̃S,vm
u2AS̃S,vm

2 1Fvm

2

AS̃S,vm

2 1Fvm

2 D .

~17!

Let us clearly state what the Wada expression calculates.
the strong-coupling result for the condensation energy
thermodynamic equilibrium, under the assumption that th
are no appreciable changes in the bosonic mode betwee
normal and superconducting states. In other words, it
counts for the appearance of the pairing vertex, as wel
any changes to the fermionic self-energy, but ignores
feedback effects between bosons and fermions.

An equivalent expression forEc , more advantageous fo
numerical calculations due to a faster convergence at h
frequencies was obtained by Bardeen and Stephen.12 They
noticed that an integral relation betweenSN,v andSS,v

NfpT(
m

SN,v

uS̃S,vm
u

AS̃S,vm

2 1Fvm

2
2SS,v50 ~18!

exists that in turn is the consequence of the fact that

T(
m

E d2kSN,vm
GS,vm

~k!5T(
m

E d2kSS,vm
GN,vm

~k!

~19!

as both quantities can be reexpressed as a cross produc

T2(
m,n

E d2kDvn2vm
GN,vm

~k!GS,vn
~k!. ~20!
21450
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Using Eq.~18!, Bardeen and Stephen obtained the followi
expression forEc,el5Ec :

Ec,el52NfpT(
m

~AS̃S,vm

2 1Fvm

2 2uS̃S,vm
u!

3S 12
uS̃N,vm

u

AS̃S,vm

2 1Fvm

2 D . ~21!

The practical importance of Bardeen-Stephen result is tha
high frequencies, whenS̃S,vm

'S̃N,vm
'vm , the integrand in

Eq. ~21! behaves asFvm

4 /vm
3 , and the frequency summatio

rapidly converges. This makes the Bardeen-Stephen exp
sion more convenient for numerical computations than W
da’s expression.

We emphasize again that the equivalence of the two fo
for Ec is the consequence of the fact that in the phonon ca
the change of the bosonic self-energyP(v) between normal
and superconducting states can be neglected, and the a
racy of this approximation is governed by the same para
eterlvs /vF as the accuracy of the Eliashberg theory. In t
next section we show that this isnot the case for spin medi
ated pairing. We will see that for superconductors with
electronic pairing mechanism, the feedback on the pair
boson plays a crucial role, and Wada’s expression forEc
would give completely erroneous results. Instead, the
expression~3! must be used.

We pause now to connect with the BCS result for t
condensation energy. BCS is a weak coupling theory. It
sumes that the only change between the normal and su
conducting states is the introduction of the pairing vertexF
which is given by the BCS gapD (FBCS5D). The fermi-
onic and bosonic self-energies are both taken to be ne
gible. The BCS condensation energy is therefore calcula
from the Wada equation with the substitutionS̃vm

5vm

1Svm
'vm . Taking the zero-temperature limit we obta

after some simple algebra

Ec
BCS52NfE

0

` 2v21D2

Av21D2
22v52Nf

D2

2
. ~22!

This is the result that we already cited in the Introductio
We also see that the frequency integration in Eq.~22! is
confined tov;D, i.e., the condensation energy comes fro
fermions in a narrow region around the Fermi surface.
though this result looks rather straightforward, the issue
which fermions contribute to the condensation energy in
BCS case is nontrivial, and we discuss it in detail in Appe
dix B.

IV. MAGNETICALLY MEDIATED SUPERCONDUCTORS

We now proceed to the case ofmagneticallymediated
pairing. The bosonic mode that mediates the pairing is n
the low-energy spin susceptibility. The Luttinger-Ward fo
malism, which deals with an arbitrary bosonic mode is s
valid, i.e., the Free energy has the same form as in Eq.~3!.
8-5
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The only immediate modification is that now the second te
of Eq. ~3! has an extra factor of 3 reflecting the fact that
three components of the spin susceptibility contrib
equally to the pairing. The Free energy then has the form

V522T(
p

H 1

2
ln@ek

21S̃2~k!1F2~k!#2 iS~k!G~k!

1 iF~k!F~k!J 1
3

2
T(

q
$ ln@D21~q!#1P~q!D~q!%

1T2(
k,k8

gk2k8
2 $G~k!x~k2k8!G~k8!

1F~k!x~k2k8!F~k8!%1••• . ~23!

The dimensionless bosonic propagatorD(q) is now related
to the magnetic susceptibilityx i j (q)5x(q)d i j as D(q)
5x(q)/x(Q,0), whereQ is the momentum at which th
static susceptibility is peaked. Similarly to phonons,x(q) is
related to the bare susceptibility byx21(q)5x0

21(q)
2P(q). We discuss the exact form ofx(q) below. Finally,
gq is now the coupling between the fermionic propagator a
bosonic~magnetic! mode.

At this point the formalism is quite general, taking in
account all changes to both the fermions and bosons. In o
to proceed further, we will need to assume a specific mo
that will allow us to neglect higher order terms in Eq.~23!.
We choose the spin-fermion model in which fermions a
paired via their own collective spin excitations. Several a
thors have demonstrated that the exchange of collective
fluctuations peaked at or near the antiferromagnetic mom
tum Q5(p,p) yields an attraction in thedx22y2 pairing
channel.20 We will be studyingEc for this kind of pairing.

The spin-fermion model is described by the effective
tion

S52E
0

b

dtE
0

b

dt8(
k,s

cks
† ~t!G0

21~k,t2t8!cks~t8!

1
1

2E0

b

dtE
0

b

dt8(
q

x0
21~q,t2t8!Sq~t!•S2q~t8!

1gqE
0

b

dt(
q

sq~t!•S2q~t!, ~24!

where G0
21(k,t)5]t2vk(k2kF) is the bare fermionic

propagator,ck,a
† is the fermionic creation operator for a

electron with crystal momentumk and spin projectiona, s
5c†sW c is the fermionic spin (s i are the Pauli matrices!, and
g is the coupling constant which measures the strength of
interaction between fermionic spins and the collective s
degrees of freedom described by bosonic variablesSq. For
simplicity, below we assumegq5g to be momentum inde
pendent. The bare spin susceptibilityx0

21(q,t) is assumed to
be peaked atQ and has a standard Ornstein-Zernike for
i.e., its Fourier transform overt is
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x0~q,v!5
x~Q!

11j2~q2Q!22~v/vsj
21!2

, ~25!

wherej is the magnetic correlation length. This bare susc
tibility comes from fermions with energies comparable toEF
and should be considered as an input for the low-ene
theory.

The dimensionless coupling constant for the model of E
~24! @defined such thatS(v,kF)5lv in D52] is

l54v̄/~3vFj21!, ~26!

where v̄59g2x(Q)/(16pj2). The numerical factors are
chosen for further convenience. This overall scalev̄ and the
couplingl are the only two parameters that matter at stro
coupling. Other parameters, e.g.,vs , turn out to be irrelevant
~see below!. Note thatv̄ is in fact independent ofj asx(Q)
by itself scales asj2.

Near a magnetic transition,j is large, i.e.,l>1, and the
spin-fermion model is a strong-coupling theory in whic
feedback effects between fermions and bosons are extre
important. It has been discussed in depth in Ref. 18 a
theoretical model as well as with respect to the cuprates,
provided an explanation of many unusual properties of
cuprates such as non-Fermi-liquid behavior in the norm
state,19,21 dx22y2 pairing,22 and the pseudogap.23 We note,
though, that there is still a great deal of controversy rega
ing the full description of these phenomena. Since, howe
many researchers believe that the cuprates are stro
coupled superconductors, it is instructive, regardless of o
prejudices, to examine the condensation energy for the s
fermion model in detail, so as to illustrate the importance
properly accounting for all feedback effects when deal
with a strongly coupled system. We will show that the sp
fermion model accounts for many aspects of the experim
tally measured condensation energy.

A. The validity of the Eliashberg approximation

We begin by briefly discussing the validity of the Elias
berg approximation for anti-ferromagnetically mediated s
perconductivity and how the assumptions inherent in
Luttinger-Ward condensation energy formalism are justifi
For the purposes of calculating the condensation ene
there are two main issues to be discussed. First, as
phonons, it is possible in the spin-fermion model to separ
the perturbative series such that the terms resulting from
tex corrections and higher order diagrams are ‘‘small’’ a
therefore irrelevant. Second, for a spin susceptibility pea
at or nearQ5(p,p), magnetically mediated pairing yields
dx22y2 symmetry of the pairing gap.20 At weak and moderate
couplings, the momentum dependence of the pairing gap
be reasonably well approximated by a coskx2cosky form
~the first B1g harmonics of theD4h group22!. Since the ef-
fects of pairing are greatest near ‘‘hot spots’’@points on the
Fermi surface connected byQ5(p,p)] one can invoke an
effective momentum independencefor the problem, while
still retaining thedx22y2 pairing symmetry. We briefly enu
8-6
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merate the reasoning leading to the above conclusions h
A more detailed discussion can be found in Ref. 18.

~1! Spin fluctuations are collective modes of fermion
hence there is no difference between the Fermi velocity
the spin velocity, i.e.,vs;vF . Thenlvs /vF;l, i.e., there is
no way to separate a perturbative series based on the d
ence between velocities. From this perspective, there is
Migdal theorem for spin fluctuations, and the perturbat
theory with thebare spin propagator just holds in powers
the couplingl.

~2! The absence of smallvs /vF implies in turn that the
polarization operatorP(Q,vm)5Pvm

is not negligible, as it

is for phonons, but is rather dominant forl@1. The conse-
quence of this is that one must simultaneously solve for b
the fermionic and bosonic self-energies.

~3! In the normal state,Pvm
}vm at low frequencies, i.e.

whenPvm
dominates the frequency dependence of the s

susceptibility, spin fluctuations become diffusive. This tra
mutation of the spin dynamics from propagating withvs
;vF for l!1 to diffusive for l>1 implies that at strong
coupling bosons become soft compared to electrons. S
softness of bosons, is precisely the physics behind
Migdal theorem. Not surprisingly then, the diagrammatic
ries for fermionicS(k) obtained with a diffusive bosonic
propagator again can be separated into two different sub
of terms. One set of terms now scales as powers ofl
instead of powers ofl, and the reduction of the expansio
parameter is a direct consequence of the softness of bo
compared to fermions. As for phonons, the series in ll
gives rise to vertex corrections and to the renormalization
the quasiparticle residue. There are also terms that form
ries in l. As with phonons, these terms come from boso
induced interactions between electrons and their own z
sound modes. That these series hold in powers of the saml
as the perturbation series with a bare boson propagator
be easily understood as at low frequencies, the interac
between fermions and their zero-sound modes is mediate
a static boson, and hence is insensitive to any transmuta
of the bosonic dynamics.

~4! This separation of terms into perturbative series ol
and lnl allows an approximation similar to that made f
phonons to be made here. In the magnetic case one neg
termsO(ln l) compared to terms of orderl. This is not as
good of an approximation as the neglect oflvs /vF terms for
phonons as lnl is also large whenl is large. However, the
numerical prefactors for lnl series turn out to be small@a
vertex correction is only (1/8)lnl], and in practice the ne
glect of logarithmic terms is well justified for all physicall
reasonablel (l;122 at optimal doping!. In addition, from
a purely theoretical standpoint the lnl terms can be made
parametrically small by introducing a large number of ferm
onic flavorsM @a vertex correction is then (1/8M )ln l]. Fur-
thermore, a one-loop RG analysis of the logarithmic ter
shows that they give rise to fractional exponents, but do
change the physics, and, in particular, do not affect the p
ing problem.

~5! As with phonons, the series inl yields aS(k,vm) that
is predominantly dependent on frequency. More specifica
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neark points on the Fermi surface connected by the antif
romagnetic wave vectorQ ~hot spots!, S(k,v) depends on
v, but not onek . This momentum independence is cruc
for the computation of the spin polarization operator: f
S(k,v)5S(v), the density of states is flat, andPvm

turns

out to be independent ofS(v) and is the same in the norma
state as it would be for free fermions:

P~vm!5
vm

vSF
54l2

vm

v̄
. ~27!

Here we have introduced the notationvSF5v̄/(4l2). This
vSF scales asj22 and vanishes at the magnetic transition

~6! Away from a hot spot, this independence fromek ~i.e.,
on momentum perpendicular to the Fermi surface! prevails,
but S(k,vm) still depends on the momentumalong the
Fermi surface. AtT50, the self-energy takes the form

S~k,v!5l~k!
2v

11A12 i
uvu

vSF~k!

, ~28!

where

l~k!5l/@11~ k̃j!2#1/2, vSF~k!5vSF@11~ k̃j!2# ~29!

and k̃ is the component ofk2kHS along the Fermi surface
This k dependencecannot be neglected at the lowest fre
quencies as near the transition ask̃ appears in a combination
with j. However, for v@vSF(k), the k dependence
disappears:S(k,v)'( ivv̄)1/2

„we used the fact tha
2l(k)@vSF(k)#1/25v̄…. Alternatively speaking, at
v.vSF(k), the whole Fermi surface acts as one big h
spot. In this range, the Eliashberg theory becomes applic
for all momenta.

~7! We see that whether or not thek dependence of the
self-energy can be neglected depends on what the relevav

andk̃ are. For the pairing problem, a detailed analysis sho
that typical frequencies are of orderv̄, and typicalk̃ are of
order v̄/vF . Then typicalvSF(k) are of orderv̄, i.e., the
momentum dependence along the Fermi surface introdu
correctionsO(1). These corrections have been checked
Ref. 22 and found to be nonessential from the perspectiv
the basic physics. Note also that the theory assumes thv̄
,EF , otherwise the linearization of the dispersion near
Fermi surface would not work. This in turn implies that th
pairing is confined to fermions in the near vicinity of a h
spot.

~8! In the phonon case, the momentum integration in
expressions for the Free energy, fermionicS and anomalous
vertexF can be factorized and performed exactly. Such m
mentum related corrections are always small to the exten
lvs /vF . In the magnetic case, the corrections resulting fr
an analogous procedure are always smaller than 1,
whether or not they are small parametrically depends on
8-7
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frequency. For frequencies relevant to the pairing, the cor
tions to the factorization are againO(1).

We see from the above considerations that at strong c
pling l>1, the softness of fermions compared to boso
gives rise to an effective Migdal theorem, i.e., the ver
corrections are smaller thanS which in turn predominantly
depends on frequency. Contrary to the phonon case, the
no single parameter governing the validity of the Eliashb
approximation. There are logarithmically divergent corre
tions, but they do not affect the physics of the pairing,
least in the one-loop approximation. There are also ph
cally irrelevant O(1) corrections stemming from the mo
mentum dependence of the fermionic self-energy and
pairing vertex along the Fermi surface. An Eliashberg-ty
theory is valid when both corrections are neglected. As
stated previously, this is quite reasonable from a phys
perspective, and we now proceed under the assumption
the momentum dependence ofS and F can be fully ne-
glected. In the case ofF, this implies that we approximat
the dx22y2 pairing vertex„and, hence the gapD5Fv/@v
1S(v)#… by its value at a hot spot, taking into account t
fact that thed-wave symmetry ofF implies that it has a
different sign between hot spots separated byQ.

B. Thermodynamic potential at equilibrium

We now proceed by calculating the thermodynamic pot
tial at its equilibrium value. As in the phonon case, the co
dition thatV is stationary with respect to variations ofS, F,
andP gives

S~k!53iTg2x~Q!(
k8

G~k8!x~k2k8!,

F~k!523iTg2x~Q!(
k8

F~k8!x~k2k8!,

P~k!522Tg2x~Q!(
k

@G~k!G~k2k8!1F~k!F~k2k8!#.

~30!

Under the assumption of the momentum independence oS,
F, andP the normal and anomalous Greens functions h
the form

Gvm
~k!52

ek1 i S̃vm

ek
21S̃vm

2 1Fvm

2
,

Fvm
~k!5 i

Fvm

ek
21S̃vm

2 1Fvm

2
~31!

and thedx22y2 pairing impliesFv(k1Q)52Fv(k). Fur-
thermore, as we discussed, the momentum integration in
~30! can be factorized and performed exactly. This yields
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Svm
5lpT(

n

S̃vn

AS̃vn

2 1Fvn

2

1

~12Pvm2n
!1/2

,

Fvm
5lpT(

n

Fvn

AS̃vn

2 1Fvn

2

1

~12Pvm2n
!1/2

,

Pvm
~Q!5

4l2

v̄
pT

3(
n F 211

S̃vn
S̃vn1m

1Fvn
Fvn1m

AS̃vn

2 1Fvn

2 AS̃vn1m

2 1Fvn1m

2 G .

~32!

We emphasize again that Eq.~32! contain only two inputs:
the overall energy scalev̄ that is set by the spin-fermion
interaction, and the dimensionless spin-fermion couplingl
}j that diverges as the system approaches the antiferrom
netic instability. We also recall that the energy scalev̄ is the
ultimate upper cutoff for the strong coupling behavi
(Svm

,vm for vm.v̄m), while dimensionlessl can be rep-

resented as the ratio (2l)25v̄/vSF of v̄ and another typical
scalevSF that sets the upper boundary of the Fermi-liqu
behavior in the normal state. We illustrate the form ofSvm

,

Fvm
, andPvm

in Fig. 1 for both the normal and supercon
ducting state.

Substituting Eqs.~30! into ~23! we obtain the equilibrium
thermodynamic potential in a magnetically mediated sup
conductor as a sum of two partsVel comprising the ‘‘elec-
tronic’’ contributions andVspin comprising the ‘‘magnetic’’
part:

V5Vel1Vspin; Ec5VS2VN5Ee,el2Ec,spin ~33!

where

Vel52T(
m

E d2k

~2p!2
$ ln@ek

21S̃vm

2 1Fvm

2 #

2 iSvm
Gvm

~k!1 iFvm
Fvm

~k!%,

Vspin5
3

2
T(

m
E d2k

~2p!2 H lnF x~Q,0!

x~q,vm!G1Pvm

x~q,vm!

x~Q,0! J .

~34!

The electronic termEc,el5Vel
S2Vel

N accounts explicitly for
the appearance of the anomalous pairing vertexFvn

, and for
the feedback changes to the fermionic self-energy. This t
by itself leads to the Wada result for the condensation ene
The termEc,spin5Vspin

sc 2Vspin
n accounts for changes to th

spin propagator via the changes to the spin polarization
eratorPvm

. Together these two expressions account for
feedback effects between fermions and bosons in a stro
8-8
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coupling theory. We point out that the distinction betwe
Vel and Vspin is quite artificial, as the two are intimatel
connected by mutual feedback. It is thesumof the two which
is physically relevant, and the two parts ofEc may not be
considered separately unless, as in the phonon case, o
them is negligible.

As S and F and P depend only onv, the momentum
integration in Eq.~34! can be performed explicitly and yield

Ec,el52NfpT(
m
S AS̃S,vm

2 1Fvm

2

2uS̃N,vm
u1uvmu

uS̃S,vm
u2AS̃S,vm

2 1Fvm

2

AS̃S,vm

2 1Fvm

2
D ,

~35!

Ec,spin52
3T

8pj2 (
m

PS,vm
2PN,vm

1 ln
12PS,vm

12PN,vm

.

~36!

The first termEc,el is the Wada result. The second ter
Ec,spin is new. Note that its expansion inPS2PN begins
with the quadratic term. This is the obvious consequence
the fact that the Free energy is stationary with respect
variation ofP.

C. A cancellation of divergencies

At a first glance, the electronic part of the condensat
energy is qualitatively the same as the phonon result. T
turns out, however, not to be the case asEc,el in fact contains
a divergent piece which is canceled out by the divergenc
Ec,spin. Indeed, consider the high frequency part ofEc,el . At

high frequencies,S̃vm
dominates overFvm

, and the elec-
tronic part of the condensation energy reduces to

Vel52NfpT(
m

uSS,vm
u2uSN,vm

u1•••, ~37!

where the ellipsis stands for other terms that are all finite
one can easily demonstrate. Examine next the equation
S. By making the substitutionDvm

5Fvm
vm /S̃vm

we may

write Svm
in the following form:

Svm
5plT(

n

vn

Avn
21Dn

2

1

~12Pvm2vn
!1/2

. ~38!

Were the bosonic spectrum unchanged between the su
conducting and normal states (PN5PS) then we could ex-
pand Eq.~38! in powers ofDn , and would find that at large
frequencies

SS,vm
2SN,vm

}
Dvm

2

vm
. ~39!
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Since the gapDvm
is expected on physical grounds to vani

at the highest frequencies~and computations indeed confirm
this!, the frequency integral in Eq.~37! converges, i.e., the
electronic part of the condensation energy would be fin
The situation is very different when changes inP are taken
into account. Although at high frequenciesPS,vn

indeed con-

verges toPN,vn
, the two expressions are different at freque

cies comparable to typicalDvm
. Since for arbitrary largevm

in Eq. ~38!, there is a range of runningvn wherePS andPN
differ, SS andSN do not converge at high frequencies:SS,vn

remains larger thanSN,vn
by a constant. We illustrate thi

behavior in Fig. 1~a!.
This nonconvergence ofSN andSS seems at first glance

FIG. 1. Matsubara frequency solutions atl51 for S ~a!, F ~b!,
andP ~c! in the spin fermion model@Eq. ~32!# for both the normal
and superconducting states. Note thatS is a strong function of
frequency and may not be neglected. The apparent nonconverg
of S at high frequencies is spurious and is discussed in the t
Further note thatP changes appreciably between the normal a
superconducting states. This changemust be taken into accoun
when calculating the condensation energy.
8-9
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to imply an infinite result for the condensation energy.
deed, this is true only under the assumption that fermo
bandwidthW is infinite, otherwiseSN and SS converge at
the scale of the bandwidth. However, even in this situati
the electronic contribution to the condensation energy tu
out to be very large—of the order ofW.

It turns out that this near-infinite contribution is compe
sated for by thespin part of the condensation energy, su
that the totalEc remains finite even when the fermion
bandwidth is infinite. As written in Eq.~36! the spin conden-
sation energy looks quite convergentif we usePN,vm

}vm .
However, the expression for the spin polarization operato
formally ultraviolet divergent, and extra care has to be tak
in evaluating the difference betweenPN,vm

andPS,vm
.

In what follows we explicitly re-express the diverge
contribution inEc,el in terms of the spin polarization opera
tor, and show that when we take the divergent piece fr
Ec,el and add it toEc,spin, the dangerousPN,vm

2PS,vm
term

in Ec,spin is canceled out, and the remaining terms are
convergent, and in evaluating them we can safely use
regularization in which the ultraviolet divergent piece
PN,vm

is absent, andPN,vm
}vm . In practice, this regular-

ization amounts to evaluating the integral overek first, and
the frequency integral later.

In order to accurately single out the divergent piece
Ec,el and relate it to the spin polarization operator, we us
trick originally suggested by Bardeen and Stephen and de
a mixed self-energySNS ~NS stands for normal supercon
ducting!. This is the normal-state Eliashberg equation forS
but with thesuperconductingpolarization bubble

iSNS,vm
52a2pT(

n
E d2q

~2p!2
xS,vn

~q!GN,vn1m
~k1q!

5plT(
n

sgn~vn!
1

~12PS,vm2n
!1/2

. ~40!

We plot SNS given by the above equation along withSS in
Fig. 2 and show that they converge at high frequencies.
then add and subtractSNS from Ec,el :

Ec,el52NfpT(
m
S AS̃S,v

m

2 1Fv
m

2 2uS̃NS,v
m
u

1uvmu
uS̃S,v

m
u2AS̃S,v

m

2 1Fv
m

2

AS̃S,v
m

2 1Fv
m

2 D
1$uS̃NS,v

m
u2uS̃N,v

m
u%. ~41!

One can easily make sure thatEc,el now consists of a con

vergent piece plus the divergentuS̃NSu2uS̃Nu. The above is
actually uSNSu2uSNu as thevm’s cancel.

We now explicitly express this divergent piece in terms
the spin polarization operator. To accomplish this, we re
21450
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that the termuS̃Nu in Ec,el arose from the integration ove
momentum of theSG term in Eq.~34!. Writing this for both
the normal and normal-superconducting self-energies,
have

NfpT(
m

uSN,NS,vm
u5T(

m
E d2k

~2p!2
iSN,NS,vm

GN,vm
.

~42!

By using the expressions forS and P the above may be
written as a term inEc,spin as follows:

1T(
m

E d2k

~2p!2
iSN,NS,vm

GN,vm

5T(
m

E d2k

~2p!2 H 23g2pT(
n
E d2q

~2p!2
xN,NS,vn

~q!

3GN,vn1m
~k1q!J GN,vn

~k!

52
3

2
T(

n
E d2q

~2p!2

xN,NS,vn
~q!

x~0!

3H 2g2x~0!pT(
m

E d2k

~2p!2

3GN,vn1m
~k1q!GN,vn

~k!J
52

3

2x0
T(

n
E d2q

~2p!2
xN,NS,vn

~q!PN,vn
. ~43!

Performing the integration overq we find that

FIG. 2. Spin-fermion solutions forSS andSNS as defined by Eq.
~40! in Matsubara frequencies. Note that by replacingPN by PS in
the normal-state expression forS, we have obtained a convergen
expression for the electronic part of the condensation energy
discussed in the text.
8-10
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2pTNf(
m

~ uSNS,vm
u2uSN,vm

u!

52T
3

8pj2 (
m

PN,vm
ln

12PS,vm

12PN,vm

. ~44!

We now move the divergent piece fromVel to Vspin and

write the condensation energy asEc5dṼel1dṼspin with

dṼel52NfpT(
m
S AS̃S,v

m

2 1Fv
m

2

2uS̃NS,v
m
u1uvmu

uS̃S,v
m
u2AS̃S,v

m

2 1Fv
m

2

AS̃S,v
m

2 1Fv
m

2 D ,

~45!

dṼspin52
3T

8pj2 (
m

PS,vm
2PN,vm

1~11PN,vn
!

3 ln
12PS,vm

12PN,vm

. ~46!

The electronic part is now fully convergent. For the spin pa
one can easily check that at large frequencies, whenPN,vm

andPS,vm
are both large, the expansion of the logarithm

Ec,spin cancels the dangerousPS,vm
2PN,vm

term. The re-
maining terms are all ultraviolet convergent, i.e., are ins
sitive to the regularization procedure used to evalu
PN,vm

. This implies that the condensation energy is actua
free from divergencies, as it indeed should be based
physical reasoning.

The relation betweendṼel and dṼspin

At this point, the electronic and spin contributions to t
condensation energy seem to be rather different as the
tronic part containsNf , while the spin part does not. How

ever, dṼel and dṼspin are in fact of the same order as w
now demonstrate. Indeed, as we already said, typical
quencies for the pairing are of orderv̄, and at these frequen
cies

PS,vn
;PN,vn

;
v̄

vSF
. ~47!

Similarly,

SS,vn
;SN,vn

;v̄. ~48!

Then using Eq.~46! for dṼspin:
21450
t,

-
e
y
n

ec-

e-

dṼspin;
v̄2

vSFj
2
;

v̄3

vF
2

, ~49!

where the last step uses the definition ofvSF given previ-
ously. At the same time

dṼel;Nfv̄
2. ~50!

The fermionic density of statesNf is a product of 1/vF ~the
leftover of the integration overek , and a typicalk̃ along the
Fermi surface!. As typical k̃;v̄/vF ,

Nf;
v̄

vF
2

. ~51!

Substituting this result into Eq.~50!, we find

dṼel;
v̄3

vF
2

, ~52!

i.e., dṼel anddṼspin are indeed of the same order.
In the above discussionNf appears as anextra parameter

in dṼel . This is because in the calculations we neglected
momentum dependence along the Fermi surface~the actual
momentum integral overdk̃ is replaced by a typicalk̃). If
this momentum dependence was included@i.e., by using the
self-energy from Eq.~28! with k-dependentl(k) and
vSF(k)] then the electronic part would be free from unce
tainties. Unfortunately, this computation also requires
knowledge of thek dependence ofF(k) along the Fermi
surface, which is technically difficult to obtain. In contras

dṼspin is the result of a full two-dimensional integration ov

bosonic momenta, and the result fordṼspin is free from un-
certainties.

Fortunately, it turns out that within the~approximate!
computational scheme that we are using,Nf and 1/(vSFj

2)
can be related. Their relation follows from Eq.~44!, as both
the fermionic self-energy and the spin polarization opera
are fully expressed in terms ofv̄ andl. By evaluating the
constant pieces inSNS,vm

2SN,vm
and in PS,vm

2PN,vm
at

high frequencies and comparing the two sides of Eq.~44!,
one can expressNf in terms of 1/(vSFj

2). Once this is done,
there is no further uncertainty in the condensation energy
is given by the universal function ofl times v̄2/(vSFj

2)
}v̄3/vF

2 .
A remark is in order here. The electronic and spin parts

Ec are only of the same order of magnitude as long asv̄
,EF . When the effective coupling exceedsEF , typical k̃
5O(1), i.e., the whole Fermi surface is involved in the pa
ing. In this limit, the spin-fermion calculations are not co
trollable. Estimates show, however, that typical frequenc
for the pairing now scale asvSFj

2;vF
2/v̄;J whereJ is the

exchange integral for the corresponding Heisenberg mo
@Recall thatv̄;g2x(Q)/j2 where the RPA approximation,g
is equivalent to HubbardU. In the same approximation, nea
a magnetic transitionx(Q);j2/U, i.e., v̄;U.# Estimating

dṼspin at typical frequencies, we indeed finddṼspin;J in
agreement with the result by Scalapino and White.4 The

2 2
same reasoning yieldsdṼel;NfJ ;J /vF!J. We see

8-11
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ROBERT HASLINGER AND ANDREY V. CHUBUKOV PHYSICAL REVIEW B68, 214508 ~2003!
therefore that at very large couplings, the spin part of
condensation energy clearly prevails over the electronic p
i.e., the condensation energy comes entirely from the s
part. This again agrees with Scalapino and White.4

V. THE COMPUTATIONS

In this section we present our results for the electronic
spin contributions to the condensation energy for variousl.
In practice, we found it advantageous to perform the cal

lations ofdṼspin anddṼel in real frequencies rather than i
Matsubara frequencies. The main reason for this was sim
that we had previously evaluatedS(v), F(v), andP(v) at
real frequencies and various couplings and could use th
results in the present computations. A more subtle reaso
that in retarded formalism, the problem of divergencies
Ec,el andEc,spin can be avoided in a straightforward mann
~see below!.

A. Condensation energy in real frequencies

We first derive the expression for the condensation ene
in real frequencies, in terms of retardedS(v), F(v), and
P(v). The Matsubara equations forEc,el andEc,spin given in
Eq. ~34! have the following form.

Ec,el52pT(
m

f ~ ivm!,

Ec,spin52pT(
n

g~ ivn!, ~53!

where theEc,el has a sum overfermionic frequencies and
Ec,spin has a sum overbosonic frequencies. The retarde
form of these equations, assuming no branch cuts excep
the real axis are

Ec,el52E
0

`

f ret9 ~v!tanhS v

2TDdv,

Ec,spin52E
0

`

gret9 ~v!cothS v

2TDdv, ~54!

wheref 9 is the imaginary part off ( f 8 is the real part! andg
is similar. It remains to analytically continuef (vm) and
g(vn) to the real axis. With the Matsubara definitions us
in Sec. II, the analytic continuations are as follows:

S~vm!→2 iS ret~v!,

F~vm!→F ret~v!,

P~vm!→P ret~v!. ~55!

The retarded formulas for the condensation energy are t
21450
e
rt,
in

d

-

ly

se
is

n
r

y

on

d

n

Ec,el52NfE
0

`H @b1ReS̃N~v!#

1vF12
Im SS~v!a2ReSS~v!b

uau21ubu2
G J tanh

v

2T
dv,

Ec,spin52
3

8p2j2E0

` H Im PS2Im PN

1Im ln
12PS~v!

12PN~v!J coth
v

2T
dv, ~56!

whereAF2(v)2SS
2(v)5a1 ib. We point out that extreme

care must be taken with these equations in order to get
correct sign of the imaginary parts of both the square r
and the logarithm.

We first point out that there is no divergent term inEc,el .
Indeed, in the Matsubara formalism, the divergent te
comes from the fact that at high frequencies,SS(vn) and
SN(vn) are separated by a constant. Since we definedS
with an extrai, this constant isimaginary. On the other hand
the first two terms in the retarded formula forEc,el at high
frequencies whereF→0 can be written as

Im A2SS
2~v!1ReSN~v!5ReSN~v!2ReSS~v!.

~57!

This follows from the fact thatSS(v)5S8(v)1 i uS9(v)u
and the branch cut is on the negative real axis. We see
Ec,el only depends on the difference of ReS between the
normal and superconducting states, and the integral of
difference is fully convergent. We illustrate this in Fig.
Analogous reasoning also shows thatEc,spin is also free from
divergencies.

Indeed, the absence of divergencies in the retarded
malism is just the consequence of using the Kramers-Kro¨nig
transform which misses the divergent pieces inEc,spin and
Ec,el . However, since we already demonstrated that the

FIG. 3. The real part of the retarded self-energy for both
normal and superconducting states. Observe thatSS,ret8 and SN,ret8
converge at high frequencies in contrast to the constant offse
Matsubara frequencies. The constant offset goes into the imagi
part of S ret which does not affectEc in the retarded formalism.
8-12
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CONDENSATION ENERGY IN STRONGLY COUPLED . . . PHYSICAL REVIEW B68, 214508 ~2003!
dV is free from divergencies, we can safely use t
Kramers-Krönig transformation separately forEc,spin and
Ec,el .

The fact that no divergence exists for the retarded form
las also allows us to relate the prefactors in front ofEc,el and
Ec,spin in a straightforward manner. In real frequencies, E
~44! takes the form

FIG. 4. The condensation energy for various couplingsl. ~a!
and ~b! are the electronic (Ec,el) and spin (Ec,spin) contributions to
the condensation energy, respectively.~c! is the total condensation
energy per unit cell atT50 for various couplingsl. The lines are
a guide for the eye. We usedNf51 st/eV andNs;0.17 st/eV as
explained in the text. For comparison, we also plotted the cond
sation energy given by the BCS formula using theD(v50) given
by the spin-fermion model. Observe that the BCS condensa
energy monotonically increases as the coupling gets larger, w
the actual condensation energy flattens atl;2 and slightly de-
creases at large couplings. The change in curvature of the
result at small couplings reflects the fact that the spin-ferm
model becomes BCS-like forl<0.5 changing the functional de
pendence ofD(v50) on l.
21450
e

-

.

2NfE
0

`

$ReSNS~v!2ReSN~v!%tanh
v

2T
dv

5
3

8p2j2E0

` H RePN~v!Im ln
12PS~v!

12PN~v!

1Im PN~v!Re ln
12PS~v!

12PN~v!J coth
v

2T
dv. ~58!

Since in the retarded formalism, *2`
` ReSNS(v)

2ReSN(v)dv is a convergent quantity, and the right-han
side ~RHS! of Eq. ~58! is also convergent, we can explicitl
evaluate~numerically! both sides of Eq.~58! and relateNf
and 3/8p2vSFj

2, which we label as the spin density of stat
Ns @Ns5(8/3p2)v̄/vF

2 #.

B. Results

As we have already stated, we use previously obtai
results for S(v), F(v), and P(v). First, we computed
both sides of Eq,~58! and evaluated the ratioNf /Ns for
variousl. We found that with very small variationsNf /Ns
'5.9.

In Figs. 4~a!,4~b! we present the results for the electron
and spin contributions to the condensation energy for diff
ent values of the couplingl. To set the overall scale, w
adopt a commonly used estimateNf51 st/eV.21 We empha-
size that changingNf will only change the overall scale an
not the functional form ofEc(l).

We see from Fig. 4~c! that the total condensation energy
negative, as it indeed should be in a superconductor, but
this negativity is of a very different origin than in BC
theory. In BCS theory, which corresponds tol!1, i.e., v̄
,vSF, the system behaves as a conventional Fermi liqu
In this limit, the pairing potential is static, i.e., the spin pa
of Ec is negligible, and condensation energy is entirely el
tronic andnegative. We see, however, forl>1, i.e., in the
strongly coupled regime, the electronic contribution to t
condensation energy ispositive and quite large. From Fig
4~a! it appears that the electronic contribution changes s
at l;0.4. Ec,el is negative below this coupling strength an
is positive for alll>1/2 presented in the figure. Second, f
all l shown, the spin partEc,spin is negative@see Fig. 4~b!#. It
can be shown thatEc,spin continues to be negative atl→0
whereP→0 asl2 @see Eq.~32!#. Indeed, by expanding the
logarithm in Eq.~58! we obtain

Ec,spin~l→0!52Ns

vSF

2 E
0

`

Im$PS
22PN

2 %

52NsvSFE
0

`

$RePSIm PS

2RePNIm PN%,0. ~59!

The above equation is negative, as in the retarded formal
RePN50 and both RePS<0 and ImPS,0, and scale as
l4 asl→0.

n-

n
ile

S
n

8-13



rg

en
is

ly
es
po
us

t

e

t
m

f

C

n-
r-
o

C
la

s
n
th
y
st
e
e-
te
e

e

e
ua
w

u
to
y
en
t
t

n

that

ve
in

f
cles
ate.
ge
on-
for

t
nd

a-
n,

ion
a

ion

the

r
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We also see from Figs. 4~a!,4~b! that at largel, both the
spin and the electronic parts of the condensation ene
nearly saturate: to a large positive value forEc,el and a large
negative value forEc,spin. The total condensation energyEc

is negative and much smaller than eitherEc,el or Ec,spin due
to a substantial cancellation between these two compon
of Ec . Although this cancellation seems quite delicate, it
actually robust sinceEc,el and Ec,spin are intimately linked
via mutual feedback, and cannot be considered separate
is the sum of the two which has physical meaning. Any
timate of the total condensation energy based merely u
either the electronic or spin part will give a highly erroneo
result.

We now consider the functional dependence ofEc on l.
We see that the condensation energy flattens atl;2, and its
magnitude decreases at large couplings despite the fact
the pairing gap increases monotonically withl.22 This be-
havior is very counterintuitive from a BCS perspectiv
where the condensation energy scales withD2. It clearly
indicates that forl>1, the physics is qualitatively differen
from BCS theory. To emphasize this strong deviation fro
BCS theory we plot in Fig. 4~c! the strong coupling result o
Ec along with the BCS condensation energy2NfD

2/2 using
the sameD and Nf . We clearly see that forl>1, corre-
sponding to optimally doped and underdoped cuprates, B
theory yields qualitatively different results forEc .

Our results are in line with earlier work which demo
strated that forl>1, the pairing predominantly involves fe
mions located in the non-Fermi-liquid frequency range. F
these fermions, retardation effects not included in B
theory become dominant. Such retardation effects take p

between the ‘‘upper’’-v̄ and ‘‘lower’’ vSF scales of spin-

fermion theory. Asv̄54l2vSF this ratio grows quickly, and

alreadyv̄/vSF54 atl51. This explains why the deviation
from BCS behavior are already strong at this coupling. U
derstanding in detail the strong coupling physics behind
decrease inEc is currently the subject of a separate stud23

and a complete theory of this phenomenon does not exi
the moment. Most likely, however, this decrease is a refl
tion of the fact that asl increases, the actual attraction b
tween fermions goes down, retardation of the spin-media
interaction becomes the major factor, and the pairing proc
increasingly involves incoherent~diffusive! fermions and on-
shell bosons. As the exchange of on-shell bosons is an
ergy conserving process, it cannot lead to a gain inEc . Such
behavior is very counter intuitive from a BCS perspectiv
where the pairing emerges due to an exchange of virt
off-shell bosons, and the condensation energy scales
D2.

One final comment. Although magnetically mediated s
perconductors are often compared to dirty superconduc
we point out that atT50, the physics of the two is alread
qualitatively different. Analogies between the two are oft
made due to the fact thatthermalspin fluctuations scatter a
finite momentum transfer but zero energy transfer and ac
the same way as nonmagnetic impurities.22 However, in a
dirty superconductor with nonmagnetic impurities, the co
21450
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densation energy retains its BCS form despite the fact
the superfluid stiffness is renormalized down.24 Obviously,
this is not what we found.

VI. KINETIC ENERGY

As we stated in the Introduction, several groups ha
argued5,6 that the condensation energy is driven by a gain
the kinetic energy which at strong coupling is negative~in
contrast to BCS theory! because of a strong ‘‘undressing’’ o
fermions which bear a greater resemblance to free parti
in the superconducting state than they do in the normal st

In this section we consider, within our model, the chan
in the kinetic energy when the system enters the superc
ducting state. The conventionally defined kinetic energy
an interacting fermionic system is

Ekin52T(
m

E d2k

~2p!2
ekGvm

~k!, ~60!

where Gvm
(k) is the full fermionic Green’s function tha

contains the self-energy. Integrating over momentum a
subtracting the normal state result fromEkin in a supercon-
ductor we obtain

dEkin52NfpT(
m

AS̃S,vm

2 1Fvm

2 2uS̃N,vm
u. ~61!

In the BCS limit,l!1, Fvn
5D, S50, S̃vn

5vn , and

dEkin
BCS52NfpT(

m
Avm

2 1D22uvmu ~62!

which is obviously positive and furthermore depends log
rithmic on the upper limit of the frequency integratio
which is vSF in our case~we recall that in the BCS limit,
vSF@v̄). At T50, we have

dEkin
BCS5NfD

2ln
vmax

D
. ~63!

In the same BCS limit, the potential part of the condensat
energy dEpot

BCS is also logarithmically divergent, and to
logarithmic accuracy cancels outdEkin

BCS. The subleading
terms do not cancel and yieldEc

BCS52NfD
2/2.

We now consider finitel. As before, we perform the
computations in real frequencies. The analytic continuat
of Eq. ~61! gives

dEkin512NfE
0

`

$ImAF2~v!2S̃S
2~v!

1ReS̃N~v!%tanh
v

2T
dv. ~64!

The result of this calculation at finitel is presented in
Fig. 5. For comparison, we also present in this figure
BCS result forEkin obtained with the sameD(v50) and a
cutoff frequencyvmax51 eV ~recall that the BCS result fo
8-14
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CONDENSATION ENERGY IN STRONGLY COUPLED . . . PHYSICAL REVIEW B68, 214508 ~2003!
Ekin depends logarithmically on the upper cutoff of the fr
quency integration!. At low couplings the kinetic energy is
positive, as one naively expects. At largerl, however, the
kinetic energy passes through a maximum atl;2 and then
becomes negative at largel.

As we already mentioned in the Introduction, the sign
Ec depends on the interplay between two competing effe
the effect of particle-hole mixing that increasesEkin , and the
change in the self-energy due to the ‘‘undressing’’ of ferm
ons that lowersEkin . At weak coupling, the particle-hole
mixing obviously dominates. The sign change between sm
and largel implies that at strong coupling the situation
reversed, and the lowering ofEkin via the change in the self
energy due to the ‘‘undressing’’ of fermions overcomes
effect of particle-hole mixing This behavior is very similar
that obtained by Normanet al.5 As the first term inEc,el is
equal to2dEkin/2 @see Eqs.~36! and ~61!#, one can indeed
argue that the condensation energy at large couplings
least partly driven by the lowering of the kinetic energ
However, a comparison of Figs. 4 and 5 shows that thi
just another way to interpret strong coupling effects that
fect both the fermionic and bosonic propagators via mutu
feedback.

A simple explanation of why this is so is the following. I
the superconducting state, the spin decay into fermion
forbidden at energies smaller than 2D. This simultaneously
gives rise to two effects. First, the spin propagator devel
the excitonic~resonance! peak atv res,2D. The energy re-
leased by the creation of an exciton results in a gain in
magnetic part of the condensation energy. Secondly, the
mions cannot decay until their frequency exceedsD1v res
~this is the magnetic analog of the Holstein effect!. The
elimination of fermionic scattering at low frequencies im
plies that the fermionic self-energyS(v) in the supercon-
ducting state is reduced compared to that in the normal s

FIG. 5. Kinetic energydEkin compared to the BCS resultT
50 for various couplingsl. The parameters are the same as in F
4. The kinetic energy change is positive at low couplings, but ne
tive at high coupling. This is in sharp contrast to the positive a
quite large BCS kinetic energy. For the BCS result we used
exactD(v50) and set the upper cutoff of frequency integration
vmax51 eV. The inset shows the kinetic energy at a larger sc
The dot atl58 indicates the value of the total condensation ene
Ec which for thisl almost coincides withdEkin .
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This lowers the kinetic energy. Obviously, the two effec
~the gain in the magnetic part and the lowering of the kine
energy! come from the same physics.

VII. CONCLUSIONS

Our goal in this paper was to emphasize the importanc
taking all contributions to the condensation energy into
count when considering a strongly coupled superconduc
Specifically, we considered the case ofdx22y2 pairing medi-
ated by the exchange of near-critical overdamped antife
magnetic spin fluctuations. We demonstrated that altho
Eliashberg theory is valid for a strongly coupled magne
superconductor, the reason for its validity is qualitatively d
ferent from that for phonon superconductors as the spin
locity and Fermi velocity are of the same order. Due to t
fact, approximations appropriate for phonon superconduc
are generallynot valid in magnetic superconductors. Speci
cally, we demonstrated that the assumption that the bos
polarization bubble can be neglected, which was rigorou
justified by Bardeen and Stephen for phonon supercond
ors, breaks down for magnetically mediated superconduc
and makes the Wada and Bardeen-Stephen formalisms
valid.

We obtained the full expression for the condensation
ergy within the spin-fermion model and showed that the s
and electronic parts of the condensation energy are of
same orderv̄3/vF

2 and both depend only on the dimensio
less couplingl. The BCS behavior is restored atl!1. Even
at moderate couplings, the condensation energy is hig
non-BCS. The electronic contribution to the condensat
energy ispositive, while the spin part is negative and larg
in magnitude than the electronic part which makes the
Ec negative. As in the BCS limit the electronic condensati
energy is negative and equal to2NfD

2/2, this implies that
the electronic condensation energy changes sign at a ra
small l. We found that at largel, both the spin and the
electronic parts of the condensation energy nearly satur
As a result, the full condensation energy flattens atl;2,
and decreases at large couplings despite the fact that
pairing gap increases monotonically withl.22 This behavior
is very counter intuitive from a BCS perspective, where t
condensation energy scales withD2 and is also inconsisten
with the behavior ofEc in dirty superconductors. This be
havior results from the fact that there is a substantial can
lation between the spin and electronic parts of the conde
tion energy and the totalEc is thus substantially smaller tha
either the spin or electronic parts.

We argued that the reduction ofEc at large coupling is
likely the result of the fact that at strong coupling the pairi
is predominantly due to an energy conserving exchange
on-shell~real! bosons as opposed to the BCS theory in wh
the pairing is caused by the energy nonconserving excha
of virtual bosons. The reduction ofEc at strong coupling also
indicates that in this limit coherent superconductivity b
comes fragile, and a largeD only indicates that the system
needs a finite energy to destroy spin singlets.

Finally, we computed the kinetic energy and found that
strong coupling it is negative which indicates that at hi
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ROBERT HASLINGER AND ANDREY V. CHUBUKOV PHYSICAL REVIEW B68, 214508 ~2003!
couplings the change in the self-energy due to the ‘‘undre
ing’’ of fermions, which lowersEkin overcomes the effect o
particle-hole mixing which tends to increaseEkin . This be-
havior has no analog for phonon superconductors. We arg
that a negativeEkin is fully consistent with a positiveEc,el ,
and that, in principle, it is correct to argue that the cond
sation energy at large couplings is at least partly driven
the lowering of the kinetic energy. However, our resu
show that the lowering ofEc may be thought of as being du
to either the lowering of the kinetic energyor the interplay
between the lowering ofdVspin and the increase ofEc,el .
Both explanations are valid interpretations of the strong c
pling effects which affect the fermionic and bosonic prop
gators via mutual feedback.

By taking into accountall contributions to the self energy
and takingNf;1 st/eV as typical for near optimally dope
cuprates, we obtained a small value forEc of ;15 K at
optimal doping~which in our model corresponds tol;1.5
22,18 largerl describe underdoped cuprates!. This is rather
remarkable as all typical energies in the problem are m
higher, i.e.,v̄;2.5233103 K.18 This small value ofEc is
partly due to small prefactors, but is also the result of s
stantial cancellation between the spin and electronic con
butions toEc . Note also thatNf;1 st/eV that we were us
ing is fully consistent withv̄;2.5233103 K. Indeed, using
Fermi surface averagedvF;0.6 meV ~Ref. 22! we obtain
Ns5(8/3p2)v̄/vF

2;0.1520.19 st/eV. Using thenNf /Ns

;5.9 obtained in the paper, we findNf;1 st/eV, i.e., pre-
cisely the same value as we used.

Our Ec;15 K is in good agreement with experiment. L
ram et al.3 extractedEc'0.12kBTc;10 K from the jump of
the specific heat atTc . The change of the functional form o
Ec aroundl52 is also consistent with the experimental fa
that Ec changes its behavior from BCS-like to non-BC
around optimal doping. A decrease ofEc at strong couplings
~i.e., for underdoped cuprates! is also consistent with wha
Loram et al. found in the specific heat experiments in t
underdoped regime.3 We caution, however, that the relatio
betweenEc and the amount of the jump in the specific he
at Tc , from which the experimentalEc was extracted may be
more complex than in the BCS theory which was used
extractEc from the data. This analysis is clearly called fo
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APPENDIX A: A RUNNING COUPLING CONSTANT
APPROACH

The condensation energy may also be computed usin
general formula for the ground-state energy of the interac
electron system:9,15,25,26
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E2E052 i E
0

ldl1

l1
E d2kdv

~2p!3
Gvm

~k!Svm
* , ~A1!

whereE0 is the ground-state energy of free electrons, and
Green’s function and the self-energy are evaluated for
running coupling constantl1. This formula is validboth in
the normal and superconducting state. The ‘‘effective’’ se
energySvm

* is related toGvm
(k) in the same way as a con

ventional self-energy, i.e., asGvm

21(k)5 i (vm1Svm
* )2ek . In

the normal state,Sn,vm
* 5Sn,vm

, whereS is a conventional

self-energy, while in the superconducting state,

Ss,vm
* 5Ss,vm

1
iFvm

2

ek1 i S̃s,vm

. ~A2!

Equation~A1! is particularly suitable for the strong cou
pling computations in the normal state. Here we can use

E d2k

4p2
Gvm

~k!52 ipNfsgnvm . ~A3!

Substituting this result into Eq.~A1! we reduceE2E0 to a
single frequency integral. Using theT50 normal state resul
for the spin-fermion model Sn,vm

52lvm /@11(1

1uvmu/vSF)
1/2#, and introducing the sharp upper cutoff fo

the low-energy theory atvmax;EF , we obtain

E2E052Nf~vmax
3 v̄ !1/2E

0

2l(vmax/v̄)1/2 dx

~A11x211!2
.

~A4!

This expression is convenient for the analysis of the variat
of the ground-state energy withl.

The condensation energy, i.e., the energy difference
tween normal and superconducting state, is given by

Ec52 i E
0

ldl1

l1
E d2kdv

~2p!3
@Gs,vm

~k!Ssvm
* 2Gn,vm

~k!Snvm
* #.

~A5!

Using GS* 52 i (12G0
21G), we can rewrite Eq.~A5! as

Ec5N0E dekdvm

2p E
0

ldl1

l1
@Gs,vm

~k!2Gn,vm
~k!#

3~ ivm2ek!. ~A6!

Performing the momentum integration in the Green’s fun
tions, we obtain
8-16
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Ec52NfE
0

ldl1

l1
E

0

`

dvmS AS̃s,v
m

2 1Fv
m

2 2S̃n,v
m

2vm

S̃s,v
m
2AS̃s,v

m

2 1Fv
m

2

AS̃s,v
m

2 1Fv
m

2 D . ~A7!

This looks very similar to the Wada result@Eq. ~36!# but note
the minus sign in front of thevm . This extra minus sign
results in a negative totalEc for all couplings. The conden
sation energy, Eq.~A6!, can also be formally divided into
kinetic and potential energy terms, but this division is su
jective for interacting systems, and we will not discuss th

1. BCS limit

In the BCS limit,Ec reduces to

Ec52NfE
0

ldl1

l1
Dl1

2 E
0

` dvm

ADl1

2 1vm
2

~A8!

whereD is the gap value for the running couplingl1. Using
the BCS relation betweenD and the coupling constant

15l1NfE
0

` dvm

AD21vm
2

~A9!

one can rewrite~A8! as

Ec52E
0

l dl1

l1
2

Dl1

2 . ~A10!

From ~A9!,

Dl1
5Dle1/Nfl21/Nfl1. ~A11!

Integrating overl1 we obtain

Ec52
1

2
NfD

2. ~A12!

This is indeed the same result as we obtained using
Eliashberg formula.

Note in passing that our previous assertion that the se
ration of Ec into a kinetic and potential energy is subjecti
is true even in the BCS limit, as the interaction is the sou
of the pairing. Indeed, earlier we computeddEkin in the
Luttinger-Ward formalism and found that in the BCS lim
the kinetic energy scales asD2ln vmax/D @see Eq.~63!#. In
the running coupling constant formalism, the kinetic ene
differencedẼkin extracted from Eq.~A6! in the BCS limit
reduces to

dẼkin
BCS52N0E

0

ldl1

l1
E

0

` Dl1

2 dvm

vm1ADl1

2 1vm
2

. ~A13!
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Using Eq. ~A9! and performing the computations with th
logarithmic accuracy we finddẼkin

BCS5N0D2/2, i.e., contrary
to Eq.~63! the newly defined kinetic energy does not depe
logarithmically on the upper limit of frequency integratio
Similarly, dẼpot

BCS52N0D2 such that the sum of the two
yields the correct total condensation energy, Eq.~A12!. This
once again demonstrates that only totalEc is a physically
meaningful quantity.

2. lÄ1

We numerically computedEc for l51 by calculating the
integrand of Eq.~A7! for l150, 0.5, and 1, numerically
fitting these three data points and then integrating the res
ant function over the coupling constant. This resulted in
condensation energy ofEc5215.8 K compared to the
211.5 K calculated via the Eliashberg approach. This agr
ment is quite reasonable as our implementation of the r
ning coupling constant formalism was highly approximate
used only three numerically calculated values of the in
grand, fitting the rest with a phenomenological function. F
a more accurate estimate, the integrand must be calculat
many more values of the running coupling constant. This
however, extremely computationally intensive, as at e
value of the running coupling constant the self-energies, p
ing vertex, etc., must be numerically calculated over th
whole frequency range. The running coupling constant f
malism is therefore very difficult to implement accurately f
a nontrivial self-energy or pairing vertex.

APPENDIX B: ULTRAVIOLET CONVERGENCE
OF THE CONDENSATION ENERGY

In this appendix, we explore the consequences of ass
ing infinite energy bands in calculations of the condensat
energy. Although in reality, energy bands are of finite exte
for theoretical purposes, one often extends the integratio
both energy and frequency to infinity. In this case the or
of the integrations, i.e., energy versus frequency matters
it is this issue that we examine here. Specifically we w
show that the integration order depends upon whether
ultraviolet convergence of the integral arises from an eff
tive energy or frequency ‘‘cutoff.’’

1. BCS limit

We begin with the calculation of the condensation ene
in the BCS limit. The integral for the condensation energy
BCS theory withinfinite bandwidthsis formally ultraviolet
divergent asD does not vanish at large momentum and f
quency@see Eq.~B3! below#. The ordering of the integration
is thus highly relevant, and the correct way is to perform
frequency integration first as the ultraviolet divergence
artificial, caused by the infinite limits of the momentu
integral. We will show explicitly that if the momentum
integral is restricted to a finite bandwidth, the order of t
integration does not matter, and one obtains the correct re
Ec52NfD

2/2 integrating in either order and then setting t
fermionic bandwidth to infinity at the end of the calculation
8-17
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In the BCS theory, the pairing problem may be describ
by an effective quadratic Hamiltonian

H5H01(
k,a

ekak,a
† ak,a1

D

2
ga,b~ak,a

† a2k,b
† 1ak,ba2k,a!,

~B1!

wheregab is the antisymmetric matrix.25 The condensation
energy can then be straightforwardly obtained by simply
eraging both the normal and anomalous terms in Eq.~B1!.
Expressing the average products of the pairs of operato
terms of frequency integrals of normal and anomalo
Green’s functions, linearizing the fermionic dispersion, a
taking care to avoid double counting of the anomalous te
we obtain atT50

Ec52
NfD

2

2
I , ~B2!

where

I 5E dedv

p

v22e2

~e21v2!~e21v21D2!
. ~B3!

We see that a naive integration treating bothvm ande in Eq.
~B3! on an equal footing, results in a vanishing integral. T
vanishing is surely artificial, as the 2D integral overdedv is
logarithmically divergent and therefore the result does
pend on the order of limits of the integration.

Indeed, integrating first overvm in infinite limits, and
then integrating overek we obtain

I 52E
0

`S Ax21122x1
x2

Ax211
D dx, ~B4!

wherex5ek /D. One can easily make sure that the integ
converges at largex. Performing elementary integration, w
easily obtainI 51. On the other hand, integrating first ov
ek in infinite limits, and then integrating overv we obtain

I 52E
0

`

dxS 112x2

Ax211
22xD , ~B5!

where nowx5v/D. The integral again converges at the u
per limit, and performing the integration we obtainI 521,
i.e., the result opposite to Eq.~B4!.

As we argued above, the correct way to proceed in
BCS limit is to perform the integration overv first as in the
Hamiltonian approach to the pairing, the interaction is ind
pendent of frequency, and hence there is no cutoff in
frequency integration. The integration over energy, on
other hand, extends only up toL;W whereW is the fermi-
onic bandwidth. Integrating first overvm in infinite limits,
and then integrating overueku,L we obtain Eq.~B4! with
the upper limitL/D. As the integrand in Eq.~B4! is conver-
gent, I 51 up to corrections which vanish asL→`. This
yields Ec52NfD

2/2 as it indeed should be.
It is instructive to show that once the integral overek is

restricted to a finite range, one also obtains the correctEc by
21450
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performing thee integration first. Indeed, integrating in Eq
~B3! first overek between2L andL, and then overv, we
obtain

I 52
2

pE0

`

dxS 112x2

Ax211
tan21

L*

Ax211
22x tan21

L*

x D ,

~B6!

whereL* 5L/D andx5v/D. If we formally setL* 5` at
this stage, we obtain a convergent integral overx which
yields I 521 which, we know, is incorrect. KeepingL*
large but finite we find that there is an extra contribution
the integral from largex;L* . This extra contribution over-
shadows the contribution fromx5O(1) and changes the
sign of I To see this, we change variables toy5x/L* and
rewrite Eq.~B5! as

I 5211
8

p
~L* !2E

0

`

dyyS tan21
1

y

2tan21
12@2y2~L* !2#21

y D . ~B7!

Expanding under tan21 in 1/(L* )2 and evaluating the re
maining integral we find

I 5211
4

pE0

` dy

y211
5211251 ~B8!

as it indeed should be. Note that the integral in Eq.~B8! is
confined toy5O(1), i.e., tov;L.

The physical implication of this result is that in the BC
theory, the condensation energy can be equally viewed
coming from the energy levels near the Fermi surface,
implied in Eq. ~B4! where the integral is confined tox
5O(1), i.e., to v;D, or as coming from very deep level
below the Fermi surface, as implied in Eq.~B7!. This pecu-
liarity, however, is only present in the BCS limit, where th
gap remains finite even at the largest frequencies. Away fr
the BCS limit, the gap vanishes at infinite frequency, t
integrals are convergent, and the condensation energy
only be viewed as coming from the levels near the Fe
surface.

By considering the BCS limit we have learned the follow
ing important lesson. If the ultraviolet convergence is due
a finite bandwidth~or to a vanishing of the pairing gap a
large momenta due to self-energy corrections which dep
on ek), the correct way to proceed is to perform the fr
quency integration first. In this situation, one readily rep
duces the BCS condensation energy by keeping the b
width finite and setting it to infinity at the very end o
calculations. In Eliashberg-type theories however, one
proaches the BCS limitassumingthat even for very small
couplings the convergence of the integral forEc is imposed
by the frequency dependence of the pairing gap~i.e., the
typical frequency beyond whichEc converges is smaller tha
W). In this situation, the momentum integration must
performed first. The fact that the results forEc in the BCS
limit differ by a factor of (21) depending on whether th
8-18
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frequency or momentum integration is performed first i
plies that in Eliashberg theory the integrand for the cond
sation energy at vanishing coupling should have the oppo
sign compared to the first case. Alternatively speaking,
BCS limit of the integrands ofEc in Eliashberg-type theorie
and theories whereek integration is bound should have op
posite signs.

2. A relation betweenEc in Refs. 5 and 14

The above reasoning explains the apparent sign differe
between the expressions for the condensation energy in R
5 and 14. In Ref. 14, Scalapino derived the condensa
energy for phonon superconductors by averaging
electron-phonon Hamiltonian

^H&52 i E ddkdv

~2p!d11
~v1ek!G~k,v!2K (

n

Pn
2

M L ,

~B9!

where the last term is twice the expectation value of the
kinetic energy. He then used Chester’s result27 for the rela-
tion between the isotopic dependence of the upper crit
field and the change in the ion kinetic energy between n
mal and superconducting states, and found that for the
tope exponenta51/2, the change in the ion kinetic energy
precisely minus twice the change in the electronic propa
tor. As a result, the condensation energy turns out to be
nus the difference between the first terms in~B9! in a super-
conductor and the normal state:28

Ec5^Hsc&2^Hn&

52 i E ddkdv

~2p!d11
~v1ek!@Gn~k,v!2Gs~k,v!#.

~B10!

He further assumed thatS5S(v), performed the integra
tion over momentum first~with infinite limits!, and repro-
duced Wada’s formula, Eq.~17!. In the BCS limit of vanish-
ing S(v) and a constantD, this yieldsEc52N0D2/2, as we
discussed earlier.

The authors of Ref. 5, on the other hand, assumed tha
condensation energy is not due to phonons, and thata is
nearly zero. They argued that in this situation, the conden
tion energy should be given solely by the first term in~B9!,
i.e.,

Ec52 i E ddkdv

~2p!d11
~v1ek!@Gs~k,v!2Gn~k,v!#.

~B11!

This expression has opposite sign compared to Eq.~B10!.
Still, the authors of Ref. 5 argued that their expression a
reproduces the BCS resultEc52N0D2/2.

The analysis of the BCS limit shows that both authors
indeed right. Indeed, the Wada expression for the conde
tion energy implies thatD(v) decreases abovevmax!L,
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i.e., the momentum integral comes first, and the freque
integration comes second. The frequency dependence o
pairing gap comes from the frequency dependence of
phonon propagator, i.e., from the kinetic energy of ions. O
viously in this situation, the ion kinetic energy cannot
neglected, even in the BCS limit.

Reference 5 on the other hand, implies that the freque
dependence imposed by the kinetic energy of ions is ir
evant, and ultraviolet convergence is imposed by the fact
the momentum integration has to be performed over a fi
range. As we said, in this situation one has to integrate
over frequency and then over momentum. As we alrea
know, in the BCS limit, interchanging the order of the int
gration changes the result by a factor21. This explains why
the two opposite results forEc actually yield the same BCS
condensation energy.

Which expression is correct away from the BCS lim
This obviously depends on whether the ultraviolet conv
gence is imposed by either momentum or frequency. At
risk of belaboring the point we note here that the correct w
to proceed in a general case when the self-energy depend
both the momentum and frequency is to use the Lutting
Ward-Eliashberg expression for Free energy, Eq.~3!. This
expression is valid for arbitraryS(k,v) and it also includes
the full feedback on bosons. The only approximation in t
Eliashberg formula is the neglect of vertex correctio
@which account for higher-order terms labeled by dots in E
~3!#.

Suppose now that for one reason or another, vertex
rections can be neglected. For the case whenS(k,v)
'S(v), and D5D(v) decreases abovevmax!L, the
physically motivated ordering of the integrations should
integration overek first ~in infinite limits!, and the integra-
tion over frequency afterward. Imposing this ordering on t
Eliashberg Free energy yields the Wada formula which a
follows from Eq. ~B10!. If instead we had incorrectly use
Eq. ~B11! @with S'S(v)], we would have obtained a rapi
variation of Ec once vmax becomes smaller thanL, and
eventually Eq.~B11! would have yielded the result opposi
in sign to Eq.~52!.

On the other hand, when the self-energy predominan
depends onk, the cut of the ultraviolet divergence is sti
provided by the momentum integral. In this situation, E
~B11! should be used. This can be explicitly verified by com
paring the Luttinger-Ward-Eliashberg formula with th
bosonic term dropped, Eq.~16!, with Eq. ~B11!. Setting
S(k,v)5S(ek) and F(k,v)5F(ek) in Eq. ~16! and inte-
grating over frequency we obtain from Eq.~16!

Ec52NfE
0

`

deS AS̃S,e
2 1Fe

2

2uS̃N,eu1e
uS̃S,eu2AS̃S,e

2 1Fe
2

AS̃S,e
2 1Fe

2
D , ~B12!

where S̃e5e2S(e). This expression is the analog of th
8-19
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Wada formula forS5S(k). If one does the same with Eq
~B11!, the frequency integration is straightforward and
proper evaluation of the arguments of the logarithms we
tain exactly the same expression asEq. ~B12!. This proves
n

ig

,
-
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our point that in theories where the feedback from the p
ing on bosonic propagator can be neglected, Eq.~16! is valid
for any S(k,v), while Eqs.~B10! or ~B11! are valid when
S(k,v)'S(v) andS(k,v)'S(k), respectively.
on

.
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