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We consider the condensation eneEyyof strongly coupled magnetically mediated superconductors within
the context of the spin-fermion model. We argue that the actual physics behind the condensation energy is
much richer than in BCS theory, and that it is vital to take both the fermionic and bosonic contributions to the
condensation energy into account. We argue that at strong cougtirig the gain in the condensation energy
is a result of the feedback on spin excitations, while the fermionic contributidfy tis positive due to an
“undressing” feedback on the fermions. In addition we argue that the same feedback effect accounts for a gain
in the kinetic energy at strong coupling. We also found that the BCS relRtier\2, whereA is the pairing
gap, only holds fon<1. At larger\, A keeps increasing and eventually saturates, whilpasses through a
maximum at\ ~2 and then exhibits decreasen the strong-coupling regime.

DOI: 10.1103/PhysRevB.68.214508 PACS nuniber74.25-q, 74.72-h, 61.12—q

[. INTRODUCTION fermions which bear a greater resemblance to free particles
in the superconducting state than they do in the normal state.
Understanding the origin of the condensation energy is as somewhat different idea, related to the lowering of the

important step towards identifying the mechanism of high-Coulomb energy in the superconducting state has been pro-
temperature superconductivity in the cuprates. In a BCS surosed by Leggett[An alternative point of view, which we

perconductor, the condensation enefy—the energy gain do not share, is that the large gap observed in, e.g., angle-
in a superconductor compared to the normal state at the sanf@S0lved photoemission spectroscoyRPES and tunnel-
T—smoothly increases belo, and atT=0 reachesEECS ing expc_anments, is entirely distinct from the pairing (jﬂtp.

=—VN;A?/2, whereV is the volumeA is the superconduct- . In th|s paper we argue that these apparently disparate

ing gap, andN,=mpe /(27723) is the fermionic density of viewpoints regarding such non-BCS p_hysms are in fact con-

d 1,'h d in the total . ItS|ster1_t with each other, and describe the same strong-

states. The decrease In the total energy upon pairing resu %ouplmg physics. We argue that at strong coupling, the rela-

from a fine competition b_etween an increased k_inetic energy. betweerE, and A is qualitatively different from BCS
and a decreased potential energy, both of which are muceqry and is consistent with the experimental trends in the
larger tharE, . The BCS condensation energy can be experiynderdoped cuprates. We show furthermore that the strong-
mentally extracted from the jump of the specific heafaas  coupling effects are in large part the result of mutual feed-
within the BCS theoryCs—C,~6.0&./T,. back between the fermions and bosons. We make the case
Since the fermionic density of states is only weakly de-that the contributions to the condensation energy from these
pendent on doping, the application of the BCS formula fortwo channels may not be considered independently from
the condensation energy to cuprate superconductors woulshch other, and that only the sum of the two contributions
imply that E. and A2 scale in the same way. However, the has physical meaning.
measured gap increases monotonically with decreasing Our point of departure is the general equation for the free
doping? while the jump of the specific heat has a nonmono-energy of an interacting electron system, derived by Lut-
tonic doping dependence. In the overdoped regime it initiallytinger and Ward for the normal state and extended to a su-
increases with reduced doping, but below optimal dopingperconductor by Eliashbefd. We first briefly review
further underdoping leads todecreasean the specific heat strongly coupled phonon superconductors and discuss the
jump2 This discrepancy between the trend<ig-C, and in  BCS, Bardeen-Stephéf,and Wad&® expressions for the
A as functions of doping clearly makes the applicability of condensation energffor a review, see Ref. 4 The BCS
the BCS formula to the cuprates questionable. expression neglects both bosonic and fermionic self-energies
A large number of researchers believe that the cuprate@part from a trivial renormalization of the dispersiofihe
are strongly-coupled systems. It therefore comes as no suBardeen-Stephen and Wada expressions include the fermi-
prise that effort has already been made to explain the disanic self-energy and its change between the normal and su-
crepancy between the doping dependenca @hd C;—C, perconducting states, but neglect the feedback from super-
as a result of non-BCS physics. Scalapino and Whitsn-  conductivity on phonons. The two expressions are generally
jectured that at strong coupling, the dominant contribution taconsidered to be identical, however, we argue that this is
the condensation energy comes from a feedback effect on thenly true as long as the feedback from fermions onto
magnetic excitations of the system. On the other hand, Pirshphonons is neglected. We review the arguments of Bardeen
and later Normaret al> argued that the condensation energyand Stephen for the validity of this approximation for pho-
likely has an electronic origin, and is driven by a gain in thenon superconductors.
kinetic energy which at strong coupling is negatire con- We next modify the Eliashberg equation t6¢ to the case
trast to BCS theorybecause of a strong “undressing” of of magnetically mediated superconductors. We argue that in
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gualitative distinction to the phonon case, the feedback effeatf coupling values. Still, we tried this formalism, and will
from the superconductivity onto the bosons may not be nediscuss the results in the Appendix A. The approach which
glected if the pairing is magnetic. We derive the relevantwe will be using in the bulk of the paper was suggested by
equations and explicitly computg, assuming that the pair- Luttinger and Wardlwho demonstrated that it is possible to
ing is due to spin-fluctuation exchange and is described byeexpres€) in the normal state via a series of closed linked
the spin-fermion model. We show that when the feedback oskeleton diagrams with fully dressed fermionic and bosonic
bosons is non-negligible, the calculations require care apropagators. Their approach was extended to the supercon-
both electronic and spin parts of the condensation energy aducting state by Eliashbef§.We refer the reader to Refs. 9
ultraviolet divergent. We explicitly show that these diver- and 10 for the details of the derivation, and here just present
gences are canceled out between the two terms, and the totak result. In the superconducting stdfehas the form

E. (which turns out to be the only physically meaningful
quantity) is free from divergences. We furthermore demon-
strate that one can avoid the divergences by performing the
computations in real frequencies. We apply the results to the
cuprates and show that our theoreti€l agrees with the
data both in magnitude and in the doping dependence. We
view this agreement as support for the spin-fluctuation sce-
nario for the cuprates.

A short summary of the results for the spin-fluctuation
condensation enerdy, has been published in Ref. 11. In the
current paper, we provide an in-depth account of how one +F(K)D(k—K")F(k")}+---. 3
actually calculate€, in both the Matsubara and retarded . S ,
formali)éms. Such caclculations are nontrivial as the electronic:‘rhe Iast_term in the abov_e equation is the sum of the f|rs_t two
and spin components of the condensation energy contain urf_losed .I|nked skeleton dlz_igrams, the dots stand for higher-
traviolet divergences which must be canceled out in the fuIPrder diagrams. The functlo@(k) an_dF(k) are the normal
expression foE.. We also compare the condensation energf‘nd anomalous Greens functions given by
for spin-fluctuation and phonon-induced superconductors.

Q=—2T; [%In[eﬁ+§2(k)+®2(k)]—iE(k)G(k)

+id(K)F(K)

1
+§T§ {In[D~*(q)]+11(q)D(q)}

+T22, & {G(K)D(k—k')G(K')
k,k’

(k)= e TiZ(k)
Il. CONDENSATION ENERGY 2+ 3 (k)2 +D3(k)
The condensation enerdgy is the difference between the
free energies in the normal and superconducting states: (k) =i (k) (4)
ee+3(k)2+d2(k)

E.=Fc—F,. (1)

In the Greens function technique one evaluates the grand frahere® (k) is the pairing vertex and (k) = w,+ 2 (k). The
energy ). The differenceF,—F,, coincides withQ;—(,  conventionally defined pairing gap(k) is the ratio of the
provided that the chemical potential does not change be- anomalous  vertex —and the  self-energy:A(k)
tween the two states. In the Eliashberg theory that we will be= ® (k) w,,/2 (k). Finally, o, is the electron-boson coupling
using, this is the case as the Fermi energy is assumed to laad D(q) is the dressed boson propagator given by
much larger tham\, and the corrections ta due to pairing, D~ *(q)=D,*(q)—TI(q), whereII(q) is the polarization
which scale as powers @/E, are neglectedf? bubble andDy(q) is the bare propagator. A careful reader

There are two ways to computg; using Green’s func- may note that we defin®(q) as a dimensionless quantity
tions. The first approach is to use the general formula for thgsee Eq(3)], while the actual boson propagator has a dimen-
ground-state energy of the interacting fermionic system irsion of inverse energy. This does not cause problems, how-
terms of the integral over the running coupling constant ever, asD appears only in a combination with?, and the
extra overall energy factor can be absorbedrn

Equation(3) is quite general. Its use for the calculation of
E. takes into account not just the introduction of the pairing
vertex® but also changes in the fermionic self-enekyand
where(), is the Free energy for free fermions, is the full  the polarization bubbldl. Thus it calculates the contribu-
self-energy, andG={i[w+2(k,\")]—¢} " is the full  tions toE, from both the fermionsnd bosons. We will be
Green's function. Both are functions of a four vector of mo-using Eq.(3) as the point of departure for our analysis. We
mentum and Matsubara frequenky- (k,w,) and the run- first briefly review phonon superconductors and then discuss
ning coupling constank’. Note that here and below we in more detail magnetically mediated superconductivity.
define2, with an extra factor of.

Equation(2) is applicable to both normal and supercon- Ill. PHONON SUPERCONDUCTORS
ducting stategfor the latter,X, (k,\") has a pol§ however, is ’
not convenient for our purposes as numerical calculations Phonon superconductivity has been discussed in great de-
then require solving the Eliashberg equations for a large setil in the past*'>’In order that the distinctions between

A dN/
0=0,-iT3 fo “FOASKA), @
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the phonon mediated and magnetically mediated supercorisecond, the momentum integration ou€r can be factor-
ductors may be properly appreciated, we briefly review inized: the integration over momentum transverse to the Fermi
this section the results which will be important to us for thesurface involves only normal and anomalous fermionic
comparison of the two cases. We also present an interpret@ropagators, via,, while the integration along the Fermi
tion of the physics behind Eliashberg theory, as well as arsurface involves only the bosonic propagator in which one
expression for the Free energy, valid for arbitrarfw). can setk|=|k’'|=kg, i.e., deviations from the Fermi surface

The approximations made in the phonon case are assoare neglected leading to a bosonic propagator dependent only
ated with the smallness of the sound velocitycompared to  on frequency. Corrections to this approximation again scale
the Fermi velocityvg . It turns out that higher-order closed as\vg/vg. Finally, it is assumedwithout justification) that
linked diagrams form series in powers ©#s/ve, wherex  the Fermi surface is isotropic in the sense thatis consid-
is the dimensional coupling constant which scales withered to be independent kf Under these approximations, the
ay_ (see below. The approximation, attributed to momentum integration in the equations B(w) and ® (w)
Migdal'® and Eliashberd’ is to neglectO(\v</vg) terms  can be performed exactly. Approximating the momentum
without assuming that is by itself small. This would imply sum by an integral over energy and an associated density of
neglecting all terms labeled as dots in E§). statesN; as

The physics behind the Migdal-Eliashberg approximation
is best revealed by analyzing the perturbation serieX {éi) 2 N J * de
and® (k). These series can be separated into terms that scale K L
as powers of\ and terms that scale as powersxafs/vg . ) ) ) ) . ]
The perturbative series in powers X< /vg arises from the ~ inserting Egs(4) into (5), and performing the integration we
actual electron-phonon scattering, and the factgiv re-  obtain
sults from the fact that in this process electrons are forced to

(6)

vibrate at phonon frequencies far from their own resonance. S(0)=w+7TND, o> D(o—o')

This gives rise to vertex correctiorfat typical pairing fre- oY

guenciey, and to an equal renormalization of fermionic -

ande,, i.e., the quasiparticle residue is renormalized, but the 2(w')

guasiparticle mass remains a bare one. The vertex correction X 5 <> '

diagrams forX (k) and ®(k), embedded into the closed \/A (0")+2%(w’)

linked diagrams, gives rise to higher-order skeleton diagrams

for the Free energy, and it is these diagrams which are ) D(w")

dropped. D(w)=7TN >, a._ D(w—o') = :
The terms that form series in are different and they are o' \/Az(w')JrEZ(w')

not considered to be small. In the normal state, they can be (7)

understood as coming from phonon-induced interactions be- _ : .
tween electrons and their own zero-sound collective modes, AN €ssential feature of the above equations is that apart
These terms do not contribute to the vertex renormalizatioff O™ the assumption of the smallness Jfs/v, it is as-
(at typical frequencies for the pairingand give rise to a sumed that the phonon polarization bubblék), which ac-
3 (k) that only depends on frequency. TB¥)) terms also counts for the effects of the eIectr_on; on phonons, may be
contribute to the pairing problem and in the superconducting€9lected. Analogously to the derivation of H§), an ex-
state give rise t@ (k) that again depends only on frequency. Pression folI(k) can be formally obtained from the feature
Neglecting the higher order skeleton diagrams, Eliashberdat {s given by Eq.(3) is also stationary with respect to
obtained the closed-form expression fot given in Eq.(3).  varnations inlI(k). The conditions(,/5l1(k) =0 yields
The closed form, coupled equations for the fermionic self-
energy 2 (k)= (w) and th_e pairing V(_erte>d>(k)=<I>(w_) [1(k)=—2TD(0)>, ai,k,[G(k)G(k—k’)
then follow from the condition tha€)¢ given by Eq.(3) is K’
stationary with respect to variations ¥{k) and® (k). The L
conditions 50/ 53 (K) = 80/ sD(K) =0 yield FRIOF(k=K)]. ®)
The fact thatl1(k) is irrelevant to the phonon problem is not
S . 2 , L immediately apparent and this issue must be considered care-
E(k)_wﬂT% - G(K)D(k=K), fully. In the normal state,
Us wm Pr
. , , IM(k)oeN — — 7= 9
)= —ITS e FOD(K=K). (5) o o TKI ©
reflecting the decay of a low-energy bosonic mode into a
The Migdal-Eliashberg approximation has two further im- fermionic particle-hole pair. This decay term obviously can-
plications. First, the fermionic dispersion may be approxi-not be neglected at the lowest frequencies as it accounts for
mated by e¢,=ve(k—kg), as typical pairing frequencies the leading low-frequency dependence ®fw.). That is,

should be much smaller thaBe if Avg/vg is to be small. for an Einstein phononDO(wm)=2w%/(w%+wﬁ), where
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wp is the Debye frequencywe recall thatD (w,,) is dimen- 2

sionless, henceD‘l(wm)zDgl(wm)—l'[(k)wl—l'[(k) at A=—. (13
the lowest frequencigsHowever, forh =0(1), thefrequen- @Wp

cies relevant to the pairing problem are of ordgy, typical Equation(12) may be simplified by making the standard

momenta are of ordepg, and hencdlI(k) at typical fre-
guencies is small to the same extenthas,/vg and other -
similar terms in the Eliashberg theory. In the superconduct=24,, 2, /on=A4, Z, . Substituting these forms into Eq.
ing state, the low-energy phonons are gapped, and at fré12) we obtain
guencies smaller thaA,

substitutions >, =ont%, =wnZ, and P

®m

2
w _
s Om O Pr Q=—N{ 27T> ——— + 2022

v
H(k)m)\;TW_Dm. (10 m ,/w2m+Alzvm

This difference betweehl (k) in the normal and supercon-

ducting states reflects a fundamental change in the bosonic % 2

dynamics at small frequencies due to the gapping of low- ) \/w2+A2 \/w 24 A2

energy fermionic excitations. Still, however, at typical fre- ' moTem N “m’

guencies for the pairingw~A~wp ,II(k)~Nvg/vg<1,

and the polarization operator can be neglected compared to v 1 (14)

the bare phonon propagator. This was shown explicitly by '

Bardeen and StephErwho evaluated the contribution &,

from the change of the bosonic dynamics between normalrhus we see that the free energy for a phonon supercon-

and superconducting states and demonstrated that in the phductor is dependent only upon the form of the gap and

non problem the bosonic piece . is small compared to s not explicitly upon the self-energy,, .

the electronic piece and hence can be safely neglected. A comment is in order here. The Lurtrlcinger-Ward result for
We will see below that neglecting the bosonic contribu-the Free energy as a series of closed linked skeleton dia-

tion to E, is not a justifiable approximation if one is dealing grams is, strictly speaking, only valid for the minimumg@f

with magnetic superconductors where the bosonic mode is ige., for the self-energy that satisfies the stationary condition.

collective mode of the fermions. This is the main differenceQtherwise, the Luttinger-Ward generating functiofwahich

between phonon and magnetic superconductors, and we wik what they actually calculatedioes not necessarily coin-

examine this issue in the next section. cide with the Free energy. In the normal state, this does not
For completeness, we present several useful form&fpr cause a problem with Eq14) as Q) does not explicitly

and E, for the phonon case. For simplicity, we assume thadepend o . (We use the capital subscript§*and “ N”

the electron-phonon coupling is independent of frequencyto denote superconducting and normal states, respectively.

and the phonon spectrum consists of a single Einstein bosdn the superconducting state, E¢4) does not imply thaf)g

wmon +A, A,

(wm— wm’)2+w%

with a frequencywp~vpg, i.e., is at a minimum, i.e.5Qg/56A=0. We did not analyze in
detail the corrections to Eq414) which would stem from the
Fo= difference between the Luttinger-Ward-Eliashberg functional
w2 and the actual Free energy, but the estimates show that these
@p

_ (11) corrections would again be small kvg/vg. If this is the

w2m+ w% case, then Eq14) can be used for the study of the profile of
the free energy, i.e., how it evolves for different solutions of

Integrating over momentum in E¢3) as before, we ob- the gap. In particular, we verified that for the BCS case, the

D(q)=D(wm)=

tain expansion of Eq(14) nearA=0 to orderA? yields the sign
3 change of the slope at exactly the BCS transition temperature
Om&w, _ Te..
Q=—-N¢{ 27T = - +T?m%a? For the remainder of this paper, we will only be consid-
\IEmer(Dwm ering Q) evaluated at the equilibrium solution Afwm when
- the applicability of the Luttinger-Ward formalism is rigor-
Ewmzwm/+®wmq)wmf ously justified. To this end, the Eliashberg equation for the
X 2 - > ~» 5 equilibrium squtionAwm may be obtained by minimizing
m.m \/Ewm+®wm\/2wm,+‘bwm, Eq. (14) with respect taA. This yields
1 _ 1 1
2
X , (12) A, =7Ta’2,
(0m— )2+ ) ; m (0n=on)*+ o \/wrzn/-i-Aim,
where we introducede®=2a?N;w3. The dimensionless X[A —mA ] (15
coupling\ introduced above is related o’ as oy O
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This solution forA must then be substituted into E(L4) Using Eq.(18), Bardeen and Stephen obtained the following
allowing the calculation of the free energy at its minimum, expression folE; ¢ =E.:
and henceée .= Qgs— Qy where(y is obtained from()g by

?f%wk\)ge?ow.o. Performing the computations, we obtained Eq. S waT§ ( Eé,mef‘I)im— |ES,wm|)
There is, however, a simpler way to proceed towdtgs
In this approach, one specifies at the outset that one is only IiN,wmI
interested in the Free energy at equilibrium. In this case, the X[ 1- ———|. (21
fact that Eq.(3) should be stationary with respect to varia- 7 /igw +q>i
U m m

tions in2, and® can be invoked even before the momentum
integration is performe®~* Substituting Eq.(5) into Eq.  The practical importance of Bardeen-Stephen result is that at
(3) and dropping the phonon piece, we obtain high frequencies, whebs,, ~Sy,,, ~wp, the integrand in
Eq. (21) behaves a@im/wﬁ], and the frequency summation
Q=-T> {Infeg+3% +®F 1-i%, G(k)+id, F(K)}.  rapidly converges. This makes the Bardeen-Stephen expres-
P (16) sion more convenient for numerical computations than Wa-
da’s expression.
Introducing a density of statd¥;, integrating overe, and We emphasize again that the equivalence of the two forms
subtracting the normal-state result from the superconductintpr E. is the consequence of the fact that in the phonon case,
result gives an expression for the condensation energy firéhe change of the bosonic self-eneldyw) between normal
derived by Wad&? and superconducting states can be neglected, and the accu-
racy of this approximation is governed by the same param-
eter\vgs/vg as the accuracy of the Eliashberg theory. In the
E = —NenT 32 4 p2 next section we shqw that this ot the case for spin mgdl-
¢ o % ES“"m “m ated pairing. We will see that for superconductors with an
electronic pairing mechanism, the feedback on the pairing

-~ o 5 boson plays a crucial role, and Wada’s expressionHgr
_ |25,wm|_ \lzs,mefq’wm would give completely erroneous results. Instead, the full
~ 2N 0|+ @l = : expression3) must be used.
Eémer(I)im We pause now to connect with the BCS result for the

condensation energy. BCS is a weak coupling theory. It as-
17 sumes that the only change between the normal and super-

Let us clearly state what the Wada expression calculates. It @onducting states is the introduction of the pairing verex
the strong-coupling result for the condensation energy awhich is given by the BCS gap (®gcs=4). The fermi-
thermodynamic equilibrium, under the assumption that ther@nic and bosonic self-energies are both taken to be negli-
are no appreciable changes in the bosonic mode between tle. The BCS condensation energy is therefore calculated
normal and superconducting states. In other words, it ackom the Wada equation with the substituti(ﬁwm=wm
counts for the appearance of the pairing vertex, as well a3 3 ~,,. Taking the zero-temperature limit we obtain
any changes to the fermionic self-energy, _but ignores anY¢or some simple algebra

feedback effects between bosons and fermions.

Dm

An equivalent expression fdf., more advantageous for o 22+ A2 A2
numerical calculations due to a faster convergence at high EBCS= —N; —= 20=—N;—-. (22
frequencies was obtained by Bardeen and Steph@hey 0 Vo t+A 2

noticed that an integral relation betweB,, andXs,, This is the result that we already cited in the Introduction.

= We also see that the frequency integration in E2p) is
|25'wm| confined tow~A, i.e., the condensation energy comes from
Ner T2, 2N ————="25,=0 (18 fermions in a narrow region around the Fermi surface. Al-
" \/ngm+®im though this result looks rather straightforward, the issue of
) ) ) which fermions contribute to the condensation energy in the
exists that in turn is the consequence of the fact that BCS case is nontrivial, and we discuss it in detail in Appen-
dix B.

TS [ a3, Go, (0-TZ [ %S, G0
19

IV. MAGNETICALLY MEDIATED SUPERCONDUCTORS

. We now proceed to the case afagneticallymediated
as both quantities can be reexpressed as a cross product pajring. The bosonic mode that mediates the pairing is now

the low-energy spin susceptibility. The Luttinger-Ward for-
TZE d%kD,, _, Gy o (K)Gs, (K). (20) ma_lisn_w, which deals with an arbitrary bosonic m0(_je is still
mn n Fmo T Em "N valid, i.e., the Free energy has the same form as in(8q.
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The only immediate modification is that now the second term ¥(Q)
of Eq. (3) has an extra factor of 3 reflecting the fact that all Xo(Q,w)= 5 5 -5 (25
three components of the spin susceptibility contribute 1+&9(q— Q) —(wlvsé ™)

equally to the pairing. The Free energy then has the form . . . .
qually P g 9y where¢ is the magnetic correlation length. This bare suscep-

tibility comes from fermions with energies comparabldsio
and should be considered as an input for the low-energy
theory.

The dimensionless coupling constant for the model of Eq.
(24) [defined such that (w,kg)=Nw in D=2] is

O=-2T> r%In[e§+§2(k)+<b2(k)]—iE(k)G(k)
p

. 3 -
+id(k)F(k) +§T§ {InN[D~*(a)1+TI(q)D(a)}
N=40/(3veé ), (26)
+T22 g {G(Kx(k—k)G(K) o , ,
K.k’ where 0=99"x(Q)/(16w¢°). The numerical factors are
+FK) x(K—K)F(K )+ . (23)  chosen for further convenience. This overall sealand the

coupling\ are the only two parameters that matter at strong

The dimensionless bosonic propagaiq) is now related coupling. Other paranlelte.rs, e.gs.,, turn out to be irrelevant

to the magnetic susceptibility;;(q)=x(q)5; as D(q)  (See below Note tr21atw is in fact independent of asx(Q)
=x(9)/x(Q,0), whereQ is the momentum at which the by itself scales ag-. o _

static susceptibility is peaked. Similarly to phonog$éq) is Near a magnetic transitios;, is large, i.e.A=1, and the
related to the bare susceptibility by~ 1(q)=xo (q) spin-fermion model is a strong-coupling theory in which
—TI(q). We discuss the exact form gf(q) below. Finally, feedback effects between fermions and bosons are extremely

g, is now the coupling between the fermionic propagator andmportant. It has been discussed in depth in Ref. 18 as a
bosonic(magneti¢ mode. theoretical model as well as with respect to the cuprates, and

At this point the formalism is quite general, taking into provided an explanation of many unusual properties of the

account all changes to both the fermions and bosons. In ord&“prageﬁ such as _n_on—ZFZermi-quuid behavior in the normal
“* dy2_y2 pairing;~ and the pseudogdp.We note,

1
to proceed further, we will need to assume a specific modeftate: Irnng
that will allow us to neglect higher order terms in E83). though, that there is still a great deal of controversy regard-

We choose the spin-fermion model in which fermions arelng the full description qf these phenomena. Since, however,
paired via their own collective spin excitations. Several ayMany researchers believe that the cuprates are strongly
thors have demonstrated that the exchange of collective spffPuPled superconductors, it is instructive, regardiess of one’s

fluctuations peaked at or near the antiferromagnetic momerR"€judices, to examine the condensation energy for the spin-
tum Q= () yields an attraction in thel,> .» pairing fermion model in detail, so as to illustrate the importance of
L X —y

channeP We will be studyingE, for this kind of pairing. properly accounting for all feedback effects when dealing

The spin-fermion model is described by the effective acWith @ strongly coupled system. We will show that the spin-
tion fermion model accounts for many aspects of the experimen-

tally measured condensation energy.

B B
S=-— f drf dr' >, Clg( 7)Go YK, 7= 7')Cyo(7') A. The validity of the Eliashberg approximation
0 0 k,o

We begin by briefly discussing the validity of the Eliash-
1(8 B, 1 , ) berg approximation for anti-ferromagnetically mediated su-
+ EL deo dr % Xo (47— 7)S4(7)-Sq(7") perconductivity and how the assumptions inherent in the
Luttinger-Ward condensation energy formalism are justified.
B For the purposes of calculating the condensation energy,
+9qf0 A7 §(7)-S¢(7), (24 there are two main issues to be discussed. First, as with
a phonons, it is possible in the spin-fermion model to separate
_ . .. the perturbative series such that the terms resulting from ver-
where Go l(ifr'T)_: d.~Vi(k—kg) is the bare fermionic o, corrections and higher order diagrams are “small” and
propagator,cy , is the fermionic creation operator for an therefore irrelevant. Second, for a spin susceptibility peaked
eIectEon with crystal momenturk and spin projectiony, s gt or neaQ= (, ), magnetically mediated pairing yields a
=c'ac is the fermionic spin ¢; are the Pauli matricgsand  d,>_,> symmetry of the pairing gaf’.At weak and moderate
g is the coupling constant which measures the strength of theouplings, the momentum dependence of the pairing gap can
interaction between fermionic spins and the collective spirbe reasonably well approximated by a &pscosk, form
degrees of freedom described by bosonic variaBiesFor  (the firstB;4 harmonics of theD 4, group. Since the ef-
simplicity, below we assumg,=g to be momentum inde- fects of pairing are greatest near “hot spofgbints on the
pendent. The bare spin susceptibitityl(q,r) isassumed to Fermi surface connected = (,7)] one can invoke an
be peaked a@Q and has a standard Ornstein-Zernike form,effective momentum independender the problem, while
i.e., its Fourier transform over is still retaining thed,2_,2 pairing symmetry. We briefly enu-
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merate the reasoning leading to the above conclusions heneeark points on the Fermi surface connected by the antifer-
A more detailed discussion can be found in Ref. 18. romagnetic wave vectd® (hot spots, 2 (k,o) depends on
(1) Spin fluctuations are collective modes of fermions,w, but not one,. This momentum independence is crucial
hence there is no difference between the Fermi velocity anébr the computation of the spin polarization operator: for
the spin velocity, i.eys~ve. Thenvg/ug~N\, i.e., thereis  2(K,0)=2(w), the density of states is flat, addl, turns
no way to separate a perturbative series based on the diffeput to be independent & (w) and is the same in the normal
ence between velocities. From this perspective, there is nstate as it would be for free fermions:
Migdal theorem for spin fluctuations, and the perturbation
theory with thebare spin propagator just holds in powers of wm Om
the coupling\. M(wy)=—=4\=. (27
(2) The absence of smalls/vg implies in turn that the “sF @
polarization operatofl (Q, w,,) =, is not negligible, as it
is for phonons, but is rather dominant fo&1. The conse- ©
guence of this is that one must simultaneously solve for both

the fermionic and bosonic self-energies. S on momentum perpendicular to the Fermi surjaoeevails,

(3) In the normal statell,, <wp, at low frequencies, i.e., 4 5k ) still depends on the momentumong the
whenll, dominates the frequency dependence of the spifrermi surface. ATT=0, the self-energy takes the form
susceptibility, spin fluctuations become diffusive. This trans-

Here we have introduced the notatioxgngl(m\z). This
sr Scales ag 2 and vanishes at the magnetic transition.
(6) Away from a hot spot, this independence frein(i.e.,

mutation of the spin dynamics from propagating wiik 20

~vg for A<1 to diffusive forA=1 implies that at strong 3 (k,w)=N(k) , (28
coupling bosons become soft compared to electrons. Such el

softness of bosons, is precisely the physics behind the 1+\/1-i weK)

Migdal theorem. Not surprisingly then, the diagrammatic se-
ries for fermionicX (k) obtained with a diffusive bosonic \ypere
propagator again can be separated into two different subsets
of terms. One set of terms now scales as powers af In
instead of powers ok, and the reduction of the expansion

parameter is a direct consequence of the softness of bosonsdT( is th ok—k | he Fermi surf
compared to fermions. As for phonons, the series in In 2" Is the component Hs along the Fermi surface.

gives rise to vertex corrections and to the renormalization off Nis k_ dependenceannot be ngglected a.t the IOW?St fre—
the quasiparticle residue. There are also terms that form séuencies as near the transitionkaappears in a combination
ries in A. As with phonons, these terms come from boson-With &. However, for w>wsgk), the k dependence
induced interactions between electrons and their own zeradisappears: 3 (k,w)~(iww)Y? (we used the fact that
sound modes. That these series hold in powers of the 83ame2) (k)[ ws(k)|¥2=w).  Alternatively  speaking, at

as the perturbation series with a bare boson propagator cap> ,5(k), the whole Fermi surface acts as one big hot
be easily understood as at low frequencies, the interactiogpot. In this range, the Eliashberg theory becomes applicable
between fermions and their zero-sound modes is mediated B all momenta.

a static boson, and hence is insensitive to any transmutation (7) \we see that whether or not ttkedependence of the

of the bosonic dynamics. self-energy can be neglected depends on what the relevant

(4) This separation of terms into perturbative series.of andk are. For the pairing problem, a detailed analysis shows

and In\ allows an approximation similar to that made for ical f . t order and tvoicaik f
phonons to be made here. In the magnetic case one negleci@t typical frequencies are of order, and typicalk are o

termsO(In \) compared to terms of order. This is not as  Order /vg. Then typicalwse(k) are of order, i.e., the

good of an approximation as the neglectof, /v terms for ~ momentum dependence along the Fermi surface introduces
phonons as In is also large when is large. However, the correctionsO(1). These corrections have been checked in

vertex correction is only (1/8)IN], and in practice the ne- the basic physics. Note also that the theory assumesethat
glect of logarithmic terms is well justified for all physically <Eg, otherwise the linearization of the dispersion near the
reasonable. (A\~1—2 at optimal doping In addition, from  Fermi surface would not work. This in turn implies that the
a purely theoretical standpoint theNnterms can be made pairing is confined to fermions in the near vicinity of a hot
parametrically small by introducing a large number of fermi-spot.
onic flavorsM [a vertex correction is then (I¥8)In \]. Fur- (8) In the phonon case, the momentum integration in the
thermore, a one-loop RG analysis of the logarithmic termsxpressions for the Free energy, fermioBi@and anomalous
shows that they give rise to fractional exponents, but do novertex® can be factorized and performed exactly. Such mo-
change the physics, and, in particular, do not affect the pairmentum related corrections are always small to the extent of
ing problem. Nvg/ve. In the magnetic case, the corrections resulting from
(5) As with phonons, the series hyields a> (k,w,,) that ~an analogous procedure are always smaller than 1, but
is predominantly dependent on frequency. More specificallyywhether or not they are small parametrically depends on the

MR =N[1+(kET?  wsdk)=wsd 1+(kE?] (29

214508-7



ROBERT HASLINGER AND ANDREY V. CHUBUKOV PHYSICAL REVIEW B68, 214508 (2003

frequency. For frequencies relevant to the pairing, the correc- S 1
tions to the factorization are aga®(1). S —aaTS) @
We see from the above considerations that at strong cou- “m o )1/2’

i i iZ +(I)2 (1_Hw
pling A=1, the softness of fermions compared to bosons @, o

gives rise to an effective Migdal theorem, i.e., the vertex
corrections are smaller tha which in turn predominantly (D“’n 1
depends on frequency. Contrary to the phonon case, there is <I>wm=>\7TTZ ,
no single parameter governing the validity of the Eliashberg n 32 + @2 (1—Ha,mfn)1/2
approximation. There are logarithmically divergent correc- " "
tions, but they do not affect the physics of the pairing, at AN2

least in the one-loop approximation. There are also physi-r (Q)= —aT

cally irrelevantO(1) corrections stemming from the mo- ~ “m ©

mentum dependence of the fermionic self-energy and the

pairing vertex along the Fermi surface. An Eliashberg-type S, 3
theory is valid when both corrections are neglected. As we xz —1+ i
stated previously, this is quite reasonable from a physical n \/iz + P2 \/gz + P2
perspective, and we now proceed under the assumption that “n O ¥ Cnem o Ons

the momentum dependence Bf and ® can be fully ne- (32
glected. In the case @b, this implies that we approximate
the dy2_,2 pairing vertex(and, hence the gap=do/[
+3(w)]) by its value at a hot spot, taking into account the
fact that thed-wave symmetry of® implies that it has a
different sign between hot spots separatedby

+®, O

@n+m Pn+m

We emphasize again that E2) contain only two inputs:

the overall energy scale that is set by the spin-fermion
interaction, and the dimensionless spin-fermion couphng
« ¢ that diverges as the system approaches the antiferromag-

netic instability. We also recall that the energy scalés the
ultimate upper cutoff for the strong coupling behavior
., <onmfor o> w,), while dimensionlesa can be rep-
We now proceed by calculating the thermodynamic poten- ™

. 2__ - .
tial at its equilibrium value. As in the phonon case, the conJesented as the ratio 3°= w/ s of » and another typical

dition that() is stationary with respect to variationsdf @, Scale“.’SF.that sets the upper boqndary of the Fermi-liquid
andIl gives behavior in the normal state. We illustrate the forrTEQjm,

(bwm' andl'[a,m in Fig. 1 for both the normal and supercon-

ducting state.
E(k)=3ingx(Q)E G(k")x(k—=k"), Substituting Eqs(30) into (23) we obtain the equilibrium
k' thermodynamic potential in a magnetically mediated super-
conductor as a sum of two par€, comprising the “elec-

_ , , tronic” contributions andQ g, comprising the “magnetic”
®(k)= —3|T92x<Q>§ F(k)x(k—K), part: o

B. Thermodynamic potential at equilibrium

Q:Qel'*'Qspin; Ec:QS_QN:Ee,eI_Ec,spin (33
H(k)=—2T92X(Q)Ek [G(K)G(k—k')+F(k)F(k—k')]. ~ Where

30 2 -
0 Qd=—T§:f dkzww&+zi+¢i]
Under the assumption of the momentum independenég, of m (2m) " "
@, andII the normal and anomalous Greens functions have —i3, G, (K)+i®, F, (K},
the form m- “m m “m
~ 3 d’k x(Q,0) x(d, @)
. 073 [ X[ L
G, (k)=— e;:I—Et,,m, w2 % (2m)? x(9, wm) m x(Q,0)
m €+l T (34)

The electronic ternEC,e,=Q§|—Qg'| accounts explicitly for
P the appearance of the anomalous pairing vedtgx, andfor
F, (k=i + (31  the feedback changes to the fermionic self-energy. This term
" €&+32 +P2 by itself leads to the Wada result for the condensation energy.
" " The termE gpin= Q55— Qpin @ccounts for changes to the

and thed,2_y2 pairing impliesF ,(k+Q)=—F (k). Fur- spin propagator via the changes to the _spin polarization op-
thermore, as we discussed, the momentum integration in E§ratorIl,, . Together these two expressions account for the
(30) can be factorized and performed exactly. This yields feedback effects between fermions and bosons in a strong-
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coupling theory. We point out that the distinction between
Q¢ and Qg is quite artificial, as the two are intimately

i
n

PHYSICAL REVIEW B8, 214508 (2003

connected by mutual feedback. It is themof the two which
is physically relevant, and the two parts Bf may not be

considered separately unless, as in the phonon case, one

them is negligible.
As 3 and® andIl depend only ornw, the momentum

integration in Eq(34) can be performed explicitly and yields

Ec,eI:_Nfﬂ'Tz \/ié,wm+q)im
m
|§S,wm| N igwm-I—(Dim

~ SN 0]+ lonl ,

380, TOL
(39
3T 1_HS,wm
Ec,spin= - ;&_2 % HS,wm_HN,wm+ |nm.
(36)

The first termE; o is the Wada result. The second term

Ec spin IS new. Note that its expansion iHgs—IIy begins

with the quadratic term. This is the obvious consequence of
the fact that the Free energy is stationary with respect to

variation ofII.

C. A cancellation of divergencies

At a first glance, the electronic part of the condensation
energy is qualitatively the same as the phonon result. This

turns out, however, not to be the caseEag, in fact contains

a divergent piece which is canceled out by the divergence ir

Ec,spin- INdeed, consider the high frequency par&gfy. At
high frequenciesiwm dominates overbwm, and the elec-

tronic part of the condensation energy reduces to

Qo= =NemT2 s | [Eno +0 6D

Zg

(units of ®)

Iy _

—
n
T

o
O
T

(a)
(b) |

e
o

o
o
T

54
0
T
L

(units of ®)

I
o
T
1

e
=
T
L

(=N}

units)

=10

(=}
L

mensiopless

1
&

(

' /o

FIG. 1. Matsubara frequency solutionshat 1 for 2, (a), ® (b),
andII (c) in the spin fermion moddIEq. (32)] for both the normal
and superconducting states. Note tRatis a strong function of
frequency and may not be neglected. The apparent nonconvergence
of 3 at high frequencies is spurious and is discussed in the text.
Further note thall changes appreciably between the normal and
superconducting states. This changeist be taken into account

where the ellipsis stands for other terms that are all finite, aghen calculating the condensation energy.
one can easily demonstrate. Examine next the equation for

3. By making the substitutionr, =®,, on/%, we may
write Ewm in the following form:

S, =TS (39)

1
n \/w2n+A7n(1—me,wn)1/2'

Since the gamwm is expected on physical grounds to vanish

at the highest frequenci¢and computations indeed confirm
this), the frequency integral in Eq37) converges, i.e., the
electronic part of the condensation energy would be finite.
The situation is very different when changeslinare taken
into account. Although at high frequencﬁ@wn indeed con-

Were the bosonic spectrum unchanged between the supéterges tdly,, , the two expressions are different at frequen-

conducting and normal statebl((=1Ig) then we could ex-
pand Eq.(38) in powers ofA,,, and would find that at large
frequencies

ES,wm_EN,w oo, (39

cies comparable to typica{wm. Since for arbitrary large,

in Eq. (38), there is a range of running, wherellg andIly
differ, 2 5 andX do not converge at high frequenci&gywn

remains larger tha|§lN,wn by a constant. We illustrate this

behavior in Fig. 1a).
This nonconvergence &y and g seems at first glance
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to imply an infinite result for the condensation energy. In- 2 ' ' ' '

deed, this is true only under the assumption that fermonic  18r 1

bandwidthW is infinite, otherwiseXy andXs converge at  _ 16 -

the scale of the bandwidth. However, even in this situation,ls 14F ZN g

the electronic contribution to the condensation energy turns,_, , | S

out to be very large—of the order o¥. o)
It turns out that this near-infinite contribution is compen- g

sated for by thespin part of the condensation energy, such g

N’

- _
0.8 u

0.6 - b

that the totalE. remains finite even when the fermionic Y

bandwidth is infinite. As written in Eq:36) the spin conden- 2" S )
sation energy looks quite convergehtve useHNywmoc Om - 02 T
However, the expression for the spin polarization operator is % 2 o/® 4 5

formally ultraviolet divergent, and extra care has to be taken

in evaluating the difference betweeh ,, andlls,, . FIG. 2. Spin-fermion solutions faX s and= ys as defined by Eq.

In what follows we explicitly re-express the divergent (40 in Matsubara frequencies. Note that by repladihg by I1g in
contribution inE, ¢ in terms of the spin polarization opera- the normal-state expression far, we have obtained a convergent
tor, and show that when we take the divergent piece fronexpression for the electronic part of the condensation energy as
Ec.er@nd add it toE gpin, the dangerouBly , —TIIs,, term discussed in the text.

in E¢ gpin is canceled out, and the remaining terms are all
convergent, and in evaluating them we can safely use thg 5t the term|§N| in E, ¢ arose from the integration over

regularization in which the ultraviolet divergent piece in momentum of th& G term in Eq.(34). Writing this for both

.o, is absent, andly,,, *wm. In practice, this regular- o hormal and normal-superconducting self-energies, we
ization amounts to evaluating the integral oegrfirst, and  haye

the frequency integral later.
In order to accurately single out the divergent piece in

E. o and relate it to the spin polarization operator, we use a d%k
trick originally suggested by Bardeen and Stephen and define NfoTé |EN,Ns,wm| =T§ f —(277)2 'EN,Ns,meN,wm-
a mixed self-energy. s (NS stands for normal supercon- (42

ducting. This is the normal-state Eliashberg equationXor

but with thesuperconductingpolarization bubble . i
By using the expressions f& and Il the above may be

d%q written as a term ik g as follows:
iSnso =—a?mTY, f —Xs,0,(A)Gnw, . (K+Q)
“m N (277)2 »@n @ntm
d?k
+T2 f 12N NSw, ONow,
= W)\T; Sgdwn)w. (40) m (277)2
. . . d?k d2q
We plot X \s given by the above equation along willy in =T, f —3¢2aT> J —— XYnnse (Q)
Fig. 2 and show that they converge at high frequencies. We m (2m)? n (2m)2"

then add and subtragtys from E ¢

Ec,eI:_Nfﬂ'TE \1§§,w +(D¢20 _liNS,w |
m m m m

|§S,w |_ \/iéw +CI)3)

m m m

X GN,wn+m(k+ q) GN,wn(k)

d?q XNNSw,(d)
2m)?  x(0)

:_gT; f (

) d%k
+| @ X1 20°x(0) 7 T2, f o)
VEE, +07
HlE w0 |~ [ 11 @1 XGN,wn+m<k+q>GN,wn<k>]
One can easily make sure that o now consists of a con- 3 d2q
vergent piece plus the divergefityd —|3y|. The above is R TAP- f WXN,NS,%(Q)HN,%- (43

actually |3 ng — |2 | as theoy,'s cancel.
We now explicitly express this divergent piece in terms of
the spin polarization operator. To accomplish this, we recalPerforming the integration overwe find that
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We now move the divergent piece frofdg to gy, and
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5Q of o (49)
spin wspfz 0'2:1

where the last step uses the definition«fr given previ-
ously. At the same time

5ﬁe|~ Nfaz. (50)
The fermionic density of states; is a product of W/ (the

write the condensation energy Bs= 8Q o+ 8Q ¢, With . . L~
gy Be el spin leftover of the integration oves, , and a typicak along the

Fermi surface As typicalk~ w/vg,

8Qg=—NiaTY, | /23, +®2 N~ 2 51)
m m m

5"

UF

_ — Substituting this result into Ed50), we find
|ES,w |_ \/ng +CD5) 3
~ m m m ~ w

—Ense | T @l : 5Q ~ —, (52
m S2 2 el 2
25, TP, VE
m m
(45) i.e., 6Q¢ and 6Qp, are indeed of the same order.

In the above discussioN; appears as aextra parameter
in 6Q. This is because in the calculations we neglected the

SF . 3T2 E ., _HN,wm+(1+HN'“’n) momentum erendencejllgng the Fermi sur(ak'tejlctual
8mwgs m momentum integral ovedk is replaced by a typicdk). If
this momentum dependence was includleel, by using the
<In 1-ls,, (46) self-energy from Eq.(28) with k-dependenti(k) and
1-Tly ., wsHK)] then the electronic part would be free from uncer-

tainties. Unfortunately, this computation also requires the

The electronic part is now fully convergent. For the spin partknowledge of thek dependence of>(k) along the Fermi
one can easily check that at large frequencies, wiign, surface, which is technically difficult to obtain. In contrast,

andHS,a)m are both large, the expansion of the logarithm in 5QSpin_is the result of a full two—dimegsion_al integration over
Es.spin Cancels the dangerOLHS,wm_HN,wm term. The re- (L;:grstg?r:gerg'omenta, and the result @), is free from un-
mgining terms are aII_uItr_avioIet convergent, i.e., are insen- Fortunately, it turns out that within théapproximatg
sitive to the regularization procedure used to evaluatgomputational scheme that we are usiNg,and 1/s£2)
Iy, . This implies that the condensation energy is actuallycan be related. Their relation follows from E@4), as both
free from divergencies, as it indeed should be based othe fermionic self-energy and the spin polarization operator
physical reasoning. are fully expressed in terms of and\. By evaluating the
constant pieces iys, —2n,o, and inllg, —Iy, at
high frequencies and comparing the two sides of &d),
one can expres; in terms of 1/@gr£?). Once this is done,

At this point, the electronic and spin contributions to thethere is no further uncertainty in the condensation energy—it
condensation energy seem to be rather different as the eleg— given by the universal function of times le(wSng)

tronic part containd\N;, while the spin part does not. How- o 3/p2
~ ~ . w”lVE.
ever, 8¢ and 5, are in fact of the same order as we A remark is in order here. The electronic and spin parts of

now d_emonstrate. _Ir_wdeed, as we already said, typical frel-Ec are only of the same order of magnitude as longas
guencies for the pairing are of order and at these frequen- <E;. When the effective coupling exceeds , typical~k

cles =0(1), i.e., the whole Fermi surface is involved in the pair-
ing. In this limit, the spin-fermion calculations are not con-
® trollable. Estimates show, however, that typical frequencies
s o, ~Tno,~ = @7 for the pairing now scale asget?~v2/w~J whereJ is the
exchange integral for the corresponding Heisenberg model.

[Recall thatw~ g2y (Q)/ &2 where the RPA approximation,
is equivalent to Hubbard. In the same approximation, near

a magnetic transitiory(Q)~ ¢2/U, i.e., o~U.] Estimating
i at typical frequencies, we indeed fin®) g, ~J in
agreement with the result by Scalapino and WhifEhe

same reasoning yieldssO e~ NJ2~J%/v<J. We see
214508-11

The relation between 5ﬁe| and 5ﬁspin

Similarly,
S 50, N0, ~ O (48)

Then using Eq(46) for 5ﬁspm:
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therefore that at very large couplings, the spin part of the 08
condensation energy clearly prevails over the electronic part o7
i.e., the condensation energy comes entirely from the spir

. . . . . NO06 [
part. This again agrees with Scalapino and White. 3
— 0.5
O o4
V. THE COMPUTATIONS 1)
=03
In this section we present our results for the electronic and g 02
Bo

spin contributions to the condensation energy for various
In practice, we found it advantageous to perform the calcu- 9!

lations of 5ﬁspin and 5ﬁe| in real frequencies rather than in 0 | | , , ,
Matsubara frequencies. The main reason for this was simply 0 05 1 15_ 2 25 3
that we had previously evaluat®d w), ®(w), andll(w) at O/®

real frequenCIeS and various cqupllngs and could use thesg FIG. 3. The real part of the retarded self-energy for both the
results in the present computations. A more subtle reason is

. . . -~ normal and superconducting states. Observe gt and X\ o
that in retarded formalism, the problem of divergencies Inconverge at high frequencies in contrast to the constant offset in

Ec.er andEc gpin caN be avoided in a straightforward manner ;4 para frequencies. The constant offset goes into the imaginary

(see below. part of 3, Which does not affeck, in the retarded formalism.
A. Condensation energy in real frequencies o .
We first derive the expression for the condensation energy Eee= foo [A+ReXn(0)]

in real frequencies, in terms of retard®qw), ®(w), and

II(w). The Matsubara equations fBg ¢ andE spingiven in . Im3g(w)a—ReXg(w)B . ® q
Eq. (34) have the following form. w |a|2+ |,8|2 anh—z_r w,
Eco=—7T> flion), 3 H
' Ecopim— —— ImIIs—ImII
m c,spin 877252 0 S N
. 1-1lg(w) ®
Ec spii=— 7T - _sY
c,spin m 2 g(iwn), (53 +Imin 1_HN(w)]COthz—Tda), (56)

where theE, ¢ has a sum ovefermionic frequencies and Where®*() —X§(w)=a+i/A. We point out that extreme
Ec.spn Nas @ sum ovebosonic frequencies. The retarded care must be taken_ W|th_ these equations in order to get the
form of these equations, assuming no branch cuts except di®rrect sign of the imaginary parts of both the square root

the real axis are and the logarithm.
We first point out that there is no divergent termBp .

" ® Indeed, in the Matsubara formalism, the divergent term
Ece= —J f’r’et(w)tanr(ﬁ)dw, comes from the fact that at high frequencigés(w,) and
0 Sn(w,) are separated by a constant. Since we defi¥ied
with an extrai, this constant ismaginary. On the other hand,
m ® the first two terms in the retarded formula fg ¢ at high
Ec,spin= — fo g'r'et(w)COI"( ﬁ)dw, (54  frequencies wher®—0 can be written as

32 - _
wheref” is the imaginary part of (f' is the real pajtandg Im =2 5(w) +ReXy(w) =ReXy(w) ~ReXg(w).

is similar. It remains to analytically continu& w,,) and (57)
g(wy) to the real axis. With the Matsubara definitions usedThis follows from the fact thab ¢(w)=3"(w)+i|2"(w)]

in Sec. I, the analytic continuations are as follows: and the branch cut is on the negative real axis. We see that
Ec. Only depends on the difference of Rebetween the
S(wp)— =13 el @), normal and superconducting states, and the integral of this

difference is fully convergent. We illustrate this in Fig. 3.
Analogous reasoning also shows tEt, is also free from
divergencies.
Indeed, the absence of divergencies in the retarded for-
M(wy) — I w). (55  malism is just the consequence of using the Kramersgro
transform which misses the divergent piecesEig, and
The retarded formulas for the condensation energy are thek, ¢,. However, since we already demonstrated that the full

D(wy) = Pre(w),
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100 T T T T T T T T o w
80 - i _fo {Rest(w)—ReEN(w)}tanhﬁdw
0
e Ec,el ]
3 IW(R M w)im] 1-Tl4(w)
w0 1 =— e min————
8n2e2)o NI ()
Kot .
o+ 1 FimTly(w)Ren—as | con® 0. (58
il \\+\ | mIly(w)Re nm cot >T w. (58
40 - i TP . _EC,BCS (a) | Since in the retarded formalism, [ . Re3S\s(w)
o s . . il et —ReX\(w)dw is a convergent quantity, and the right-hand
' T ' ' ' ' ' ' side (RHS) of Eq. (58) is also convergent, we can explicitly
-10- (b) 1 evaluate(numerically both sides of Eq(58) and relateN;
20F i and 3/8r°wse£?, which we label as the spin density of states
jg I ] Ng [Ng= (8/372) w/v2].
~50 - A
I(_60 L E 4 B. Results
=70 - C.spil T As we have already stated, we use previously obtained
80 T results for3(w), ®(w), and II(w). First, we computed
90 1 both sides of Eq(58) and evaluated the ratidl; /N for
-100 - T variousA. We found that with very small variatiors; /Ng
_llé) |I |I |I |I : I| I| I| ~ 59
\ (c) In Figs. 4a),4(b) we present the results for the electronic
ok N 4 and spin contributions to the condensation energy for differ-
% ent values of the coupling. To set the overall scale, we
20} X E 1 adopt a commonly used estimadte=1 st/eV?! We empha-
N ¢ size that changindy; will only change the overall scale and
K=o AR . not the functional form oE.(\).
Y« We see from Fig. &) that the total condensation energy is
=0 Tavg . E cs T negative, as it indeed should be in a superconductor, but that
ol \+\\C\’B | this negativity is of a very different origin than in BCS
) Rl T theory. In BCS theory, which corresponds Xe<1, i.e., w
6 ! s s s s s s M <wgr, the system behaves as a conventional Fermi liquid.
0 ! 2 } NPT % g ! 8 ? In this limit, the pairing potential is static, i.e., the spin part
coupling (A) of E. is negligible, and condensation energy is entirely elec-

tronic andnegative We see, however, fax=1, i.e., in the
strongly coupled regime, the electronic contribution to the
i . ) . condensation energy igositiveand quite large. From Fig.
tehneercondgpi?]tiltogeﬁn;gyé :%??,Zﬁgf?‘cgutﬁ%t(ial;r?;ﬁﬁgza;rzn 4(a) it appears that the electronic contribution changes sign
9y p . PlNgs.. atA~0.4. E; o is negative below this coupling strength and

a guide for the eye. We used;=1 st/eV andN;~0.17 st/eV as . o . )
explained in the text. For comparison, we also plotted the conden’> positive for all\=1/2 presented in the figure. Second, for

sation energy given by the BCS formula using th@w=0) given all A shown, the spin paECVSPi.n is negativesee F!g. 4o)]. 1t
by the spin-fermion model. Observe that the BCS condensatiof@n P& shown thzafc,spin continues to be negative at—0
energy monotonically increases as the coupling gets larger, whil¢/herell—0 as\* [see Eq(32)]. Indeed, by expanding the
the actual condensation energy flattensnat2 and slightly de- logarithm in Eq.(58) we obtain

creases at large couplings. The change in curvature of the BCS

FIG. 4. The condensation energy for various couplingsa)
and(b) are the electronicH; ) and spin E sy contributions to

result at small couplings reflects the fact that the spin-fermion wgp [ 5 B

model becomes BCS-like fox<0.5 changing the functional de- Ec spidlA—0)= _NSTJ Im{ITg—1II\}
pendence oA (w=0) onA\. 0

50 is free from divergencies, we can safely use the =—Nsws,:j {RellgIm Il
Kramers-Kraiig transformation separately fdE; gy, and 0

Ec,el- _ReHNIm HN}<O (59)

The fact that no divergence exists for the retarded formu-
las also allows us to relate the prefactors in fronEgf,and  The above equation is negative, as in the retarded formalism,
Ec,spin IN @ straightforward manner. In real frequencies, Eq.Relly=0 and both Réls<0 and Imlls<0, and scale as
(44) takes the form A asn—0.
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We also see from Figs.(d),4(b) that at largen, both the  densation energy retains its BCS form despite the fact that
spin and the electronic parts of the condensation energihe superfluid stiffness is renormalized doffrObviously,
nearly saturate: to a large positive value Ey, and a large this is not what we found.
negative value foE q,. The total condensation energy,
is negative and much smaller than eitti&r or E¢ gpin due VI. KINETIC ENERGY
to a substantial cancellation between these two components

of E¢. Although this cancellation seems quite delicate, it iSargueccf’ethat the condensation energy is driven by a gain in
aptually robust sincéc e and Ec spin are |r!t|mately linked the kinetic energy which at strong coupling is negatfire
via mutual feedback, and_ cannot be cpn&dered_separately. dbntrast to BCS theojybecause of a strong “undressing” of
is the sum of the two which has physical meaning. Any eStermions which bear a greater resemblance to free particles
timate of the total condensation energy based merely Upo the superconducting state than they do in the normal state.
either the electronic or spin part will give a highly erroneous | this section we consider, within our model, the change
result. in the kinetic energy when the system enters the supercon-

We now consider the functional dependenceEgfon N.  ducting state. The conventionally defined kinetic energy for
We see that the condensation energy flattens-a2, and its  an interacting fermionic system is
magnitude decreases at large couplings despite the fact that
the pairing gap increases monotonically witt?? This be-
havior is very counterintuitive from a BCS perspective, Ekin:z—r% f (2—26kam(k)' (60)
where the condensation energy scales with It clearly
indicates that fon=1, the physics is qualitatively different where G,, (k) is the full fermionic Green’s function that
from BCS theory. To emphasize this strong deviation fromcontains the self-energy. Integrating over momentum and
BCS theory we plot in Fig. &) the strong coupling result of subtracting the normal state result frdgp;, in a supercon-
E. along with the BCS condensation energiN;A2/2 using  ductor we obtain
the sameA and N¢. We clearly see that fok=1, corre-
sponding to optimally doped and underdoped cuprates, BCS 5Ekin:2Nf7TT2 ié L2 — |§N . (61)
theory yields qualitatively different results f&, . m Cmo o Om *Om

Our results are in line with earlier work which demon- o ~
strated that fon=1, the pairing predominantly involves fer- !N the BCS limit A <1, &, =A, X=0, X, =w;,, and
mions located in the non-Fermi-liquid frequency range. For
these fermions, retardation effects not included in BCS BCS_ 2 A2_
theory become dominant. Such retardation effects take place 2Eiin ZNWT% A" o) (62

between the “upper’ and “lower” wse scales of spin-  hich is obviously positive and furthermore depends loga-
fermion theory. Asw=4\?wg this ratio grows quickly, and rithmic on the upper limit of the frequency integration,

alreadyw/ wge=4 ath\=1. This explains why the deviations Which is wsr in our case(we recall that in the BCS limit,
from BCS behavior are already strong at this coupling. Un-wge> ). At T=0, we have

derstanding in detail the strong coupling physics behind the
decrease irE, is currently the subject of a separate sitidy
and a complete theory of this phenomenon does not exist at

the moment. Most likely, however, this decrease is a reflec- o ] ]
tion of the fact that as increases, the actual attraction be- In the same BCS limit, the potential part of the condensation
tween fermions goes down, retardation of the spin-mediate@Nergy SEpq is also logarithmically divergent, and to a
interaction becomes the major factor, and the pairing procedggarithmic accuracy cancels o@Ey;>. The subleading
increasingly involves incoherefdiffusive) fermions and on-  terms do not cancel and yielE“S= — N;A?%/2.

shell bosons. As the exchange of on-shell bosons is an en- We now consider finite\. As before, we perform the
ergy conserving process, it cannot lead to a gailBJnSuch ~ computations in real frequencies. The analytic continuation
behavior is very counter intuitive from a BCS perspective,of Eq. (61) gives

where the pairing emerges due to an exchange of virtual,

ng—.shell bosons, and the condensation energy scales with 5Ekin:+2fo0 {Im <D2(w)—2§(w)

One final comment. Although magnetically mediated su-
perconductors are often compared to dirty superconductors,
we point out that af =0, the physics of the two is already
qualitatively different. Analogies between the two are often
made due to the fact th#termalspin fluctuations scatter at The result of this calculation at finite is presented in
finite momentum transfer but zero energy transfer and act ifrig. 5. For comparison, we also present in this figure the
the same way as nonmagnetic impuritiésowever, in a  BCS result forE,;, obtained with the samA(w=0) and a
dirty superconductor with nonmagnetic impurities, the con-cutoff frequencyw,.,=1 eV (recall that the BCS result for

As we stated in the Introduction, several groups have

d’k
)

®Wmax

SEECS=N;A?In n

(63

+ Rei,\,(w)}tanh%dw. (64)
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' ™300 - This lowers the kinetic energy. Obviously, the two effects
sor i ] (the gain in the magnetic part and the lowering of the kinetic
200 -7 EBCS T energy come from the same physics.

1
1
1
! 100- ./ ]
| spBCS L . ] VIIl. CONCLUSIONS
g 0 o wees Our goal in this paper was to emphasize the importance of
0f ! 0 2 4 6 8 2 taking all contributions to the condensation energy into ac-
7 count when considering a strongly coupled superconductor.
Specifically, we considered the casedyf 2 pairing medi-
ated by the exchange of near-critical overdamped antiferro-
20 ! ! ! ! ! ! ! . magnetic spin fluctuations. We demonstrated that although
0 3 4 3 6 H H H H
. Eliashberg theory is valid for a strongly coupled magnetic
coupling()) g mheory L Srongly COUpac ragne:
superconductor, the reason for its validity is qualitatively dif-
I ferent from that for phonon superconductors as the spin ve-
FIG. 5. Kinetic energysEy, compared to the BCS result locity and Fermi velocity are of the same order. Due to this

=0 for various couplinga.. The parameters are the same as in Fig'fact anproximations anprooriate for phonon rconductor
4. The kinetic energy change is positive at low couplings, but nega-~ """ PP Pprop P superconductors

tive at high coupling. This is in sharp contrast to the positive andar?I generaliynot valid in magnetic supercqnductors. Specifi- .
quite large BCS kinetic energy. For the BCS result we used th&2!Y: W€ demonstrated that the assumption that the bosonic

exactA(w=0) and set the upper cutoff of frequency integration atPelarization bubble can be neglected, which was rigorously
=1 eV. The inset shows the kinetic energy at a larger scalelustified by Bardeen and Stephen for phonon superconduct-

=)
(=2}
sl
=
a.
=
I

Wmax . .

The dot ai\ =8 indicates the value of the total condensation energyo’s, breaks down for magnetically mediated superconductors

E. which for this\ almost coincides WithSE . and makes the Wada and Bardeen-Stephen formalisms in-
valid.

Ein depends logarithmically on the upper cutoff of the fre- We _ob_tained the full e_xpression for the condensation en-
quency integration At low couplings the kinetic energy is €rgy within the spin-fermion model and showed that the spin
positive, as one naively expects. At larger however, the and electrolm parts of the condensation energy are of the
kinetic energy passes through a maximuni at2 and then same ordem3/vﬁ and both depend only on the dimension-
becomes negative at large less coupling.. The BCS behavior is restored)at1. Even

As we already mentioned in the Introduction, the sign ofat moderate couplings, the condensation energy is highly
E. depends on the interplay between two competing effectsnon-BCS. The electronic contribution to the condensation
the effect of particle-hole mixing that increadgg,, and the  energy ispositive while the spin part is negative and larger
change in the self-energy due to the “undressing” of fermi-in magnitude than the electronic part which makes the full
ons that lowersE,;,. At weak coupling, the particle-hole E. negative. As in the BCS limit the electronic condensation
mixing obviously dominates. The sign change between smaknergy is negative and equal toN;A?/2, this implies that
and largex implies that at strong coupling the situation is the electronic condensation energy changes sign at a rather
reversed, and the lowering &, via the change in the self- small \. We found that at large., both the spin and the
energy due to the “undressing” of fermions overcomes theelectronic parts of the condensation energy nearly saturate.
effect of particle-hole mixing This behavior is very similar to As a result, the full condensation energy flattens\at2,
that obtained by Normast al> As the first term iNEg ¢ is  and decreases at large couplings despite the fact that the
equal to— 6E,;/2 [see Egs(36) and (61)], one can indeed pairing gap increases monotonically with?2 This behavior
argue that the condensation energy at large couplings is & very counter intuitive from a BCS perspective, where the
least partly driven by the lowering of the kinetic energy. condensation energy scales wiilf and is also inconsistent
However, a comparison of Figs. 4 and 5 shows that this isvith the behavior ofE, in dirty superconductors. This be-
just another way to interpret strong coupling effects that afhavior results from the fact that there is a substantial cancel-
fect both the fermionic and bosonic propagators via mutuallation between the spin and electronic parts of the condensa-
feedback. tion energy and the totdl is thus substantially smaller than

A simple explanation of why this is so is the following. In either the spin or electronic parts.
the superconducting state, the spin decay into fermions is We argued that the reduction & at large coupling is
forbidden at energies smaller tharh 2This simultaneously  likely the result of the fact that at strong coupling the pairing
gives rise to two effects. First, the spin propagator developss predominantly due to an energy conserving exchange of
the excitonic(resonancepeak atw,<<2A. The energy re- on-shell(rea) bosons as opposed to the BCS theory in which
leased by the creation of an exciton results in a gain in thé¢he pairing is caused by the energy nonconserving exchange
magnetic part of the condensation energy. Secondly, the feof virtual bosons. The reduction &, at strong coupling also
mions cannot decay until their frequency excedds w,.s  indicates that in this limit coherent superconductivity be-
(this is the magnetic analog of the Holstein efjecthe  comes fragile, and a largé only indicates that the system
elimination of fermionic scattering at low frequencies im- needs a finite energy to destroy spin singlets.
plies that the fermionic self-energy(w) in the supercon- Finally, we computed the kinetic energy and found that at
ducting state is reduced compared to that in the normal statstrong coupling it is negative which indicates that at high
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couplings the change in the self-energy due to the “undress- d\, [ d2kdw
ing” of fermions, which lowersE,;, overcomes the effect of E—Ep=—i ~ 3 Gwm(k)zj) , (A1)
particle-hole mixing which tends to increaig,. This be- o M J(2m) "

havior has no analog for phonon superconductors. We argued
that a negativeE,, is fully consistent with a positiv&. .;,  whereE, is the ground-state energy of free electrons, and the
and that, in principle, it is correct to argue that the condenGreen’s function and the self-energy are evaluated for the
sation energy at large couplings is at least partly driven byunning coupling constark;. This formula is validboth in
the lowering of the kinetic energy. However, our resultsthe normal and superconducting state. The “effective” self-
show that the lowering dE; may be thought of as being due energyX’ is related toG,, (k) in the same way as a con-
to either the Iowermg of the kinetic energy the interplay ventional self-energy, i.e., 8- (K)=i(wn+3* )— €. In
between the lowering 0b();, and the increase o . N “m i “m .
Both explanations are valid interpretations of the strong couthe normal stateX; , =3, , whereX. is a conventional
pling effects which affect the fermionic and bosonic propa-self-energy, while in the superconducting state,
gators via mutual feedback.

By taking into accounall contributions to the self energy, o
and takingN;~1 st/eV as typical for near optimally doped . "Dwm
cuprates, we obtained a small value 8¢ of ~15 K at Es,meES,wm+T'
optimal doping(which in our model corresponds to~1.5 kS50
—2,%®larger\ describe underdoped cuprateEhis is rather
remarkable_as all typical energies in the problem are much Equation(Al) is particularly suitable for the strong cou-
higher, i.e.,0~2.5—-3x10° K.*® This small value ofE; is  pling computations in the normal state. Here we can use
partly due to small prefactors, but is also the result of sub-
stantial cancellation between the spin and electronic contri-
butions toE.. Note also thalN¢~1 st/eV that we were us- J’ d%k

ing is fully consistent withw ~ 2.5—-3x 10° K. Indeed, using m “m
Fermi surface averaged-~0.6 meV (Ref. 22 we obtain

Ns=(8/37%)w/v§~0.15-0.19 st/eV. Using thenN¢/Ns  substituting this result into EqAL) we reduceE—Eq to a
~5.9 obtained in the paper, we fifdi~1 st/eV, i.e., pre-  single frequency integral. Using tfie=0 normal state result
cisely the same value as we used. for the = spin-fermion model 3, , =2\wq,/[1+(1

Outr E|C3~ 1‘:’ Kt'sc'jg gfgdlg??einlegtlg\’f'th extpr)]erl_ment. I]:o- +|wm|/ wsp*?], and introducing the sharp upper cutoff for
rametal.” extracteds.~U. 1&gl rom the jump of 0 low-energy theory ab, .~ Eg, we obtain

the specific heat a . The change of the functional form of
E. around\ =2 is also consistent with the experimental fact

(A2)

(k)=—i7N¢sgnw,y, . (A3)

that E. changes its behavior from BCS-like to non-BCS s — 1o [ 2N Omar )12 dx
around optimal doping. A decrease®f at strong couplings E—Eo=—Ni(onae)* f ﬁ
(i.e., for underdoped cuprates also consistent with what 0 (V1+x°+1)

Loram et al. found in the specific heat experiments in the (A4)

underdoped regiméWe caution, however, that the relation o _ _ o
betweenE, and the amount of the jump in the specific heat This expression is convenient for the analysis of the variation
atT,, from which the experimentd, was extracted may be Of the ground-state energy with .

more complex than in the BCS theory which was used to The condensation energy, i.e., the energy difference be-
extractE, from the data. This analysis is clearly called for. tween normal and superconducting state, is given by
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APPENDIX A: A RUNNING COUPLING CONSTANT

APPROACH X (1 wm— €). (AB)

The condensation energy may also be computed using a
general formula for the ground-state energy of the interacting?erforming the momentum integration in the Green’s func-
electron systen!%:2526 tions, we obtain

214508-16



CONDENSATION ENERGY IN STRONGLY COUPLED.. ..
)\d)\l o <2 2 ~
—f don| V25, TP —3h.

0 )\l 0 "m m "m

is,w - \lié,w +(I)5)
m m m
VEE, + 7

This looks very similar to the Wada res{iEq. (36)] but note
the minus sign in front of thew,. This extra minus sign

EC: - Nf

(A7)

—wn

results in a negative totéd, for all couplings. The conden-
sation energy, Eq(A6), can also be formally divided into
kinetic and potential energy terms, but this division is sub-
jective for interacting systems, and we will not discuss this.

1. BCS limit
In the BCS limit,E; reduces to
)\d)\l * dwm
E.=—N J —AZJ —— A8)
¢ "Jo N1 Mo \/A)z\l-f—w% (

whereA is the gap value for the running coupling. Using
the BCS relation betweefd and the coupling constant

*»  dw
1=\;N; J — (A9)
0 VA?+w?
one can rewritd A8) as
Ecz—fA %Ai . (A10)
0o A2 M
From (A9),
A)\l:A)\el/Nf)\_lle)\l. (All)
Integrating ovem ,; we obtain
1
E.=— ENfAZ. (A12)

PHYSICAL REVIEW B8, 214508 (2003

Using Eq.(A9) and performing the computations with the
logarithmic accuracy we findEES>=NyA?/2, i.e., contrary
to Eq.(63) the newly defined kinetic energy does not depend

logarithmically on the upper limit of frequency integration.

Similarly, sE5¢°=—NoA? such that the sum of the two
yields the correct total condensation energy, &d.2). This
once again demonstrates that only tdil is a physically
meaningful quantity.

2.A=1

We numerically computeét. for =1 by calculating the
integrand of Eq.(A7) for A;=0, 0.5, and 1, numerically
fitting these three data points and then integrating the result-
ant function over the coupling constant. This resulted in a
condensation energy oOE.=—15.8 K compared to the
—11.5 K calculated via the Eliashberg approach. This agree-
ment is quite reasonable as our implementation of the run-
ning coupling constant formalism was highly approximate: it
used only three numerically calculated values of the inte-
grand, fitting the rest with a phenomenological function. For
a more accurate estimate, the integrand must be calculated at
many more values of the running coupling constant. This is,
however, extremely computationally intensive, as at each
value of the running coupling constant the self-energies, pair-
ing vertex, etc., must be numerically calculated over their
whole frequency range. The running coupling constant for-
malism is therefore very difficult to implement accurately for
a nontrivial self-energy or pairing vertex.

APPENDIX B: ULTRAVIOLET CONVERGENCE
OF THE CONDENSATION ENERGY

In this appendix, we explore the consequences of assum-
ing infinite energy bands in calculations of the condensation
energy. Although in reality, energy bands are of finite extent,
for theoretical purposes, one often extends the integration of
both energy and frequency to infinity. In this case the order
of the integrations, i.e., energy versus frequency matters and
it is this issue that we examine here. Specifically we will
show that the integration order depends upon whether the
ultraviolet convergence of the integral arises from an effec-
tive energy or frequency “cutoff.”

This is indeed the same result as we obtained using the

Eliashberg formula.

Note in passing that our previous assertion that the sepa-

of the pairing. Indeed, earlier we comput&t,;, in the

Luttinger-Ward formalism and found that in the BCS limit,

the kinetic energy scales @6’In wy,.,/A [see Eq.(63)]. In

the running coupling constant formalism, the kinetic energ

difference 5E,;, extracted from Eq(A6) in the BCS limit
reduces to

2
- NN o A)\ dwm
5EE£S=2N0J x_llf -

0 0 wmt \/Afl-l-wﬁq'

(A13)

1. BCS limit

We begin with the calculation of the condensation energy
in the BCS limit. The integral for the condensation energy in
Bcs theory withinfinite bandwidthss formally ultraviolet
divergent asA does not vanish at large momentum and fre-
guency[see Eq(B3) below]. The ordering of the integration

is thus highly relevant, and the correct way is to perform the
yfrequency integration first as the ultraviolet divergence is
artificial, caused by the infinite limits of the momentum
integral. We will show explicitly that if the momentum
integral is restricted to a finite bandwidth, the order of the
integration does not matter, and one obtains the correct result
E.= —N;A?/2 integrating in either order and then setting the
fermionic bandwidth to infinity at the end of the calculations.
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In the BCS theory, the pairing problem may be describecerforming thee integration first. Indeed, integrating in Eq.

by an effective quadratic Hamiltonian (B3) first over e, between— A andA, and then ovemw, we
obtain
A
H:H0+E Ekalzaak,a—{_Ega,ﬁ(al,aatk,ﬂ_l—ak,Ba*k,a)! 2 (e l+2X2 L A* 1A*
’ I=——f dx tan™ —2xtan” ,
(B1) mlo T\ \BEF1 Pr1 X
whereg, is the antisymmetric matriX The condensation (B6)

energy can then be straightforwardly obtained by simply aVivhereA* = A/A andx= w/A. If we formally setA* = at
eraging .bOth the normal and anomalous terms in B4). this stage, we obtain a convergent integral oxewhich
Expressing the average products of the pairs of operators Relds = —1 which. we know. is incorrect Keeping *
terms ,Of frequency mtggrals of ”Or!“”a! ar_1d an_omalou arge but finite we find that there is an extra contribution to
Green's functions, linearizing the fermionic dispersion, and,[he integral from largec~ A* . This extra contribution over-
taking care to avoid double counting of the anomalous termyp - 40\ o the contribution f.rom=O(1) and changes the

we obtain aff =0 sign of | To see this, we change variablesyte-x/A* and
rewrite Eq.(B5) as

E.= NfAzl (B2)
C 2 | 1+8(A*)2fmd t -1l
=—1+— an ‘-
where T 0 vy y
_ 2 *\27—1
|_f dedw w?— € B3) —tanfll [2y(AT)] ) (B7)
T (24 w?)(2+ w2+A2) y

o , _ _ Expanding under tan' in 1/(A*)? and evaluating the re-
We see that a naive integration treating bethande in Eq. maining integral we find

(B3) on an equal footing, results in a vanishing integral. This

vanishing is surely artificial, as the 2D integral ok w is 4 (= dy
logarithmically divergent and therefore the result does de- l=—1+— ;o= —1+2=1 (B8)
pend on the order of limits of the integration. mJo y*+1

Indeed, integrating first ovew,, in infinite limits, and

! . i as it indeed should be. Note that the integral in is
then integrating oveg, we obtain 9 &2p)

confined toy=0(1), i.e., tow~A.

. 2 The physical implication of this result is that in the BCS
|:Zf \/m_ %+ X dx (B4) theory, the condensation energy can be equally viewed as
0 2+ 1 ' coming from the energy levels near the Fermi surface, as

. . implied in Eq. (B4) where the integral is confined t®
wherex= ¢, /A. One can easily make sure that the mtegralzo(l), i.e., tow~A, or as coming from very deep levels
converges at large. Performing elementary integration, we pejow the Fermi surface, as implied in E&7). This pecu-
easily obtainl =1. On the other hand, integrating first over |iarity, however, is only present in the BCS limit, where the
€ in infinite limits, and then integrating oves we obtain  gap yemains finite even at the largest frequencies. Away from
the BCS limit, the gap vanishes at infinite frequency, the

= xdx 1+2x2 _ox (B5) integrals are convergent, and the condensation energy can
Jo K2+ 1 K only be viewed as coming from the levels near the Fermi
surface.
where nowx=w/A. The integral again converges at the up- By considering the BCS limit we have learned the follow-
per limit, and performing the integration we obtdis —1, ing important lesson. If the ultraviolet convergence is due to
i.e., the result opposite to E(B4). a finite bandwidth(or to a vanishing of the pairing gap at

As we argued above, the correct way to proceed in théarge momenta due to self-energy corrections which depend
BCS limit is to perform the integration oves first as in the  on ¢), the correct way to proceed is to perform the fre-
Hamiltonian approach to the pairing, the interaction is inde-quency integration first. In this situation, one readily repro-
pendent of frequency, and hence there is no cutoff in theluces the BCS condensation energy by keeping the band-
frequency integration. The integration over energy, on thavidth finite and setting it to infinity at the very end of
other hand, extends only up fo~W whereW is the fermi-  calculations. In Eliashberg-type theories however, one ap-
onic bandwidth. Integrating first oves, in infinite limits, ~ proaches the BCS limiassumingthat even for very small
and then integrating ovek,|<A we obtain Eq.(B4) with  couplings the convergence of the integral Eyis imposed
the upper limitA/A. As the integrand in EqB4) is conver- by the frequency dependence of the pairing deg., the
gent,1=1 up to corrections which vanish as—o. This typical frequency beyond whidg, converges is smaller than
yields E;= —N¢A?%/2 as it indeed should be. W). In this situation, the momentum integration must be

It is instructive to show that once the integral owgris  performed first. The fact that the results f6¢ in the BCS
restricted to a finite range, one also obtains the coiEgdly  limit differ by a factor of (—1) depending on whether the
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frequency or momentum integration is performed first im-i.e., the momentum integral comes first, and the frequency
plies that in Eliashberg theory the integrand for the condenintegration comes second. The frequency dependence of the
sation energy at vanishing coupling should have the oppositpairing gap comes from the frequency dependence of the
sign compared to the first case. Alternatively speaking, thgghonon propagator, i.e., from the kinetic energy of ions. Ob-
BCS limit of the integrands dE. in Eliashberg-type theories viously in this situation, the ion kinetic energy cannot be
and theories where, integration is bound should have op- neglected, even in the BCS limit.
posite signs. Reference 5 on the other hand, implies that the frequency
dependence imposed by the kinetic energy of ions is irrel-
evant, and ultraviolet convergence is imposed by the fact that
_ _ ) _ the momentum integration has to be performed over a finite
The above reasoning explains the apparent sign differenggnge. As we said, in this situation one has to integrate first
between the expressions for thg condgnsation energy in Reféver frequency and then over momentum. As we already
5 and 14. In Ref. 14, Scalapino derived the condensatioRnow, in the BCS limit, interchanging the order of the inte-
energy for phonon superconductors by averaging thgration changes the result by a factef.. This explains why

2. A relation betweenE. in Refs. 5 and 14

electron-phonon Hamiltonian the two opposite results fd, actually yield the same BCS
condensation energy.
] d%dw Pi Which expression is correct away from the BCS limit?
(H)=- J W(“’+€k)e(k’w)_ EV ™M/ This obviously depends on whether the ultraviolet conver-

(B9) gence is imposed by either momentum or frequency. At the
risk of belaboring the point we note here that the correct way

where the last term is twice the expectation value of the iorf0 proceed in a general case when the self-energy depends on
kinetic energy. He then used Chester’s réduftir the rela-  both the momentum and frequency is to use the Luttinger-
tion between the isotopic dependence of the upper criticafVard-Eliashberg expression for Free energy, B). This
field and the change in the ion kinetic energy between norexpression is valid for arbitrary (k,») and it also includes
mal and superconducting states, and found that for the isghe full feedback on bosons. The only approximation in the
tope exponent= 1/2, the change in the ion kinetic energy is Eliashberg formula is the neglect of vertex corrections
precisely minus twice the change in the electronic propagawhich account for higher-order terms labeled by dots in Eq.
tor. As a result, the condensation energy turns out to be mic3)].

nus the difference between the first termg@9) in a super- Suppose now that for one reason or another, vertex cor-
conductor and the normal st&®: rections can be neglected. For the case wi¥k,w)
~3(w), and A=A(w) decreases abovev,,,<A, the
Ec=(Heo—(Hp) physically motivated ordering of the integrations should be
integration overey first (in infinite limits), and the integra-
] d%dw tion over frequency afterward. Imposing this ordering on the
= J’ W(““L €W Gn(k,0) = Gy(k,®)]. Eliashberg Free energy yields the Wada formula which also

follows from Eq.(B10). If instead we had incorrectly used
(B10)  Eg.(B11) [with 3 ~3(w)], we would have obtained a rapid
variation of E. once w5 becomes smaller than, and
eventually Eq(B11) would have yielded the result opposite
in sign to Eq.(52).

He further assumed tha& =3 (w), performed the integra-
tion over momentum firstwith infinite limits), and repro-

duced Wada's formula, E¢17). In the BCS Iimitzof vanish- On the other hand, when the self-energy predominantly
ing % (w) and a constant, this yieldsE.= —NoA*/2, aswe  genends ork, the cut of the ultraviolet divergence is still
discussed earlier. provided by the momentum integral. In this situation, Eq.

The authors of Ref. 5, on the other hand, assumed that thg11) shouid be used. This can be explicitly verified by com-
condensation energy is not due to phonons, and éh&  a1ing the Luttinger-Ward-Eliashberg formula with the
nearly zero. They argued that in this situation, the condensg;osonic term dropped, Eq16), with Eq. (B11). Setting
tion energy should be given solely by the first termB9), 3 (k,w)=3(e) and ®(k,»)=D(e) in Eq. (16) and inte-

e, grating over frequency we obtain from Ed.6)
£~ | P+ ) Gutk )~ Gtk 0)]
=—I — (ot e ,W)— ,w) |. o -~
) (2m)d+? ) " Ecz—fo de| V32 +@2
(B11) 0 ’
This expression has opposite sign compared to (BG0). ~ <> .2
Still, the authors of Ref. 5 argued that their expression also DERER YIRS P

reproduces the BCS resui,= — NoA%/2. “[Endte (B12)

AS2 2 ,
The analysis of the BCS limit shows that both authors are 25t
indeed right. Indeed, the Wada expression for the condensa- _
tion energy implies that\(w) decreases above,,<A, where X .= e—2(€). This expression is the analog of the
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Wada formula for2 =2 (k). If one does the same with Eq. our point that in theories where the feedback from the pair-
(B11), the frequency integration is straightforward and bying on bosonic propagator can be neglected,(E6). is valid
proper evaluation of the arguments of the logarithms we obfor any 3 (k,w), while Egs.(B10) or (B11) are valid when

tain exactly the same expression Bg. (B12). This proves

3 (k,w)=~3(w) and (k,w)~2(k), respectively.
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