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Pairing and density correlations of stripe electrons in a two-dimensional antiferromagnet
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We study a one-dimensionélD) electron liquid embedded in a 2D antiferromagnetic insulator, and coupled
to it via a weak antiferromagnetic spin-exchange interaction. We argue that this model may qualitatively
capture the physics of a single charge stripe in the cuprates on length and time scales shorter than those set by
its fluctuation dynamics. Using a local mean-field approach we identify the low-energy effective theory that
describes the electronic-spin sector of the stripe as that of a sine-Gordon model. We determine its phases via
a perturbative renormalization-group analysis. For realistic values of the model parameters we obtain a phase
characterized by enhanced spin density and composite charge-density-wave correlations, coexisting with sub-
leading triplet and composite singlet-pairing correlations. This result is shown to be independent of the spatial
orientation of the stripe on the square lattice. We argue that slow transverse fluctuations of the stripes tend to
suppress the density correlations, thus promoting the pairing instabilities. The largest amplitudes for the
composite instabilities appear when the stripe forms an antiphase domain wall in the antiferromagnet. For
twisted spin alignments the amplitudes decrease and leave room for a new type of composite pairing correla-
tion, breaking parity but preserving time-reversal symmetry.
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I. INTRODUCTION ing to enhanced charge density wa\@DW) as well as su-
perconducting pairing correlations along the stripes. For
Extensive experimental studies—including elastic and in-static stripegas seen, e.g., in the nickelates or the Nd-doped
elastic neutron scatterirg,angle-resolved photoemission La,_,Sr,NdCuQ,) the CDW correlations dominate. In the
spectroscof¥ARPES, muon spin resonanceand nuclear presence of transverse stripe fluctuations, however, these ap-
magnetic resonance experiméntdave confirmed that pear to die out® possibly opening a door to superconductiv-
stripe formationis a property common to most high- cu- ity. Other scenarios, where the stripes actuabtiynpetewith
prates. In the underdoped regime, at some critical hole dopsuperconductivity, have also been propoSed.
ing, the mobile holes segregate into an array of “stripes”that Most of the theoretical attempts to explore the properties
slice the copper-oxide planes into alternating phase-antiphasé stripes model these as a collection of 1D or quasi-1D
antiferromagnetic domains. The stripes coexist with superelectron liquidsi? coupled to their neighborS,or to an in-
conductivity, but as one enters the overdoped region thegulating background, either via pair hopping of charge carri-
begin to evaporate, signaling a crossover to a conventionars (as in the spin-gap proximity effegt or by a spin-
metal with a uniform charge distribution. Significantly, stripe exchange The various spin-exchange scenarios that have
phases are observed also in other doped antiferromagnetseen suggestéil’also predict that a spin gap opens in the
such as the “nickelates”and the “manganite$ (colossal  spectrum of the stripe electrons, signaling enhanced super-
magnetoresistance materials, where the stripes are actualtpnducting fluctuations along the stripes. In fact, it is com-
two-dimensional2D) sheets of hole-rich regiopsThis sug- mon to find a dynamically generated spin gap for a one-
gests that stripe formation is a robust and generic property aimensional electron ga$lDEG) coupled to an active
this class of matter. Still, the basic questions why stripeenvironment8-21of which an antiferromagnet is a particu-
form and what role they play for superconductivity in the lar realizationt*1617:22-25
cuprates remain controversial. The simplest such model is maybe that of the 1D Kondo-
Early mean-field calculations on the 2D Hubbard mbdel Heisenberg lattic€éKHL ) which consists of a 1DEG interact-
suggested that the stripe phase is due to the reduction ing weakly with an antiferromagnetic Heisenberg spin-1/2
kinetic energy of holes propagating transverse to the stripeghain by a Kondo coupling. Away from half-filling this
In this approach, however, the possible connection to supemodel has a spin g&p?>*and one thus expects the presence
conductivity is left unanswered. In an alternative apprdach,of superconducting correlations. Indeed, it was shown
it is argued that stripes form as a response to the competitiorecently®?’ that the spin gap supportsomposité®?® odd-
between long-range Coulomb interactiofvehich push the frequency odd-parity singlet pairifijas well as a composite
holes apait and short-range antiferromagnetic interactionsCDW. A generalization of this model that may mimic stripe
(which tend to “phase separate” the holes into a single rephysics more closely is that of a 1DEG coupled by a Kondo
gion). Within this scenario it has been argued that a proposedoupling totwo noninteracting antiferromagnetic Heisenberg
spin gap from the undoped domains is transmitted to thepin-1/2 chains, together emulating the insulating back-
stripes via pair hopping‘spin-gap proximity effect®), lead-  ground in which a stripe is embedded. Rather surprisingly, as
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shown recently this generalized model has no spin gap butWakimoto et al,*® the insulating LagsSr, o<CuQ, exhibits
instead renormalizes to a fixed point belonging to the class agharp two-dimensional elastic magnetic peaks 7at- €,
chirally stabilized electron liquid®. Still, the model exhibits +¢) (in tetragonal square lattice notation, wite~x
the same unconventional pairing instabilities as found for the=0.05, x being the doping level Assuming that the mag-
1D KHL.28:27 netic peaks are associated with charge stripe dfdehis

A “strong” interpretation of the results in Refs. 26, 27, implies that static stripes run along the diagonal of the square
and 31 may seem to exclude spin-exchange as a possibfu?® lattices that make up the CuO-planes in this com-
source of the spin gap in the high-cuprates: odd-frequency pound. This is in exact analogy to the diagonal static stripe
pairing appears difficult to reconcile with the experimentalstructure seefand theoretically predictéiin the insulating
observation that superconductivity in these compounds igickelate La_,SrNiO4,, but differentfrom the structure
due tod-wave BCS paired electrons. However, the recenin superconductind-a,_,Sr oCuQ, (with x>0.05) where
report® that underdoped BSCCO breaks time-reversathe stripes are oriented along the copper-oxide bdhuisl-
symmetry—in the “normal” as well as the superconducting linear stripes’). Very recently, these findings were extended
state—cautions us that the case may not be closed. The timts the full insulating spin-glass phase in ,LgSrCuO,
reversal breaking is seen below a temperaiiyg, at which ~ (0.02<x=<0.055) 40 Thus, the onset of superconductivity in
a pseudogall opens, suggesting that it is connected withthe low-temperature underdoped region appears to proceed
some order parameter that develops enhanced correlatiomi& a stripe rotationby 45°, from adiagonalto a collinear
below this characteristic temperatirelt has been argued stripe configuration. In the case of a collindsite-centered
that the pseudogap in the cuprates may be identified with thstructure, a stripe is embedded in a loaatiferromagnetic
amplitude of the pairing order parameter, with long-rangebackground. In contrast, in the diagonal structure the stripe
superconducting order appearing at the onset of global phasdectrons experience a locdrromagneticenvironment. In
coherencecarried by Josephson tunneling of pairs betweerboth cases the Nd-ordered directions of the antiferromag-
the stripes®® One may envision a variant of this scenario netic domains are shifted by acrossthe stripes, and it is
where spin-exchange between the stripes and their enviromriori not clear whether the different local ordering®ng
ment(maybe in conjunction with pair hoppihgupports two the stripes influence the electron dynamics differently. To
coexisting types of quasi-one-dimensional pairing correlaclarify the situation requires a careful study, and we here
tions belowTy,,, one of which breaks time reversal. As one make a first attempt on it.
approaches the superconducting transition, the enhanced To isolate the core of the problem we shall make a few
stripe fluctuations may favor the other typehich could simplifying assumptions.
reemerge as long-ranggwave order via the dimensional (i) We study the electron dynamics orsiaglestripe, and,
crossovet® implied atT.), while the channel that exhibits in the first part of our analysis, neglect its possible coupling
time-reversal breaking remains incoherent, with only finite-to neighboring stripes. Moreover, the stripe is taken to be
range correlations present. Although speculative only, the vistatic. This implies that for a fluctuating strip@s typically
ability of this brand of scenario can be judged only by moreseen in a superconducting phasee can only hope to cap-
closely examining the physics driven by a stripe-ture processes on length and time scales shorter than those
environment spin-exchange interaction. This is the purposeet by its fluctuation dynamics. This is expected to be much
of our paper. slower than the dynamics of charge carriers along the stripe:

We shall consider an extended version of the model inThe latter appear on an energy scald eV, whereas the
Ref. 17, where a 1D electron liquitepresenting a single stripe fluctuations are coordinated with those of the localized
stripg is embedded in a 2D antiferromagnetic backgroundspins, at a scale-1-10 meV. Having obtained the charac-
and coupled to it via an antiferromagnetic spin-exchange. Weeristic features of a single static stripe we then add “by
show that this setup leads to a spin-gap phase for the eletand” the transverse fluctuations and interstripe couplings,
trons on the stripe, and we identify its leading instabilities.and study their effect on the pairing- and density correlations
We further address the question to what extent the instabilief the stripe electrons.
ties found are sensitive to the relative orientation of the stag- (ii) We model the stripe—at Fermi momenta incommen-
gered magnetizations on each side of the stripe. In the sinsurate with the underlying lattice—asae-dimensional me-
plest case of asite-centered strip& the spin alignment tallic wire. Thus, we assume that the disordéom, e.g.,
across the stripe is antiferromagneffmhase-antiphase do- dopant potentia)sis sufficiently weak so that localization
mains) However, the alignment is not expected to be perfeceffects set in on length scales much larger than those that we
and it is therefore important to check the stability of theprobe here.
spin-gap phase with respect to deviations from the phase- (iii) There is an important distinction between site-
antiphase orientation of the magnetic domains separated mentered and bond-centered striggsthe spin alignment
the stripe. In addition, we shall explore the issue whether thacross an antiphase domain wall is antiferromagnetic for a
spatial orientation of the stripe on the underlying lattice may site-centered stripe and ferromagnetic for a bond-centered
influence the stripe-electron dynamics when the dominanstripe (which has a finite width Motivated by recent theo-
interaction with the environment is that of a spin-exchange retical work! where bond-centered configurations appear to

This latter question is of particular relevance consideringoe inconsistent with ARPES studies of,L.gSr,CuQ,,** we
recent experimental findings of “diagonal stripes” in the un- here focus on the simplest case of a site-centered charge
derdoped glassy phase of the cuprates. As discovered tsfripe, to be described by a 1D Hubbard model. We shall
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explore elsewhere the case of bond-centered stripes, buildirgore realistic studies. Moreover, the problem as defined by
on the corresponding analysis by Krotov, Lee, and Balafsky (i)—(vii) is important in its own right, and is of relevance to
of a Hubbard ladder in an antiferromagnetic environment. the more general issue of one-dimensional electron liquids in
(iv) As suggested by neutron-scattering data on the relactive environment$!8=21This is a central problem in the
evant materiald the environment ifleel orderedup to some  theory of correlated electrons, motivated by experiments on
characteristic scalévhich in the relevant temperature range quasi-1D organic conductof$,quantum wire$® and edge
is much larger than the linear dimension of a strjpeith a  states in quantum Hall systerfss.
7 shift across the stripe when this is site centefgldase- Given the assumption@)—(vii), we model the stripe by
antiphase domainsin our formal analysis we depict each an extended y —V) Hubbard chain, weakly coupled to a
Neel-ordered domain as a semi-infinite 2D Heisenberg antiphase-antiphase antiferromagnetic environment by a Kondo
ferromagnet, and ignore possible topological effects that majattice interaction. Treating the Hubbard chain via standard
be present for finite-width insulating domains, or “spin bosonization while describing the environment by a nonlin-
ladders.”* We shall give precise estimates for the range ofear o model, we follow the approach introduced in Ref. 17
validity of this approximation, thus establishing its physicaland exploit the symmetry breaking in the magnetic environ-
relevance. ment to “absorb” the Kondo lattice interaction as an effec-
(v) As we have already discussed, we couple the stripgive spin-spin interaction among the stripe electrons. In this
electrons to its insulating environment exclusively through avay we obtain an effective low-energy model for the stripe
spin-exchange interactiorGiven that the Fermi momentum electrons—decoupled from the environment—and accessible
of the stripe is incommensurate with that of any low-lying to a well-controlled perturbative renormalization graiRG)
excitation of the environment, excursions of single-chargeanalysis. This allows us to pinpoint the dynamic instabilities
carriers is a process that violates momentum conservatiom the low-energy, weak-couplingl¢<J,<|U|,|V/|) limit.
and hence is suppresspah the time scales defined {i]. Our most important results can be summarized as follows:
Pair hopping is still allowed, provided that the pair carries (a) For realistic values of the model parameters, and with
zero total momentum. As suggested by the analysis in Ref. & phase-antiphase "Bleconfiguration across the stripe, an
pair hopping is favored as a dominant process when the lowelectronic spin gap opens on the stripe with a spin-density
lying spin excitations of the environment are gapfi®d/hen  and a composite charge-density wave as the leading instabili-
such a gap is absent, as is the case when the environmenttiés. The subleading instability is that of conventional triplet
Neel ordered, the virtual hybridization between delocalizedpairing, coexisting with composite singlet pairir@@hich
levels on the stripe and the localized levels in the environpreaks parity and time reversalsing a simple construction
ment produces an effective spin-exchange that is expected fa the “quasi-static limit,” we argue that slow transverse
compete effectively with pair hopping. Here, we focus on thestripe fluctuations tend to suppress the density correlations,

effect of the spin-exchange. thus promoting the pairing instabilities.
(vi) We confine our attention to the case oWaak spin- (b) The low-energy physics is insensitive to the spatial
exchange J between stripe and environment<Ox<Jy,  orientation of the stripe on the lattice: The results summa-

whereJy is the antiferromagnetic exchange between the lorized above hold for both collinear and diagonal strifygith
calized spinsn the environment. This allows us to treat the the possible exception that the composite singlet pairing is
problem in a continuum limit* Note that for a metallic suppressed for a diagonal stripe
stripe, we do expect that this is the physically relevant limit:  (c) The instabilities found for the phase-antiphaseeNe
Itinerant stripe electrons spend only a short time at a giveronfiguration are still present when the relative orientation of
lattice site, implying that the probability/unit time for inter- the staggered magnetizations on the respective sides of a
action with a localized spin at that site~Jx) is much (collineap stripe has been twisted by an arbitrary angle. In
smaller than that for spin-exchange between two localize@ddition, the twist allows for a novel type of composite pair-
spins in the environment~Jy). For simplicity we shall ing correlations to appear, respecting time reversal but break-
employ the continuum limit also for a Mott insulating stripe ing parity.
(half-filled band although in this case one expects that The paper is organized as follows: In Sec. Il we introduce
~Jy. the lattice models for site-centered collinear and diagonal
(vii) Finally, we stress that finite-size or boundary effectsstripes coupled to a phase-antiphase environment by a
of the 1D electrorf§ arenotincluded in our analysis. As the Kondo interaction, and derive the corresponding low-energy
stripes in the cuprates are mesoscopic structlirémse ef-  effective actions. In Sec. Ill we perform an RG analysis and
fectsshouldin principle be taken into account. However, asidentify the order-parameter correlations along the stripes
they are not expected to qualitatively change the conclusionthat get enhanced by the spin-exchange. This allows us to
arrived at in the large-distance limit considered here, weextract the ground-state phase diagram of the stripe electron
leave this study for the future. system both at half fillingMott insulator) and away from
Clearly, by assumption§)—(vii) we lose several facets of half filling (metal) In Sec IV we then study—for the case of
the full problem. Still, we believe that our “stripped-down” a collinear stripe—the stability of the various correlations
approach has its merits: Not only does it isolate and exposewith respect to perturbations of the relative orientation of the
crucial element of “stripe-physics,” but as we shall show, it spin alignments across the stripe. Section IV, finally, contains
allows us to perform avell-controlledanalytical study, pro- a summary and a brief discussion of our results.
ducing results that can be taken as a reliable starting point for Throughout the paper we try to supply sufficient informa-
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HKondo_JKrEB Cf a0apCr g (S jA=1F S jB)=1),
&y

J>0. (4)

Herec, , is a stripe electron operator at sitevith spin index

FIG. 1. Collinear stripe structure. a=1,1, n;,=c! ¢ . is the number operaton, == ,n; ,
is the density operator, arf§l ;) is the operator for a local-
tion to make the analysis accessible also to the nonexperiged spin at a lattice site with coordinate(j’=1) in a
Since the paper is quite long, and contains both formal analydirection parallel with(transverse tothe stripe. The vector
sis and background discussion of the physics, the read@f Pauli matrices is denoted hy, and we have absorbed a
mostly interested in our key analytical results is advised tdactor of 1/2 into the coupling constadf,. Note that we
focus on the central Secs. ll@&here the model for a collin- have included a nearest-neighbor interactiorHify,pparg t0
ear stripe is derivedand Il C (which presents the phase qualitatively account for the poor screening of the Coulomb
diagrams. interaction from the insulating environment. Tl®ulomb-
driven on-site and nearest-neighbor coupling constants are
typically repulsiveU,V>0. However, in what follows we
will treat these parameters as effectif@enomenological
For clarity, we shall treat the collinear and diagonal stripeones, and assume that they include all possible contributions
configurations separately. The effective low-energy theorie@nd renormalizations coming from the interaction between
that emerge in the two cases are essentially the gaitle  stripe electrons and theonmagnetiadegrees of freedom of
certain provisog but to arrive at this result requires some the environment, such as the electron-phonon coupling, or
care. Much of the analysis builds upon well-known results coupling to other electronic subsystems in the environment.
but in order to make the exposition self-contained we outlineAs implicit in Eq. (4), we use the convention that the trans-
the most important points. Also, some key elements are newerse coordinates take valugé)=j® =1 on theA and B

Il. THE MODEL

or need particular attention. arrays adjacent to the stripe. When convenient, we use the
compact notationSf')ESr'j(i) (i=A,B) for the spins on
A. Collinear stripes these arrays. By assumptigwi) in Sec. |, the antiferromag-

] ] o netic Kondo lattice couplindy is weak, i.e.Jx<<Jy,t, al-

We represent the strigeunning, say, along thedirection  owing us to keep only the low-energy sectors of the stripe
of a square latticeby an extendedl —V) Hubbard chain  and the antiferromagnetic domains when analyzing its effect.
Hhubbara coupled via a Kondo lattice interactidfiyongo to The model in Eq(1) is a modified version of that in Ref.
the nearestlocalized SpinS on each side of the Stripe. These_|_7 by having a Coup”ng OfVVO Semi_inﬁnite 2D antiferro_
spins, like the rest of the localized spins, interact mutuallymagnetic domains to the stripe, one on each side of it, in this
via an antiferromagnetic nearest-neighbor Heisenberg Spirrespect mimicking the geometry “seen” by a real stripe. As a
exchangeH zry, and reside in one of the two semi-infinite consequence, with the assumption that thelNeder of the
antiferromagnetic domains that surround the stripe, denotefl 3nd B domains arer-phase shifted relative to each other,
by A andB, respectively(see Fig. 1 we will be able to treat the metallic as well as the Mott

TheAandB domains are assumed to be antiferromagnetijnsylating casehalf-filled Hubbard bandwithin the same
cally ordered, and correlated via7a shift across the stripe  formalism. This is different from the model in Ref. 17, where
(phase-antiphase domainblit there is no direct interaction the assumption of a metallic stripe was crucial. Note that by
betweenA andB Spins ?O Thus, we Study the lattice model turning off U andV in Eq (2) and keeping On|y one array of

localized spins, say, in th& domain, the Hamiltonian in Eq.
B » (i) (i) (1) collapses to the one-dimension&leisenberg-Kondo-
H=Huubbara™ 2o (Hakm T Hiondo (@) Jattice model(HKL).5 This model has recently attracted a
’ great deal of attentid?* and we shall connect back to it
where when discussing our results in Sec. IV. We should here em-
phasize that having “built in” the presence of stripes into the
model, we cannot address the issue of what actually triggers
HHubba,dz—tZ (cf+1’acr,a+ H.c) the stripe formation. For this, one must turn to other ap-
ha proaches, such as those mentioned atévéor that in the
o o more recent work by Chernyshei al>3 Another recent at-
+UD NN VY NN, (2)  tack on the problem of stripe formation has made use of a
r r spin-fermion modéf which has the same Hamiltonian struc-
ture as Eq(1), but with the difference that there is no con-
straint on the mobility of the electrons in E(R). In other

(- . : . )
Harm=JH Z(i) (S,j0 Sr1j0+ S ,j0- S i), words, the doped holes are now free to hop around on the 2D
" lattice. Monte Carlo simulations on the model suggest that
Jy>0, i=AB, (3)  the holes self-organize into one-dimensional charge stripes
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separating insulating spin domair(phase shifted by 1. 1D electron chain: Low-energy theory
across the stripeésThis is the starting point when writing
down our model in Eq(1).

Given the Hamiltonian in Eq(1), its partition function
can be written as a path integral,

The low-energy(field theory approach to the 1QOex-
tended Hubbard model in Eq2) is based on the assumption
of weakelectron-electron interactions. Thus, assuming that
|[U],|V| <t, we linearize the spectrum around the two Fermi
points kg (kp=ngm/2a,, whereay is the lattice spacing

Z:J D[c]D[c D[ QA D[ Q5] efS[cT,cyﬂA,QB], (5 andng is the electron densily and decompose the original

lattice operators into right-movingR(,) and left-moving

with a Euclidean actiors. The electron operators are here (L<) chiral components:

simulated by Grassmann numbecé“(( ,Cr o), While the role

of the localized spin operator§ i) are played by vectors

SQ; i (i =A,B) which parametrize states in a coherent spin N \/a—o[e'kFXRa(x)—{—e_'kFXLa(X)], (8)

representatior Note that we have here used the short-hand ) ) ) o

notationc={c, ,} andQ;={Q, i}, i=A,B. In the limit of where in the second line we have taken the continuum limit

large spin,S—¢, only diagonal matrix elements of a spin F&o—X. Defining local charge and spin densities
Hamiltonian survive in this representation. This makes the

Cr o €FTOR (1) + e KFI%oL (1)

. - _.ptp - _atp .
large'S coherent-state representation an efficient tool to mold JrR=IRR,1 J=iL, L, 9
a quantum partition function into a path integral. To retain
quantum effects, however, present for physical values of the JRz:%RL%BRB:, JL::%LLUa,BLB:y (10

spin (S=1/2 in the case of the cuprajet is crucial to keep . o )

also nondiagonal matrix elements in the constructiossof ~With repeated spin indices summed over, and with the normal
These produce a sum over Berry phases and contain dering : - -: taken w.r.t. the ground state of the free sys-
memory of the intrinsic quantum nature of the spins. Thel®M, it is now straightforward to write down the low-energy

procedure is standar,and one obtains the action continuum version of théJ —V Hubbard chain in Eq(2).
The weak interaction preserves the important property of

B spin-charge separation, and one can write the theory on the
S= fo dr Z ¢! 49.C o+ H(CT,c,SQp ,SDp) form Hyyypparg=Hc+ Hs, Wheré”
U
+|S 2 2 q)rj(i)1 (6) HC: 2 dx{:‘]R‘]R:+:‘]LJL:_gOc‘]L‘]R
i=AB ;0

_ ot
where 7 corresponds to inverse temperature so thatr0 2Q0udin,(RR| L Lo+ H.C)}, 1D

< B and the spinNGrassmannfields are periodidantiperi-
odic) in 7. For the purpose of studying the low-energy dy-
namics we confine our attention to the zero-temperature limit
(B—). The third term in Eq(6) is precisely the sum over

Hszzwzsf dx{:J5J5: +:J20% : —goedid5

Berry phases — Qo (F IR+ NI} (12)
The velocities of the charge) and spin(s) excitations, gov-
O, = fﬁ dQ, -A(Q,), (77 erned byH. andHg, respectively, are given by
I Frv I |
_ a)(U+6V) ag(U—2V)
one for each spin attached at sitej(’)=r;, i=A,B. Here Ve=Vpt — 5 ——— vsTUpm — 5 _——, (13

l“ri is the closed loop traced out lﬂ,i in the interval[ 0,8

—oo], with A(€, )= (1 cos;)(sin 0) 1 at each sitg;  With ve=2agtsin(7ne/2) the Fermi velocity. The small di-

playing the role of a vector potential of a unit magnetic mensmnless coupling constants in Eqs1) and (12) are

monopole located at the center of the sphldﬂei|=1, pa- given by

rametrized by the spherical anglésand ¢; . The “instan- goc= —2ao(U+6V)/mvg,

taneous” Hamiltonian ternH(c’,c,S0Q,,SQz) in Eq. (6)

acts at(imaginary time slicer and is obtained from Eq1) Jou=—ao(U—2V)/mve, (14

by replacing electron and spin operators by the correspond-
ing Grassmann fields c{,a,cr,a) and classical vectors
(SQrA,SQrB), respectively.

Next, to obtain the low-energy continuum version of the The Kroneckers multiplying the Umklapp term in Eq(11)
Hamiltonian in Eq.(1) we shall first review the standard signifies that this term survives the phase fluctuat{@migi-
constructions for a Hubbard chain and a 2D Heisenbergating from the chiral decomposition in E()] only for a
model, and then elaborate on the more intricate Kondohalf-filled electron bandr(,=1).%" The transverse compo-
lattice interaction which couples the two subsystems. nent of the spin current coupling in E(L2),

Gos= 9oL =ag(U—2V)/ v .
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Gou (N Ix+ I =—390, (RILILIR +H.c), (15 X3 (7,X)]- € (7,X) + S gerry[N],

describe backscattering of electrons. We have marked the i=A,B, 17
spin-sector parameters in Eq4.2)—(14) by a “tilde” as a with
reminder that these will be modified when coupling the stripe

to the localized spins in the environment. How this comes o
about is discussed next. Sipern[N=iS> yri(—l)ﬁiBf drA(7,1i)-d.n(7,1p).
r§ 0
2. Phase-antiphase antiferromagnetic domains: (18
Low-energy theory In the standard approach to the 2D antiferromatnene

In the presence of antiferromagnetic correlations in thevould now integrate out the rapidly fluctuatigfield from
insulating domains—as seen experimentally in the stripd=d. (17). After taking a continuum limit in they direction

materials—the partition function in Eq(5) at low energies  this would produce the familiar nonlinearmodel (NLoM),
is dominated by paths with with an added sum over Berry phases, describing the slow

long-wavelength dynamics of the Bleorder-parameter field
Q =y (= 1)%8\1—-ag?(r)n(r) +apt(r). (16)  n. In the present case, however, the localized spins adjacent
. . . . . to the stripe enter also in the Kondo lattice interactidj
Herey, = =1 is the parity of the sublattice to which the site 54 this must be taken into account before one attempts to

ri belongs, the unit vecton (suppressing the coordinate  integrate out the field. This problem is addressed next.
for ease of notationrepresents the local direction of the

Neel-order-parameter field, ana,¢ is a small orthogonal 3. Kondo lattice interaction: Mean-field decoupling
ferromagnetic fluctuation component, i.eao€|<1, with n
-€=0. The phase factor{1)%8 in Eq.(16) appears because

from now on we take the N fields in theA andB domains eratorsS, () in Eq. (4) by the corresponding vectomryjm,

to be 7 shifted relative to each othe(The choice of refer- : . - ;
ence vector in the staggering factor can be made arbitrarilydoez(;g;nposmg these as in E4.6), we obtain, expanding to
0/

with no effect on the physicsWe here note that for a site-

centered stripe embedded in a spin-1/2 environment current Hyondo=He+Hn, (19)

estimates predict that this is a viable assumption for stripe

electron densities,<0.6 in the limit whereJ~J,.%8%°  Where

However, forJx<<J,, as assumed here, the critical density

is expected to be Iarge_r. _ He:JKSaéz A (€ + By, (20)
With n a slowly varying smooth field, Eq16) spells out r

the assumption of finite-range antiferromagnetic order. We

should stress that and ¢ are taken to be independent fields, _ PR (A) 4 (B)

constrained only by the orthogonality condition. This implies Hn_JKsaOEr (ZD"A- (00, D

a doubling of degrees of freedom, which in principle should .

be corrected when regularizing the theory. However, for ouPNIth

present purpose, to pinpoint the Ieedmg |nstab|!|t|es of the Ar:[e2ikFraoL:’aRr‘ﬁ+ef2ikFraoR;ryaLr‘B+L:‘aLr’B

stripe electron dynamics due to the interaction with the anti-

ferromagnetic domains, this issue is immaterial. The normal- + R:,aRr,B] Cop (22)

ization of Q in Eq. (16) is only preserved up t®(a3), but i . . .
this is sufficient since we are interested in the |0ng_measur|ng the spin density on the stripe. We have here used

wavelength limit. In this limit we let the lattice spacimg in "€ notation mt(ric))duced after Ed4), implying that ¢;
the x direction (parallel to the stripego to zero, expand all =6, j=1 andn;’=n, jo—,. By the assumption that the
terms in the actiorS which contain the Spin fields up to Neel-order directions of thé andB domains are shifted by

0(a2), and then do the replacemerdsS, — [dx, n, () 7 relative to each other it follows that{*=—n{®, and
—no(r,x), and eri(T)Hej(i)(T,X). The result is a field thusH, vanishes. It is here important to realize that there is

. . ) no relative staggering of the ferromagnefiand B compo-
theory for the independent orthogonal fiefdand¢, with an nents in Eq.(20). These rapidly fluctuating fields are inde-

Using Eq.(8) to write the electron-spin density in EQt)
in terms of the chiral fields, and then replacing the spin op-

action pendent, with no correlations across the stripe. This leaves us
S - 1 with H,, which in the continuum limit, using Eq10) with
Si[n,€]= 5 % dXL dr a_[nj(i)+1(7'yx) J=J, +Jr, takes the form
it 0

H(—>2JKSaOJ dxJ(x) - [€P(x)+€B)(x)]. (23

—j0(7,X) 12+ 8agl(7.X)

B We have here dropped the nonchiral terms that mandR
—is> dxf dr [ (7,x) ﬁelds_since these are washed out by the rapid phase oscilla-
i0 0 tions in Eqg.(22).
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The fact that the stripe electrons couple manifestly only to  First term in Eq. (27. The first term is an anisotropic spin
the fast ferromagnetic components of the localized spins—interaction among the stripe electrons, induced by the cou-
independent of whether the stripe is meta(ltubbard band pling to the Nel-ordered spins in th& domain. As we have
away from half filling or insulating (half-filled band®>—  already noted, this interaction follows the slow fluctuations
does not mean that the "Mleorder-parameter dynamics is of the n field along the stripe, with), constrained to a
completely decoupled from the stripe electrons. TheelNe plane orthogonal tm®™. To make progress we shall treat
field reenters the problem via the orthogonality conditionn® in a mean-field formulation, and take it to be in a fixed

n-£=0, which constrains the ferromagnetic component to gpyt arbitrary direction (n), defined by the antiferromag-

plane that follows its slow and smooth fluctuations. As wenetic order in theA domain. Introducing a coordinate system
shall see next, part of the interaction in E@3) can be %

absorbed as an effective spin-density interaction among th x,y,;) Wzlth sz_thle direction of(n), and using .t'he operator
; . . ; . identity Ji ,rJ ;= 3JL/r- J/r, Valid for chiral bilinears, the

stripe electrons. Since at low energies theeNarder direc- . ! . . )

tion is essentially constant over large patches in EuclideaﬁrSt term in Eq.(27) is then seen to add the interaction

space-time, this interaction will effectively be pinned in spin aoJﬁ

space, and hence break the spin-rotational invariance of the H,,,=— ?f dx(: {30 i+ 1 IRIR:H IIR+H I IL)

electron spin-dynamics on the relevant time and length H

scales. This symmetry-breaking effect, driven by theeiNe (28)

order in the environment, will dramatically influence the cor-to the spin-sector stripe Hamiltonian in E4.2). The terms

relations of the stripe electrons. diagonal inL andR in Eq. (28) are forward-scattering terms

For simplicity, we now treat thé\ and B domains sepa- which renormalize the effective spin velocity; on the

rately. Starting withA, and collecting all terms in the action AT (AT 2 ; i
L i : . ) stripe, =vgs—agdi/(4mJy), while the terms mixin
containing the¢™ field defined on thg =1 spin array Pe.vs =" =05~ olic/ (47Jn) 9

) : L andR fields describe backscattering of electrons and hence,
that qouples to the strlp_e_, we fmd_ from E¢57) and(23) the when added to Eq(12), shifts the corresponding coupling:
contribution to the partition function ~ ~ 5 ~(A)
9oL — 9. Tapdk/(4mvg 7 Ip).

N e Second term in Eq. (27)Let us first recaf® that
z§ )=f DLM]e T, (24 x9.n™ is an angular momentum density, which, at the ex-
tremum of the action in Eq17) is locked to the ferromag-
with netic componentn® x 9 n~ ¢ Since¢™ is a rapidly
fluctuating field, the second term in E@7), being a pure

e [~ 20 p(A)\2 phase, for this case averages to zero already on finite patches
ST fo de dX[4J1a0S (€)™ + 2k Sa(J, in Euclidean space-time, and will be ignored in the low-
energy limit considered here. This amounts to neglect fluc-
+JR) - €A —iS(NPx 9 ). A7, (25  tuations away from the cluster of paths that dominate action

17) for the localized spins when decoupled from the stripe.
s Jk<<Jy, we do not expect these paths to change much
when inserting the stripe, and the argument applies also in
the presence of the stripe. We shall discuss the limitations of
this mean-field-type argument below.
Third term in Eq. (27)The last term in Eq(27), contain-
ing only the Nel field and its time derivative, should be
assembled with the spin action in E4.7). Then, integrating
1 outall ;) fields from Eq.(5) —in exact analogy with the
=ex42f deX(w)TF_1w> Eexq—SE(fAf)), (26)  one-dimensional treatment éfa)_; in Eq. (26) —taking a
continuum limit in they direction, and using r(x 4,n)?
where I'=4J,2,5%1, w=(2JcSa)J, —iS(NWx 9 n*)y, =(d.n)?, oone obtains the effective action for the order pa-
We have here defined, =J—(J-n®)n®, with J=J, ~ rameter field in theA domain
+Jg, as the piece of the electron spin density that— via the

Note that we have again changed to the compact notatio
Ny -1—n®, €,w_;—€®, introduced in Egs(20) and
(21). The integral in Eq(24) is Gaussian and can easily be
carried out. We obtain

f D[e<A>]exp(— f d7rdX[ (€M) TR + we™]

- w0 o 2
constraintn. ¢A =0—survives the projection onté. S[n]zi de dxf dy C(VI’I)2+1 @) }
Thus, from Eq.(26) \(/\g-z obtain the effective action coming 2090Jo -« Jo c\dr
from fluctuations in¢‘*V, +Sonasd N, 29)
off o apJi iJk ) where the first term is the action for a MM in a semi-
San= fo de dx| — E‘JL'JNL 87dy, (n infinite plane, with parameterg, *=S/\/8ay,c=/8JS 4.
One piece of the original sum over Berry phases in #@)
) 1 ) (A2 has bgen absorbed in the BM, while the part containing
X9 NH)- I+ 16]Ha0(n XN (21 the Nel field only, Eq. (18), is left as a global phase
Sphasd N] in EQ. (29). This phase is an alternating sum over
Let us in turn discuss the different contributions& f,I): the solid anglesP[n(r;,7)] swept by the locanh(r;,7) fields
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as T goes from 0 toe. As long as there are no disordering or
finite-size effects causing discontinuities in theeNéeld,
SphasdN] Will be averaged out' For this reason we will
ignore it for the moment. For the more realistic case of a
finite-width antiferromagnetic domain, modeled, say, by a
spin laddef® Sphase N] will come into play, requiring a more
careful analysis. We shall return to this important issue in FIG. 2. Diagonal stripe structure.
Sec. llID.

The analysis carried out for th& domain above can be binding orbitals along the diagonal of a lattice plaquette is
repeated step by step for tlBedomain, and the fluctuations expected to be smaller than along the bonds a result, the
in ¢® are seen to give a contribution identical to that in Eq.continuum theory in Eqg11) and(12) still applies, but with
(27), with the index "A” replaced by “B.” Summing the t replaced byt’ [implying a shift of the effective velocities
contributions from the two domains, it follows that the stripe defined in Eq(13)]. Moreover,V now describes theecond

electrons get described by aifective low-energHamil-  nearest-neighbor interaction, in contrast to the collinear case
tonian whereV is the nearest-neighbor Coulomb interaction. Due to
complicated screening effects, the two interactions may be
Hstripe=Hc+Hs, (30 completely different in magnitude and even in sign. This is
with H, defined in Eq(11), while an important point to keep in mind. As for the antiferromag-

netic domains, we expect that the order-parameter dynamics

is still described by NzM (29) in the bulk(away from the
HS=27-rvSf dx{:J{Jf 1 +:JRIR: stripe: By assumption, the coupling to the stripe is weak,
Jk<<Jy, and can only perturb spins in its immediate neigh-
—gosIt IR do (J{IR+ IV IR}, (3)  borhood. Here we are interested in the reverse effect, and

will explore how the Kondo lattice interactidd) affects the
electron dynamics on the diagonal stripe.
a For this purpose, let us isolate one array of localized spins
goS=—O(U —2V), adjacent to the stripe, say thedomain. We label the corre-
TUF sponding spin operatogA) , Wherer is a lattice coordinate
running along the stripe that labels also the horizontal lattice

where

_ %o U —2V+£) 32 axes that pierce the stripe at the corresponding sites.
Gou = r 23,)" The S* spins interact with their neighboring spins on the
parallel arraySﬁA) call them, via the terms
-~ ag J&
UsTUsT or Iy _ AR A R
Harray JH; (SE g +$—1 g ) (33)

with v defined in Eq(13).
Thus, in contrast to the charge degrees of freedom whiclt is clear from the geometry that this interaction will gener-

remain untouched by the coupling to the antiferromagneti@ate an effective ferromagnetic coupling between the nearest-

environment, the spin dynamics on the stripe is stronglyneighbor S spins, induced by a double exchange via the

renormalized by this same interaction and gets controlled byyg neighboringS®) spins. As seen in Fig. 2, this means that
an effectiveU(1)-symmetricspin Hamiltonian(31). As for  the |ocal 1D magnetic environment sampled by the stripe
the low-energy processes in the decoupled antiferromagneti@ectrons via the Kondo exchange ferromagneticallyor-
environment, these are described by two independent NL dered. Does this imply a different induced interaction among
models, one for each domairr A,B, as defined in EQ29).  the stripe electrons as compared to the collinear case in Eq.
[It may be worthwhile pointing out that as long as theeNe (31)? To find out, let us first write down the full Kondo
field is protected by the low-energy thermodynamic limit, the|attice interaction for the diagonal stripe, including the neigh-
phaseSyhasd N in Eq. (29] remains inactivé’] boring array ofS®) spins from theB domain:

B. Diagonal stripes

_ T (SA LA | B)

The construction of the low-energy theory for a stripe Miondo JK;;« CraasCr.p (S§ S(Hl S§
running along the diagonal of the square lattidgg. 2 B
closely parallels that for a collinear stripe in the preceding +Sﬁ*)1)’ Jk=0. (34)
section. Certain aspects of it get more involved, however,:onowmg the same route as in Sec. Il A3, using decompo-
and the reader primarily interested in the result is well ad'sitions(S) and(16), we obtain
vised to go directly to Eq(42).

To start the analysis, we again model the isolated stripe by Hyondo=H¢+Hp, (35)
an extendedJ —V Hubbard chain, but with a new hopping
matrix elementt’<t (since the overlaps between tight- where
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H(=JKSa§Z A (€ + €W+ ¢® 4B (36) SSih= J dxf dyf dr|

( ‘]J_ Ji

iJg 1
—JKSaOZ Ar- (™ +n®, +nB4+nB)) - (37) 2J ——(nx4,n)- Ji) S(X—Y)+ Te0, ———(nx4,n)?
(41)

with J, defined after Eq(26). Doing a saddle-point approxi-
mation and dropping the rapidly oscillating phase in Eq.
(41), we obtain—in exact analogy with the collinear case—
the induced stripe-electron interaction

with A, the local spin-density operator on the stripe defined

in EQ. (22) Similar to the collinear stripe treated above, theV

mr-phase shifted Nal order across the diagonal stripe—along
horizontal as well as vertical directions—implies thaf)
=—n{® nY), =—n®, (see Fig. 2 and it follows that K in

Eq. (37) vanishesindependent of the value of the stripe band

filling n/2.%° [Note that, in contrast to the collinear case in Hine=—

Eqg. (21, there is no staggering factor in E@7): the local

magnetic environment as seen from the stripe is uniform

alongthe stripe] We are thus left with Hin Eq. (36). Taking ~ With r the diagonal coordinate along the stripe.

a continuum limit This Hamiltonian is almost an exact copy of that for a
collinear stripe, cf. Eq(28), with the only difference that the
magnitude of the coupling is larger by a factor of (#his

o>, —>f dxdys(x—y), (38 can be traced back to the fact that the latticea diagonal
' stripe electron couples simultaneouslytim localized spins

in the Adomain) Adding the identical contribution from the

B domain, it follows that the low-energy spin dynamics on a

diagonal stripe is described by tlsameeffective Hamil-

HeH4JK330j dxJ(x,X) - [€PA (x,x) + B (x,x)], tonian (31) as for the collinear case, but with the renormal-

ized parameters in E432) modified byJx— 2Jx . [As men-

tioned above, the hopping matrix elemehis also different
J(x,X)=J (r)+JIr(r), (390  from that which enters the free part of the Hamiltonian for a

collinear stripe; cf. Eq(30) with v=2agtsin(7n/2). How-

2ayJ2

N J Ar (33 IV J237+ JLI2),

(42

and doing a gradient expansionCﬂiaS), we obtain

n(A)2

+4JcSaJ- (N s(x—y)|. (40)

with the “diagonal” stripe coordinate replacing(the implic-  ever, as this has no impact on the problem studied here, from
itly defined variablg x in the definition ofJ, ;g in Eq. (10). now on we use a single labefor both types of stripes.
Given Eq.(39), we now again focus on th& domain, and In contrast to our analysis for the collinear stripe configu-
isolate the piece of E¢39) containing only the¢®-field,  ration, we have here not attempted to derive the full effective
H ) call it. Inserting a time dependence and lettitiga) act  spin action for the decoupled environment. As we have al-
at (imaginary time slice , integrating over the slices, and ready noted, away from the stripe the éll@rder-parameter
adding the result to the ordinary semiclassical spin actiordynamics is described by a MM with an added Berry
Sa[n, €] for the A domain[cf. Eq. (6) for the corresponding phase, as in Eq29). By inspection one finds that close to
collinear casg we obtain the diagonal stripe the Berry phase gets influenced by the
unusual boundary condition associated with the diagonal
o % o = [J,S? stripe orientation. Thus, our results—here derived for a semi-
SA[nf]Jrf dTHeZJ dxf dYJ dr [(V infinite 2D geometry—may be of limited applicability for the
0 - X 0 case of diagonal finite-width or spin ladder environments
+8(6M)2—is(nM x g n®W). ¢A)] (see Sec. Il . Their study is an interesting problem, but we
here leave it for the future.
The fact that the same effective interaction appears for the
diagonal and collinear stripe structurésp to the ftrivial
Jy > 2Jk shift) reflects its origin in the coupling of the elec-
Writing down the full A-domain action in Eq(40) we have tronic spin density to theniform € components of the local-
ignored the presence of the sum over Berry phasesgain  ized spins These components are confined to a plane or-
Eq. (6) for the corresponding collinear cdseince it does thogonal to the Nel direction, and are blind to whether the
not involve the¢-field and hence does not couple directly to local Neel-field adjacent to a stripe is staggerés for a
the stripe electrons. Also note that compared to our treatmenllinear stripé or uniform (diagonal stripg®? The coupling
of the collinear case in Sec. Il A3 we have here shortcut theonstant J2/J;; embodies the second-order process that
analysis by taking a continuum limit in thedirectionbefore  drives the induced interaction between the stripe electrons:
integrating out the field in Eq.(40). Carrying out the inte-  An electron exchanges spin with the environmentl() and
gration we obtain an effectivA-domain actionS E(fAf) gener-  another electron arriving at the same lattice site flips back the
ated by fluctuations in the ferromagnetic components of théocalized spin by a second exchangek) resulting in an
localized spins: effective spin- exchange~(JK) between the two electrons.
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Since only that par_t of the spin exche_mge thgt couples to the ba=bLat Prar Oa=DL o= Pra- (48)

¢ components survives, the effective interaction becomes an- ) ) "

isotropic. The 11, dependence of the process is also ex-'N€N: using the identities

pected: The larger the spin stiffness of the antiferromagnetic >

environment, the smaller the probability for the double ex- Jetd =— \ﬁax%,
an

change to occur.

(49)
C. Effective stripe Hamiltonian: Bosonization Jr—JdL=— \Eﬂxﬂc,
As we have seen, the low-energy electron dynamics on 4
collinear as well as diagonal stripes—taking into account a Pt =— (12
. : . . ; =—(1N27)oxps,
weak spin-exchange with the environment—is described by ROTL ( ™) xs (50
an effective Hamiltonian(30), with the amplitudes for
(30 P 2 32 = — (1N2m) dy s,

forward- and backward-scattering renormalized by the ex-
change. This Hamiltonian embodiesjin-anisotropic inter-  together with Eqs(43) and (44), we can translatéipe
actionamong the electrons, well-defined on length and time=H_.+H, in Eqg. (30) into bosonized form
scales over which the environment is magnetically ordered.
To analyze the consequences for the stripe electron dynamics V¢
we shall use Abelian bosonization to map the model onto ch—f dx{(ax<pé)2+((9x1‘}é)2
2
two independent quantum sine-Gordon modeishe weak-
coupling limi)—one describing the collective charge excita- 2m,
tions, the other the spin excitations—and then perform a +51ne—2KCO§\/87TKC(,Dé)], (51
renormalization-group analysis to identify the leading insta- o
bilities of the system.
The method of bosonization is well reviewed in the = vs L2 yp . 2Mg ,
literature>>®364and we here only sketch the most important Hs_?f dx) (dxps)“+ (dxTs) +?K003 V87K spg) |-
steps so as to fix notation and conventions. The standard 0 (52)

bosonization formulas for spinful chiral electrons are given _ o
by53 We have here introduced the rescaled charge and spin fields

‘Pc,:,s: Kc_,sllz‘Pc,sa ﬁé,s: Ki{gﬁc,s- (53

VAT dg, o(X)

R,(X)= S
(%) and the short hand= 7,7, 7,7, . To leading order in the

(43)  coupling constants the sine-Gordon model paramé{gs

1
«©
\/27730 7

andmg are given b
RL(x)= ! Nae  VATIR AN c(s) g y
27Ta0 aO
2(Kem ) =0oc=— 7 -(UF6V),
1 -
I o 54)
La(x)= e L0, a (
0
27Ta-0 (44) 27Tmc= Jou=— 7T_UF(U_2V),
1 -
LT(x)= e EThL o0 .
«(X) 2mag " 2(Kg— 1)29052711(”‘”)'

Here ¢r . (X) and ¢ ,(x) are right- and left-moving 5 (55)
bosonic fields,_respectively, carrying spixT,|. The Klein 2mm.=go, = k) ( U— 2v+ﬂ‘]_K)
factorsn, and 5, are inserted to ensure that the anticommu- R n/’
tation relations for electron fields with different spin come with
out right®* They are Hermitian and satisfy a Clifford algebra
. _ dp
17018} ={1a 18} =260p, {7Mams}=0. (49 Uc:UF+Z(U+6V)' (56)
One next introducesharge(c) andspin(s) fields ¢ s and a 32
their dualsd, g: v5=v,:——o(U—2V+2,B—K), (57)
277 ‘]H
Qe=(d1+d)N2, e=(0;+0)1\2, (48
os=(d1=)IN2, 9=(6,-6)I\2,  (47) 1/2  collinear stripe
= . . 58
where A 2  diagonal stripe. 58
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Note that in obtaining Eqg51) and(52), terms correspond- g,(g)
ing to scattering processes which lead to a renormalizatior
of the Fermi velocities in second order in the couplings, as
well as strongly irrelevant terms~cos(/8mK. /)
X cos(y8mKsp.) describing Umklapp processes with paral-
lel spins, have been omitted.

The product of Klein factors in Eq$51) and(52) acts on
a Hilbert space different from the boson Hilbert space and
introduces a certain ambiguity into the formalism. We re- F
solve it by choosing a representation of the Clifford algebra

in terms of tensor products of Pauli matrices and the identity “ge(go
operatof*
Mm=01901, 7,=03807, _\
(59)

Mm=0001, 7=1®0,,

in which the above product= 7,7, 7,7, of Klein factors
has the form

k=1®0j. (60) - . .
FIG. 3. Renormalization-group flow diagram for the spin

This matrix is diagonal with eigenvaluesl. Provided that (gs,g,) and charged.,9,) sectors. The arrows denote the direc-
all relevant correlation functions to be calculated containtion of flow with increasing length scale.

only products of Klein factors which are simultaneously di-

agonal withx we can pick the eigenstate with _eigenvalue gg(s)_gﬁu):g(%c(s)_géu(L)’ (63)
+1, say, and then ignore the rest of the Klein Hilbert space ) .

[allowing us to do the replacemert—1 in Eq. (51) and and—depending on the relation betweg# sy and goy(.)

(52)]. We will come back to this point below. (or, equivalently, the bare sine-Gordon parameléyg, and
m¢s))—exhibit two types of behavior&f. Fig. 3).
lll. PAIRING AND DENSITY CORRELATIONS Weak-coupling regimeWhen goc(s)=[ou()| (Keg—1
o _ = m|mgs)|) we are in the weak-coupling_uttinger liquid
A. Renormalization-group analysis regime: g,(,y—0, implying that the renormalized masses

The mapping of the effective stripe Hamiltonian in Eq. m) scale to zero. The low-energy, long-wavelength behav-
(30) onto the quantum theory of two independent charge andbr of the gapless chargespin degrees of freedom is thus
spin Bose fields, manifestly shows that the collective low-described by a free scalar field
energy charge and spin dynamics on the stripe remains sepa-
rated in the presence of a magnetic environment. This allows H _Ug(s)
us to extract the ground-state properties of the stripe elec- ORI
trons by performing independent renormalization-group . _ . .
analyses of the charge- and spin-sector sine-Gordon Hamilgnoring logarithmic cor_rchoﬁg coming from the slow
tonians. The RG flows are of Kosterlitz-Thouless-type, withrenormalization of marginally irrelevant operators near the

effective coupling constants;(i=c,s,u,L), governed by fixed line gu(L).=(_), the large-distance _behaviors of the
the equatior® charge- and spin field correlators and their duals are given by

f dx{(&x‘P(,:(s))2+(axﬁ(’;(s))z}- (64)

dg./d¢=—-g2, (€1 V2K ¢(9(0 ™1 V27KE 9 9c () ~ x| Ko,  (65)
(61)
dg,/d¢=-9g.9,, <ei \V2m/KE (g 94 (N g \/2W/K§(S)a[;(s)(0)>~ IX| ~1KYg.
for the charge sector, and (66)
dge/dé=—g?, Hence, the only parameters controlling the low-energy be-

havior in the gapless regimes are the fixed-point valogg
_ (Luttinger liquid parametensof the renormalized coupling
dg, /df=-gs, , .
_ . . constantK ¢~ 1+ ge(s)/2.

for the spin sector. Heré= € n(a/ay) with a a renormalized Strong-coupling regimeswWhen goei)<|gou)l (Kegs)
length, whileg;(¢=0)=go; are the bare parameters that en- —1< z|m|) the system scales to strong coupling. The
ter Eqs.(54) and(55). We shall denote bﬁc(s) andﬁk(s) the two separatricesgoes)= *|goyy| divide the strong-
correspondingrenormalized sine-Gordon parameters con- coupling regimes for charge and spin into two sectors, re-
nected tog; via the same Eqg54) and (55). spectively: (i) Goes)<—|9ou)/, where the increase of

The flow lines lie on the hyperbolas |9c(s)] and |gy()| is immediate andii) —|gou( )| <Goc(s)

(62
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<|gouw)l: Where one observes erossoverfrom a weak- Sector are described by the free massless Bose field in Eq.
coupling behavior at intermediate scaleg(~|gy))) to (64 with Kg =K, reflecting its exact marginality.

strong coupling at larger scalegq(s)~ _lgu(L)|)-63 Depend- Av'vay'from half filling(n.# 1) the bare mass term in Eq.
ing on the Sign of the bare mam(s) in Eqs(54) and (55), (51) is killed off for any values olU andV, and the Charge
the renormalized masfnc(s) is driven to +, signaling a degrees of freedom are descri_beq by the free Bose field in
flow to one of the two strong-coupling regimes, with a dy- E9: (64)- Analogous to the special lié =2V>0 above, the

namical generation of a commensurability gags in the correlations in Eq(65) and (66) are now governed by the

e bare value of the Luttinger liquid charge parameter in Eg.
charge (spin) excitation spectrum. The flow ofm)| to (54): gerla ge p d

large values indicates that the cosine term in the sine-Gordon
model dominates the large-distance properties of the charge
(spin sector. With the cosine-term being the dominant one,
the values ofp, ) will tend to be pinned at the minima of the
cosine potential. Fomg) <0 these are ay8mK e ¢( (s
=24n, with n an arbitrary integer. Sinceé(s) are angular
variables one cannot distinguish between diffenenhow-
ever, and the “negative mass” condensation is defined b : :

agnetic environment.

{@c(9)=0. Similarly, for mey>0 the minima are at Let us now look at the behavior of thepin sectoywhich
VBTK () pe(y= 7N and the fields order aym/8Ky). To s more interesting. As we have seen, the spin-exchange be-
summarize, there are two strong-coupling regimes where thgveen the Nel-ordered environment and the stripe electrons
fields ¢ get ordered with the expectation values breaks the S(®) spin-rotational symmetry in the effective
theory. This implies that the spin sector is gapped for arbi-
;| V8K (), Mgg>0 6p Ay U#2V—BJ21J, (strong-coupling regime When U
{ee)= 0, Meg<O. >2V—BJ2/J, the mass renormalization goes t©,
whereas forU<2V—,BJﬁ/JH the mass renormalizes to
—oo, Reading off from Eq(67), using Eq.(55), this implies
the spin field orderings

chy
2mu,

Kf=K,=1—

(U+6V), ne#l. (70)

All of the above is familiar from conventional “g-ology”
for Hubbard-type model$®’ Since the Kondo lattice inter-
action, Eq.(4), does not couple to the charge sector the latter
indeed behaves as if the electrons were isolated from the

Note that the signs of the bare masses in &d) are con-
tingent upon the choice of truncated Klein Hilbert space in
Sec. Il C, where we have taken—1 in Egs.(51) and(52).

This has no effect on the physics, however, since a transpo- [mI8K. U>2V—BJ2/J
sition of the two strong-coupling phases abdvia the alter- (@)= TR ) Pl Jn (72
native choicex— —1) would be followed by a subsequent 0, U<2V-pBJI/dy.

redefinition of any relevant correlation function, thus produc- . . -
ing the same value of any observable. glt(r)i?ethat this result independenof the band filling on the

Having exposed the properties of the weak- and strong="y,, ., Jk=0 and the stripe decouples from the environ-

coupling regimes, let us apply the results first to éharge ment, the S(R) invariance of the spin sector is recovered,

sector By inspection of the “bare” values of the coupling ) ; . )

constants in the charge sector, E§4), one easily finds b th; spm—dﬁnkamms r(ra]normahzes alo;;lg the Separggrlllx d
. e Y : ' =g, . As is well known, the spin sector then gets controlle

using Egs(67), that for ahalf-filled band(n,= 1) this sector by the weak-couplingLuttinger liquid parameter .~1

'S gapped fo_rU>2|V| andfor U<2V !vhenV>O_ (stro_ng +19s—K¥*=1 when U>2V,% whereas forU<2V one
;:r?;;pllng regimes In the former casen,— —, implying stays in the strong coupling regime ngzo_m,eg
Next, we want to exploit the RG results derived above to
(¢)=0, (68)  map out the ground-state phase diagram for the stripe elec-
trons. We shall catalog the different phases according to the
values of U,V,Jﬁ/JH ,ng), and focus on the corresponding
N o behaviors of density and superconducting pairing fluctua-
(9c) = V7/BK. ©9 tions. These are characterizez by the correlgtions of the as-
For any other values df) andV, but still at half filing, ~ Sociated order parameters, which in the present case come in
we are in thewveak-coupling regimecorresponding to a gap- WO guises{(1) conventionaknd(2) compositeorder param-
less charge excitation spectrum. The charge degrees of fre@lers. Let us in turn review their definitions and bosonized
dom are here governed by the free Bose field in (¢), €presentations.
with the fixed-point value of the charge parameter

while in the latter casen,— o, with

B. Order parameters

2
VW(U+2V)>1, ng=1, (70 1. Conventional order parameters

Ky=1+
TV

B The conventional order paramet&r&®359which may
obtained from EQ.63) with m;=0. The lineU=2V>0  develop long-range correlations in this class of models are
corresponding to the fixed-point line.=0, K.—1<0, is those of short-wavelength k2x) fluctuations of thesite-
special. Here the low-energy properties of the gapless chargendbond-located charge density, si@idbond-located spin
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density and superconducting singleand triplet pairing. By OV (X)— 72 m1cOS 2K -0 (X
using the chiral decompositio8) of the electron fields to- SowlX)= 777, €04 V27K cc(X)
gether with the bosonization dictionary in E¢43)—(50) it is _szx]co{‘/szglﬁé(x)], (77)

straightforward to obtain their bosonized forms.
(a) Charge-density wavéCDW). This fluctuation is car- and

ried by thecharge-0, spin-@&xcitations created by the opera- , . ,
o CARE P ythe opera- oz | (x)—cod 2K opl(x)— 2kex]si V2mKapl(X)],
(78)
oCDW(r)zz CIQCWZE [Jra(r)+IL (1) where in the z component we have puﬁmzam
a 7 Ta ’ ' =const.

_ In the special case of a half-filled band.& 1) one can
T 1t e
+OLa(NRAN+8 Ra(MLa(n)], (73 distinguish between thek?2 modulations of the charge and
with &, =e?*F"3 and wherel| , are the chiral charge cur- Spin densities with extrema of the density profile locaded
rents defined in Eq(9). Keeping only the finite-momentum Sites or betweensites—i.e., on bonds. Therefore at half-
modes k= *+2kg) from the nonchiral terms, taking a con- filling one should also consider order parameters correspond-

tinuum limit, and reading off from the dictionai#3)—(50), ing to the short wavelength fluctuations bbnd-located
one obtains the bosonized expression charge and spin densities.
(c) Bond-located charge-density wavébCDW, or
Ocpw(X)—sin 27K @ (X) — 2kex]cog V2K e (X)], “dimer”). A dimerization instability is characterized by en-
(74 hanced correlations among tleearge-0, spin-Cexcitations
created by

where we have used that »,; and  », are diagonal with
the same eigenvalue on the truncated Klein Hilbert space
chosen in Sec. Il C. ObcowlN) =2 (€] 1Cri10+H.C). (79
(b) Spin-density wave(SDW. This is the simplest “
charge-0, spin-vector order parameter, and is defined by Again, keeping only th&= = 2k excitations, one obtains in
the continuum limit

Ospw(r)=3¢] a0 apCr.p- (79
Opcow(X) — €0 V27K e (X) — 2Kex]cog V27 %(X()]

Bosonizing thex component ofOgpy(r) that createk=
+ 2k excitations, and dropping the trivigl=0 modes, one

80)

finds in the long-wavelength continuum limit (d) Bond-located spin-density waybSDW. This is the
. _ , vector order parameter that descrilmbsrge-0, spin-Imag-
Ospw(X)— 77 1,€09 V2K 0 (X) netic excitations centered on the lattice bonds:

— 2kex]sin 27K S t9L(x)]. (76)
To obtain this form we have exploited the fact that the Klein

factors 7, 77, — 77, 77, and — 7 7, have the same  |n the continuum limit the lattice shift in Eq81) shows up
action in the truncated Klein Hilbert spad®lote, however, as an extra phase/2 added to the ubiquitous phasérx
that 7, 7,7, is not diagonal on this space, and as a reminder ofcf. the bosonized dimer operator in E@0)] and we thus
this we keep it explicitly in Eq(76).] In the same way one identify the bosonized components of the finite-momentum
easily obtains part of Opspw(X) as

1 T
ObSDV\Kr): Py 2 (Cr o0 apCri1tH.C). (81)

7SI V27K el (x) — 2Kex]sin V27K S T9(x)], =X,
ObspwWX)— 9 77,8 V27K LX) — 2kex]cog V2K T9L(x)],  i=y, (82)
sin V27K ol (X) — 2kex]sin V27Kpl(X)], 1=z

Finally, we consider the two order parameters (&upercon- Ogdr)=c/ Tc;ri: 5r|-%r(f)LI(f)+ 5,‘1R}r(r)RI(r)
ducting pairing. v
(e) Singlet pairing(SS. The charge-2e, spin-&upercon-
ducting pairing modes on the stripe lattice are created by the T + t +
operator +Li(NDR{(r)+Ri(r)L{(r). (83
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The k= £ 2k¢ excitations produced by the chiral terms are OcdX)— 71 7,exi Wﬁ’(x)]cos{ 2aKeel (1.
the so-calledy pairing mode<? The right-moving pairs i ¢ e sTs 85)
can be written as

(f) Triplet pairing (TS) The charge-2e, spin-Ipairing

7r(X)=RIOOR](x)—exfi 27K 9 (x)] modes are created by the lattice operator
Xexg —iv27Kepe(X)] (84) Org(r)=—ic] (00Y) 4! 5. (86)

in the long-wavelength limit, with the analogous expressio
for left-moving pairs, 7 (x)=L{(x)L](x). As these contain
only the cha_rge fle_ld and its dual, they are bI_|nd to the anti- OTs(r)—>—iRZ(r)(UtTy)aﬁLI;(r), (87)
ferromagnetic environment and hence we will not consider

them here. This leaves us with thke=0 BCS singlet-pairing we obtain for the bosonized components in the long-
operator contained in E¢83), with the bosonized form wavelength limit:

nAgain retaining only the&k=0 modes,

|
exdiv2mK_ T oL(x)]sin V2rK S ToL(x)], =X,
Olc—1 exdiV2mK; 19 (x)]cod V27K, 19101, i=y, (88)
mmexdiN27K S LX) Isin V27Kl ()], i=2,

2. Composite order parameters nW=—n®=n, Thus, from Eq.(89), the k=2ke+ 7/a,

In addition to the conventional order parameters listed=2kg part of the composite charge-density wave is given by
above we need to consideompositeorder parameters built
from operators acting on the stripe electrard the mag- O(kZZKF)NO n(—1)" (90)

. . . . c-CDW SDW ’
netic environment. The notion of composite order parameters
was first exploited in the theory of superconductiftyy  \ith r the stripe lattice coordinate, and with the bosonized
where it was realized that since any product ofapartlcle-hol%omponemS 005 oy Written down in Egs.(76)— (79). It
(i.e., charge-neutraloperator and a Cooper pair operator woyld be tempting to refer to thgeneralized Luttinger
possess chargeezhis composite can, in principle, describe theorent! to "explain” the appearance of the composite stag-
some supercondu_ctlng state. By analogy, one may S'm"ar'bered CDW, Eq(90). As pointed out by Zachd, the theo-
construct composite CDW and SDW order parameters.  yem asserts that theories belonging to the class of Kondo-
that may deyelop long-range porrelatlons for the p.)r_1y3|callymass|ess spin-0, charge-0 excitation of momenksa®k?
most interesting case of a stripe away from half filling andyefiecting the presence of a “large Fermi surface” due to the
with repulsive electron-electron interactiond—2V=>0:  |ncalized spins However, in the present case the localized
composite CDW and composite singlet pairing. spins of the environment are assumed to be ordewét the

(@ Composite (site-located) charge-density wave (Cq\_ ;M in Eq. (29) describing the small fluctuations of the
CDW). A composite CDW order parameter is obtained by, qer.parameter fieldn], and, as a consequence, time-
projecting the conventionalsite-centere spin-1/2. SDW  yoy/ersal symmetry—entering as a condition for the validity
onto the difference between the localized spins on the neighs the theorerh—is broken. Indeed. the case of a diagonal

boring A andB arrays: structure is different, and doemt produce a&k=2kg mode.
Here the stripe electrons experience a local ferromagnetic
Oc.cow~ Ospw (SN —SB)). (890  environment(cf. Fig. 2, and the composite CDW now ap-

pears ak=2kg (i.e., with no staggering
Note that this expression is well defined in the continuum
limit for any stripe geometry: In particular, for the case of a O(c'fczs\k,\f)~OSDW~ n. 91
diagonal structure, an electron at thin site on the stripe
couples toS?;+S* in the A domain, which in the con- (b) Composite singlet pairing (c-SBy taking the prod-
tinuum limit reduces to 8(x,), dropping an irrelevant uct of the conventional triplet pairing operat@¥ for the
gradient term. Considering first a collinear structure, we needtripe with the difference of spin operators for localized
to keep only the staggered pan$’(—1)" andn®(—1)" of  spins, S’ — S®), a composite singlet-pairing operator can be
the localized spins since the correlations of the uniform comformed as
ponents of SV and S{®) die out fast® With a phase-
antiphase domain, as assumed here, we further have that Oc.s5~ Org (SA—5B®), (92
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For a collinear stripe this operator has two momentum A2v
components: a uniforrk=0 composite singlet
B Bond_/ |
Org (€A —¢(®), CDW SDW U=2v
: : . . . (LRO) C
with rapidly decaying correlations due to the incoherent fluc- A U
tuations of¢™ and¢(®), and ak= r/a, staggered composite >

singlet SDW

(LRO)

k=l
Og'sd ¥ ~Ors n(~1)"

=—iRI(N(00Y),5L5r)-n(—=1)", (93

U=-2V —T
with r the discrete lattice coordinate along the stripe, and
wheren=n”= —nB. It is important to note thaD(k:;S/aO) is FIG. 4. The ground-state phase diagram of the stripe-electron
oddunder time reversal: R L 0__)_a_n_>_n°)7 aswell System at half filling. Solid lines separate different phases:
; . SR ) ' _ SDW—Iong-range ordered spin-density-wave phase; CDW—Ilong-
as under parity R:R<L), implying “odd-frequency odd range ordered charge-density-wave phase; SS—B&®ercon-

parity p.airing.”go . . ducting singlet pairing phase; FS-triplet pairing phasécoexist-
Turning to the case of a diagonal stripe structure the com- :

. . . . ing with a composite S5 bSDW*—long-range ordered bond-
posite s_lnglet pairing now occurs f¢:r=0 (since the local located spin-density wave. As explained in the text,Ahghase for
mqgnetlc environment appears uniform as seen from thgpin 1/2 can only be realized with an “in-phase” &leonfiguration
stripg, and one has across the stripe. The other stripe phases are assumed to coexist

with antiphaseNeel configurations of the localized spins.
Ofsd~—iR()(0”) gL y(r) 1. (94)
1. Half-filled band: n,=1
Again, parity and time reversal are broken. We here point out The phase diagram consists of five sectdsB, C, D1,
that theoretical work suggests that odd-frequency pairing is andD2 (see Fig. 4
actually unstable fok=0 pairs(at least within Eliashberg- (a) A phase: U>2|V|. We include this case merely as an
Migdal theory, where vertex corrections to the self-energy,ystration of our formalism, as a half-filled baridne elec-
are neglected This result becomes particularly intriguing ron per site on the stripds somewhat special when com-
when seen in the light of the diagoratollinear stripe rota-  ined with dominant repulsive on-site interaction. The reason
tion associated with the superconducting transition observeg that for a spin-1/2 antiferromagnetic background one ex-
in some of the cupratd$*’ (cf. our discussion in Sec):IIf pects to lose the phase-antiphase configurationasl, and

the singlet pairing in the higfi. materials were of compos- isiead recover the undoped antiferromagnetic it an
ite nature, the stripe rotation would precisely serve to Stab'in-phaseNéel configuration across the “stripg”In work by

lize the pairing by shifting the momentum frokw=0 (diag-  7achar® based on a stripe-J model [corresponding to a
onal configuration with unstable pairipngto k=m/ay  «girong-coupling” limit Jx~J, of our lattice model in Eq.
(qul_lnear configuration with a stable, staggered composn?l)]’ it was suggested that there is a transition from the
pairing modg. ) phase-antiphase to in-phaséeNeonfiguration already at a
_ Inthe presence of 2D Nt order, as assumed here, e 504 filling ~0.6 (see also Ref. 59 Still, it is instructive to
field correlka_tlolns are infinitely ranged in the ground Stateemploy the assumption of a half filled stripe embedded in a
and the O;_<° and Of~gg operators may form large- hypothetical phase-antiphase ldackground, and explore
distance correlations that compete effectively with convenits consequences. At half filling the charge excitation spec-
tional triplet pairing. Whether this happens, and what othetrum is gapped £.#0) whenU>2|V|. The stripe is thus
order-parameter correlations may develop, will be studiednsulating and the ordering of the charge boson with ground-
next. For an extended discussion of composite order paramtate expectation valugp.)=0 suppresses the conventional
eters for 1D correlated electrons, we refer the reader to Refg&pw and superconducting correlations, but leaves behind
27 and 29. the SDW and Peierl&limerized correlations. Turning to the
spin sector, according to E¢72) there is a condensation at
C. Phases (@s)=+/mI8Ks. This kills off the Peierls correlations, and as

. . . . . the “in-plane” SDW*Y correlations are seen to be incoherent
Equipped with the results in the two previous sections W€ e are left with

shall now pinpoint the leading ground-state instabilities of

the stripe electrons and list the corresponding phases. Wenz 10z (v")}~cod 2ke(x—x")1—(— 1) X const
remind the reader that the parametedescribes the nearest- RO30w(X)O5ou(x") ~cog 2ke( =D (95)
neighbor(second nearest-neighhanteraction on a collinear

(diagona] stripe, and may be different in magnitude andwhere in the last step we have reintroduced the discrete stripe
even in sign for the two types of stripes. coordinatex=rag, x'=(r+I1)ay. Thus, given the hypoth-
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esis of a phase-antiphase spin background one obtains -82V<<0, the bosonic charge field is now condensed with
long-ranged antiferromagnetic (8 phasefor the stripe.  ground-state expectation valde.)= \/#/8K.. This imme-
The energy of this frustrated configuration grows linear withdiately leads to suppression of the site-located SWfre-
the length of the stripe and is hence unphysical, as anticitations, and instead the bond-located bSD#¥hibits long-
pated. Note, however, that the actual “in—pr]ase”emeon- range order:
figuration forn,=1 doesimply a long-ranged N&l phase for
the stripe. (OfspwX)Ofspw(X))~(—1)" X const. (98)
For a spin-1 background, as in the nickelatéke situa-
tion is different’ and the half-filled band phase now be- The ||neV:0,U<O iS the crossover Iine from the insulating
comes a real possibility. In a recent experiment by Boothroyd?hases into the superconducting phases. On this line the
and collaborator$ on Lay,Sr,sNiO,, a signal consistent charge sector is in the weak-coupling gaplessetallic
with dynamic antiferromagnetic correlations of the chargePhase withKg=1. However, the spin sector is massive
carriers on the diagonal stripes was observed. However, th@ong this line except at the poid = — BJ213y, which
strongest correlated spin component appears to be that whicharks the transition from a metallic phaseﬂBJﬁ/JH<U
is orthogonalto the Nesl order of the environment, in con- <0, where the SDW bSDW, and TS fluctuations show
trast to our prediction oparallell alignment. It would be identical algebraic decay at large distances
interesting to explore whether an anisotropic Kondo interac-
tion, of pseudodipolar type, could provide a coupling be- (O%pw(X)O%pw(X'))~{(OfspwX) Ofspw X))
tween in-plane and out-of-plane spin components, producing , ., -
a shift towards orthogonal orientation. Although our simple ~(O74X)O7g(X" )~ |x=x"| "4,
model fails to predict the spin orientation seen in the experi- (99)
ment, itdoescorrectly predict that the correlations along the
stripes areantiferromagnetic in contrast to earlier wofk  to a different metallic phase aﬂ<—ﬁJﬁ/JH, where the
foreseeing ferromagnetic correlations. SDW, bSDW, and TSfluctuations are suppressed, while the
(b) B phase:0<U + BJ%/J,<2V. This phase is that of conventional CDW, SS, and Peierls correlations show iden-
an insulator with a long-range ordered CDW: Both chargetical large distance behavior:
and spin excitations are gapped. The fiegtq%;s) get ordered ) ,
with ground-state expectation valuds.)=0 and ()  (Ocow(X)Ocow(X"))~(Osdx)Osdx"))

=/ ml8K,, respectively, and ~ (Opeow(¥)Obcon(X )~ x—x'| .
{Ocpw(X)Ocpw(X'))~(—1)"X const, (96) (100

with | defined after Eq(95). For the case of an isolated stripe This large degeneracy of metallic phases along the Vine
(Jk=0), results from weak-coupling perturbative =0 is due to the S(2) charge(‘pseudospin”) symmetry of
renormalization-group studig®’” show that there is a con- the half-filled Hubbard modéf The degeneracy is immedi-
tinuous phase transition along the lide=2V separating the ately lifted by an attractive nearest-neighbor coupling (
SDW? and CDW phases. The recent interest in the extended:0), in support of superconducting instabilities. One finds
U—V Hubbard model was triggered by Nakam{tayho two phases with enhanced pairing correlations.

found numerical evidence that for small to intermediate val- (d) D1 phase U<2V—,BJ§/JH and V<0. Here the
ues ofU andV, the SDW and CDW phases are mediated by dominating instability is towards conventional BG#glet

a bond-located charge-density-wayeCDW) phase: The pairing, with correlations

SDWA-CDW transition splits into two separate transitio(ig:

a Kosterlitz-Thouless spin-gap transition from SBWo (OgdX)Ogd X)) ~|x—x"| K, (101
bCDW and(ii) a continuous transition from bCDW to CDW.

An analogous sequence of phase transitions in the vicinity of (e) D2 phase 2V—,BJ§/JH<U< -2V, V<O0. In this re-
the U=2V line is an intrinsic feature of extenddd—V gion triplet pairing shows a power-law decay at large dis-
Hubbard models with bond-charge couplffgA similar ef-  tances

fect is here caused by the Kondo coupling to the antiferro-

magnetic environment: Al # 0, along the lineJ =2V only (OF(X)OF (X))~ [x—=x"|~HKe, (102
the charge gap closes. Therefore this line correspond to a | . S S

metallic statewith dominating antiferromagnetic SDA%and and is the dominating instability in the ground state. It fol-

. . .. (k=mlag)
bSDW! correlations (since K.<1), showing identical 0ws that thecomposite singlet-pairingperatorO; (g™,
power-law decays at large distances: defined in Eqg.(93), also builds up large-distance correla-

tions:
(Ospw(X)O5pW(X')) =(OpspwX)Opspw(X))

(O g5 (0TS 0x)

~(— 1) 03 (x) O3 (X)) {NAX)N*(x’
(c) C phase: — BIZ/J,<U—2V<0 and V>0. Here (= DO 07NN EONX'))
again a charge gap opens. However, since in this séttor ~(=1)x—x"| K, (103

~(=1)!|x=x"|Ke. (97
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A2v ={m/8K,. This kills off the CDW as well as the in-plane
SDW*Y correlations. The SDWand TS correlations, on the
B other hand, survive the spin field ordering, and one finds
C D W z z ! r|—K
(SS) A (O5pW(X)O5pw(X")) ~[x=x"[ "¢, (105
D1 .”.“"""/ SDW' (OF(X)OF (X)) ~[x—x'| ", (106
SS .,,.,,.,,.,r-,,.,,."(TS) Therefore, in theA phase:U—2V+ ,BJﬁlJH>O; K.<1,
(CDW) z D2 """~~.,,.,,.” the SDW correlation is the dominating instability in the sys-
TS tem (with TS? subleading, while in theD2 phase:U— 2V
T (SDW™) U=-6V +BJ2134>0; K.>1, thetriplet-pairing (TS?) fluctuations
U=2V—[3J]§ dominate(with SDW* being subleading
JH When U —2V+ ﬂJﬁ/JH<0 the spin sector flows to the
other strong-coupling regime, with the spin excitations con-

. , L
FIG. 5. The ground-state phase diagram of the stripe-electrorcliens‘lhg a("DS):_O’ th? charge sector rgmalnlng in the_ weak-

system amn,# 1. The solid line corresponds to a narrow metallic cou_plmg metallic region. The correlauon; that exhibit alge-

phase with gapless spin excitation spectrum, and separates two djfraic decay are those of CDW and S&xcitations, and one

ferent spin-gapped phases: the SBwhd/or TS phase and the finds

CDW and/or SS phase, respectively. The dashed line marks the

Py — x| —K
crossover from a metallic phase with dominating density-density (OcowX)Ocpow( X))~ |x=x"| "%, (107)
correlations into a phase with dominating pairing correlations. All , ., R
instabilities shown in the phase diagram exhibit a power-law decay (O5dX)0gd X))~ |x—x"|" e, (108

of correlations. Subleading instabilities with correlations which de-

cay faster than the dominating ones are indicated in brackets. As It follows that in theB phase:U—2V+ BJ¢/3,<0; K,

discussed in the text, the enhanced STIWS?) correlations coexist <1, the CDW correlation is the dominating instability in the

with compositeCDW (SS9 instabilities. system (with SS subleading while in the D1 phase:U
—2V+BJ2134<0; Ks>1, the conventional singlet-pairing

We have here used Eq3) and (102, together with the BCS fluctuations are the most domingwith the CDW fluc-

property that the Nel-order parameter, witfn(x)n(x’))  tuations being subleading

=(n¥(x)n%(x’))=const, defines the out-of-plane directipn In the A and D1 phases the composite CDWand SS

along which the triplet-pairing correlations are enhancedorder parameters also form large-distance correlations. In ex-

Similarly, for a diagonal stripe one would have, using Egs.act analogy with thé&?2 phase at half filling, one obtains for

(94) and (102, a collinear stripe
(k=0) (K=0) o1 \\ .|y /| —1K K= 2k k=2k%), .
(Ocsd(X)OcTsd(X")) ~ [x=x"| e, (104 <OE:-CDV\';)(X)O<(:-CDV\%(X )~ (—1)x|x—x"| Ke,
However, as shown by Colema al.”? k=0 odd-frequency (109
pairing is likely to be intrinsically unstable, and hence is not
expected to compete with the conventional triplet-pairing
k=m/ k=m/ ’ ’—
mode. <OE:-SS aO)(X)OE:-SS aO)(X )>~(_1)€|X_X | l/KC.

(110

We now turn to the physically more relevant case of gFor a diagonal stripe a composite CDW also develops, with

stripe withn,+ 1, assuming that, is within the range where ~correfations
the stripe forms an antiphase domain wall between thel Ne
configurations 9,<0.6 in the strong-coupling limitJy

~Jy, according to Refs. 58 and 59 _ _ The fate of the zero-momentum composite singlet is more

Away from half filling the charge sector is always in the ,ncertain, however, considering its intrinsic instabiffty.
(weak- coupling Luttinger liquid metallic regime, controlled We summarize our findings in Fig. 5. We have to stress
by the bare value of the Luttinger liquid paramet&r. The  4gain the weak-coupling nature of the phase diagram.
phase gllagram now splits into four_sectO@isB,Dl,zandDZ Higher-order corrections will modify the shape of the phase
(see Fig. 3 separated by the lin&)—2V+BJi/Ju=0  poundaries. However, more important are strong-coupling
(where the spin gap closesind by the crossover lin€)  effects. In the case of strong values of the Kondo lattice
+6V=0 (K.=1) separating the metallic phases with domi- interaction, one may expect additional phase transitions due
nating density-density correlationsiat<1 from those with  to the finite bandwidth of the effective stripe model. Such
dominating superconducting correlationskat>1. effects cannot be traced within the continuum lirfiitfinite

When U—2V+BJ3/J,>0 the spin sector flows to band approach used in this paper, and will require numerical
strong coupling with the excitations condensing (at;)  studies.

2. Away from half filling: no#1

k=2k k=2kg) /o i
(O ()02 (x )y ~Ix—x'| e, (11D)
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D. The A phase away from half filling: A scenario for (@ Is the spin gap sufficiently large for the instabilities in
nonconventional superconductivity? the A phase to survive at finite temperatures?

(b) What happens when taking into account the fact that
the antiferromagnetic environment as seen by a stripmis
that of two semi-infinite domains but is rather made up of
two finite-width domains, separating the stripe from its

Of the phases considered, tlephase away from half
filling is of particular interest as the conditiond —2V
+,8Jﬁ/JH>O;KC<1;ne¢1 are expected to apply to a ge-
neric stripe in a cuprate material: Most experiméhtadi- neighbors?

cate that the stripes in the cuprates are intrinsicaigtallic (c) How do transverse stripe fluctuations influence the
with no commensurability gap even when the stripe order is\-phase instabilities?

static and strong, as in the Nd-doped materi&iithough a (d) What about possible long-range interactions among
precise specification of the coupling constants is beyonghe stripe electrons?
present-day technology, the Coulomb interaction among the Let us discuss these questions in turn.
stripe electrons is expected to dominate other couplings The size of the spin gafhe A phase corresponds to a
(electron-phonon, dopant potentials, interlayer fields),  strong-coupling regimgs=—|g, |, which is reached after a
implying the boundU —2V+ BJ2/J,,>0, with K,<1. Un-  crossover from weak couplingvhere gs=|g,|); cf. Sec.
fortunately, the electron dynamics on time scales wherdll Aand Fig. 3. Because of the crossover, the spin gap opens
Stripe fluctuations can be neg|ect6@r which our model S|OW|y, and it isa priori not obvious that it will suffice to
may apply is still to be searched out experimentally, and sust_ain theA phase in the presence of thermal fluctua_tions.
there are as yet no "hard data” against which we can conJO find out, we use Eq(63) to integrate the RG equations
front our results. (62), and identify the length scale whefg, | becomes of
The A phase is dominated by a conventional Sbivista- order unity. This scgle—wh_ere the_ per_turbation is of the
bility together with a composite CDW, coexisting witivo same order as the f|xe_d point Hamll_toman and renders the
subleading superconducting instabilities: conventional triplefheory n_oncrl_tlcal—deflnes_ theorrelation length{, .Of the
pairing and composite singlet pairipreaking parity and _electronlc Spin sector. Us'r.@l(55)|wo(1)>|905| n the
time reversgl This is different from the well-known sce- integrated  scaling equation forg, , we obtain &

. g o ; . =agexf (7/2—arctan@qs/ 59) )27 59], where 69
nario of a spin-gap proximity effettvhere pair hopping be- e s . B 1.
tween a stripe and spin-gappednsulating environment “in- . VJo. ~ Jos: The associated spin gap=%vsé; ~ is thus

fects” the stripe with the gap, resulting in a conventional 9'V€" by

CDW instability, with a subleading singlet-pairing channel. B [ a—

In the case where stripe fluctuations are sufficiently slow that A=t Ee ;{ — /2~ arctanigos/ Vdo. ~ Jos) ,

they can be treated as “quasistatic,” the CDW instability can Ao 277\/9& - g%s

be shown to be suppressed by destructive interference be- (112

tween neighboring meandering stripes, leaving the singlef;iih Jos=ao(U—2V)/ 70 and  go, =ag(U—2V
superconducting instability as the leading dh&he singlet +IBJ§/JH)/7TUS! as defined in Eq(55). There is consider-

order parameter on each stripe Iis then assumed to becomge |atitude in specifying the parameters entering (E42),
correlated across the sample via interstripe “Josephson” coys ¢ choosingv~10° m/s, a,~5 A, U—2V~10! eV

pling, leading to superconducting long-range order below g J213,,~10"* eV—all within reasonable bounds—we

critical temperature. In contrast, in our scenario singlet sUgpiain from Eq.(112) a spin gap\, corresponding to a tem-
perconductivity(with the added property dfreaking parity  perature of about 500 K. We conclude that the gap is robust,
and time-reversal symmejryvould require the suppression anq s expected to sustain tiephase in the relevant tem-
of the leading SDWand (composit¢ CDW instabilities, in  perature rangéwhere stripe formation is possiffe. It is
addition to that of triplet pairing. As we shall see below, interesting to note that an estimate of 500 K is about “right”
quasistatic fluctuations do not perform this trick. Rather, meif one were to identify the spin gap with the pseudogap ob-
andering stripes living on eollinear backbongend to phase served in the underdoped metallic phase of the cuprats.
lock so that(conventional triplet pairing comes out as the considerable amount of local pairing would then be present
leading effective instability. In the case ofdéagonal struc-  well beyond the superconducting transition temperatime
ture, the (compositg singlet-pairing correlationgif at all  this region determined by the onset of global phase coher-
present; cf. our discussion after E§4)], survive the slow encs.
stripe fluctuations, and coexist with the triplet-pairing chan-  Finite-width antiferromagnetic domainA. stripe in a real
nel. Whether a complete theory—treating stripe fluctuationsnaterial is not embedded in a 2D antiferromagnet, but is
and the one-dimensional electron dynamics on equadeparated from its neighbors by finite-width domainssgin
footing—would change our picture in favor of singlet pairing ladders with a finite antiferromagnetic correlation length
remains an open question. £apm - In order for theA phase to survive in this more harsh
Leaving for future work the problem if and how long- environment the spin gap must develop on a length scale
range superconducting order may emerge fronAgrhase-  shorter tharéary, (Where the stripe electrons can still sample

type instability when stripe fluctuations are fully included in |ocal magnetic order This implies the condition
the analysis, there are still several issues that need to be

addressed. E<Enrm s (113
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with &g the spin-correlation length on the stripe. The zero-increase our model parametéis- 2V and/orJk so that Egs.
temperature correlation leng#agy for S=1/2 spin ladders (113 and(114) were simultaneously satisfied fog=1, our
with an even number of legs ,nhas been calculated construction would break down. In particular, the assumption
analytically?® of aweak couplindRG scheme—as exploited in Sec. Il A—
would be violated. In addition, the pronounced role of the
Enpm~0.520e%58¢(1-0.7,), (114  Berry phase fon,=1 is likely to invalidate the construction
of the effective spin-sector model in E@1), as paths in Eq.
where, as beforea, is the lattice spacing. Using thdy  (17) away from the extremum now enter the stage to influ-
=hvs/Ag, our estimate from aboved,/kg~500 K, to- ence the ground state also at short and intermediates length
gether with Egs.(113 and (114), imply that the A phase scales. Then,=1 environment is therefore not expected to
survives for even-leg ladders witly,=4. As suggested by be covered by our approach, and must instead be studied by
the Monte Carlo data in Ref. 79, a four-leg ladder withof ~ other methods, such as that advocated in Ref. 31.
the order of 102 eV may support thé\ phase up to a tem- The quasistatic limit: the effect of slow stripe fluctuations.
perature ofT~50 K. By increasingd —2V and/orJi, the  To study the effect oSlow stripe fluctuations on the order-
spin gap grows, allowing for thé phase to persist at the parameter correlations of pha8eve consider a 2D array of
lower boundn,=4 for even higher temperatures. static stripes and take an equilibrium average over their me-

The case of amdd-leg ladderrequires further analysis. anderings. Adopting the notation in Ref. 10, we use a coor-
Now, with S=1/2, the Berry phase in E418) contributes a dinate system in which the stripe array runs alongxfos-
nonvanishing topological term to the effective action for therection (collinear or diagonal on the lattige with a
spin ladder, implying a diverging spin-correlation length transverse displacement of a stripe in heirection labeled
—o but with no antiferromagnetic order over large dis- by yj(x), with j indexing the stripe. Introducing the arc
tances. However, in the weak-coupling regime the topologiiengthL;(x), measuring the distance along tfté stripe to
cal term is effectively inactivé® and as a consequence there positionXx,
is no distinction between gapless and gapful ladders on .

Iength scales shorter thafygy, . It follows that condition Lj(X)=f dx’ 1+[axryj(x’)]2,

(113 is the same for even-leg and odd-leg ladders. Although 0

we cannot rigorously exclude that nonperturbative effects . .
may carry over to the stripe electrons on length sclaeger we infer from Eq.(78) thg exprgss!on for the SDWorder
thanéary , it sSeems improbable considering the fact that theparameter on a meandering stripe:

spin sector of the stripe develops a mass at a length scale
which is shorter than and independentéafy, . As such the

mass is already well established at the scale where nonpemith
turbative effects from the ladder may come into play.

Before concluding this discussion we wish to add two Ogpwe(j,x)~ e/l 0= Z7Keeci Msin 27K (ol (j,%) 1.
more notes: First, the analysis sketched here is strictly valid (116
only for a collinear stripe structure. As we commented upo . , . L
in Sec IIB, the unusual boundary condition implied by anl'he coupllnog of the SDWto that of a neighboring stripe is

) . : - =Y %of the fornf
diagonal stripe orientatiorinfluences the Berry phase in a
nontrivial way. This may produce a non-negligible feedback _ _
on the localized spins when considering a finite-width or Hspw~ dxg[ij(x)][O;DWZ(j,x)(’)SDWz(j+1,x)+H.c.]
spin-ladder environment, possibly changing thehase in

Sow(i ) =Ospwe(j,x) +H.c., (1195

an unexpected way. Second, one should note thatdne ) .

posite order parameterfor a collinear structure, defined in Nf dxg Ayj(x)]sin V27Kseg(j.X)]

Egs.(90) and (93), decay faster with a spin-ladder environ-

ment as compared to the case of two semi-infinite 2D do- Xsin V2mKgps(j+1x)]

mains. It follows that at distances shorter thgpy—where L

our construction is still expected to be valid—the algebraic X 0§ V2K A pc(j,X) — 2keALj(X)], (117

decay of the Nel—order cqrrelations produce a faster d‘?caywhereg(ij(x)) is an x-dependent coupling constant. Ne-
of the composite correlations compared to the conventiongjiecting possible overhangs of stripes we have here defined
ones. This is different from the case where a ONe-z y(j,x)=y(j+1x)—y(j,x)>0 (and similarly forA ¢/ and

d:_men;smrsva\;l eleCtrOP gast_ IS couﬂed by a KO{_\dO'_:a'.[tlcebCOU-ALj). By integrating out the stripe fluctuatiogg(x) in pow-
piing to two nonintéracting antiteérromagnetic Heisenbergg g ofg one obtains an effective Hamiltonian of an equiva-

spin-1/2 chaingi.e., withn,=1). As shown in Ref. 31, the lent riaid svstem. with a renormalized couplin
composite order parameters-§S andc-CDW) here induce gid sy ’ ping

the dominant instabilities. This reflects the fact that the =~ _ _ o2 N2 2

model with ann,=1 environment renormalizes to a fixed 9~ (glAylexd —2ke((AL))7)]+O(g), (119
point different from ours, instead belonging to the universal-where(- - -} denotes an average over meandering stripes. As
ity class ofchirally stabilized liquids’® with no opening of a  argued in Ref. 10, since the signs bt ;(x) are randomly
spin gap. It is here important to note that if one were todistributed along the distaneg one expectaL;(x) to grow

214507-19



HENRIK JOHANNESSON AND G. |. JAPARIDZE PHYSICAL REVIEW B8, 214507 (2003

as a random walk([ALj(x)]2>~|x|. It follows from Eq. In this context we wish to remind the reader that we ob-
(118 that the interstripe coupling between SB®Vcan be tained the induced spin interaction in E1) by a saddle-
ignored in the thermodynamic limit. point approximation, witmXd_n in Eq. (27) locked to the

The conclusion that transverse stripe fluctuations causemall but fast oscillations of thé field. Fluctuations away
destructive interference between SB¥on neighboring from the extremum are expected to produce an effective re-
stripes clearly applies tany k#0 order parameter: The ex- farded interaction in the spin sector, similar to what happens
ponential suppression in E¢L18) can be avoided only if the I the charge sector _of a Lu_ttmger liquid when integrating
momentum transfer muItipIying[ALj(x)]2> is identical to  Out .electron-ph,ono_n mteractloﬁ%.V_Vhereas thdoc_al fluc-
zero. Thus, the dephasing effect operates also foAthkase tu_at|ons of the Nel field could possm!y be treatgd n a.”a"-"gy
composite CDW's, Egs.(90) and (91) (with k=2ke Wlth the phon_on prqbl_er?ﬁ an_analy5|s of the dispersive an-
+ arlag[ k=2kg] for a collinear{diagona] stripe backbong tiferromagnetic excn_atlone/vhlch may produce a long-range
as well as for the staggerdee m/a, composite singlet pair- tail of the retarded mteractlc)rrgquwes a novel theoretical
ing, Eq.(93), for a collinear structur€! In contrast, the con- ;]pepgﬁicrz. We have to leave this problem as a challenge for
ventional k=0) triplet-pairing channel88) survives the '
stripe fluctuations.

We caution the reader that the argument, adopted from

Ref. 10, is valid only in the quasistatic limit where stripe 5o far we have been concerned with the ideal situation of
fluctuations are sufficiently slow to be treated via an anperfectphase-antiphase Weconfigurations surrounding the
nealed average ovestatio meandering stripes. Moreover, stripe, giving rise to the effective () symmetric model in
the argument is strictly valid only in the thermodynamic Eq. (31). In this section we generalize the discussion to the
limit. The full problem where the quantum dynamicsmé-  case where fluctuations twist the  @leconfigurations with
soscopicstripes is treated on equal footing with the intrinsic respect to each other, breaking the (3Uspin-rotational
Luttinger liquid instabilities remains unsolved. symmetry completely.

For complementary views of the physics of meandering How does the Nel order parameter change across the
and fluctuating stripes we refer the reader to Refs. 82—8@ntiphase boundary defined by the stripe? Let us take the
We also draw attention to the recent work by Rozhkov andhoundary alongy=0. The simplest situation is that
Millis,®” suggesting a pressure-induced crossover from a

IV. TWISTED ANTIFERROMAGNETIC DOMAINS

SDW to triplet superconductivity in quasi-1D metals with (n(x.y))="f(y)z (119
Ising anisotropy. Their scenario is similar in spirit to the one ' ’
presented here, although different in detail. with f(y)=—f(—y). This is the situation we have consid-

What about long-range electron-electron interactions?ered so far; that the rotational symmetry about the gikis
This question becomes critical when realizing that the Coujg preserved, and that the ®leorder parameter simply de-
lomb interaction on arisolated stripe is poorly screened, creases across as we approach the antiphase boundary and is
given its insulating environment. Neighboring stripes mayreversed on the opposite side.
provide metallic screening over a finite range, but our “as- A second possibility is that the Neorder parameter ro-
sumption” that this range is of the order of a lattice tates alongfor instance the spinx axis as it approaches the
spacing—implicitly built into the extended —V Hubbard  antiphase boundary. In addition, we can let it rotate around

model in Eq.(2)—may not be realistic. Still, having included the spinz axis along the boundary, resulting in the following
a nearest-neighbor repulsionin the model, we do obtain torm for (n(x,y)):

someinformation about the effect of the poor screening: As
can be gathered from Eq&5), (105, and(106), the pres- _ . .
ence ofV>0 enhances the SDWinstability, whereas the (n0x.y)) = (cog @)sin(2mqx), co8 @) 0% 2mqx), Sin(a)),

TS gets weaker. In the case of an arbitrary finite screening (120
length g, Schul2 found that the large-distance correlations where o= a(y) is an odd function witha(=o)=* 7/2.

are governed by a modified charge paramétgr 1/\Ink,  The parameteq is the rotational pitch along the antiphase
In the A phase, this again gets translated into strongeboundary. The special casg=0 corresponds to a “collin-
(weakej SDW* (TS") correlations as compared to the caseear” spin texture, and ifj#0, we find a phase that is topo-
with only local on-site interactions U [cf. again Eqs(105  logical, in the sense that the Neel order parameter covers the
and(106)].%° For smallJz/Jy (as assumed herene expects  spin space with topological density ofr4 per unit length of

this result to apply also in the spin-gapp&ghase. We con- the phase boundary.

clude that as long as there is a finite screening length These phases are all further subdivided by their symmetry
present, our results—using thd—V Hubbard model— under reflections through the antiphase boundary. If the lat-
should remain at least qualitatively valid for length scalestice points are arranged so that the lyxe 0 contains lattice

> k4. The A phase supports an SCMhstability with a sub-  points, the actual configuration is a configuration under re-
leading TS (which, however, gets weaker as;, grows flections throughy=0 and the antiphase boundary sge
largen. Taking into account the finite lengths of the stripescentered If y=+1/2a, contains the lattice points, the con-
would introduce yet another scale into the problésh the  figuration is even under reflections through-0 and the
discussion abovyerequiring a more sophisticated analysis. configuration isbond centered.
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These various stripe scenarios have all been investigated 3, =J—(J-(n(®))(n®)=sir?y V¥ + cogyJI2J?
as candidates for spin textures associated with striped an- ) -
tiphase boundaries. Although the investigations are not con- + cosysiny (V3% +J32)). (123
clusive, it is fair to say that neither experimental nor theoret- : . . -
ical investigations suggest that anything tt0 stripe Decomposingl—J, +Jg, and using the chiral identities
configurations should be considered candidates for a spin

texture. In fact, simple calculatioflssuggest that the spin NIt Rt I RN =0,

texture that appears to be energetically favored is in fact the (124
site-centered collinear stripes along EGO) that are odd Yo gy

under reflections through the antiphase boundary. For diago- L/RIL/R™ “L/IRVL/IR?

nal (11) stripes, the bond centered and site centered havg fgliows from Egs. (27) and (124 that the effective

energies that are almost identical. Furthermore, the spin dQsjectron-electron stripe interaction mediated by the Kondo
mains of these stripes are all extremely narrow, as measurqg(change with the spins in tH& domainis given by
by the width of the functiong(y). This supports our use of

an effective 1D model for a site-centered stripe.
To study the effect of a completely broken spin-rotational 4B )= — agJ
symmetry we shall confine our attention to the case of a int (¥) = 2J

collinear stripe(along thex direction away from half filling .
(cf. Sec. IlA), and with repulsive interactions among the +cosyJY Ik -+ i yJ{ g
eIe_ctrons (_J_— _2\_/>0). As_, before, We_denote th_e two insu- — cosy siny(JY 35+ J2IL)}. (125
lating semi-infinite domains surrounding the stripeAwnd
B, respectively. We may assume that théeNeirections The induced interaction term{&8) and (125 are now to be
n®(x,y) and n®(x,y) are parametrized as in E120, added to the spin HamiltoniaHs in Eq. (12) (which de-
with g=0 and witha a slowly varying function ofy, except  scribes the spin sector of the stripe electrons decoupled from
across the stripe where changes sign. To connect to the the environment Writing Hg+H® +HE) (1) =H (), we
local mean-field picture used in Sec. Il A we shall simply obtain
think of two fixed Neel directions(n™) and (n®) which
differ by an arbitrary angle y, 0<+y<, across the stripe
(with y= 7 for pe_rfect phase—antiphaséNe;onfiguration}s Ha( 7)=2ﬂvsf dx{ 1J2T 4 JRIE — gos( ) J2 TR

The construction of the effective model proceeds along
the same lines as in Sec. Il A. However, sin¢®# —n(® a7
when y+# 7, we must now pay attention to possible contri- — Qo I IR— ( JoL — ASMZY)J{J)&
butions from the couplindd,, of the lattice spin density to 4mv sy

2
Kf dx{:J202 413505 + 31 0%
H

the Neel order parameters, E(R1). By inspection it is easy anJ2

: : : r : 0vK .
to verify that the staggered spin density 1)"'A, entering + cosy siny(J} I5+JF I% ] (126
Eqg. (21 vanishes in the continuum limiaway from half 4mv sy

filling, implying that for this caséd, doesnot come into | .4

play, even wheny+# 7. Taking (n¥)—(n(x)")~z, as in

Sec. Il A, it follows from Eq.(27) that the effective electron- 2

electron interaction on the stripe mediated by the Kondo ex- o (U—2V+sin2yJ—K) (127)
s 4y’

change with theA domainremains the same as before, as Gos(7)= U

iven in EQ.(28):
given in Eq.(29 and withgg, anduvg given in Eq.(32). Introducing the ro-

tated currents

HiN=— aﬁ%f dX(:JEIE+1IRIR + IR+ IIR)
int " " " " " . . .
24 1 Jre=JrLs  TRiL=COL0)Ihy +SIN(0) Iz
(121 (128
Turning to theB domain, we rotate the coordinate system so jRiL=—SiN(6)J%, +cog 0) Ik, ,

that its Neel direction(n(®)(x)) lies in theyz plane:
we can writeHg(y) on diagonal form w.r.t. spin components

R . by choosingd= — y/2:
(n®y=sinyy+cosyz, O<y<m, (122

with y the angle with respect to the axis defining the HS(7)=27TUSJ dx{:jfit:+:jRiR: =90 (iTiRTITiR)
Neel-order direction of theA domain. The piece of the

electron-spin density that survives the projection onto the _ iZiz 4 iviy 129
plane in which the uniform¢® components live(cf. the Gos(VILir* Gor( VIR (129
discussion in Sec. Il Ais given by where
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0 Jﬁ ing of the spin-rotational symmetiydown to an Ising like
Yo1= - U-2v+ 230 Z,XZ,XZ, discrete symmetry, with ong, factor for each
F H spin component in the rotated bagi8]. This model was
a 2 first studied by Giamarchi and Schifzwho used it to ac-
9os(y) = _°< U—2V+sir(y/2) _K) count for spin-orbit and electronic dipole-dipole interactions
TUE 2y in quasi-one-dimensional conductors. Its perturbative RG
5 (130  equations[valid in the limit of small parameterggs(y),
()= 3o Sirf( /Z)J_K 0o, (v), andgp(y)] are most easily derived by exploiting
Gorly)= TUE Y 2y’ the operator product expansfdrfor the rotated currents in

Eqg. (128, using Eq.(129), and one obtains

Qo Ji
V=V ZW(U 2v+JH . %w?—gf,
The four first terms in Eq(129 are of the same form as the
spin Hamiltonian(31) for the ideal phase-antiphase= ) dg,
problem, but with ay-dependent couplingys(7y). Introduc- ae ~ Ys9us (134
ing auxiliary fermion fieldsﬁﬂ(x) andEM(x), connected to
the rotated currentf ,r(x) by do
de =0s0¢ -
jL:%:ELULVEV . jk=1 ~RLULV~RV:, i=X,y,2,
(131 The renormalized couplingg;=g;(y.¢) (i=s,L,f) are

connected to the bare parameters(y) in Eq. (134 by

, - - gi(y,£=0)=ge(y), with £=In(a/ay), wherea is a renor-
(with L, —L,,R,—R,,Jg —]jr) produces, as expected, majized length. Focusing on the case with repulsive electron-
g smS-Gordorj model~for thg corresponding bosonic spiRyjectron interactionlﬂ—2V+Jﬁ/2JH>0, with K,<1), we
field o5 and its dualds. Using the same procedure to read off from Eq(134) thatgys(y)>0. For this case the RG

bosonize also the last term in E§.29—which is new—we  equationg134) support two strong-coupling massive phases:
finally obtain

an application of the bosonization dictionary in Sec. IIC

region (i) gos(¥) <o, (¥) —|dor(¥)|:

v ~, ~, (139
Hs('y):?sJ dX[ (ax‘Ps)Z"'(axﬁs)z Os— —, |gL|_’°°v gr—0,
~ and
2m{®) - o
+——— k cod 87K p]) region (i) Gos(¥)>do. (¥)~[dor(¥)]:
Cch (136
5 gs—*, il ==, 9.—0.
zmg : -1
+———KkcogV8mK g, (132 By inspection, using Eq(134), we can label the two re-
0

gions by the range of the twist angje

where—to leading order in the coupling constants—we have region(i) 0< y<m/2, region(ii) m/2< y<. (137

ag JZ o . o
2(Ks—1)=0os(7) = _( U—2V+—sin2(y/2)), In region (i) |gs] and|g, | increase upon renormalization,

TUF 2Jy while g¢ scales to zero. The dual spin field is hence irrelevant
and the picture emerging is qualitatively the same as irAthe
phase of Sec. IlIC2: the SDWcorrelation is the leading
instability (critical exponenK.), with TS* being subleading
(133 (critical exponent ;). Note, however, that the ordering

2

~ a J 1
(4,): _ 0 . K Y
2mmg”’=go, () —WF(U 2v+—2JH[1 25|n2(y/2)D,

2

@ as Jx . tendency is now along thedirection of therotated frame
2mmg™ =gos(v)=— Tor msmz( v12), defined by the transformation in E.28). It follows that for
a twist angle 6 y<#/2, the leadingsubleadinginstability
ao J+2< is Fhat. of a spin-density wav(eri(al)et pairin%)oriented alqng
VsTURT 5 U-2Vv+ L a line in the plane spanned kg'™) and(n‘®), and making

H

an angley/2 with (n¥),

Thus, the spin sector of the stripe electrons in the pres—t Tlt"n'ng (;? rleglon(u), ttheﬂ rentorm?llz_ed Chqlupllng ::on—
ence of twisted antiferromagnetic domains is described by gantsgs andige| are seen to flowto in |n-|ty, whilg, scales
generalized sine-Gordon modebntaining a cosine of the tO zero. For our case, whetg:(y)>0, it follows that 9

dual spin fieldd,. The presence of this term allows for gets ordered with expectation val(i§s) =0, while the spin
spin-nonconserving processes, reflecting the complete breakeld ¢ stays disordered. By running down the list of
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bosonized order parameters in Sec. IlIB1, we pinpoint thechannel gets suppressed and one is left with the pairing
leading (subleading instability as that of the SDW(TY) instabilities characterizing thé phase in Sec. lll. Else-
correlation, with critical exponer. (1/K.). Note that also where we shall explore the consequences of this intriguing
this result refers to theotated framedefined by Eq(128. possibility.

Translating back to the original frame we infer that for a

twist angle w/2<y<, the leading(subleading instability

is again that of a spin-density waveiplet pairing oriented V. SUMMARY
along an axis contained in FWB(A?A)_(n(B)) plane, but now In this paper we have analyzed the problem of a one-
making an angley/2+ /2 with (n*V). dimensional electron liquidcharge strip¢ embedded in a

Two comments are here appropriate. First note that th@yo-dimensional antiferromagnetic insulator, and coupled to
axis which defines the enhanced SDW and TS Corre|ati0n§ via a weak Spin exchange' Using a mean-ﬁe'd_type con-
makes am/2 jump as the twist anglg passes through/2.  struction, the spin exchange gets encoded as an effective
This may appear reminiscent of a spin-flop transition in-anjisotropic spin interaction among the electrons. This inter-
duced by a magnetic field, as seen in certain quasi-1RQction is shown to be marginally relevant under certain con-
materialsg.z However, there is no phySicaI effect aSSOCiatedditionS (|n a renorma"zation_group Sensmroducing en-
with the jump other than a sudden change of the directiomanced pairing and density fluctuations in the electron liquid.
along which the SDW and TS correlations are enhanced. For realistic values of the model parameters— assuming a
Second, whery= 7 we do recover the result for tiephase  screened Coulomb interaction for the electrons and a con-
in Sec. 1lIC2 (ideal phase-antiphase configuraioMote  duction band away from half filling—the dominant instabili-
that the presence of the dual cosine term in the eﬂ:eCtiVQies are towards a conventional Spin denaimﬁa Composite
model(132) simply reflects the fact that we are now working charge-density wave, coexisting with subleading conven-
in the rotated frame. By undoing the rotation in Ef28 we  tjonal tripletand composite singlet pairing correlations. Tak-
immediately recover the standard sine-Gordon model, agg into account the slow transverse fluctuations of a stripe,
given in Eq.(52) for a perfect phase-antiphase configuration.the triplet-pairing instability is expected to turn into the

To summarize, we have shown that the opening of elNe dominant one(We again caution the reader that this conclu-
twist angle y# 7 across the stripe does not remove the in-sjon is based upon a study of the quasistatic limit only, and
stabilities of theA phase found in Sec. IlIC 2. The conven- may be revised when applying a more sophisticated analysis
tional leading(subleading instability is still that of a spin-  of the full stripe dynamic$. While the magnitudes of the
density wave(triplet pairing, but now tilted w.r.t. to the two  conventional instabilities do not change with the relative ori-
Neel directions. entation of the Nel directions in the two domains surround-

By inspection of thecompositeorder parameters defined ing the stripe, the composite correlations have largest ampli-
in Egs.(89) and(92) it is clear that their amplitudes will drop - tudes when the stripe forms an antiphase domain wall in the
as y decreases from its largest valge= , defining a per-  antiferromagnet. With the possible exception of the compos-
fect phase-antiphase Bleconfiguration. It is here interesting ite singlet-pairing mode, the instabilities are found to be in-
to note that whery+ 7 there is room for additional compos- sensitive to the spatial orientation of the stripe on the under-
ite order parameters. Besides the trivial variations of Egslying lattice (collinear or diagona).

(89) and (92) where S®—S®) 5" +5®) we can con- Our study has been motivated by a wish to understand the
struct twocomposite vector order parameters role of spin exchange between stripes and their environment
in the cuprate superconductors. As is well known, these ma-

Oc.spw™ OspwX (S X SB) — Ogpyx< (N x n(®)) terials are exceedingly complex systems. It is unlikely that a

(138 simplified model like ours—where several aspects of the
problem have been simply ignored—can produce accurate
predictions about experimental results. We have discuased

_ A) B) (A) v (B) osteriorisome of the effects not included in our model: the
Oc-75~ OrsX (S X S%) — Orex (nxn®), (139 rpole of slow stripe fluctuations and interstripe couplings, the

finite width of the antiferromagnetic domains encountered in

where in the second lines we have dropped the small contrireal materials, as well as the expected poor screening of the
butions from the¢ fields (which can be neglected in the Coulomb interaction along a stripe. Other aspects of the
correlation functions, cf. Sec. llI)B These composites have problem are yet to be addressed; most importantly the pos-
the same symmetries as the corresponding conventional osible appearance of a retarded nonlocal spin interaction com-
der parameters, SDW and TS, respectively. In particularing from large-amplitude fluctuations of the &leorder pa-
O..tsis even under time and spin reversal, while odd underameters on each side of the stripe. Also, the finite-size and
a parity transformation. It follows that for a sufficiently rigid boundary effects implied by the mesoscopic scale at which
spin texture withy away from O andr, triplet pairing comes the stripes live need to be carefully studied.
in two guises: one conventional mode and one composite The virtue of our “stripped-down” model is that it allows
mode, both carrying zero momentum. These pairing modeas to carry out avell-controlled analytical studyand as such
have enhanced correlations along well-defined directions, oiit could serve as a stepping stone for more detailed investi-
thogonal to each other. Ag— = (perfect antiphase bound- gations. The model predicts that a stripe-environment spin
ary) or y—0 (“in-phase” boundary, the composite triplet exchange under certain conditions may produce instabilities

and
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