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Pairing and density correlations of stripe electrons in a two-dimensional antiferromagnet
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We study a one-dimensional~1D! electron liquid embedded in a 2D antiferromagnetic insulator, and coupled
to it via a weak antiferromagnetic spin-exchange interaction. We argue that this model may qualitatively
capture the physics of a single charge stripe in the cuprates on length and time scales shorter than those set by
its fluctuation dynamics. Using a local mean-field approach we identify the low-energy effective theory that
describes the electronic-spin sector of the stripe as that of a sine-Gordon model. We determine its phases via
a perturbative renormalization-group analysis. For realistic values of the model parameters we obtain a phase
characterized by enhanced spin density and composite charge-density-wave correlations, coexisting with sub-
leading triplet and composite singlet-pairing correlations. This result is shown to be independent of the spatial
orientation of the stripe on the square lattice. We argue that slow transverse fluctuations of the stripes tend to
suppress the density correlations, thus promoting the pairing instabilities. The largest amplitudes for the
composite instabilities appear when the stripe forms an antiphase domain wall in the antiferromagnet. For
twisted spin alignments the amplitudes decrease and leave room for a new type of composite pairing correla-
tion, breaking parity but preserving time-reversal symmetry.
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I. INTRODUCTION

Extensive experimental studies—including elastic and
elastic neutron scattering,1 angle-resolved photoemissio
spectroscopy2~ARPES!, muon spin resonance,3 and nuclear
magnetic resonance experiments4—have confirmed tha
stripe formationis a property common to most high-Tc cu-
prates. In the underdoped regime, at some critical hole d
ing, the mobile holes segregate into an array of ‘‘stripes’’ th
slice the copper-oxide planes into alternating phase-antip
antiferromagnetic domains. The stripes coexist with sup
conductivity, but as one enters the overdoped region t
begin to evaporate, signaling a crossover to a conventio
metal with a uniform charge distribution. Significantly, strip
phases are observed also in other doped antiferromag
such as the ‘‘nickelates’’5 and the ‘‘manganites’’6 ~colossal
magnetoresistance materials, where the stripes are act
two-dimensional~2D! sheets of hole-rich regions!. This sug-
gests that stripe formation is a robust and generic propert
this class of matter. Still, the basic questions why strip
form and what role they play for superconductivity in th
cuprates remain controversial.

Early mean-field calculations on the 2D Hubbard mod7

suggested that the stripe phase is due to the reductio
kinetic energy of holes propagating transverse to the stri
In this approach, however, the possible connection to su
conductivity is left unanswered. In an alternative approac8

it is argued that stripes form as a response to the compet
between long-range Coulomb interactions~which push the
holes apart! and short-range antiferromagnetic interactio
~which tend to ‘‘phase separate’’ the holes into a single
gion!. Within this scenario it has been argued that a propo
spin gap from the undoped domains is transmitted to
stripes via pair hopping~‘‘spin-gap proximity effect’’9!, lead-
0163-1829/2003/68~21!/214507~26!/$20.00 68 2145
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ing to enhanced charge density wave~CDW! as well as su-
perconducting pairing correlations along the stripes. F
static stripes~as seen, e.g., in the nickelates or the Nd-dop
La22xSrxNdCuO4) the CDW correlations dominate. In th
presence of transverse stripe fluctuations, however, these
pear to die out,10 possibly opening a door to superconducti
ity. Other scenarios, where the stripes actuallycompetewith
superconductivity, have also been proposed.11

Most of the theoretical attempts to explore the propert
of stripes model these as a collection of 1D or quasi-
electron liquids,12 coupled to their neighbors,13 or to an in-
sulating background, either via pair hopping of charge ca
ers ~as in the spin-gap proximity effect9! or by a spin-
exchange. The various spin-exchange scenarios that h
been suggested14–17also predict that a spin gap opens in t
spectrum of the stripe electrons, signaling enhanced su
conducting fluctuations along the stripes. In fact, it is co
mon to find a dynamically generated spin gap for a o
dimensional electron gas~1DEG! coupled to an active
environment,9,18–21of which an antiferromagnet is a particu
lar realization.14,16,17,22–25

The simplest such model is maybe that of the 1D Kond
Heisenberg lattice~KHL ! which consists of a 1DEG interact
ing weakly with an antiferromagnetic Heisenberg spin-1
chain by a Kondo coupling. Away from half-filling this
model has a spin gap23,24 and one thus expects the presen
of superconducting correlations. Indeed, it was sho
recently26,27 that the spin gap supportscomposite28,29 odd-
frequency odd-parity singlet pairing30 as well as a composite
CDW. A generalization of this model that may mimic strip
physics more closely is that of a 1DEG coupled by a Kon
coupling totwo noninteracting antiferromagnetic Heisenbe
spin-1/2 chains, together emulating the insulating ba
ground in which a stripe is embedded. Rather surprisingly
©2003 The American Physical Society07-1
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HENRIK JOHANNESSON AND G. I. JAPARIDZE PHYSICAL REVIEW B68, 214507 ~2003!
shown recently,31 this generalized model has no spin gap b
instead renormalizes to a fixed point belonging to the clas
chirally stabilized electron liquids.32 Still, the model exhibits
the same unconventional pairing instabilities as found for
1D KHL.26,27

A ‘‘strong’’ interpretation of the results in Refs. 26, 27
and 31 may seem to exclude spin-exchange as a pos
source of the spin gap in the high-Tc cuprates: odd-frequenc
pairing appears difficult to reconcile with the experimen
observation that superconductivity in these compounds
due to d-wave BCS paired electrons. However, the rec
report33 that underdoped BSCCO breaks time-rever
symmetry—in the ‘‘normal’’ as well as the superconducti
state—cautions us that the case may not be closed. The t
reversal breaking is seen below a temperatureTgap at which
a pseudogap34 opens, suggesting that it is connected w
some order parameter that develops enhanced correla
below this characteristic temperature.35 It has been argued
that the pseudogap in the cuprates may be identified with
amplitude of the pairing order parameter, with long-ran
superconducting order appearing at the onset of global p
coherence~carried by Josephson tunneling of pairs betwe
the stripes!.36 One may envision a variant of this scenar
where spin-exchange between the stripes and their env
ment~maybe in conjunction with pair hopping! supports two
coexisting types of quasi-one-dimensional pairing corre
tions belowTgap , one of which breaks time reversal. As on
approaches the superconducting transition, the enha
stripe fluctuations may favor the other type~which could
reemerge as long-ranged-wave order via the dimensiona
crossover36 implied at Tc), while the channel that exhibit
time-reversal breaking remains incoherent, with only fini
range correlations present. Although speculative only, the
ability of this brand of scenario can be judged only by mo
closely examining the physics driven by a strip
environment spin-exchange interaction. This is the purp
of our paper.

We shall consider an extended version of the mode
Ref. 17, where a 1D electron liquid~representing a single
stripe! is embedded in a 2D antiferromagnetic backgrou
and coupled to it via an antiferromagnetic spin-exchange.
show that this setup leads to a spin-gap phase for the e
trons on the stripe, and we identify its leading instabilitie
We further address the question to what extent the insta
ties found are sensitive to the relative orientation of the st
gered magnetizations on each side of the stripe. In the s
plest case of asite-centered stripe38 the spin alignment
across the stripe is antiferromagnetic(phase-antiphase do
mains). However, the alignment is not expected to be perf
and it is therefore important to check the stability of t
spin-gap phase with respect to deviations from the pha
antiphase orientation of the magnetic domains separate
the stripe. In addition, we shall explore the issue whether
spatialorientation of the stripe on the underlying lattice m
influence the stripe-electron dynamics when the domin
interaction with the environment is that of a spin-exchan

This latter question is of particular relevance consider
recent experimental findings of ‘‘diagonal stripes’’ in the u
derdoped glassy phase of the cuprates. As discovered
21450
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Wakimoto et al.,39 the insulating La1.95Sr0.05CuO4 exhibits
sharp two-dimensional elastic magnetic peaks at (p6e,p
6e) ~in tetragonal square lattice notation, withe;x
'0.05, x being the doping level!. Assuming that the mag
netic peaks are associated with charge stripe order,37 this
implies that static stripes run along the diagonal of the squ
Cu21 lattices that make up the CuO-planes in this co
pound. This is in exact analogy to the diagonal static str
structure seen~and theoretically predicted7! in the insulating
nickelate La22xSrxNiO41x , but different from the structure
in superconductingLa22xSr0.05CuO4 ~with x.0.05) where
the stripes are oriented along the copper-oxide bonds~‘‘col-
linear stripes’’!. Very recently, these findings were extend
to the full insulating spin-glass phase in La22xSrxCuO4
(0.02<x<0.055).40 Thus, the onset of superconductivity i
the low-temperature underdoped region appears to proc
via a stripe rotationby 45°, from adiagonal to a collinear
stripe configuration. In the case of a collinear~site-centered!
structure, a stripe is embedded in a localantiferromagnetic
background. In contrast, in the diagonal structure the st
electrons experience a localferromagneticenvironment. In
both cases the Ne´el-ordered directions of the antiferromag
netic domains are shifted byp acrossthe stripes, and it isa
priori not clear whether the different local orderingsalong
the stripes influence the electron dynamics differently.
clarify the situation requires a careful study, and we h
make a first attempt on it.

To isolate the core of the problem we shall make a f
simplifying assumptions.

~i! We study the electron dynamics on asinglestripe, and,
in the first part of our analysis, neglect its possible coupl
to neighboring stripes. Moreover, the stripe is taken to
static. This implies that for a fluctuating stripe~as typically
seen in a superconducting phase! we can only hope to cap
ture processes on length and time scales shorter than t
set by its fluctuation dynamics. This is expected to be mu
slower than the dynamics of charge carriers along the str
The latter appear on an energy scale;1 eV, whereas the
stripe fluctuations are coordinated with those of the localiz
spins, at a scale;1 –10 meV. Having obtained the chara
teristic features of a single static stripe we then add ‘‘
hand’’ the transverse fluctuations and interstripe couplin
and study their effect on the pairing- and density correlatio
of the stripe electrons.

~ii ! We model the stripe—at Fermi momenta incomme
surate with the underlying lattice—as aone-dimensional me
tallic wire. Thus, we assume that the disorder~from, e.g.,
dopant potentials! is sufficiently weak so that localization
effects set in on length scales much larger than those tha
probe here.

~iii ! There is an important distinction between sit
centered and bond-centered stripes:38 The spin alignment
across an antiphase domain wall is antiferromagnetic fo
site-centered stripe and ferromagnetic for a bond-cente
stripe ~which has a finite width!. Motivated by recent theo-
retical work41 where bond-centered configurations appear
be inconsistent with ARPES studies of La22xSrxCuO4,42 we
here focus on the simplest case of a site-centered ch
stripe, to be described by a 1D Hubbard model. We sh
7-2
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PAIRING AND DENSITY CORRELATIONS OF STRIPE . . . PHYSICAL REVIEW B 68, 214507 ~2003!
explore elsewhere the case of bond-centered stripes, buil
on the corresponding analysis by Krotov, Lee, and Balatsk16

of a Hubbard ladder in an antiferromagnetic environmen
~iv! As suggested by neutron-scattering data on the

evant materials,1 the environment isNéel orderedup to some
characteristic scale~which in the relevant temperature rang
is much larger than the linear dimension of a stripe!, with a
p shift across the stripe when this is site centered~phase-
antiphase domains!. In our formal analysis we depict eac
Néel-ordered domain as a semi-infinite 2D Heisenberg a
ferromagnet, and ignore possible topological effects that m
be present for finite-width insulating domains, or ‘‘sp
ladders.’’43 We shall give precise estimates for the range
validity of this approximation, thus establishing its physic
relevance.

~v! As we have already discussed, we couple the st
electrons to its insulating environment exclusively throug
spin-exchange interaction. Given that the Fermi momentum
of the stripe is incommensurate with that of any low-lyin
excitation of the environment, excursions of single-cha
carriers is a process that violates momentum conserva
and hence is suppressed@on the time scales defined in~i!#.
Pair hopping is still allowed, provided that the pair carri
zero total momentum. As suggested by the analysis in Re
pair hopping is favored as a dominant process when the l
lying spin excitations of the environment are gapped.44 When
such a gap is absent, as is the case when the environme
Néel ordered, the virtual hybridization between delocaliz
levels on the stripe and the localized levels in the envir
ment produces an effective spin-exchange that is expecte
compete effectively with pair hopping. Here, we focus on
effect of the spin-exchange.

~vi! We confine our attention to the case of aweak spin-
exchange JK between stripe and environment, 0,JK!JH ,
whereJH is the antiferromagnetic exchange between the
calized spinsin the environment. This allows us to treat th
problem in a continuum limit.24 Note that for a metallic
stripe, we do expect that this is the physically relevant lim
Itinerant stripe electrons spend only a short time at a gi
lattice site, implying that the probability/unit time for inte
action with a localized spin at that site (;JK) is much
smaller than that for spin-exchange between two locali
spins in the environment (;JH). For simplicity we shall
employ the continuum limit also for a Mott insulating strip
~half-filled band! although in this case one expects thatJK
'JH .

~vii ! Finally, we stress that finite-size or boundary effe
of the 1D electrons45 arenot included in our analysis. As the
stripes in the cuprates are mesoscopic structures,46 these ef-
fectsshouldin principle be taken into account. However,
they are not expected to qualitatively change the conclus
arrived at in the large-distance limit considered here,
leave this study for the future.

Clearly, by assumptions~i!–~vii ! we lose several facets o
the full problem. Still, we believe that our ‘‘stripped-down
approach has its merits: Not only does it isolate and expo
crucial element of ‘‘stripe-physics,’’ but as we shall show,
allows us to perform awell-controlledanalytical study, pro-
ducing results that can be taken as a reliable starting poin
21450
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more realistic studies. Moreover, the problem as defined
~i!–~vii ! is important in its own right, and is of relevance
the more general issue of one-dimensional electron liquid
active environments.9,18–21 This is a central problem in the
theory of correlated electrons, motivated by experiments
quasi-1D organic conductors,47 quantum wires,48 and edge
states in quantum Hall systems.49

Given the assumptions~i!–~vii !, we model the stripe by
an extended (U2V) Hubbard chain, weakly coupled to
phase-antiphase antiferromagnetic environment by a Ko
lattice interaction. Treating the Hubbard chain via stand
bosonization while describing the environment by a nonl
ears model, we follow the approach introduced in Ref. 1
and exploit the symmetry breaking in the magnetic enviro
ment to ‘‘absorb’’ the Kondo lattice interaction as an effe
tive spin-spin interaction among the stripe electrons. In t
way we obtain an effective low-energy model for the stri
electrons—decoupled from the environment—and access
to a well-controlled perturbative renormalization group~RG!
analysis. This allows us to pinpoint the dynamic instabiliti
in the low-energy, weak-coupling (JK!JH,uUu,uVu) limit.

Our most important results can be summarized as follo
~a! For realistic values of the model parameters, and w

a phase-antiphase Ne´el configuration across the stripe, a
electronic spin gap opens on the stripe with a spin-den
and a composite charge-density wave as the leading insta
ties. The subleading instability is that of conventional trip
pairing, coexisting with composite singlet pairing~which
breaks parity and time reversal!. Using a simple construction
in the ‘‘quasi-static limit,’’ we argue that slow transvers
stripe fluctuations tend to suppress the density correlatio
thus promoting the pairing instabilities.

~b! The low-energy physics is insensitive to the spat
orientation of the stripe on the lattice: The results summ
rized above hold for both collinear and diagonal stripes~with
the possible exception that the composite singlet pairing
suppressed for a diagonal stripe!.

~c! The instabilities found for the phase-antiphase N´el
configuration are still present when the relative orientation
the staggered magnetizations on the respective sides
~collinear! stripe has been twisted by an arbitrary angle.
addition, the twist allows for a novel type of composite pa
ing correlations to appear, respecting time reversal but bre
ing parity.

The paper is organized as follows: In Sec. II we introdu
the lattice models for site-centered collinear and diago
stripes coupled to a phase-antiphase environment b
Kondo interaction, and derive the corresponding low-ene
effective actions. In Sec. III we perform an RG analysis a
identify the order-parameter correlations along the stri
that get enhanced by the spin-exchange. This allows u
extract the ground-state phase diagram of the stripe elec
system both at half filling(Mott insulator) and away from
half filling (metal). In Sec IV we then study—for the case o
a collinear stripe—the stability of the various correlatio
with respect to perturbations of the relative orientation of
spin alignments across the stripe. Section IV, finally, conta
a summary and a brief discussion of our results.

Throughout the paper we try to supply sufficient inform
7-3
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HENRIK JOHANNESSON AND G. I. JAPARIDZE PHYSICAL REVIEW B68, 214507 ~2003!
tion to make the analysis accessible also to the nonexp
Since the paper is quite long, and contains both formal an
sis and background discussion of the physics, the rea
mostly interested in our key analytical results is advised
focus on the central Secs. II A~where the model for a collin-
ear stripe is derived! and III C ~which presents the phas
diagrams!.

II. THE MODEL

For clarity, we shall treat the collinear and diagonal str
configurations separately. The effective low-energy theo
that emerge in the two cases are essentially the same~with
certain provisos!, but to arrive at this result requires som
care. Much of the analysis builds upon well-known resu
but in order to make the exposition self-contained we outl
the most important points. Also, some key elements are
or need particular attention.

A. Collinear stripes

We represent the stripe~running, say, along thex direction
of a square lattice! by an extended (U2V) Hubbard chain
HHubbard coupled via a Kondo lattice interactionHKondo to
the nearestlocalized spins on each side of the stripe. The
spins, like the rest of the localized spins, interact mutua
via an antiferromagnetic nearest-neighbor Heisenberg s
exchangeHAFM , and reside in one of the two semi-infinit
antiferromagnetic domains that surround the stripe, deno
by A andB, respectively~see Fig. 1!.

TheA andB domains are assumed to be antiferromagn
cally ordered, and correlated via ap shift across the stripe
(phase-antiphase domains)but there is no direct interactio
betweenA andB spins .50 Thus, we study the lattice mode

H5HHubbard1 (
i 5A,B

~HAFM
( i ) 1HKondo

( i ) !, ~1!

where

HHubbard52t(
r ,a

~cr 11,a
† cr ,a1H.c.!

1U(
r

n̂r ,↑n̂r ,↓1V(
r

n̂r n̂r 11 , ~2!

HAFM
( i ) 5JH (

r , j ( i )
~Sr , j ( i )•Sr 11,j ( i )1Sr , j ( i )•Sr , j ( i )11!,

JH.0, i 5A,B, ~3!

FIG. 1. Collinear stripe structure.
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HKondo5JK (
r ,a,b

cr ,a
† sabcr ,b•~Sr , j (A)511Sr , j (B)51!,

JK.0. ~4!

Herecr ,a is a stripe electron operator at siter with spin index
a5↑,↓, n̂r ,a5cr ,a

† cr ,a is the number operator,n̂r5(an̂r ,a

is the density operator, andSr , j ( i ) is the operator for a local-
ized spin at a lattice site with coordinater ( j ( i )>1) in a
direction parallel with~transverse to! the stripe. The vector
of Pauli matrices is denoted bys, and we have absorbed
factor of 1/2 into the coupling constantJK . Note that we
have included a nearest-neighbor interaction inHHubbard to
qualitatively account for the poor screening of the Coulom
interaction from the insulating environment. TheCoulomb-
driven on-site and nearest-neighbor coupling constants
typically repulsiveU,V.0. However, in what follows we
will treat these parameters as effective~phenomenological!
ones, and assume that they include all possible contribut
and renormalizations coming from the interaction betwe
stripe electrons and thenonmagneticdegrees of freedom o
the environment, such as the electron-phonon coupling
coupling to other electronic subsystems in the environmen51

As implicit in Eq. ~4!, we use the convention that the tran
verse coordinates take valuesj (A)5 j (B)51 on theA and B
arrays adjacent to the stripe. When convenient, we use
compact notationSr

( i )[Sr , j ( i ) ( i 5A,B) for the spins on
these arrays. By assumption~vi! in Sec. I, the antiferromag
netic Kondo lattice couplingJK is weak, i.e.,JK!JH ,t, al-
lowing us to keep only the low-energy sectors of the str
and the antiferromagnetic domains when analyzing its eff

The model in Eq.~1! is a modified version of that in Ref
17 by having a coupling oftwo semi-infinite 2D antiferro-
magnetic domains to the stripe, one on each side of it, in
respect mimicking the geometry ‘‘seen’’ by a real stripe. As
consequence, with the assumption that the Ne´el order of the
A andB domains arep-phase shifted relative to each othe
we will be able to treat the metallic as well as the Mo
insulating case~half-filled Hubbard band! within the same
formalism. This is different from the model in Ref. 17, whe
the assumption of a metallic stripe was crucial. Note that
turning off U andV in Eq. ~2! and keeping only one array o
localized spins, say, in theA domain, the Hamiltonian in Eq
~1! collapses to the one-dimensionalHeisenberg-Kondo-
lattice model~HKL !.52 This model has recently attracted
great deal of attention23,24 and we shall connect back to
when discussing our results in Sec. IV. We should here e
phasize that having ‘‘built in’’ the presence of stripes into t
model, we cannot address the issue of what actually trigg
the stripe formation. For this, one must turn to other a
proaches, such as those mentioned above,7,8,11 or that in the
more recent work by Chernyshevet al.53 Another recent at-
tack on the problem of stripe formation has made use o
spin-fermion model54 which has the same Hamiltonian stru
ture as Eq.~1!, but with the difference that there is no con
straint on the mobility of the electrons in Eq.~2!. In other
words, the doped holes are now free to hop around on the
lattice. Monte Carlo simulations on the model suggest t
the holes self-organize into one-dimensional charge str
7-4
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separating insulating spin domains~phase shifted byp
across the stripes!. This is the starting point when writing
down our model in Eq.~1!.

Given the Hamiltonian in Eq.~1!, its partition function
can be written as a path integral,

Z5E D@c#D@c†#D@VA#D@VB# e2S[c†,c,VA ,VB] , ~5!

with a Euclidean actionS. The electron operators are he
simulated by Grassmann numbers (cr ,a

† ,cr ,a), while the role
of the localized spin operatorsSr , j ( i ) are played by vectors
SVr , j ( i ) ( i 5A,B) which parametrize states in a coherent s
representation.55 Note that we have here used the short-ha
notationc[$cr ,a% andVi[$Vr , j ( i )%, i 5A,B. In the limit of
large spin,S→`, only diagonal matrix elements of a sp
Hamiltonian survive in this representation. This makes
large-S coherent-state representation an efficient tool to m
a quantum partition function into a path integral. To reta
quantum effects, however, present for physical values of
spin (S51/2 in the case of the cuprates!, it is crucial to keep
also nondiagonal matrix elements in the construction ofS.
These produce a sum over Berry phases and conta
memory of the intrinsic quantum nature of the spins. T
procedure is standard,56 and one obtains the action

S5E
0

b

dt S (
r

cr ,a
† ]tcr ,a1H~c†,c,SVA ,SVB! D

1 iS (
i 5A,B

(
r , j ( i )

F r , j ( i ), ~6!

where t corresponds to inverse temperature so that 0,t
,b and the spin~Grassmann! fields are periodic~antiperi-
odic! in t. For the purpose of studying the low-energy d
namics we confine our attention to the zero-temperature l
(b→`). The third term in Eq.~6! is precisely the sum ove
Berry phases

F ri
5 R

Gr i

dVri
•A~Vri

!, ~7!

one for each spin attached at site (r , j ( i ))[r i , i 5A,B. Here
G ri

is the closed loop traced out byVri
in the interval@0,b

→`#, with A(Vri
)5(12cosu i)(sinu i)

21f i at each siter i

playing the role of a vector potential of a unit magne
monopole located at the center of the sphereuVri

u51, pa-

rametrized by the spherical anglesu i and f i . The ‘‘instan-
taneous’’ Hamiltonian termH(c†,c,SVA ,SVB) in Eq. ~6!
acts at~imaginary! time slicet and is obtained from Eq.~1!
by replacing electron and spin operators by the correspo
ing Grassmann fields (cr ,a

† ,cr ,a) and classical vectors
(SVrA

,SVrB
), respectively.

Next, to obtain the low-energy continuum version of t
Hamiltonian in Eq.~1! we shall first review the standar
constructions for a Hubbard chain and a 2D Heisenb
model, and then elaborate on the more intricate Kon
lattice interaction which couples the two subsystems.
21450
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1. 1D electron chain: Low-energy theory

The low-energy~field theory! approach to the 1D~ex-
tended! Hubbard model in Eq.~2! is based on the assumptio
of weak electron-electron interactions. Thus, assuming t
uUu,uVu !t, we linearize the spectrum around the two Fer
points 6kF (kF5nep/2a0, wherea0 is the lattice spacing
and ne is the electron density!, and decompose the origina
lattice operators into right-moving (Ra) and left-moving
(La) chiral components:

cr ,a→eikFra0Ra~r !1e2 ikFra0La~r !

→Aa0@eikFxRa~x!1e2 ikFxLa~x!#, ~8!

where in the second line we have taken the continuum li
ra0→x. Defining local charge and spin densities

JR5:Ra
†Ra :, JL5:La

†La :, ~9!

JR5: 1
2 Ra

†sabRb :, JL5: 1
2 La

†sabLb :, ~10!

with repeated spin indices summed over, and with the nor
ordering :•••: taken w.r.t. the ground state of the free sy
tem, it is now straightforward to write down the low-energ
continuum version of theU2V Hubbard chain in Eq.~2!.
The weak interaction preserves the important property
spin-charge separation, and one can write the theory on
form HHubbard5Hc1Hs , where57

Hc5
pvc

2 E dx$:JRJR :1:JLJL :2g0cJLJR

22g0ud1ne
~R↑

†R↓
†L↓L↑1H.c.!%, ~11!

Hs52p ṽsE dx$:JR
z JR

z :1:JL
zJL

z :2g̃0sJL
zJR

z

2g̃0'~JL
xJR

x 1JL
yJR

y !%. ~12!

The velocities of the charge~c! and spin~s! excitations, gov-
erned byHc andHs , respectively, are given by

vc5vF1
a0~U16V!

2p
, ṽs5vF2

a0~U22V!

2p
, ~13!

with vF52a0tsin(pne/2) the Fermi velocity. The small di-
mensionless coupling constants in Eqs.~11! and ~12! are
given by

g0c52a0~U16V!/pvF ,

g0u52a0~U22V!/pvF , ~14!

g̃0s5g̃0'5a0~U22V!/pvF .

The Kroneckerd multiplying the Umklapp term in Eq.~11!
signifies that this term survives the phase fluctuations@origi-
nating from the chiral decomposition in Eq.~8!# only for a
half-filled electron band (ne51).57 The transverse compo
nent of the spin current coupling in Eq.~12!,
7-5
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HENRIK JOHANNESSON AND G. I. JAPARIDZE PHYSICAL REVIEW B68, 214507 ~2003!
g̃0'~JL
xJR

x 1JL
yJR

y !52 1
2 g̃0'~R↑

†L↑L↓
†R↓1H.c.!, ~15!

describe backscattering of electrons. We have marked
spin-sector parameters in Eqs.~12!–~14! by a ‘‘tilde’’ as a
reminder that these will be modified when coupling the str
to the localized spins in the environment. How this com
about is discussed next.

2. Phase-antiphase antiferromagnetic domains:
Low-energy theory

In the presence of antiferromagnetic correlations in
insulating domains—as seen experimentally in the str
materials1—the partition function in Eq.~5! at low energies
is dominated by paths with

Vri
5g ri

~21!d iBA12a0
2ø2~r i !n~r i !1a0ø~r i !. ~16!

Hereg ri
561 is the parity of the sublattice to which the si

r i belongs, the unit vectorn ~suppressing the coordinater i
for ease of notation! represents the local direction of th
Néel-order-parameter field, anda0ø is a small orthogona
ferromagnetic fluctuation component, i.e.,ua0øu!1, with n
•ø50. The phase factor (21)d iB in Eq. ~16! appears becaus
from now on we take the Ne´el fields in theA andB domains
to be p shifted relative to each other.~The choice of refer-
ence vector in the staggering factor can be made arbitra
with no effect on the physics.! We here note that for a site
centered stripe embedded in a spin-1/2 environment cur
estimates predict that this is a viable assumption for st
electron densitiesne,0.6 in the limit whereJK;JH .58,59

However, forJK!JH , as assumed here, the critical dens
is expected to be larger.

With n a slowly varying smooth field, Eq.~16! spells out
the assumption of finite-range antiferromagnetic order.
should stress thatn andø are taken to be independent field
constrained only by the orthogonality condition. This impli
a doubling of degrees of freedom, which in principle shou
be corrected when regularizing the theory. However, for
present purpose, to pinpoint the leading instabilities of
stripe electron dynamics due to the interaction with the a
ferromagnetic domains, this issue is immaterial. The norm
ization of V in Eq. ~16! is only preserved up toO(a0

2), but
this is sufficient since we are interested in the lon
wavelength limit. In this limit we let the lattice spacinga0 in
the x direction ~parallel to the stripe! go to zero, expand al
terms in the actionS which contain the spin fields up t
O(a0

2), and then do the replacementsa0( r→ *dx, nri
(t)

→nj ( i )(t,x), and øri
(t)→øj ( i )(t,x). The result is a field

theory for the independent orthogonal fieldsn andø, with an
action

Si@n,ø#5
S2JH

2 (
j ( i )

E dxE
0

`

dt F 1

a0
@nj ( i )11~t,x!

2nj ( i )~t,x!#218a0øj ( i )
2

~t,x!G
2 iS(

j ( i )
E dxE

0

`

dt @nj ( i )~t,x!
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3]tnj ( i )~t,x!#•øj ( i )~t,x!1Si ,Berry@n#,

i 5A,B, ~17!

with

Si ,Berry@n#5 iS(
ri

g ri
~21!d iBE

0

`

dtA~t,r i !•]tn~t,r i !.

~18!

In the standard approach to the 2D antiferromagnet55 one
would now integrate out the rapidly fluctuatingø field from
Eq. ~17!. After taking a continuum limit in they direction
this would produce the familiar nonlinears model (NLsM),
with an added sum over Berry phases, describing the s
long-wavelength dynamics of the Ne´el-order-parameter field
n. In the present case, however, the localized spins adja
to the stripe enter also in the Kondo lattice interaction~4!,
and this must be taken into account before one attempt
integrate out theø field. This problem is addressed next.

3. Kondo lattice interaction: Mean-field decoupling

Using Eq.~8! to write the electron-spin density in Eq.~4!
in terms of the chiral fields, and then replacing the spin o
eratorsSr , j ( i ) in Eq. ~4! by the corresponding vectorsSVr , j ( i ),
decomposing these as in Eq.~16!, we obtain, expanding to
O(a0

2),

HKondo5Hø1Hn , ~19!

where

Hø5JKSa0
2(

r
Lr•~ør

(A)1ør
(B)!, ~20!

Hn5JKSa0(
r

~21!rLr•~nr
(A)1nr

(B)!, ~21!

with

Lr5@e2ikFra0Lr ,a
† Rr ,b1e22ikFra0Rr ,a

† Lr ,b1Lr ,a
† Lr ,b

1Rr ,a
† Rr ,b#sab , ~22!

measuring the spin density on the stripe. We have here u
the notation introduced after Eq.~4!, implying that ør

( i )

[ør , j ( i )51 and nr
( i )[nr , j ( i )51. By the assumption that the

Néel-order directions of theA andB domains are shifted by
p relative to each other it follows thatnr

(A)52nr
(B) , and

thusHn vanishes. It is here important to realize that there
no relative staggering of the ferromagneticA andB compo-
nents in Eq.~20!. These rapidly fluctuating fields are inde
pendent, with no correlations across the stripe. This leave
with Hø , which in the continuum limit, using Eq.~10! with
J[JL1JR , takes the form

Hø → 2JKSa0E dxJ~x!•@ø(A)~x!1ø(B)~x!#. ~23!

We have here dropped the nonchiral terms that mixL andR
fields since these are washed out by the rapid phase os
tions in Eq.~22!.
7-6
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PAIRING AND DENSITY CORRELATIONS OF STRIPE . . . PHYSICAL REVIEW B 68, 214507 ~2003!
The fact that the stripe electrons couple manifestly only
the fast ferromagnetic components of the localized spin
independent of whether the stripe is metallic~Hubbard band
away from half filling! or insulating ~half-filled band!60—
does not mean that the Ne´el-order-parameter dynamics
completely decoupled from the stripe electrons. The N´el
field reenters the problem via the orthogonality conditi
n•ø50, which constrains the ferromagnetic component t
plane that follows its slow and smooth fluctuations. As
shall see next, part of the interaction in Eq.~23! can be
absorbed as an effective spin-density interaction among
stripe electrons. Since at low energies the Ne´el-order direc-
tion is essentially constant over large patches in Euclid
space-time, this interaction will effectively be pinned in sp
space, and hence break the spin-rotational invariance o
electron spin-dynamics on the relevant time and len
scales. This symmetry-breaking effect, driven by the N´el
order in the environment, will dramatically influence the co
relations of the stripe electrons.

For simplicity, we now treat theA and B domains sepa-
rately. Starting withA, and collecting all terms in the actio
containing theø(A) field defined on thej (A)51 spin array
that couples to the stripe, we find from Eqs.~17! and~23! the
contribution to the partition function

Zø
(A)5E D@ø(A)#e2S[ ø(A)] , ~24!

with

S@ø(A)#5E
0

`

dtE dx@4JHa0S2~ø(A)!212JKSa0~JL

1JR!•ø(A)2 iS~n(A)3]tn
(A)!•ø(A)#. ~25!

Note that we have again changed to the compact nota
nj (A)51→n(A), øj (A)51→ø(A), introduced in Eqs.~20! and
~21!. The integral in Eq.~24! is Gaussian and can easily b
carried out. We obtain

E D@ø(A)# expS 2E dtdx@~ø(A)!TGø(A)1vø(A)# D
5expS 1

4E dtdx~v!TG21vD[exp~2S ø(A)
e f f

!, ~26!

where G54JHa0S21, v5(2JKSa0)J'2 iS(n(A)3]tn
(A)).

We have here definedJ'[J2(J•n(A))n(A), with J[JL
1JR , as the piece of the electron spin density that— via
constraintn(A)

•ø(A)50—survives the projection ontoø(A).
Thus, from Eq.~26! we obtain the effective action comin
from fluctuations inø(A),

S ø(A)
e f f

5E
0

`

dtE dxF2
a0JK

2

4JH
J'•J'1

iJK

8pJH
~n(A)

3]tn
(A)!•J'1

1

16JHa0
~n(A)3]tn

(A)!2G . ~27!

Let us in turn discuss the different contributions toS ø(A)
e f f :
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First term in Eq. (27!. The first term is an anisotropic spi
interaction among the stripe electrons, induced by the c
pling to the Néel-ordered spins in theA domain. As we have
already noted, this interaction follows the slow fluctuatio
of the n(A) field along the stripe, withJ' constrained to a
plane orthogonal ton(A). To make progress we shall trea
n(A) in a mean-field formulation, and take it to be in a fixe
~but arbitrary! direction ^ñ&, defined by the antiferromag
netic order in theA domain. Introducing a coordinate syste
(x,y,z) with ẑ in the direction of̂ ñ&, and using the operato
identity JL/R

z JL/R
z 5 1

3 JL/R•JL/R , valid for chiral bilinears, the
first term in Eq.~27! is then seen to add the interaction

Hint52
a0JK

2

2JH
E dx~ :JL

zJL
z :1:JR

z JR
z :1JL

xJR
x 1JL

yJR
y !

~28!

to the spin-sector stripe Hamiltonian in Eq.~12!. The terms
diagonal inL andR in Eq. ~28! are forward-scattering term
which renormalize the effective spin velocityṽs on the
stripe,ṽs→ ṽs

(A)5 ṽs2a0JK
2 /(4pJH), while the terms mixing

L andRfields describe backscattering of electrons and hen
when added to Eq.~12!, shifts the corresponding coupling
g̃0'→g̃'1a0JK

2 /(4p ṽs
(A)JH).

Second term in Eq. (27).Let us first recall56 that n(A)

3]tn
(A) is an angular momentum density, which, at the e

tremum of the action in Eq.~17! is locked to the ferromag-
netic component:n(A)3]tn

(A);ø(A). Sinceø(A) is a rapidly
fluctuating field, the second term in Eq.~27!, being a pure
phase, for this case averages to zero already on finite pat
in Euclidean space-time, and will be ignored in the lo
energy limit considered here. This amounts to neglect fl
tuations away from the cluster of paths that dominate ac
~17! for the localized spins when decoupled from the strip
As JK!JH , we do not expect these paths to change mu
when inserting the stripe, and the argument applies als
the presence of the stripe. We shall discuss the limitation
this mean-field-type argument below.

Third term in Eq. (27).The last term in Eq.~27!, contain-
ing only the Néel field and its time derivative, should b
assembled with the spin action in Eq.~17!. Then, integrating
out all øj (A) fields from Eq.~5! — in exact analogy with the
one-dimensional treatment oføj (A)51 in Eq. ~26! — taking a
continuum limit in the y direction, and using (n3]tn)2

5(]tn)2, one obtains the effective action for the order p
rameter field in theA domain

S@n#5
1

2g0
E

0

`

dtE
2`

`

dxE
0

`

dyFc~¹n!21
1

c S ]n

]t D 2G
1Sphase@n#, ~29!

where the first term is the action for a NLsM in a semi-
infinite plane, with parametersg0

215S/A8a0 ,c5A8JSa0.56

One piece of the original sum over Berry phases in Eq.~17!
has been absorbed in the NLsM, while the part containing
the Néel field only, Eq. ~18!, is left as a global phase
Sphase@n# in Eq. ~29!. This phase is an alternating sum ov
the solid anglesF@n(r i ,t)# swept by the localn(r i ,t) fields
7-7
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HENRIK JOHANNESSON AND G. I. JAPARIDZE PHYSICAL REVIEW B68, 214507 ~2003!
ast goes from 0 tò . As long as there are no disordering
finite-size effects causing discontinuities in the Ne´el field,
Sphase@n# will be averaged out.61 For this reason we will
ignore it for the moment. For the more realistic case o
finite-width antiferromagnetic domain, modeled, say, by
spin ladder,43 Sphase@n# will come into play, requiring a more
careful analysis. We shall return to this important issue
Sec. III D.

The analysis carried out for theA domain above can be
repeated step by step for theB domain, and the fluctuation
in ø(B) are seen to give a contribution identical to that in E
~27!, with the index ‘‘A’’ replaced by ‘‘B. ’’ Summing the
contributions from the two domains, it follows that the stri
electrons get described by aneffective low-energyHamil-
tonian

Hstripe5Hc1Hs , ~30!

with Hc defined in Eq.~11!, while

Hs52pvsE dx$:JL
zJL

z :1:JR
z JR

z :

2g0sJL
zJR

z 2g0'~JL
xJR

x 1JL
yJR

y !%, ~31!

where

g0s5
a0

pvF
~U22V!,

g0'5
a0

pvF
S U22V1

JK
2

2JH
D , ~32!

vs5 ṽs2
a0

2p

JK
2

JH
,

with ṽs defined in Eq.~13!.
Thus, in contrast to the charge degrees of freedom wh

remain untouched by the coupling to the antiferromagn
environment, the spin dynamics on the stripe is stron
renormalized by this same interaction and gets controlled
an effectiveU~1!-symmetricspin Hamiltonian~31!. As for
the low-energy processes in the decoupled antiferromagn
environment, these are described by two independent Ns
models, one for each domaini 5A,B, as defined in Eq.~29!.
@It may be worthwhile pointing out that as long as the Ne´el
field is protected by the low-energy thermodynamic limit, t
phaseSphase@n# in Eq. ~29# remains inactive.61#

B. Diagonal stripes

The construction of the low-energy theory for a stri
running along the diagonal of the square lattice~Fig. 2!
closely parallels that for a collinear stripe in the preced
section. Certain aspects of it get more involved, howev
and the reader primarily interested in the result is well
vised to go directly to Eq.~42!.

To start the analysis, we again model the isolated stripe
an extendedU2V Hubbard chain, but with a new hoppin
matrix element t8,t ~since the overlaps between tigh
21450
a
a

n

.

h
ic
y
y

tic

g
r,
-

y

binding orbitals along the diagonal of a lattice plaquette
expected to be smaller than along the bonds!. As a result, the
continuum theory in Eqs.~11! and~12! still applies, but with
t replaced byt8 @implying a shift of the effective velocities
defined in Eq.~13!#. Moreover,V now describes thesecond
nearest-neighbor interaction, in contrast to the collinear c
whereV is the nearest-neighbor Coulomb interaction. Due
complicated screening effects, the two interactions may
completely different in magnitude and even in sign. This
an important point to keep in mind. As for the antiferroma
netic domains, we expect that the order-parameter dynam
is still described by NLsM ~29! in the bulk~away from the
stripe!: By assumption, the coupling to the stripe is wea
JK!JH , and can only perturb spins in its immediate neig
borhood. Here we are interested in the reverse effect,
will explore how the Kondo lattice interaction~4! affects the
electron dynamics on the diagonal stripe.

For this purpose, let us isolate one array of localized sp
adjacent to the stripe, say theA domain. We label the corre
sponding spin operatorsSr

(A) , wherer is a lattice coordinate
running along the stripe that labels also the horizontal lat
axes that pierce the stripe at the corresponding sites.

TheSr
(A) spins interact with their neighboring spins on th

parallel array,Sr
(Ã) call them, via the terms

Harray5JH(
j

~Sr
(A)

•Sr
(Ã)1Sr 21

(A)
•Sr

(Ã)!. ~33!

It is clear from the geometry that this interaction will gene
ate an effective ferromagnetic coupling between the near
neighborS(A) spins, induced by a double exchange via t
two neighboringS(Ã) spins. As seen in Fig. 2, this means th
the local 1D magnetic environment sampled by the str
electrons via the Kondo exchange isferromagneticallyor-
dered. Does this imply a different induced interaction amo
the stripe electrons as compared to the collinear case in
~31!? To find out, let us first write down the full Kondo
lattice interaction for the diagonal stripe, including the neig
boring array ofSr

(B) spins from theB domain:

HKondo5JK(
r ,a

cr ,a
† sabcr ,b•~Sr

(A)1Sr 11
(A) 1Sr

(B)

1Sr 21
(B) !, JK.0. ~34!

Following the same route as in Sec. II A 3, using decom
sitions ~8! and ~16!, we obtain

HKondo5Hø1Hn , ~35!

where

FIG. 2. Diagonal stripe structure.
7-8
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Hø5JKSa0
2(

r
Lr•~ør

(A)1ør 11
(A) 1ør

(B)1ør 21
(B) !, ~36!

Hn5JKSa0(
r

Lr•~nr
(A)1nr 11

(A) 1nr
(B)1nr 21

(B) !, ~37!

with Lr the local spin-density operator on the stripe defin
in Eq. ~22!. Similar to the collinear stripe treated above, t
p-phase shifted Ne´el order across the diagonal stripe—alo
horizontal as well as vertical directions—implies thatnr

(A)

52nr
(B) ,nr 11

(A) 52nr 21
(B) ~see Fig. 2!, and it follows that Hn in

Eq. ~37! vanishes,independent of the value of the stripe ba
filling ne/2.60 @Note that, in contrast to the collinear case
Eq. ~21!, there is no staggering factor in Eq.~37!: the local
magnetic environment as seen from the stripe is unifo
along the stripe.# We are thus left with Hø in Eq. ~36!. Taking
a continuum limit

a0(
r

→E dx dyd~x2y! , ~38!

and doing a gradient expansion toO(a0
2), we obtain

Hø→4JKSa0E dxJ~x,x!•@ø(A)~x,x!1ø(B)~x,x!#,

J~x,x![JL~r !1JR~r !, ~39!

with the ‘‘diagonal’’ stripe coordinater replacing~the implic-
itly defined variable! x in the definition ofJL/R in Eq. ~10!.
Given Eq.~39!, we now again focus on theA domain, and
isolate the piece of Eq.~39! containing only theø(A)-field,
Hø(A) call it. Inserting a time dependence and lettingHø(A) act
at ~imaginary! time slicet, integrating over the slices, an
adding the result to the ordinary semiclassical spin ac
SA@n,ø# for the A domain@cf. Eq. ~6! for the corresponding
collinear case#, we obtain

SA@n,ø#1E
0

`

dtHø5E
2`

`

dxE
x

`

dyE
0

`

dtFJHS2

2
@~¹n(A)!2

18~ø(A)!22 iS~n(A)3]tn
(A)!•ø(A)#

14JKSa0J•ø(A)d~x2y!G . ~40!

Writing down the fullA-domain action in Eq.~40! we have
ignored the presence of the sum over Berry phases@cf. again
Eq. ~6! for the corresponding collinear case#, since it does
not involve theø-field and hence does not couple directly
the stripe electrons. Also note that compared to our treatm
of the collinear case in Sec. II A 3 we have here shortcut
analysis by taking a continuum limit in they directionbefore
integrating out theø field in Eq. ~40!. Carrying out the inte-
gration we obtain an effectiveA-domain actionS ø(A)

e f f gener-
ated by fluctuations in the ferromagnetic components of
localized spins:
21450
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S ø(A)
e f f

5E
2`

`

dxE
x

`

dyE
0

`

dtF S 2
a0JK

2

JH
J'•J'

1
iJK

2JH
~n3]tn!•J'D d~x2y!1

1

16JH
~n3]tn!2G ,

~41!

with J' defined after Eq.~26!. Doing a saddle-point approxi
mation and dropping the rapidly oscillating phase in E
~41!, we obtain—in exact analogy with the collinear case
the induced stripe-electron interaction

Hint52
2a0JK

2

JH
E dr~JL

xJR
x 1JL

yJR
y 1JL

zJL
z1JR

z JR
z !,

~42!

with r the diagonal coordinate along the stripe.
This Hamiltonian is almost an exact copy of that for

collinear stripe, cf. Eq.~28!, with the only difference that the
magnitude of the coupling is larger by a factor of 4.~This
can be traced back to the fact thaton the latticea diagonal
stripe electron couples simultaneously totwo localized spins
in the Adomain.! Adding the identical contribution from the
B domain, it follows that the low-energy spin dynamics on
diagonal stripe is described by thesameeffective Hamil-
tonian ~31! as for the collinear case, but with the renorma
ized parameters in Eq.~32! modified byJK→2JK . @As men-
tioned above, the hopping matrix elementt8 is also different
from that which enters the free part of the Hamiltonian fo
collinear stripe; cf. Eq.~30! with vF52a0tsin(pne/2). How-
ever, as this has no impact on the problem studied here, f
now on we use a single labelt for both types of stripes.#

In contrast to our analysis for the collinear stripe config
ration, we have here not attempted to derive the full effect
spin action for the decoupled environment. As we have
ready noted, away from the stripe the Ne´el-order-parameter
dynamics is described by a NLsM with an added Berry
phase, as in Eq.~29!. By inspection one finds that close t
the diagonal stripe the Berry phase gets influenced by
unusual boundary condition associated with the diago
stripe orientation. Thus, our results—here derived for a se
infinite 2D geometry—may be of limited applicability for th
case of diagonal finite-width or spin ladder environme
~see Sec. III D!. Their study is an interesting problem, but w
here leave it for the future.

The fact that the same effective interaction appears for
diagonal and collinear stripe structures~up to the trivial
JK↔2JK shift! reflects its origin in the coupling of the elec
tronic spin density to theuniformø components of the local
ized spins. These components are confined to a plane
thogonal to the Ne´el direction, and are blind to whether th
local Néel-field adjacent to a stripe is staggered~as for a
collinear stripe! or uniform ~diagonal stripe!.62 The coupling
constant JK

2 /JH embodies the second-order process t
drives the induced interaction between the stripe electro
An electron exchanges spin with the environment (;JK) and
another electron arriving at the same lattice site flips back
localized spin by a second exchange (;JK), resulting in an
effective spin-exchange (;JK

2 ) between the two electrons
7-9
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Since only that part of the spin exchange that couples to
ø components survives, the effective interaction becomes
isotropic. The 1/JH dependence of the process is also e
pected: The larger the spin stiffness of the antiferromagn
environment, the smaller the probability for the double e
change to occur.

C. Effective stripe Hamiltonian: Bosonization

As we have seen, the low-energy electron dynamics
collinear as well as diagonal stripes—taking into accoun
weak spin-exchange with the environment—is described
an effective Hamiltonian~30!, with the amplitudes for
forward- and backward-scattering renormalized by the
change. This Hamiltonian embodies aspin-anisotropic inter-
action among the electrons, well-defined on length and ti
scales over which the environment is magnetically order
To analyze the consequences for the stripe electron dyna
we shall use Abelian bosonization to map the model o
two independent quantum sine-Gordon models~in the weak-
coupling limit!—one describing the collective charge excit
tions, the other the spin excitations—and then perform
renormalization-group analysis to identify the leading ins
bilities of the system.

The method of bosonization is well reviewed in th
literature,55,63,64and we here only sketch the most importa
steps so as to fix notation and conventions. The stand
bosonization formulas for spinful chiral electrons are giv
by63

Ra~x!5
1

A2pa0

haeiA4pfR,a(x),

~43!

Ra
†~x!5

1

A2pa0

hae2 iA4pfR,a(x),

La~x!5
1

A2pa0

h̄ae2 iA4pfL,a(x),

~44!

La
†~x!5

1

A2pa0

h̄aeiA4pfL,a(x).

Here fR,a(x) and fL,a(x) are right- and left-moving
bosonic fields, respectively, carrying spina5↑,↓. The Klein
factorsha andh̄a are inserted to ensure that the anticomm
tation relations for electron fields with different spin com
out right.64 They are Hermitian and satisfy a Clifford algeb

$ha ,hb%5$h̄a ,h̄b%52dab , $ha ,h̄b%50. ~45!

One next introducescharge~c! andspin~s! fieldswc,s and
their dualsqc,s :

wc5~f↑1f↓!/A2, qc5~u↑1u↓!/A2, ~46!

ws5~f↑2f↓!/A2, qs5~u↑2u↓!/A2, ~47!

where
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fa5fL,a1fR,a , ua5fL,a2fR,a . ~48!

Then, using the identities

JR1JL52A2

p
]xwc ,

~49!

JR2JL52A2

p
]xqc ,

JR
z 1JL

z52~1/A2p!]xws ,
~50!

JR
z 2JL

z52~1/A2p!]xqs ,

together with Eqs.~43! and ~44!, we can translateHstripe
5Hc1Hs in Eq. ~30! into bosonized form

Hc5
vc

2 E dxH ~]xwc8!21~]xqc8!2

1d1ne

2mc

a0
2

kcos~A8pKcwc8!J , ~51!

Hs5
vs

2 E dxH ~]xws8!21~]xqs8!21
2ms

a0
2

kcos~A8pKsws8!J .

~52!

We have here introduced the rescaled charge and spin fi

wc,s8 5Kc,s
21/2wc,s , qc,s8 5Kc,s

1/2qc,s , ~53!

and the short handk[h↑h↓h̄↑h̄↓ . To leading order in the
coupling constants the sine-Gordon model parametersKc(s)
andmc(s) are given by

2~Kc21!5g0c52
a0

pvF
~U16V!,

~54!

2pmc5g0u52
a0

pvF
~U22V!,

2~Ks21!5g0s5
a0

pvF
~U22V!,

~55!

2pms5g0'5
a0

pvF
S U22V1b

JK
2

JH
D ,

with

vc5vF1
a0

2p
~U16V!, ~56!

vs5vF2
a0

2p S U22V12b
JK

2

JH
D , ~57!

where

b5H 1/2 collinear stripe

2 diagonal stripe.
~58!
7-10
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Note that in obtaining Eqs.~51! and~52!, terms correspond
ing to scattering processes which lead to a renormaliza
of the Fermi velocities in second order in the couplings,
well as strongly irrelevant terms;cos(A8pKcwc8)
3cos(A8pKsws8) describing Umklapp processes with para
lel spins, have been omitted.

The product of Klein factors in Eqs.~51! and~52! acts on
a Hilbert space different from the boson Hilbert space a
introduces a certain ambiguity into the formalism. We
solve it by choosing a representation of the Clifford alge
in terms of tensor products of Pauli matrices and the iden
operator,64

h↑5s1^ s1 , h↓5s3^ s1 ,
~59!

h̄↑5s2^ s1 , h̄↓51^ s2 ,

in which the above productk5h↑h↓h̄↑h̄↓ of Klein factors
has the form

k51^ s3 . ~60!

This matrix is diagonal with eigenvalues61. Provided that
all relevant correlation functions to be calculated cont
only products of Klein factors which are simultaneously
agonal withk we can pick the eigenstate with eigenval
11, say, and then ignore the rest of the Klein Hilbert spa
@allowing us to do the replacementk→1 in Eq. ~51! and
~52!#. We will come back to this point below.

III. PAIRING AND DENSITY CORRELATIONS

A. Renormalization-group analysis

The mapping of the effective stripe Hamiltonian in E
~30! onto the quantum theory of two independent charge
spin Bose fields, manifestly shows that the collective lo
energy charge and spin dynamics on the stripe remains s
rated in the presence of a magnetic environment. This all
us to extract the ground-state properties of the stripe e
trons by performing independent renormalization-gro
analyses of the charge- and spin-sector sine-Gordon Ha
tonians. The RG flows are of Kosterlitz-Thouless-type, w
effective coupling constantsgi( i 5c,s,u,'), governed by
the equations65

dgc /d,52gu
2 ,

~61!
dgu /d,52gcgu ,

for the charge sector, and

dgs /d,52g'
2 ,

~62!
dg' /d,52gsg' ,

for the spin sector. Here,5,n(a/a0) with a a renormalized
length, whilegi(,50)[g0i are the bare parameters that e
ter Eqs.~54! and~55!. We shall denote byK̃c(s) andm̃c(s) the
correspondingrenormalized sine-Gordon parameters con
nected togi via the same Eqs.~54! and ~55!.

The flow lines lie on the hyperbolas
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gc(s)
2 2gu(')

2 5g0c(s)
2 2g0u(')

2 , ~63!

and—depending on the relation betweeng0c(s) and g0u(')
~or, equivalently, the bare sine-Gordon parametersKc(s) and
mc(s))—exhibit two types of behaviors~cf. Fig. 3!.

Weak-coupling regime.When g0c(s)>ug0u(')u (Kc(s)21
>pumc(s)u) we are in the weak-coupling~Luttinger liquid!
regime: gu(')→0, implying that the renormalized masse
m̃c(s) scale to zero. The low-energy, long-wavelength beh
ior of the gapless charge~spin! degrees of freedom is thu
described by a free scalar field

Hc(s)5
vc(s)

2 E dx$~]xwc(s)8 !21~]xqc(s)8 !2%. ~64!

Ignoring logarithmic corrections66 coming from the slow
renormalization of marginally irrelevant operators near
fixed line gu(')50, the large-distance behaviors of th
charge- and spin field correlators and their duals are given

^eiA2pKc(s)* wc(s)8 (x)e2 iA2pKc(s)* wc(s)8 (0)&;uxu2Kc(s)* , ~65!

^eiA2p/Kc(s)* qc(s)8 (x)e2 iA2p/Kc(s)* qc(s)8 (0)&;uxu21/Kc(s)* .
~66!

Hence, the only parameters controlling the low-energy
havior in the gapless regimes are the fixed-point valuesKc(s)*
~Luttinger liquid parameters! of the renormalized coupling
constantsK̃c(s)'11gc(s)/2.

Strong-coupling regimes.When g0c(s),ug0u(')u (Kc(s)
21,pumc(s)u) the system scales to strong coupling. T
two separatrices g0c(s)56ug0u(')u divide the strong-
coupling regimes for charge and spin into two sectors,
spectively: ~i! g0c(s)<2ug0u(')u, where the increase o
ugc(s)u and ugu(')u is immediate and~ii ! 2ug0u(')u,g0c(s)

FIG. 3. Renormalization-group flow diagram for the sp
(gs ,g') and charge (gc ,gu) sectors. The arrows denote the dire
tion of flow with increasing length scale.
7-11
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,ug0u(')u, where one observes acrossover from a weak-
coupling behavior at intermediate scales (gc(s)'ugu(')u) to
strong coupling at larger scales (gc(s)'2ugu(')u).

63 Depend-
ing on the sign of the bare massmc(s) in Eqs.~54! and~55!,
the renormalized massm̃c(s) is driven to 6`, signaling a
flow to one of the two strong-coupling regimes, with a d
namical generation of a commensurability gapDc(s) in the
charge ~spin! excitation spectrum. The flow ofum̃c(s)u to
large values indicates that the cosine term in the sine-Gor
model dominates the large-distance properties of the ch
~spin! sector. With the cosine-term being the dominant o
the values ofwc(s)8 will tend to be pinned at the minima of th
cosine potential. Formc(s),0 these are atA8pKc(s)wc(s)8
52pn, with n an arbitrary integer. Sincewc(s)8 are angular
variables one cannot distinguish between differentn, how-
ever, and the ‘‘negative mass’’ condensation is defined
^wc(s)8 &50. Similarly, for mc(s).0 the minima are at
A8pKc(s)wc(s)8 5pn and the fields order atAp/8Kc(s). To
summarize, there are two strong-coupling regimes where
fields wc(s)8 get ordered with the expectation values

^wc(s)8 &5HAp/8Kc(s), mc(s).0

0, mc(s),0.
~67!

Note that the signs of the bare masses in Eq.~67! are con-
tingent upon the choice of truncated Klein Hilbert space
Sec. II C, where we have takenk→1 in Eqs.~51! and ~52!.
This has no effect on the physics, however, since a tran
sition of the two strong-coupling phases above~via the alter-
native choicek→21) would be followed by a subseque
redefinition of any relevant correlation function, thus produ
ing the same value of any observable.

Having exposed the properties of the weak- and stro
coupling regimes, let us apply the results first to thecharge
sector. By inspection of the ‘‘bare’’ values of the couplin
constants in the charge sector, Eq.~54!, one easily finds,
using Eqs.~67!, that for ahalf-filled band(ne51) this sector
is gapped forU.2uVu and for U,2V whenV.0 ~strong-

coupling regimes!. In the former casem̃c→2`, implying
that

^wc8&50, ~68!

while in the latter casem̃c→`, with

^wc8&5Ap/8Kc. ~69!

For any other values ofU and V, but still at half filling,
we are in theweak-coupling regime, corresponding to a gap
less charge excitation spectrum. The charge degrees of
dom are here governed by the free Bose field in Eq.~64!,
with the fixed-point value of the charge parameter

Kc* .11
2

pvc
AV~U12V!.1, ne51, ~70!

obtained from Eq.~63! with m̃c50. The line U52V.0
corresponding to the fixed-point linemc50, Kc21,0, is
special. Here the low-energy properties of the gapless ch
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sector are described by the free massless Bose field in
~64! with Kc* 5Kc , reflecting its exact marginality.

Away from half filling(neÞ1) the bare mass term in Eq
~51! is killed off for any values ofU andV, and the charge
degrees of freedom are described by the free Bose fiel
Eq. ~64!. Analogous to the special lineU52V.0 above, the
correlations in Eq.~65! and ~66! are now governed by the
bare value of the Luttinger liquid charge parameter in E
~54!:

Kc* 5Kc512
a0

2pvc
~U16V!, neÞ1. ~71!

All of the above is familiar from conventional ‘‘g-ology’’
for Hubbard-type models.12,57 Since the Kondo lattice inter
action, Eq.~4!, does not couple to the charge sector the la
indeed behaves as if the electrons were isolated from
magnetic environment.

Let us now look at the behavior of thespin sector, which
is more interesting. As we have seen, the spin-exchange
tween the Ne´el-ordered environment and the stripe electro
breaks the SU~2! spin-rotational symmetry in the effectiv
theory. This implies that the spin sector is gapped for ar
trary UÞ2V2bJK

2 /JH ~strong-coupling regime!. When U
.2V2bJK

2 /JH the mass renormalization goes to1`,
whereas for U,2V2bJK

2 /JH the mass renormalizes t
2`. Reading off from Eq.~67!, using Eq.~55!, this implies
the spin field orderings

^ws8&5HAp/8Ks, U.2V2bJK
2 /JH

0, U,2V2bJK
2 /JH .

~72!

Note that this result isindependentof the band filling on the
stripe.

When JK50 and the stripe decouples from the enviro
ment, the SU~2! invariance of the spin sector is recovere
and the spin-dynamics renormalizes along the separatrigs
5g' . As is well known, the spin sector then gets controll
by the weak-coupling Luttinger liquid parameterKs.1
1 1

2 gs→Ks* 51 when U.2V,57 whereas forU,2V one
stays in the strong coupling regime with^ws8&50.67,68

Next, we want to exploit the RG results derived above
map out the ground-state phase diagram for the stripe e
trons. We shall catalog the different phases according to
values of (U,V,JK

2 /JH ,ne), and focus on the correspondin
behaviors of density and superconducting pairing fluct
tions. These are characterized by the correlations of the
sociated order parameters, which in the present case com
two guises:~1! conventionaland~2! compositeorder param-
eters. Let us in turn review their definitions and bosoniz
representations.

B. Order parameters

1. Conventional order parameters

The conventional order parameters57,63,68,69 which may
develop long-range correlations in this class of models
those of short-wavelength (2kFx) fluctuations of thesite-
andbond-located charge density, site-andbond-located spin
7-12
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density, andsuperconducting singletand triplet pairing. By
using the chiral decomposition~8! of the electron fields to-
gether with the bosonization dictionary in Eq.~43!–~50! it is
straightforward to obtain their bosonized forms.

~a! Charge-density wave~CDW!. This fluctuation is car-
ried by thecharge-0, spin-0excitations created by the oper
tor

OCDW~r !5(
a

cr ,a
† cr ,a5(

a
@JR,a~r !1JL,a~r !

1d rLa
†~r !Ra~r !1d r

21Ra
†~r !La~r !#, ~73!

with d r5e2ikFra0, and whereJL/R are the chiral charge cur
rents defined in Eq.~9!. Keeping only the finite-momentum
modes (k562kF) from the nonchiral terms, taking a con
tinuum limit, and reading off from the dictionary~43!–~50!,
one obtains the bosonized expression

OCDW~x!→sin@A2pKcwc8~x!22kFx#cos@A2pKsws8~x!#,
~74!

where we have used thath̄↑h↑ and h̄↓h↓ are diagonal with
the same eigenvalue on the truncated Klein Hilbert sp
chosen in Sec. II C.

~b! Spin-density wave~SDW!. This is the simplest
charge-0, spin-1vector order parameter, and is defined by

OSDW~r !5 1
2 cr ,a

† sabcr ,b . ~75!

Bosonizing thex component ofOSDW(r ) that createsk5
62kF excitations, and dropping the trivialk50 modes, one
finds in the long-wavelength continuum limit

OSDW
x ~x!→h̄↑h↓cos@A2pKcwc8~x!

22kFx#sin@A2pKs
21qs8~x!#. ~76!

To obtain this form we have exploited the fact that the Kle
factors h̄↑h↓ , 2h̄↓h↑ , h↑h̄↓ , and 2h↓h̄↑ have the same
action in the truncated Klein Hilbert space.@Note, however,
that h̄↑h↓ is not diagonal on this space, and as a reminde
this we keep it explicitly in Eq.~76!.# In the same way one
easily obtains
th

21450
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f

OSDW
y ~x!→h̄↑h↓cos@A2pKcwc8~x!

22kFx#cos@A2pKs
21qs8~x!#, ~77!

and

OSDW
z ~x!→cos@A2pKcwc8~x!22kFx#sin@A2pKsws8~x!#,

~78!

where in the z component we have puth̄↑h↑5h̄↓h↓
5const.

In the special case of a half-filled band (ne51) one can
distinguish between the 2kF modulations of the charge an
spin densities with extrema of the density profile locatedon
sites or betweensites—i.e., on bonds. Therefore at ha
filling one should also consider order parameters correspo
ing to the short wavelength fluctuations ofbond-located
charge and spin densities.

~c! Bond-located charge-density wave~bCDW, or
‘‘ dimer’’ !. A dimerization instability is characterized by en
hanced correlations among thecharge-0, spin-0excitations
created by

ObCDW~r !5(
a

~cr ,a
† cr 11,a1H.c.!. ~79!

Again, keeping only thek562kF excitations, one obtains in
the continuum limit

ObCDW~x!→cos@A2pKcwc8~x!22kFx#cos@A2pKsws8~x!#.
~80!

~d! Bond-located spin-density wave~bSDW!. This is the
vector order parameter that describescharge-0, spin-1mag-
netic excitations centered on the lattice bonds:

ObSDW~r !5
1

2 (
a,b

~cr ,a
† sabcr 11,b1H.c.!. ~81!

In the continuum limit the lattice shift in Eq.~81! shows up
as an extra phasep/2 added to the ubiquitous phase 2kFx
@cf. the bosonized dimer operator in Eq.~80!# and we thus
identify the bosonized components of the finite-moment
part of ObSDW(x) as
ObSDW
i ~x!→H h̄↑h↓sin@A2pKcwc8~x!22kFx#sin@A2pKs

21qs8~x!#, i 5x,

h̄↑h↓sin@A2pKcwc8~x!22kFx#cos@A2pKs
21qs8~x!#, i 5y,

sin@A2pKcwc8~x!22kFx#sin@A2pKsws8~x!#, i 5z.

~82!
Finally, we consider the two order parameters for~supercon-
ducting! pairing.

~e! Singlet pairing~SS!. The charge-2e, spin-0supercon-
ducting pairing modes on the stripe lattice are created by
operator
e

OSS~r !5cr ,↑
† cr ,↓

† 5d rL↑
†~r !L↓

†~r !1d r
21R↑

†~r !R↓
†~r !

1L↑
†~r !R↓

†~r !1R↑
†~r !L↓

†~r !. ~83!
7-13
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The k562kF excitations produced by the chiral terms a
the so-calledh pairing modes.70 The right-movingh pairs
can be written as

hR~x![R↑
†~x!R↓

†~x!→exp@ iA2pKc
21qc8~x!#

3exp@2 iA2pKcwc8~x!# ~84!

in the long-wavelength limit, with the analogous express
for left-moving pairs,hL(x)[L↑

†(x)L↓
†(x). As these contain

only the charge field and its dual, they are blind to the a
ferromagnetic environment and hence we will not consi
them here. This leaves us with thek50 BCS singlet-pairing
operator contained in Eq.~83!, with the bosonized form
te
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OSS~x!→h↑h̄↓exp@ iA2pKc
21qc8~x!#cos@A2pKsws8~x!#.

~85!

~f! Triplet pairing (TS). The charge-2e, spin-1pairing
modes are created by the lattice operator

OTS~r !52 icr ,a
† ~ssy!abcr ,b

† . ~86!

Again retaining only thek50 modes,

OTS~r !→2 iRa
†~r !~ssy!abLb

†~r !, ~87!

we obtain for the bosonized components in the lon
wavelength limit:
OTS
i →H exp@ iA2pKc

21qc8~x!#sin@A2pKs
21qs8~x!#, i 5x,

exp@ iA2pKc
21qc8~x!#cos@A2pKs

21qs8~x!#, i 5y,

h↑h̄↓exp@ iA2pKc
21qc8~x!#sin@A2pKsws8~x!#, i 5z,

~88!
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2. Composite order parameters

In addition to the conventional order parameters lis
above we need to considercompositeorder parameters buil
from operators acting on the stripe electronsand the mag-
netic environment. The notion of composite order parame
was first exploited in the theory of superconductivity,28,29

where it was realized that since any product of a particle-h
~i.e., charge-neutral! operator and a Cooper pair operat
possess charge 2e this composite can, in principle, describ
some superconducting state. By analogy, one may simil
construct composite CDW and SDW order parameters.

We shall here introduce only composite order parame
that may develop long-range correlations for the physica
most interesting case of a stripe away from half filling a
with repulsive electron-electron interactionsU22V.0:
composite CDW and composite singlet pairing.

~a! Composite (site-located) charge-density wave
CDW). A composite CDW order parameter is obtained
projecting the conventional~site-centered! spin-1/2 SDW
onto the difference between the localized spins on the ne
boring A andB arrays:

Oc-CDW;OSDW•~S(A)2S(B)!. ~89!

Note that this expression is well defined in the continu
limit for any stripe geometry: In particular, for the case of
diagonal structure, an electron at ther th site on the stripe
couples toSr 21

(A) 1Sr
(A) in the A domain, which in the con-

tinuum limit reduces to 2S(A)(xr), dropping an irrelevant
gradient term. Considering first a collinear structure, we n
to keep only the staggered partsnr

(A)(21)r andnr
(B)(21)r of

the localized spins since the correlations of the uniform co
ponents of Sr

(A) and Sr
(B) die out fast.55 With a phase-

antiphase domain, as assumed here, we further have
d

rs

le

ly

rs
y

-

h-

d

-

hat

n(A)52n(B)[n. Thus, from Eq.~89!, the k52kF1p/a0

[2kF* part of the composite charge-density wave is given

O
c-CDW

(k52kF* )
;OSDW•n~21!r , ~90!

with r the stripe lattice coordinate, and with the bosoniz
components ofOSDW written down in Eqs.~76!– ~78!. It
would be tempting to refer to thegeneralized Luttinger
theorem71 to ’’explain’’ the appearance of the composite sta
gered CDW, Eq.~90!. As pointed out by Zachar,27 the theo-
rem asserts that theories belonging to the class of Kon
Heisenberg lattice-type models are expected to suppo
massless spin-0, charge-0 excitation of momentumk52kF*
~reflecting the presence of a ‘‘large Fermi surface’’ due to
localized spins!. However, in the present case the localiz
spins of the environment are assumed to be ordered@with the
NLsM in Eq. ~29! describing the small fluctuations of th
order-parameter fieldn], and, as a consequence, tim
reversal symmetry—entering as a condition for the valid
of the theorem71—is broken. Indeed, the case of a diagon
structure is different, and doesnot produce ak52kF* mode.
Here the stripe electrons experience a local ferromagn
environment~cf. Fig. 2!, and the composite CDW now ap
pears atk52kF ~i.e., with no staggering!:

Oc-CDW
(k52kF)

;OSDW•n. ~91!

~b! Composite singlet pairing (c-SS).By taking the prod-
uct of the conventional triplet pairing operatorOTS for the
stripe with the difference of spin operators for localiz
spins,S(A)2S(B), a composite singlet-pairing operator can
formed as

Oc-SS;OTS•~S(A)2S(B)!. ~92!
7-14



um

uc
e

n

m

th

ou
is

-
rg
g

ve

-
b

si

te
-
en
he
ie
a
e

w
o
W

t-

nd

n

-
on

ex-

the

n a

ec-

nd-
al
ind

t
s
nt

tripe

tron
es:
ng-

-

exist

PAIRING AND DENSITY CORRELATIONS OF STRIPE . . . PHYSICAL REVIEW B 68, 214507 ~2003!
For a collinear stripe this operator has two moment
components: a uniformk50 composite singlet

OTS•~ø(A)2ø(B)!,

with rapidly decaying correlations due to the incoherent fl
tuations ofø(A) andø(B), and ak5p/a0 staggered composit
singlet

Oc-SS
(k5p/a0)

;OTS•n~21!r

52 i Ra
†~r !~ssy!abLb

†~r !•n~21!r , ~93!

with r the discrete lattice coordinate along the stripe, a
wheren[nA52nB. It is important to note thatOc2SS

(k5p/a0) is
oddunder time reversal (T:R↔L,s→2s,n→2n), as well
as under parity (P:R↔L), implying ‘‘odd-frequency odd-
parity pairing.’’30

Turning to the case of a diagonal stripe structure the co
posite singlet pairing now occurs fork50 ~since the local
magnetic environment appears uniform as seen from
stripe!, and one has

Oc2SS
(k50);2 i Ra

†~r !~ssy!abLb
†~r !•n. ~94!

Again, parity and time reversal are broken. We here point
that theoretical work72 suggests that odd-frequency pairing
actually unstable fork50 pairs~at least within Eliashberg
Migdal theory, where vertex corrections to the self-ene
are neglected!. This result becomes particularly intriguin
when seen in the light of the diagonal→collinear stripe rota-
tion associated with the superconducting transition obser
in some of the cuprates39,40 ~cf. our discussion in Sec. I!: If
the singlet pairing in the high-Tc materials were of compos
ite nature, the stripe rotation would precisely serve to sta
lize the pairing by shifting the momentum fromk50 ~diag-
onal configuration with unstable pairing! to k5p/a0
~collinear configuration with a stable, staggered compo
pairing mode!.

In the presence of 2D Ne´el order, as assumed here, then
field correlations are infinitely ranged in the ground sta
and the Oc2SS

k5p/a0 and Oc2SS
k50 operators may form large

distance correlations that compete effectively with conv
tional triplet pairing. Whether this happens, and what ot
order-parameter correlations may develop, will be stud
next. For an extended discussion of composite order par
eters for 1D correlated electrons, we refer the reader to R
27 and 29.

C. Phases

Equipped with the results in the two previous sections
shall now pinpoint the leading ground-state instabilities
the stripe electrons and list the corresponding phases.
remind the reader that the parameterV describes the neares
neighbor~second nearest-neighbor! interaction on a collinear
~diagonal! stripe, and may be different in magnitude a
even in sign for the two types of stripes.
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1. Half-filled band: neÄ1

The phase diagram consists of five sectors:A, B, C, D1,
andD2 ~see Fig. 4!.

~a! A phase: U.2uVu. We include this case merely as a
illustration of our formalism, as a half-filled band~one elec-
tron per site on the stripe! is somewhat special when com
bined with dominant repulsive on-site interaction. The reas
is that for a spin-1/2 antiferromagnetic background one
pects to lose the phase-antiphase configuration asne→1, and
instead recover the undoped antiferromagnetic state~with an
in-phaseNéel configuration across the ‘‘stripe’’!. In work by
Zachar,58 based on a stripet-J model @corresponding to a
‘‘strong-coupling’’ limit JK'JH of our lattice model in Eq.
~1!#, it was suggested that there is a transition from
phase-antiphase to in-phase Ne´el configuration already at a
band filling ;0.6 ~see also Ref. 59!. Still, it is instructive to
employ the assumption of a half filled stripe embedded i
hypothetical phase-antiphase Ne´el background, and explore
its consequences. At half filling the charge excitation sp
trum is gapped (DcÞ0) whenU.2uVu. The stripe is thus
insulating and the ordering of the charge boson with grou
state expectation valuêwc8&50 suppresses the convention
CDW and superconducting correlations, but leaves beh
the SDW and Peierls~dimerized! correlations. Turning to the
spin sector, according to Eq.~72! there is a condensation a
^ws8&5Ap/8Ks. This kills off the Peierls correlations, and a
the ‘‘in-plane’’ SDWx,y correlations are seen to be incohere
we are left with

^OSDW
z ~x!OSDW

z ~x8!&;cos@2kF~x2x8!#→~21! l3const,
~95!

where in the last step we have reintroduced the discrete s
coordinatex5ra0 , x85(r 1 l )a0. Thus, given the hypoth-

FIG. 4. The ground-state phase diagram of the stripe-elec
system at half filling. Solid lines separate different phas
SDWz—long-range ordered spin-density-wave phase; CDW—lo
range ordered charge-density-wave phase; SS—BCS~supercon-
ducting! singlet pairing phase; TSz—triplet pairing phase~coexist-
ing with a composite SS!; bSDWz—long-range ordered bond
located spin-density wave. As explained in the text, theA phase for
spin 1/2 can only be realized with an ‘‘in-phase’’ Ne´el configuration
across the stripe. The other stripe phases are assumed to co
with antiphaseNéel configurations of the localized spins.
7-15
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esis of a phase-antiphase spin background one obtai
long-ranged antiferromagnetic (Ne´el) phasefor the stripe.
The energy of this frustrated configuration grows linear w
the length of the stripe and is hence unphysical, as an
pated. Note, however, that the actual ‘‘in-phase’’ Ne´el con-
figuration forne51 doesimply a long-ranged Ne´el phase for
the stripe.

For a spin-1 background, as in the nickelates,5 the situa-
tion is different, and the half-filled bandA phase now be-
comes a real possibility. In a recent experiment by Boothro
and collaborators73 on La5/3Sr1/3NiO4, a signal consisten
with dynamic antiferromagnetic correlations of the char
carriers on the diagonal stripes was observed. However
strongest correlated spin component appears to be that w
is orthogonalto the Néel order of the environment, in con
trast to our prediction ofparallell alignment. It would be
interesting to explore whether an anisotropic Kondo inter
tion, of pseudodipolar type, could provide a coupling b
tween in-plane and out-of-plane spin components, produc
a shift towards orthogonal orientation. Although our simp
model fails to predict the spin orientation seen in the exp
ment, itdoescorrectly predict that the correlations along t
stripes areantiferromagnetic, in contrast to earlier work74

foreseeing ferromagnetic correlations.
~b! B phase:0,U1bJK

2 /JH,2V. This phase is that o
an insulator with a long-range ordered CDW: Both cha
and spin excitations are gapped. The fieldswc(s)8 get ordered
with ground-state expectation values^ws8&50 and ^wc8&
5Ap/8Kc, respectively, and

^OCDW~x!OCDW~x8!&;~21! l3const, ~96!

with l defined after Eq.~95!. For the case of an isolated strip
(JK50), results from weak-coupling perturbativ
renormalization-group studies57,67 show that there is a con
tinuous phase transition along the lineU52V separating the
SDWz and CDW phases. The recent interest in the exten
U2V Hubbard model was triggered by Nakamura,75 who
found numerical evidence that for small to intermediate v
ues ofU andV, the SDWz and CDW phases are mediated
a bond-located charge-density-wave~bCDW! phase: The
SDWz-CDW transition splits into two separate transitions:~i!
a Kosterlitz-Thouless spin-gap transition from SDWz to
bCDW and~ii ! a continuous transition from bCDW to CDW
An analogous sequence of phase transitions in the vicinit
the U52V line is an intrinsic feature of extendedU2V
Hubbard models with bond-charge coupling.68 A similar ef-
fect is here caused by the Kondo coupling to the antifer
magnetic environment: AtJKÞ0, along the lineU52V only
the charge gap closes. Therefore this line correspond
metallic statewith dominating antiferromagnetic SDWz and
bSDWz correlations ~since Kc,1), showing identical
power-law decays at large distances:

^OSDW
z ~x!OSDW

z ~x8!&5^ObSDW
z ~x!ObSDW

z ~x8!&

;~21! l ux2x8u2Kc. ~97!

~c! C phase: 2bJK
2 /JH,U22V,0 and V.0. Here

again a charge gap opens. However, since in this sectoU
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22V,0, the bosonic charge field is now condensed w
ground-state expectation value^wc8&5Ap/8Kc. This imme-
diately leads to suppression of the site-located SDWz corre-
lations, and instead the bond-located bSDWz exhibits long-
range order:

^ObSDW
z ~x!ObSDW

z ~x8!&;~21! l3const. ~98!

The lineV50,U,0 is the crossover line from the insulatin
phases into the superconducting phases. On this line
charge sector is in the weak-coupling gapless~metallic!
phase withKc* 51. However, the spin sector is massiv
along this line except at the pointU52bJK

2 /JH , which
marks the transition from a metallic phase at2bJK

2 /JH,U
,0, where the SDWz, bSDWz, and TSz fluctuations show
identical algebraic decay at large distances

^OSDW
z ~x!OSDW

z ~x8!&;^ObSDW
z ~x!ObSDW

z ~x8!&

;^OTS
z ~x!OTS

z ~x8!&;ux2x8u21,

~99!

to a different metallic phase atU,2bJK
2 /JH , where the

SDW, bSDW, and TSz fluctuations are suppressed, while th
conventional CDW, SS, and Peierls correlations show id
tical large distance behavior:

^OCDW~x!OCDW~x8!&;^OSS~x!OSS~x8!&

;^ObCDW~x!ObCDW~x8!&;ux2x8u21.

~100!

This large degeneracy of metallic phases along the lineV
50 is due to the SU~2! charge(‘‘pseudospin’’)symmetry of
the half-filled Hubbard model.63 The degeneracy is immedi
ately lifted by an attractive nearest-neighbor couplingV
,0), in support of superconducting instabilities. One fin
two phases with enhanced pairing correlations.

~d! D1 phase: U,2V2bJK
2 /JH and V,0. Here the

dominating instability is towards conventional BCSsinglet
pairing, with correlations

^OSS~x!OSS~x8!&;ux2x8u21/Kc. ~101!

~e! D2 phase: 2V2bJK
2 /JH,U,22V, V,0. In this re-

gion triplet pairing shows a power-law decay at large di
tances

^OTS
z ~x!OTS

z ~x8!&;ux2x8u21/Kc, ~102!

and is the dominating instability in the ground state. It fo
lows that thecomposite singlet-pairingoperatorOc2SS

(k5p/a0) ,
defined in Eq.~93!, also builds up large-distance correl
tions:

^Oc2SS
(k5p/a0)

~x!Oc2SS
(k5p/a0)

~x8!&

;~21!,^OTS
z ~x!OTS

z ~x8!&^nz~x!nz~x8!&

;~21!,ux2x8u21/Kc. ~103!
7-16
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We have here used Eqs.~93! and ~102!, together with the
property that the Ne´el-order parameter, witĥn(x)n(x8)&
5^nz(x)nz(x8)&5const, defines the out-of-plane directionẑ
along which the triplet-pairing correlations are enhanc
Similarly, for a diagonal stripe one would have, using E
~94! and ~102!,

^Oc2SS
(k50)~x!Oc2SS

(k50)~x8!&;ux2x8u21/Kc. ~104!

However, as shown by Colemanet al.72 k50 odd-frequency
pairing is likely to be intrinsically unstable, and hence is n
expected to compete with the conventional triplet-pair
mode.

2. Away from half filling: neÅ1

We now turn to the physically more relevant case o
stripe withneÞ1, assuming thatne is within the range where
the stripe forms an antiphase domain wall between the N´el
configurations (ne<0.6 in the strong-coupling limitJK
;JH , according to Refs. 58 and 59!.

Away from half filling the charge sector is always in th
~weak- coupling! Luttinger liquid metallic regime, controlled
by the bare value of the Luttinger liquid parameterKc . The
phase diagram now splits into four sectors:A,B,D1, andD2
~see Fig. 5!, separated by the lineU22V1bJK

2 /JH50
~where the spin gap closes! and by the crossover lineU
16V50 (Kc51) separating the metallic phases with dom
nating density-density correlations atKc,1 from those with
dominating superconducting correlations atKc.1.

When U22V1bJK
2 /JH.0 the spin sector flows to

strong coupling with the excitations condensing at^ws8&

FIG. 5. The ground-state phase diagram of the stripe-elec
system atneÞ1. The solid line corresponds to a narrow metal
phase with gapless spin excitation spectrum, and separates tw
ferent spin-gapped phases: the SDWz and/or TSz phase and the
CDW and/or SS phase, respectively. The dashed line marks
crossover from a metallic phase with dominating density-den
correlations into a phase with dominating pairing correlations.
instabilities shown in the phase diagram exhibit a power-law de
of correlations. Subleading instabilities with correlations which d
cay faster than the dominating ones are indicated in brackets
discussed in the text, the enhanced SDWz (TSz) correlations coexist
with compositeCDW ~SS! instabilities.
21450
.
.

t

5Ap/8Ks. This kills off the CDW as well as the in-plan
SDWx,y correlations. The SDWz and TSz correlations, on the
other hand, survive the spin field ordering, and one finds

^OSDW
z ~x!OSDW

z ~x8!&;ux2x8u2Kc, ~105!

^OTS
z ~x!OTS

z ~x8!&;ux2x8u21/Kc. ~106!

Therefore, in theA phase:U22V1bJK
2 /JH.0; Kc,1,

the SDWz correlation is the dominating instability in the sy
tem ~with TSz subleading!, while in theD2 phase:U22V
1bJK

2 /JH.0; Kc.1, the triplet-pairing (TSz) fluctuations
dominate~with SDWz being subleading!.

When U22V1bJK
2 /JH,0 the spin sector flows to the

other strong-coupling regime, with the spin excitations co
densing at̂ ws8&50, the charge sector remaining in the wea
coupling metallic region. The correlations that exhibit alg
braic decay are those of CDW and SSz excitations, and one
finds

^OCDW~x!OCDW~x8!&;ux2x8u2Kc, ~107!

^OSS
z ~x!OSS

z ~x8!&;ux2x8u21/Kc. ~108!

It follows that in theB phase:U22V1bJK
2 /JH,0; Kc

,1, the CDW correlation is the dominating instability in th
system ~with SS subleading!, while in the D1 phase:U
22V1bJK

2 /JH,0; Kc.1, the conventional singlet-pairing
BCS fluctuations are the most dominant~with the CDW fluc-
tuations being subleading!.

In the A and D1 phases the composite CDWz and SS
order parameters also form large-distance correlations. In
act analogy with theD2 phase at half filling, one obtains fo
a collinear stripe

^Oc-CDW

(k52kF* )
~x!Oc-CDWS

(k52kF* )
~x8!&;~21!,3ux2x8u2Kc,

~109!

and

^Oc-SS
(k5p/a0)

~x!Oc-SS
(k5p/a0)

~x8!&;~21!,ux2x8u21/Kc.
~110!

For a diagonal stripe a composite CDW also develops, w
correlations

^Oc2CDW
(k52kF)

~x!Oc2CDWS
(k52kF)

~x8!&;ux2x8u2Kc. ~111!

The fate of the zero-momentum composite singlet is m
uncertain, however, considering its intrinsic instability.72

We summarize our findings in Fig. 5. We have to stre
again the weak-coupling nature of the phase diagra
Higher-order corrections will modify the shape of the pha
boundaries. However, more important are strong-coup
effects. In the case of strong values of the Kondo latt
interaction, one may expect additional phase transitions
to the finite bandwidth of the effective stripe model. Su
effects cannot be traced within the continuum limit~infinite
band! approach used in this paper, and will require numeri
studies.
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D. The A phase away from half filling: A scenario for
nonconventional superconductivity?

Of the phases considered, theA phase away from hal
filling is of particular interest as the conditionsU22V
1bJK

2 /JH.0;Kc,1;neÞ1 are expected to apply to a ge
neric stripe in a cuprate material: Most experiments76 indi-
cate that the stripes in the cuprates are intrinsicallymetallic,
with no commensurability gap even when the stripe orde
static and strong, as in the Nd-doped materials.77 Although a
precise specification of the coupling constants is bey
present-day technology, the Coulomb interaction among
stripe electrons is expected to dominate other coupli
~electron-phonon, dopant potentials, interlayer fields, . . . ),
implying the boundU22V1bJK

2 /JH.0, with Kc,1. Un-
fortunately, the electron dynamics on time scales wh
stripe fluctuations can be neglected~for which our model
may apply! is still to be searched out experimentally, a
there are as yet no ’’hard data’’ against which we can c
front our results.

TheA phase is dominated by a conventional SDWz insta-
bility together with a composite CDW, coexisting withtwo
subleading superconducting instabilities: conventional trip
pairing and composite singlet pairing~breaking parity and
time reversal!. This is different from the well-known sce
nario of a spin-gap proximity effect9 where pair hopping be
tween a stripe and aspin-gappedinsulating environment ‘‘in-
fects’’ the stripe with the gap, resulting in a convention
CDW instability, with a subleading singlet-pairing chann
In the case where stripe fluctuations are sufficiently slow t
they can be treated as ‘‘quasistatic,’’ the CDW instability c
be shown to be suppressed by destructive interference
tween neighboring meandering stripes, leaving the sin
superconducting instability as the leading one.10 The singlet
order parameter on each stripe is then assumed to bec
correlated across the sample via interstripe ‘‘Josephson’’ c
pling, leading to superconducting long-range order below
critical temperature. In contrast, in our scenario singlet
perconductivity~with the added property ofbreaking parity
and time-reversal symmetry! would require the suppressio
of the leading SDWz and ~composite! CDW instabilities, in
addition to that of triplet pairing. As we shall see belo
quasistatic fluctuations do not perform this trick. Rather, m
andering stripes living on acollinear backbonetend to phase
lock so that~conventional! triplet pairing comes out as the
leading effective instability. In the case of adiagonal struc-
ture, the ~composite! singlet-pairing correlations@if at all
present; cf. our discussion after Eq.~94!#, survive the slow
stripe fluctuations, and coexist with the triplet-pairing cha
nel. Whether a complete theory—treating stripe fluctuatio
and the one-dimensional electron dynamics on eq
footing—would change our picture in favor of singlet pairin
remains an open question.

Leaving for future work the problem if and how long
range superconducting order may emerge from anA-phase-
type instability when stripe fluctuations are fully included
the analysis, there are still several issues that need to
addressed.
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~a! Is the spin gap sufficiently large for the instabilities
the A phase to survive at finite temperatures?

~b! What happens when taking into account the fact t
the antiferromagnetic environment as seen by a stripe isnot
that of two semi-infinite domains but is rather made up
two finite-width domains, separating the stripe from i
neighbors?

~c! How do transverse stripe fluctuations influence t
A-phase instabilities?

~d! What about possible long-range interactions amo
the stripe electrons?

Let us discuss these questions in turn.
The size of the spin gap.The A phase corresponds to

strong-coupling regimegs52ug'u, which is reached after a
crossover from weak coupling~where gs5ug'u); cf. Sec.
III A and Fig. 3. Because of the crossover, the spin gap op
slowly, and it isa priori not obvious that it will suffice to
sustain theA phase in the presence of thermal fluctuatio
To find out, we use Eq.~63! to integrate the RG equation
~62!, and identify the length scale whereug'u becomes of
order unity. This scale—where the perturbation is of t
same order as the fixed point Hamiltonian and renders
theory noncritical—defines thecorrelation lengthjs of the
electronic spin sector. Usingug'(js)u;O(1)@ug0su in the
integrated scaling equation forg' , we obtain js
5a0exp@„p/22arctan(g0s /dg)…/2pdg#, where dg
[Ag0'

2 2g0s
2 . The associated spin gapDs5\vsjs

21 is thus
given by

Ds5\
vs

a0
expF2

p/22arctan~g0s /Ag0'
2 2g0s

2 !

2pAg0'
2 2g0s

2 G ,

~112!

with g0s5a0(U22V)/pvs and g0'5a0(U22V
1bJK

2 /JH)/pvs , as defined in Eq.~55!. There is consider-
able latitude in specifying the parameters entering Eq.~112!,
but choosing vs;105 m/s, a0;5 Å, U22V;1021 eV,
and JK

2 /JH;1024 eV—all within reasonable bounds—w
obtain from Eq.~112! a spin gapDs corresponding to a tem
perature of about 500 K. We conclude that the gap is rob
and is expected to sustain theA phase in the relevant tem
perature range~where stripe formation is possible37!. It is
interesting to note that an estimate of 500 K is about ‘‘righ
if one were to identify the spin gap with the pseudogap o
served in the underdoped metallic phase of the cuprates36 A
considerable amount of local pairing would then be pres
well beyond the superconducting transition temperature~in
this region determined by the onset of global phase coh
ence!.

Finite-width antiferromagnetic domains.A stripe in a real
material is not embedded in a 2D antiferromagnet, bu
separated from its neighbors by finite-width domains, orspin
ladders, with a finite antiferromagnetic correlation lengt
jAFM . In order for theA phase to survive in this more hars
environment the spin gap must develop on a length sc
shorter thanjAFM ~where the stripe electrons can still samp
local magnetic order!. This implies the condition

js,jAFM , ~113!
7-18
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with js the spin-correlation length on the stripe. The ze
temperature correlation lengthjAFM for S51/2 spin ladders
with an even number of legs n, has been calculate
analytically:78

jAFM'0.5a0e0.68n,~120.73n,!, ~114!

where, as before,a0 is the lattice spacing. Using thatjs
5\vs /Ds , our estimate from above,Ds /kB;500 K, to-
gether with Eqs.~113! and ~114!, imply that theA phase
survives for even-leg ladders withn,>4. As suggested by
the Monte Carlo data in Ref. 79, a four-leg ladder withJH of
the order of 1022 eV may support theA phase up to a tem
perature ofT;50 K. By increasingU22V and/orJK , the
spin gap grows, allowing for theA phase to persist at th
lower boundn,54 for even higher temperatures.

The case of anodd-leg ladderrequires further analysis
Now, with S51/2, the Berry phase in Eq.~18! contributes a
nonvanishing topological term to the effective action for t
spin ladder, implying a diverging spin-correlation lengthj
→` but with no antiferromagnetic order over large d
tances. However, in the weak-coupling regime the topolo
cal term is effectively inactive,78 and as a consequence the
is no distinction between gapless and gapful ladders
length scales shorter thanjAFM . It follows that condition
~113! is the same for even-leg and odd-leg ladders. Althou
we cannot rigorously exclude that nonperturbative effe
may carry over to the stripe electrons on length scaleslarger
thanjAFM , it seems improbable considering the fact that
spin sector of the stripe develops a mass at a length s
which is shorter than and independent ofjAFM . As such the
mass is already well established at the scale where non
turbative effects from the ladder may come into play.

Before concluding this discussion we wish to add tw
more notes: First, the analysis sketched here is strictly v
only for a collinear stripe structure. As we commented up
in Sec II B, the unusual boundary condition implied by
diagonal stripe orientationinfluences the Berry phase in
nontrivial way. This may produce a non-negligible feedba
on the localized spins when considering a finite-width
spin-ladder environment, possibly changing theA phase in
an unexpected way. Second, one should note that thecom-
posite order parametersfor a collinear structure, defined i
Eqs. ~90! and ~93!, decay faster with a spin-ladder enviro
ment as compared to the case of two semi-infinite 2D
mains. It follows that at distances shorter thanjAFM—where
our construction is still expected to be valid—the algebr
decay of the Ne´el-order correlations produce a faster dec
of the composite correlations compared to the conventio
ones. This is different from the case where a on
dimensional electron gas is coupled by a Kondo lattice c
pling to two noninteracting antiferromagnetic Heisenbe
spin-1/2 chains~i.e., with n,51). As shown in Ref. 31, the
composite order parameters (c-SS andc-CDW! here induce
the dominant instabilities. This reflects the fact that t
model with ann,51 environment renormalizes to a fixe
point different from ours, instead belonging to the univers
ity class ofchirally stabilized liquids,32 with no opening of a
spin gap. It is here important to note that if one were
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increase our model parametersU22V and/orJK so that Eqs.
~113! and~114! were simultaneously satisfied forn,51, our
construction would break down. In particular, the assumpt
of a weak couplingRG scheme—as exploited in Sec. III A—
would be violated. In addition, the pronounced role of t
Berry phase forn,51 is likely to invalidate the construction
of the effective spin-sector model in Eq.~31!, as paths in Eq.
~17! away from the extremum now enter the stage to infl
ence the ground state also at short and intermediates le
scales. Then,51 environment is therefore not expected
be covered by our approach, and must instead be studie
other methods, such as that advocated in Ref. 31.

The quasistatic limit: the effect of slow stripe fluctuation
To study the effect ofslow stripe fluctuations on the order
parameter correlations of phaseA we consider a 2D array o
static stripes and take an equilibrium average over their
anderings. Adopting the notation in Ref. 10, we use a co
dinate system in which the stripe array runs along thex di-
rection ~collinear or diagonal on the lattice!, with a
transverse displacement of a stripe in they direction labeled
by yj (x), with j indexing the stripe. Introducing the ar
lengthL j (x), measuring the distance along thej th stripe to
positionx,

L j~x!5E
0

x

dx8A11@]x8yj~x8!#2,

we infer from Eq.~78! the expression for the SDWz order
parameter on a meandering stripe:

OSDW
z ~ j ,x!5ÕSDWz~ j ,x!1H.c., ~115!

with

ÕSDWz~ j ,x!;ei [2kFL j (x)2A2pKcwc8( j ,x)]sin@A2pKsws8~ j ,x!#.
~116!

The coupling of the SDWz to that of a neighboring stripe is
of the form80

HSDW;E dxg@Dyj~x!#@ÕSDWz
†

~ j ,x!ÕSDWz~ j 11,x!1H.c.#

;E dxg@Dyj~x!#sin@A2pKsws8~ j ,x!#

3sin@A2pKsws8~ j 11,x!#

3cos@A2pKcDwc8~ j ,x!22kFDL j~x!#, ~117!

whereg„Dyj (x)… is an x-dependent coupling constant. Ne
glecting possible overhangs of stripes we have here defi
Dy( j ,x)[y( j 11,x)2y( j ,x).0 ~and similarly forDwc8 and
DL j ). By integrating out the stripe fluctuationsyj (x) in pow-
ers ofg one obtains an effective Hamiltonian of an equiv
lent rigid system, with a renormalized coupling

g̃;^g@Dyj #&exp@22kF
2^~DL j !

2&#1O~g2!, ~118!

where^•••& denotes an average over meandering stripes
argued in Ref. 10, since the signs ofDL j (x) are randomly
distributed along the distancex, one expectsDL j (x) to grow
7-19
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HENRIK JOHANNESSON AND G. I. JAPARIDZE PHYSICAL REVIEW B68, 214507 ~2003!
as a random walk:̂ @DL j (x)#2&;uxu. It follows from Eq.
~118! that the interstripe coupling between SDWz’s can be
ignored in the thermodynamic limit.

The conclusion that transverse stripe fluctuations ca
destructive interference between SDWz’s on neighboring
stripes clearly applies toany kÞ0 order parameter: The ex
ponential suppression in Eq.~118! can be avoided only if the
momentum transfer multiplyinĝ@DL j (x)#2& is identical to
zero. Thus, the dephasing effect operates also for theA-phase
composite CDW’s, Eqs.~90! and ~91! ~with k52kF

1p/a0@k52kF# for a collinear@diagonal# stripe backbone!,
as well as for the staggeredk5p/a0 composite singlet pair-
ing, Eq.~93!, for a collinear structure.81 In contrast, the con-
ventional (k50) triplet-pairing channel~88! survives the
stripe fluctuations.

We caution the reader that the argument, adopted f
Ref. 10, is valid only in the quasistatic limit where strip
fluctuations are sufficiently slow to be treated via an a
nealed average over~static! meandering stripes. Moreove
the argument is strictly valid only in the thermodynam
limit. The full problem where the quantum dynamics ofme-
soscopicstripes is treated on equal footing with the intrins
Luttinger liquid instabilities remains unsolved.

For complementary views of the physics of meander
and fluctuating stripes we refer the reader to Refs. 82–
We also draw attention to the recent work by Rozhkov a
Millis, 87 suggesting a pressure-induced crossover from
SDW to triplet superconductivity in quasi-1D metals wi
Ising anisotropy. Their scenario is similar in spirit to the o
presented here, although different in detail.

What about long-range electron-electron interaction
This question becomes critical when realizing that the C

lomb interaction on anisolated stripe is poorly screened
given its insulating environment. Neighboring stripes m
provide metallic screening over a finite range, but our ‘‘a
sumption’’ that this range is of the order of a lattic
spacing—implicitly built into the extendedU2V Hubbard
model in Eq.~2!—may not be realistic. Still, having include
a nearest-neighbor repulsionV in the model, we do obtain
someinformation about the effect of the poor screening:
can be gathered from Eqs.~55!, ~105!, and ~106!, the pres-
ence ofV.0 enhances the SDWz instability, whereas the
TSz gets weaker. In the case of an arbitrary finite screen
lengthks , Schulz88 found that the large-distance correlatio
are governed by a modified charge parameterKc;1/Alnks.
In the A phase, this again gets translated into stron
~weaker! SDWz (TSz) correlations as compared to the ca
with only local on-site interactions;U @cf. again Eqs.~105!
and~106!#.89 For smallJK

2 /JH ~as assumed here! one expects
this result to apply also in the spin-gappedA phase. We con-
clude that as long as there is a finite screening lengthks
present, our results—using theU2V Hubbard model—
should remain at least qualitatively valid for length sca
.ks : TheA phase supports an SDWz instability with a sub-
leading TSz ~which, however, gets weaker asks grows
larger!. Taking into account the finite lengths of the strip
would introduce yet another scale into the problem~cf. the
discussion above!, requiring a more sophisticated analysis
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In this context we wish to remind the reader that we o
tained the induced spin interaction in Eq.~31! by a saddle-
point approximation, withn3]tn in Eq. ~27! locked to the
small but fast oscillations of theø field. Fluctuations away
from the extremum are expected to produce an effective
tarded interaction in the spin sector, similar to what happ
in the charge sector of a Luttinger liquid when integrati
out electron-phonon interactions.90 Whereas thelocal fluc-
tuations of the Ne´el field could possibly be treated in analog
with the phonon problem,90 an analysis of the dispersive an
tiferromagnetic excitations~which may produce a long-rang
tail of the retarded interaction! requires a novel theoretica
approach. We have to leave this problem as a challenge
the future.

IV. TWISTED ANTIFERROMAGNETIC DOMAINS

So far we have been concerned with the ideal situation
perfectphase-antiphase Ne´el configurations surrounding th
stripe, giving rise to the effective U~1! symmetric model in
Eq. ~31!. In this section we generalize the discussion to
case where fluctuations twist the Ne´el configurations with
respect to each other, breaking the SU~2! spin-rotational
symmetry completely.

How does the Ne´el order parameter change across t
antiphase boundary defined by the stripe? Let us take
boundary alongy50. The simplest situation is that

^n~x,y!&5 f ~y!ẑ, ~119!

with f (y)52 f (2y). This is the situation we have consid
ered so far; that the rotational symmetry about the spinz axis
is preserved, and that the Ne´el order parameter simply de
creases across as we approach the antiphase boundary
reversed on the opposite side.

A second possibility is that the Ne´el order parameter ro
tates along~for instance! the spinx axis as it approaches th
antiphase boundary. In addition, we can let it rotate arou
the spinz axis along the boundary, resulting in the followin
form for ^n(x,y)&:

^n~x,y!&5„cos~a!sin~2pqx!,cos~a!cos~2pqx!,sin~a!…,

~120!

where a5a(y) is an odd function witha(6`)56p/2.
The parameterq is the rotational pitch along the antiphas
boundary. The special caseq50 corresponds to a ‘‘collin-
ear’’ spin texture, and ifqÞ0, we find a phase that is topo
logical, in the sense that the Neel order parameter covers
spin space with topological density of 4pq per unit length of
the phase boundary.

These phases are all further subdivided by their symm
under reflections through the antiphase boundary. If the
tice points are arranged so that the liney50 contains lattice
points, the actual configuration is a configuration under
flections throughy50 and the antiphase boundary issite
centered. If y561/2a0 contains the lattice points, the con
figuration is even under reflections throughy50 and the
configuration isbond centered.
7-20
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These various stripe scenarios have all been investig
as candidates for spin textures associated with striped
tiphase boundaries. Although the investigations are not c
clusive, it is fair to say that neither experimental nor theor
ical investigations suggest that anything butq50 stripe
configurations should be considered candidates for a
texture. In fact, simple calculations91 suggest that the spin
texture that appears to be energetically favored is in fact
site-centered collinear stripes along Eq.~10! that are odd
under reflections through the antiphase boundary. For dia
nal ~11! stripes, the bond centered and site centered h
energies that are almost identical. Furthermore, the spin
mains of these stripes are all extremely narrow, as meas
by the width of the functionsa(y). This supports our use o
an effective 1D model for a site-centered stripe.

To study the effect of a completely broken spin-rotation
symmetry we shall confine our attention to the case o
collinear stripe~along thex̂ direction! away from half filling
~cf. Sec. II A!, and with repulsive interactions among th
electrons (U22V.0). As before, we denote the two insu
lating semi-infinite domains surrounding the stripe byA and
B, respectively. We may assume that the Ne´el directions
n(A)(x,y) and n(B)(x,y) are parametrized as in Eq.~120!,
with q50 and witha a slowlyvarying function ofy, except
across the stripe wherea changes sign. To connect to th
local mean-field picture used in Sec. II A we shall simp
think of two fixed Néel directions^n(A)& and ^n(B)& which
differ by an arbitrary angleg, 0,g,p, across the stripe
~with g5p for perfect phase-antiphase Ne´el configurations!.

The construction of the effective model proceeds alo
the same lines as in Sec. II A. However, sincenr

(A)Þ2nr
(B)

when gÞp, we must now pay attention to possible cont
butions from the couplingHn of the lattice spin density to
the Néel order parameters, Eq.~21!. By inspection it is easy
to verify that the staggered spin density (21)rLr entering
Eq. ~21! vanishes in the continuum limitaway from half
filling, implying that for this caseHn doesnot come into
play, even whengÞp. Taking ^nr

(A)&→^n(x)(A)&; ẑ, as in
Sec. II A, it follows from Eq.~27! that the effective electron
electron interaction on the stripe mediated by the Kondo
change with theA domainremains the same as before,
given in Eq.~28!:

Hint
(A)52

a0JK
2

2JH
E dx~ :JL

zJL
z :1:JR

z JR
z :1JL

xJR
x 1JL

yJR
y !.

~121!

Turning to theB domain, we rotate the coordinate system
that its Néel direction^n(B)(x)& lies in theyz plane:

^n(B)&5sing ŷ1cosg ẑ, 0<g<p, ~122!

with g the angle with respect to theẑ axis defining the
Néel-order direction of theA domain. The piece of the
electron-spin densityJ that survives the projection onto th
plane in which the uniformø(B) components live~cf. the
discussion in Sec. II A! is given by
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J'[J2~J•^n(B)&!^n(B)&5sin2g JyJy1cos2gJzJz

1 cosg sing ~JyJz1JzJy!. ~123!

DecomposingJ→JL1JR , and using the chiral identities

JL/R
y JL/R

z 1JL/R
z JL/R

y 50,
~124!

JL/R
y JL/R

y 5JL/R
z JL/R

z ,

it follows from Eqs. ~27! and ~124! that the effective
electron-electron stripe interaction mediated by the Kon
exchange with the spins in theB domainis given by

Hint
(B)~g!52

a0JK
2

2JH
E dx$:JL

zJL
z :1:JR

z JR
z :1JL

xJR
x

1cos2gJL
yJR

y 1sin2gJL
zJR

z

2cosg sing~JL
yJR

z 1JL
zJR

y !%. ~125!

The induced interaction terms~28! and ~125! are now to be
added to the spin HamiltonianHs in Eq. ~12! ~which de-
scribes the spin sector of the stripe electrons decoupled f
the environment!. Writing Hs1Hint

(A)1Hint
(B)(g)[Hs(g), we

obtain

Hs~g!52pvsE dxH :JL
zJL

z :1:JR
z JR

z :2g0s~g!JL
zJR

z

2g0'JL
xJR

x 2S g0'2
a0JK

2

4pvsJH
sin2g D JL

yJR
y

1
a0JK

2

4pvsJH
cosg sing~JL

yJR
z 1JL

zJR
y !J , ~126!

with

g0s~g!5
a0

pvs
S U22V1sin2g

JK
2

4JH
D , ~127!

and with g0' and vs given in Eq.~32!. Introducing the ro-
tated currents

j R/L
x 5JR/L

x , j R/L
y 5cos~u!JR/L

y 1sin~u!JR/L
z ,

~128!

j R/L
z 52sin~u!JR/L

y 1cos~u!JR/L
z ,

we can writeHs(g) on diagonal form w.r.t. spin componen
by choosingu52g/2:

Hs~g!52pvsE dx$: j L
z j L

z :1: j R
z j R

z :2g0'~ j L
x j R

x 1 j L
y j R

y !

2g0s~g! j L
z j R

z 1g0 f~g! j L
y j R

y %, ~129!

where
7-21
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g0'5
a0

pvF
S U22V1

JK
2

2JH
D ,

g0s~g!5
a0

pvF
S U22V1sin2~g/2!

JK
2

2JH
D ,

~130!

g0 f~g!5
a0

pvF
sin2~g/2!

JK
2

2JH
,

vs5vF2
a0

2p S U22V1
JK

2

JH
D .

The four first terms in Eq.~129! are of the same form as th
spin Hamiltonian~31! for the ideal phase-antiphase (g5p)
problem, but with ag-dependent couplingg0s(g). Introduc-
ing auxiliary fermion fieldsR̃m(x) and L̃m(x), connected to
the rotated currentsj L/R

i (x) by

j L
i 5 1

2 :L̃m
† smn

i L̃n :, j R
i 5 1

2 :R̃m
† smn

i R̃n :, i 5x,y,z,
~131!

an application of the bosonization dictionary in Sec. II
~with Lm→L̃m ,Rm→R̃m ,JR/L

z → j R/L
z ) produces, as expected

a sine-Gordon model for the corresponding bosonic s
field w̃s and its dual q̃s . Using the same procedure t
bosonize also the last term in Eq.~129!—which is new—we
finally obtain

Hs~g!5
vs

2 E dxH ~]xw̃s8!21~]xq̃s8!2

1
2ms

(w̃)

a0
2

k cos~A8pKsw̃s8!

1
2ms

(q̃)

a0
2

k cos~A8pKs
21q̃s8!J , ~132!

where—to leading order in the coupling constants—we h

2~Ks21!5g0s~g!5
a0

pvF
S U22V1

JK
2

2JH
sin2~g/2! D ,

2pms
(w̃)5g0'~g!5

a0

pvF
S U22V1

JK
2

2JH
F12

1

2
sin2~g/2!G D ,

~133!

2pms
(q̃)5g0 f~g!52

a0

pvF

JK
2

4JH
sin2~g/2!,

vs5vF2
a0

2p S U22V1
JK

2

JH
D .

Thus, the spin sector of the stripe electrons in the pr
ence of twisted antiferromagnetic domains is described b
generalized sine-Gordon modelcontaining a cosine of the
dual spin fieldq̃s8 . The presence of this term allows fo
spin-nonconserving processes, reflecting the complete br
21450
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ing of the spin-rotational symmetry@down to an Ising like
Z23Z23Z2 discrete symmetry, with oneZ2 factor for each
spin component in the rotated basis~128!#. This model was
first studied by Giamarchi and Schulz,92 who used it to ac-
count for spin-orbit and electronic dipole-dipole interactio
in quasi-one-dimensional conductors. Its perturbative
equations@valid in the limit of small parametersg0s(g),
g0'(g), andg0 f(g)] are most easily derived by exploitin
the operator product expansion63 for the rotated currents in
Eq. ~128!, using Eq.~129!, and one obtains

dgs

d,
5gf

22g'
2 ,

dg'

d,
52gsg' , ~134!

dgf

d,
5gsgf .

The renormalized couplingsgi[gi(g,,) ( i 5s,', f ) are
connected to the bare parametersg0i(g) in Eq. ~134! by
gi(g,,50)[g0i(g), with ,5 ln(a/a0), wherea is a renor-
malized length. Focusing on the case with repulsive electr
electron interaction (U22V1JK

2 /2JH.0, with Kc,1), we
read off from Eq.~134! thatg0s(g).0. For this case the RG
equations~134! support two strong-coupling massive phas

region~ i! g0s~g!,g0'~g!2ug0 f~g!u:
~135!

gs→2`, ug'u →`, gf →0,

and

region ~ ii ! g0s~g!.g0'~g!2ug0 f~g!u:
~136!

gs→`, ugf u →`, g'→0.

By inspection, using Eq.~134!, we can label the two re-
gions by the range of the twist angleg:

region~i! 0,g,p/2, region~ii ! p/2,g,p. ~137!

In region~i! ugsu and ug'u increase upon renormalization
while gf scales to zero. The dual spin field is hence irrelev
and the picture emerging is qualitatively the same as in thA
phase of Sec. III C 2: the SDWz correlation is the leading
instability ~critical exponentKc), with TSz being subleading
~critical exponent 1/Kc). Note, however, that the orderin
tendency is now along thez direction of therotated frame,
defined by the transformation in Eq.~128!. It follows that for
a twist angle 0<g,p/2, the leading~subleading! instability
is that of a spin-density wave~triplet pairing! oriented along
a line in the plane spanned by^n(A)& and^n(B)&, and making
an angleg/2 with ^n(A)&.

Turning to region~ii !, the renormalized coupling con
stantsgs andugf u are seen to flow to infinity, whileg' scales
to zero. For our case, whereg0 f(g).0, it follows that q̃s

gets ordered with expectation value^q̃s&50, while the spin
field w̃s stays disordered. By running down the list
7-22
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PAIRING AND DENSITY CORRELATIONS OF STRIPE . . . PHYSICAL REVIEW B 68, 214507 ~2003!
bosonized order parameters in Sec. III B 1, we pinpoint
leading ~subleading! instability as that of the SDWy (TSy)
correlation, with critical exponentKc (1/Kc). Note that also
this result refers to therotated framedefined by Eq.~128!.
Translating back to the original frame we infer that for
twist anglep/2,g<p, the leading~subleading! instability
is again that of a spin-density wave~triplet pairing! oriented
along an axis contained in the^n(A)&2^n(B)& plane, but now
making an angleg/21p/2 with ^n(A)&.

Two comments are here appropriate. First note that
axis which defines the enhanced SDW and TS correlat
makes ap/2 jump as the twist angleg passes throughp/2.
This may appear reminiscent of a spin-flop transition
duced by a magnetic field, as seen in certain quasi
materials.92 However, there is no physical effect associat
with the jump other than a sudden change of the direc
along which the SDW and TS correlations are enhanc
Second, wheng5p we do recover the result for theA phase
in Sec. III C 2 ~ideal phase-antiphase configuration!. Note
that the presence of the dual cosine term in the effec
model~132! simply reflects the fact that we are now workin
in the rotated frame. By undoing the rotation in Eq.~128! we
immediately recover the standard sine-Gordon model,
given in Eq.~52! for a perfect phase-antiphase configuratio

To summarize, we have shown that the opening of a N´el
twist anglegÞp across the stripe does not remove the
stabilities of theA phase found in Sec. III C 2. The conve
tional leading~subleading! instability is still that of a spin-
density wave~triplet pairing!, but now tilted w.r.t. to the two
Néel directions.

By inspection of thecompositeorder parameters define
in Eqs.~89! and~92! it is clear that their amplitudes will drop
as g decreases from its largest valueg5p, defining a per-
fect phase-antiphase Ne´el configuration. It is here interestin
to note that whengÞp there is room for additional compos
ite order parameters. Besides the trivial variations of E
~89! and ~92! where S(A)2S(B)→S(A)1S(B), we can con-
struct twocomposite vector order parameters:

Oc-SDW;OSDW3~S(A)3S(B)!→OSDW3~n(A)3n(B)!
~138!

and

Oc2TS;OTS3~S(A)3S(B)!→OTS3~n(A)3n(B)!,
~139!

where in the second lines we have dropped the small co
butions from theø fields ~which can be neglected in th
correlation functions, cf. Sec. III B!. These composites hav
the same symmetries as the corresponding conventiona
der parameters, SDW and TS, respectively. In particu
Oc-TS is even under time and spin reversal, while odd un
a parity transformation. It follows that for a sufficiently rigi
spin texture withg away from 0 andp, triplet pairing comes
in two guises: one conventional mode and one compo
mode, both carrying zero momentum. These pairing mo
have enhanced correlations along well-defined directions
thogonal to each other. Asg→p ~perfect antiphase bound
ary! or g→0 ~‘‘in-phase’’ boundary!, the composite triplet
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channel gets suppressed and one is left with the pai
instabilities characterizing theA phase in Sec. III. Else-
where we shall explore the consequences of this intrigu
possibility.

V. SUMMARY

In this paper we have analyzed the problem of a o
dimensional electron liquid~charge stripe! embedded in a
two-dimensional antiferromagnetic insulator, and coupled
it via a weak spin exchange. Using a mean-field-type c
struction, the spin exchange gets encoded as an effec
anisotropic spin interaction among the electrons. This in
action is shown to be marginally relevant under certain c
ditions ~in a renormalization-group sense!, producing en-
hanced pairing and density fluctuations in the electron liqu

For realistic values of the model parameters— assumin
screened Coulomb interaction for the electrons and a c
duction band away from half filling—the dominant instabi
ties are towards a conventional spin densityanda composite
charge-density wave, coexisting with subleading conv
tional tripletandcomposite singlet pairing correlations. Ta
ing into account the slow transverse fluctuations of a stri
the triplet-pairing instability is expected to turn into th
dominant one.~We again caution the reader that this conc
sion is based upon a study of the quasistatic limit only, a
may be revised when applying a more sophisticated anal
of the full stripe dynamics.! While the magnitudes of the
conventional instabilities do not change with the relative o
entation of the Ne´el directions in the two domains surround
ing the stripe, the composite correlations have largest am
tudes when the stripe forms an antiphase domain wall in
antiferromagnet. With the possible exception of the comp
ite singlet-pairing mode, the instabilities are found to be
sensitive to the spatial orientation of the stripe on the und
lying lattice ~collinear or diagonal!.

Our study has been motivated by a wish to understand
role of spin exchange between stripes and their environm
in the cuprate superconductors. As is well known, these
terials are exceedingly complex systems. It is unlikely tha
simplified model like ours—where several aspects of
problem have been simply ignored—can produce accu
predictions about experimental results. We have discussa
posteriorisome of the effects not included in our model: t
role of slow stripe fluctuations and interstripe couplings, t
finite width of the antiferromagnetic domains encountered
real materials, as well as the expected poor screening of
Coulomb interaction along a stripe. Other aspects of
problem are yet to be addressed; most importantly the p
sible appearance of a retarded nonlocal spin interaction c
ing from large-amplitude fluctuations of the Ne´el order pa-
rameters on each side of the stripe. Also, the finite-size
boundary effects implied by the mesoscopic scale at wh
the stripes live need to be carefully studied.

The virtue of our ‘‘stripped-down’’ model is that it allows
us to carry out awell-controlled analytical study, and as such
it could serve as a stepping stone for more detailed inve
gations. The model predicts that a stripe-environment s
exchange under certain conditions may produce instabili
7-23
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towards pairing of electrons. This result is obtainedwithout
the assumption of a preexisting spin gap in the insulat
environment. When including effects from the fluctuations o
the stripes the symmetry of the dominant pairing instabi
appears to come out ‘‘wrong’’—as judged against availa
experimental evidence from the cuprates. Does this im
that a stripe-environment spin exchange plays no role
superconductivity in these materials? Or, could the pict
change when properly building more dynamical eleme
into the model? To answer these questions will require m
work.
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