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Superconductors with broken time-reversal symmetry: Spontaneous magnetization
and quantum Hall effects
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Broken time-reversal symmetBTRS) in d+id’ as well as ind+is superconductors is studied and is
shown to yield current carrying surface states. We evaluate the temperature and thickness dependence of the
resulting spontaneous magnetization and show a marked difference between weak and strong BTRS. We also
derive the Hall conductance which vanishes at zero wave vecémd finite frequencyw; however, at finite
g,w it has an unusual structure. The chirality of the surface states leads to quantum Hall effects for spin and
heat transport id+id’ superconductors.
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I. INTRODUCTION In the present work we expand our earlier wirland
study variety of phenomena related to surface currents. In
Recent data on the highz superconductor YB&ZLu;O,  Sec. Il we show that buld+id" state has surface states with

(YBCO) have supported the presence of broken timefinite surface currents; a similar situation was found for the
reversal symmetryBTRS).1~3 A sensitive probe of BTRS is  bulk p-wave staté’ We also consider @+ is state which
Andreev surface states. Fodavave with time-reversal sym- has surface currents only on tt10) surface. In Sec. Ill we
metry bound states at zero energy are expected for a surfag¥@luate the spontaneous magnetization and show that for
parallel to the nodefi.e., a(110 surface in YBCQ. When _d+|d’ it is QOmlnateq by(100 surfaces; for thin f|I-ms it
BTRS is present, by either a complex order parameter or bificreases with the ratid'/A (A andA” are the amplitudes
an external magnetic field, the bound states shift to a finit®f dx2-y2 anddxy,- respectwelywhne f(?r thick films it has a
energy. Indeed tunneling data usually show a zero-bias pedRXIMUM ak/¢'~1 where¢’=v /A" with v the Fermi
which splits in an applied field; the splitting is nonlinear in YelOCity and\ the penetration length—i.e., a'/A~0.01
the magnetic field, indicating a proximity to a BTRS stafe. for YBCO. We show that for weak BTRS\/¢'<1, the

In fact, in some samples tunneling data show a splitting eve@v F;]?lr;t?gregtl:gnm%gﬁsts'zﬂggn?;ng r%]clj%kn:nsjewg:?ne:dng,
without an external field:? consistent with BTRS; the split- 9 b y

ting incr with increasing overdopfiy cur. For the sample of Ref. 3 we estimat&/A~10 “—i.e.,
g Increases creasing overdopmyg. . weak BTRS. In Sec. IV we consider a surface approach for
Further support for a spontaneous BTRS state is spont

. : o Fhe qguantum Hall effect, showing quantization for spin and
neous magnetization data as observed in Y_§Cs@tt|ng N thermal Hall conductances for therid’ state. We also de-
abruptly afT and being almost temperaturg)(independent e jn Sec. V the effective action in the bulk and identify the
belowT.. The phenomenon has been attributed to either g5 coefficient which has an unusual wave vector and fre-
dy2_y2+idyy state (I+id") or to the formation ofr junc-  quency dependence.
tions. No microscopic reason was given, however, for the

spontaneous magnetization being independent of Bathd
film thickness® Il. SURFACE STATES

It has been shown theoretica”y that BTRS can occur lo- We present here the Bogo|iubov_de Gen(m) equa-
cally in a d_y2 superconductor near certain surfdees  tions for quasiparticles in a bulk+id’ or d+is state in the
leading to eitherd+id’ or d+is states with surface cur- presence of a boundary and study the resulting surface states.

rents. The onset of such BTRS is expected to be bélow e consider first @+id’ state where the order parameter is
and therefore does not correspond to the spontaneous mag-

netization datd.We note that in response to an external mag- NNy S N I L
netic field the surface states are paramagnetic and compete AP« Py) = AP Py KEHTA PPy /K @

with Meissner currents. This effect has been proposed to ac—h S— _ihV is th i i is th
count for a minimum in the magnetic penetration lentm wherep=—I is the momentum operator arkg is the

fact, it was proposed that this paramagnetic effect leads tgerml momentum. The quasiparticles are represented by an

spontaneous currents and BTRS in a pdge_, state™™"? electron-hole Nambu spinor

The onset of this BTRS is much beloWw.*? and therefore
3 W(r)
does not correspond to the data. W(r)= 1 @)
Of further theoretical interest is the relation of the BTRS \PI(r)
state to quantum Hall systems with a variety of Hall
effects®*® In particular a finite-charge Hall conductance and are described by the following mean-field Hamiltonian
has been suggestétithough this has been questionéd. (see Appendix A
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~ 1]/ _ e 2,
H:ﬁ |V+ET3A(|’) _kF 73
0 A A
o A(px’py)) efie(r)rsy ®)
A*(py,py) 0

wherem is the electron mass and are the Pauli matrices.
We assume here tha¥ 6| <kg so that the issue of gauge
invariance in the interaction term can be avoidégpendix
A). Rotating by the unitary transformationW(r)
—exdird(r)/2]W(r) yields

1

H=—(—V2—Kk2 +i Ve—gA
=5l F)mat 5P —AT)

0 A(Py,Py)
A*(pe.py) O
whereA is kept to first order.
We consider a vacuum-superconductor boundany=a
and assume for now that,A’ are constants at>0 and

vanish atx<<0. ForA>A’ this corresponds to €00 sur-
face; to describe é110) surfaceA andA’ need to be inter-

, (4)
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FIG. 1. Surfacdvertical line and angle where the spectrum is
€=0 (solid lineg; in the absence oA, these lines would be at
==+ 77/4 (dashed lings The range for whichke>0 is shown as the
hatched area; the spectra span the rag6 up toe=A as shown.

vanish at x=0—i.e., au;+ Bu,=av,+ Bv,=0—yields

changed. The spinor wave functions for the up and down,, /u,=v,/u,, hence an equation for the eigenvalues:

components of Eq(2), respectivelyu(r)=u exgifx+ik,y]
andv(r)=v exdifx+iky], with eigenvalues, satisfy the
BdG equations

(f2—kE+kj—2me)u+2mA(f k,)v=0,

(— 24+ kE—ki—2me)v +2mA* (f k )u=0, (5

wheree= e+ (e/mc)kyAy(x), A has only am¥A, component
consistent with a current in thedirection, andv 6=0. This
Doppler shift assumes that,(x) is slowly varying on the

scalek; * so that a local eigenevaluecan be defined. Define

k=+kZ—Kk2, thenf has two surface solutions with fm
>0,

m =
fi=k+iVIA(kky) 2=,

fo=- (6)

m =
iV IA -k

where the replacemenA(f,k,)—A(*k,k,) is valid for
|A|,e<kZ/2m. The eigenvectors are

VIA(k k)P +i€
|

vz Ak.ky) Ui,
VIA(=k k) [2—€*~i€
vy=I A(—kk) Us,. (7)

We assume specular reflection which presekyglsut mixes
these two solutions so that a&=0 the wave functions van-

ish. A linear combination for which both spinor componentsEgs.

e+ VIA(+k,ky)|?—€

A(+kky)
—ieV|A(—kky2-22  Al-kky)

Its solutions are readily seen to b’é:—sgn(ky)A(k2
—K)/k¢. In terms of the incidence angles, k,
=kg sin ¢, k=kg cos¢, the eigenvalues are

®

e
€,=—sgn A cos{2§)—EvFAysin§. 9
Note that the spectrum is not symmetrickipor in £ (it is in
fact antisymmetrigresulting in a finite surface current. Fig-
ure 1 shows the anglg¢ where e,=0 (solid lineg and the
range for whiche,>0. The velocitiesie,/dk, are positive
for both =k, branches, i.e., the surface states are chiral. This
property leads to quantization of Hall effects, as discussed in
Sec. V.

We note that self-consistency would imply that=0
at x=0 (Ref. 8; the eigenfunctions would then be
~exd — [§A'(X)dX| sinJ/vg], resulting in a very similar
dependence og’. Note also that quasiparticles in the bulk
have a spectral gdp (k,k,)| which for any givery is higher
than the surface states (neglecting the Doppler shjftim-
purities, however, may destrdy, conservation and scatter
high-energy &A') surface states into degenerate bulk
states. When impurity scattering is essent@ab., Sec. 1Y
our results apply only when these excitations can be
neglected—e.g., al<A'. This restriction is not needed at
the (110 surface where the whole surface spectrursis’
—i.e., below the lowest bulk state.

The decay length of the surface states becomes, using

6 and (9), (Imf)"*=[(m/k)V|A|?=€*]?
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=¢&'/|sing with ¢ =vg/A’. Since|u|=|vi|], i=1,2 [Eq.
(7)], the normalized eigenfunctions are

2| sin A o
ug(r): \/ﬁsinkXékyy_x sinZ|/é ,
¢'L

y

v (r)=—sgrkyu(r), (10)

wherelL, is the length of the surface. It is remarkable that
[u (r)|=v(r)| for all —i.e., for all energies of the surface
states—implying maximal electron-hole mixing. As noted

above, a(110 surface has the same soluti¢h0) with &’
replaced by¢=uvg/A.

We note that in general the spinor, Eg), can be decom-
posed in terms of eigenoperatoys, , ;| where

(‘I'T(r))_E (Ug(l') —vy(r) )(ﬂn
win) Z \vdry  urm |\ af

leading to the diagonal Hamiltonian

|

7:5224 fdXGg[’I}TWT‘*‘77217751_1][|U(X)|2+|U(X)|2],
(12
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they allow surface currenfsl+is refers to(110) only]. The
current density parallel to a surfaghey direction and the
charge density are

—i# 9
JedgdX)= ﬁ; [<‘I’l(r)@‘l’s(r)> —H.c.

—2he €
g % kylu(r)|*tan 2T>’

2
eageg 3 (FIOV)=F S lunf a9

where d is the interlayer spacing, andv},sn,Q:[l
+exp(e,/T)] * and|u,(r)|=|v (r)| were used. The expres-
sion for jgqge Can also be obtained from E@L2) by jeqge
=cé6H/5A (x). In addition to the explicifl dependence in
Egs. (15 the order parameters aré dependent asA
~Aog\J7, A'~A(\Jr where 7=(T.—T)/T,; hence ¢
~&olT, & ~&lT.

In principle the current has also a diamagnetic term
(e/c)Neggd X)Ay(x); the ratio of this term to the London
term (c/4mN\?)A/(X) is 1[(ke&p)?7] where 7=(T,
—T)/T.. Hence the effect of this diamagnetic current is

with €, being x dependent via the Doppler shift. The spec-gmall except very neai.—i.e., for > (ke£l) "2 [or =
trum has exa(_:t particle-hole symmetr){, ie., for. each eigen>(kF§O)72 for the (110 surfacd. In the range where the
vector u,v with eigenvalue e there is an eigenvector qrger parameter fluctuations exceed their mean value the
—v*, u* with eigenvector—e. The form, Eq(12), incorpo-  mean field breaks down; this range, which is between
rates, however, bottt e states and its sum is therefore re- — 1 ¢ 'in two dimensions and<(1/kg£&,)* in three di-
stricted toe;=0. _ _ mensions, is excluded in our analysis.

We consider next @+ is state at 8110 surface with an We consider firstd+id’; the factor k, tanh(,/2T) is
order parameter symmetric ink, . Therefore within the integration in E¢L5)
in the e,=0 range(Fig. 1) the /<0 segment can be shifted

fa sy
A(px,Py) =ApxPy ke +iAs. (13 into a¢>0 one so that a complete ¢82) range results. In
; = ; terms of the densityn=k2/27d and theT=0 penetration
Equation(8) has then the solutioa=sgn(k,)Aq, i.e., F
g ® ante,)as length Ng(A=~\o/\/7) where \j?=4mne?/mc®=2k2e?
e _ mc’d we obtain
€=SgryA— EUFAV sing. (14

Am 24
TJedge(X)_ 7T§'7\(2)

/2
H —2xsinZ/ ¢’
Positive eigenvalues are nowlgt=0 [for weak Doppler fo d{ cos( sirPl e 2xsinélé

effect (e/c)vF|Ay|<AS] with a weak dispersion due to the

Doppler term. Note in particular that the spectrum has a gap A cos Z+(elc)vesin LA (X)
—i.e., noe=0 states; hence to probe these states one needs xtan)'{ T ,
either high voltage or high temperatufe>A. Thisd+is

state corresponds to(410 surface at which it breaks both

parity and time reversal. At 8100 surface the statd+is Negad X) = & ”/zdg cos¢ sinfe™ singlé’ (16)
state is symmetric under reflection and in fact has no surface edo wd§’ Jo ’

bound states. Hence tunneling data at {b@0) may distin-
guish betweem +id’ andd+is states; i.e., the+id’ state
shows a weak structure at a bia\ while ad+is state has
no effect at all. The magnetization dashow an effect for
both (110 and (100 surfaces, supporting @+id’ state for
YBCO.

where the rapid oscillatory sirkx is replaced by its average
. Note that forA=0 or A’=0 all angles are allowed in
the solution of Eq.(8) and then the current vanishes. This
demonstrates that BTRS leads to current carrying surface
states. We note also that if the Doppler shifA (x) is ig-
nored, the integrated currentq,dx) vanishes, unlike the
p-wave case’
The response of the condensatg dg,cinvolves the Lon-
The d+id’ or d+is order parameters break both time- don terms as well as coupling to the scalar potential at the
reversal invariance and reflection along the surface; hencsurface; the latter terms are small ak ¥, at low T or

IIl. SPONTANEOUS MAGNETIZATION
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vanish atT— T (see Appendix € London’s equation with
JedgdX) as a source term is then

= VZA,(X)=[ = (N?)A/(X) + (477/C) jeggd X)] 6(X)’(17)

where 6(x) is a step function. This assumes a thick film—

i.e., no dependence on thzedirection; the thin-film limit is

considered below. For a thick film the condition of no exter-

nal field atx— —o impliesH,(0)=0. Equation(17) is then
solved by the Green’s function

G(x,x")=—(N2)[exp( —|x—X"|/N) +exp — [x+X"|IN)],
(18)
which satisfies the boundary conditioRG(x,x’)|-o=0

equivalent toH,(x=0)= d,A|—o=0. HereA(x) then sat-
isfies an integral equation

¢0)\ fﬂ'/Z . fx
A (x)= d{ cos¢ sir? dx’
y( ) 775,)\% 0 g g g 0
tan A cos Z+(elc)ve sin{Ay(x") [efIX*X’I/A
2T
+ eflx+x’\/)\]efzx’ sin §/§’_ (19)

The Doppler shift, as shown below, is significant only very
near T. or at very low temperatures. Neglecting first the

Doppler shift and af — T, Eq. (19 becomes
/2
A(0)=(2oNA/TNET,) fo d¢ cos¢ sirP cos 2 (2 sing

+&'IN) L (20

The total spontaneous flux =A,(0)L, whereL, is the
length of the boundary. We consider¢>;)’l_y)\A/77)\§TC
as a flux unit; e.g., for L,=2 cm and typical YBCO
parameters it iss10°¢,. This flux unit is weakly tempera-
ture dependent sinceA ~\ oA is finite atT—T.. The ratio
D =—D/(2¢L NA/TNET,) is plotted in Fig. 2; it varies
between\/12¢’ at N<¢' (weak BTRS and &'/12\ at \
>¢' (strong BTRS with a maximum of 0.014 ah~ ¢&'.
For a (110 surface replacing’ by ¢ (considering onlyé
<\)we obtain ®=¢A’/12\A, much smaller than for a
(100 surface. The reason for the dominance of th60
surface is the steeper spectra A for this case. The result
that® is weakly temperature dependentlat- T is consis-
tent with the spontaneous magnetization tataore details
on the data follow in Sec. VI.

At low temperature3 <T,, the result for th¢100) surface
is of the same order as that néarwhile for the (110) & is
enhanced upon cooling, becomingTa&T.,A" of the order
of d~¢/\. The various limiting forms ofb are collected in
Table I.
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FIG. 2. Spontaneous flux for @00 boundary in thick films
(& <d) in units of 2oL NA/mAZT,.

d? 1 A’

+_
dx®2 N2 2TA}

Ay(x>=4lj<°)<x>,

— i (21

where j{’)(x) is the current in the absence of the Doppler
term. Very neafT ., the effective London length.¢; where
1\2,,=1/\?— A'/2T\3 becomes imaginary so that there is
no Meissner effect, i.e., a magnetic field can penetrate into
the bulk. Hence a sharp sign change?gf0) from paramag-
netic to diamagnetic is expected &t (A'/A)2. For T<T,
we obtain fromj{? that (e/c)ueA,(0)~A'<A, ie., the
Doppler shift is negligible.

For the(100 surface and’ <\ thex’ integration in Eq.
(19) is limited to ¢'; hence we can repladg (x") by A,(0)
to yield

(;SO)\ /2 )
Ay(x)z—zf dl’ cos¢sing
mNG J0
€ .
AcosZ+ EstmgAy(O) N
— X
Xtan >T e . (22
At T—T, this becomes
hUF)\
1- A, (0)=A0); (23
( 3TAZ AO=Ay

hence the response changes signafé/\)?. ForT<T, the

We consider next the results with the Doppler shift. ForDoppler term can be neglectede/(:)vFAy(O)~Aogg’/)\2

the (100 surface andt’> \ the kernelG(x,x’) is localized
atx~x" so thatA (x") can be replaced b, (x) in Eq.(19).

<A,. For the(110 surface the form23) applies with¢’
— & (considering always<\) which does not affect the

NearT, we expand the tanh and obtain a term which modi-left-hand side of Eq(23), hence a paramagnetic anomaly at

fies 1A2, i.e.,

7~ (¢,
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TABLE |. Spontaneous fluxd [flux in units of —q&OLy}\A/(m\%TC)] for various surfaces, weaké(
>\) or strong BTRS £'<\), and various temperature limits. Commeriisif thin film is not specified, the
entry corresponds to thick films with thickneds-\, &’ [(100 surfacd or d> N\, £ [(110 surface. (ii) All
entries correspond td+id’ except thed+is one which refers only to thel10) surface; for thin films it is
the same a$110) d+id’ (except a factor of=5 in the T—T, line). (i) T—T. entries for® exclude
paramagnetic anomaly regions which are given in the last colGmnBTRS which sets in at a temperature
T.<T. has® values corresponding to modified temperature intervals. The only paramagnetic anomalies in
this case aré100 T<Tg and (110 thin film. (v) The fluctuation regiorte.g., 7< 1/kr &, in two dimensions
is excluded; hence the regiar=(T.—T)/T, in the last column is relevant only if it is a larger one.

Geometry Temperature CaseT <T, [} Paramagnetic anomaly
N A/ 2
(100 &'>\ TT, N ~5
15¢’
AT
T<T T<T| 2-\2)—
c c ( 6¢' A
) & £\?
100 &'<\ T—T = ~| 2
(100 ¢ —Te o ™|
, T
T<T T<T -
e ¢ (2-1) 55
2 2
(110 T—T, T—=T¢ ‘ T”(%)
10 ¢
' , &Te
T<T<T,,A T<T<T!, (V2-1)
c T~i7
T<TS T<TS A_O S )\ C
A
(100 thin film T-T, 15¢" AT\ 2
T~ | —
)
AT
T<T, T<T. (2—/2) , ¢
§'Ap
2N\oT,
(110 thin film T—-T, T—T, - 0e
15¢"Aq Doppler dominated
) 2\T,
T<T, T<T, +
387 Doppler dominated
d+is ToT, ToT! £ &)
¢ 2, \
, T, ¢
T<T., A T<T!, A—‘; T~y Te

A remarkable feature of Eq22) is that it allows sponta-
neous magnetization for tH&10) surface even i\’ =0, as
studied earliet™*? The critical temperature can be deduced(110). ForA’ =0 it shows a spontaneous magnetizatioot-
from Eq. (22 (with A—A") by assuming a small probing ted lines below a critical temperature, while fak’+#0 it

A’ and looking for theA, response, which from Eq23)
diverges atTs=v/3\g~(&/\)T,<T.. Furthermore, afl

=0, Eq.(22) yields
¢o

AL0)= - SgrA(0)],

(24)

hence a spontaneous magnetization flux—apoL, / 7\ .
In Fig. 3 we show the low-temperature form&§(0) for

shows enhancement neby where it joins one of the lowWl
branches. In comparison tH&00 flux depends weakly on
temperature and is much stronger than thdflaf) at least at

high temperatures.

We consider next the thin-film case, for which London’s

equation is

214503-5
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FIG. 3. Spontaneous flux at@10 surface forA’=0 (dotted ) ] )
lines) showing a critical temperaturBs. ForA’/A=0.01 it shows _ FIG. 4. Doppler-induced paramagnetic anomaly rigafor thin
enhancement belois . films with a (100 surface and\’/A=0.1

2\2¢g (72
1 4. AO=—OJ d¢' cos¢sir?
—V2A<x,z>=ﬁ = A0+ 100|000 8(2) el

(25 .
A cos 2+ CUF singA(0)
whered is the film thickness. Assuming that one can Fourier Xtan 2T (29

transformA(x,z) into A(q,k), integration of thek depen-
dence~(q?+k?) ~* yields for Ay(x) =A,(x,z=0)

which interestingly has the same form as E2p) except that
here it is valid for all¢’. In particular, when the Doppler
dq _ , 1 shift can be neglected we obtain=\/15¢" which in Fig. 2
Ay(x)= f 2—f dx’e'd(x—x )a{ -5 AX) is the tangent line to the thick-film curve at the origin. Hence
all A we can define two regimes: weak BTRS withé’ <1 where
the spontaneous flux i§ and d independent and strong
6(x). (26)  BTRS with A/&">1 where film thickness matters, with the
thin film showing a stronger effect. For strong BTRSTa

dependence is induced a’s<achanges to the thin-film case

41
+ TJ(X)

The g integration then yields §’>EasT—>TC.
Consider now the Doppler shift for thin films; expansion
| , near T, yields 1A2,=1M\2—A'/2T\3 which as above
Ay(X)—Ay(0)= f dx’In dl — SAx) chqnges sign atw.(g/g’)z—i.e., a paramggngtic anomaly.
0 ! A2 This temperature is the same as for the thick-film case except

that here it is valid also fo¢’ <\. Hence forA’/A=0.1 we
can have an anomaly at an accessible temperaturd of (
K 27) —T)/T,~10 2, as shown in Fig. 4. Fof<T, the Doppler
effect is small.
. . . . For a(110 surface the scales & (x) are\,¢; hence the
implying a slow decay oRy(x). While a solution forA,(x) thin film situation applies whed< &, which is more difficult

appears difficult to obtain, the value {(0) is readily no- to achieve. Neal . we obtainA.(0)=(2d-/15m&)A’A>0
ticed from the boundary condition. The absence of an exters hich I ig p.Jaraman\getic V\:hiley( a%'<('l' ¢3ve hgzleA (0)
nal field requires a finited (x=0) for the thin film geom-  _ bol3TEs. A Spomal',]eous flux even with’ — 0 isypos_
etry. Hence, to avoid divergence 0fVdx|,-o where sible also here as in the10) thick-film case.

All the various forms for the magnetization and Doppler

+47T_
TJ(X)

dA(X) = dx’ 1 A effects a_rg .summarized in Tal_ale 1. The table also considers
= f —E{—Ay(x)— _j(x)l' (28)  the possibility that BTRS sets in at a temperaflfeT,. In
dx |,o Jo x' [\ ¢ this case¢’ diverges afT. so that neal, we have¢’s\
while at T<T, also &<\ is possible, resulting in a
one must have\y(0)=)\2(47-r/c)j(0), ie., temperature-dependeti for this strong BTRS case.
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Finally we consider thal+is case. Here only110) is

[2|Q+ ,
relevant and<<\ for high-T. materials. The edge current is fq(x)= [Q+a sin[x~/k§—(Q+ q)z]efXIQw\/f ke
&L

e (34)
41 2¢ fW/Z .
— JedgdX)=—— d{ cos( sirf e~ 2xsinélé
c JedgdX) mén2 Jo ¢ coscsin¢ Note, e.g., that th@+q Fourier components o¥(r) are
_ — 114 for both +£q so that the* signs in Eq.(32) are
“tan A+ (elc)v singAy(x) (30 needed for continuity of the Fourier transform. We can there-
2T ' fore define fields with continuous Fourier transforms:

NearT., Eg. (20) applies withA cos Z replaced byA and _
£ — ¢ henced=AJ2A = £/2¢, . At low temperatures the Vin=2 e QT D, 4f (),
tanh is replaced by 1, leading &©=T./A. The various ‘
results are given in Table I.
Wo(r)= 2 €W, f (). (35

IV. QUANTUM HALL EFECTS: A SURFACE APPROACH g

In this section we study a surface formulation of quantumEquat'on(sg) becomes

Hall effects(QHE’s). For the usual charge conduction, in the _

absence of an external field and given that the surface fields Wy ()=o) +Wo(r),
decay in the bulk(Meissner effect as shown in Sec.)/ll $o
Ampere’s law implies a zero net current—i.e., a net Hall W (N)==Wa(r)+¥(r), (36)
conductancer,,=0. We focus therefore on spin and thermal o, iy terms of spinor

Hall effects. These were shown to be quantized first by a

network model simulatiot§ and then by the relation to edge ~ (1)
statest®. The d+is state has no surface states near0Q, \If(r)=( ) (37)
hence no Hall effect within the linear response; there may be Wa(r)
a response when the voltage exceedsA/e. We consider \ye have for the spinor, Eq11),
therefore in this Sec. only thé+id’ case.

The main ingredient is the chiral nature of the surface V(1) 1 1\
states. These states have two branches whose spectra vanish \If(r)z( " ) =( )\If(r). (39
at kyzQEikF/\/i. Linearizing near this point the spec- () 11
trum fork,=q=Q is The kinetic energy has the form

€=vqQ, (3D
- ' Hx= 20 oAl 7l qn1qt 75g724]

where v =/8A/kg for a (100 surface whilev =/8A'/kg 5 1a71a " V24724
for the (110) (up to a small Doppler shift; the actual value of
v is not important for the eventual result for the Hall con- _ N -
ductanceé We wish to rewrite the surface modes in terms of - J’ dxdy¥ ()L =ivdy J¥ (). (39

two branchesy, 4, 7,4 Where . _ _ . -
A crucial observation for QHE's is the role of impurities

- . ich i
Ng=Tq+Qt s M2—q= Mqrql which in general have the form

T20=Ma-Q1r  M-q=—T4-ql (32 HimpzfdxdwT(r)T3\1f(r)V(r). (40)

with the * signs needed for continuitisee below. Thus,
instead of twog>0 branches with twg,| spins we have .
now two branches, each of a single degree of freedom, witGOMes, using Eq38),
bothq>0 andq<0. The transformation of Eq11) with the

Within the subspace of surface states this interaction be-

eigenfunctiong10) is Himp= f dxdy‘i’*(rhﬁ’(r)V(r). (42)
i(Q+a)
Wy (r) _ 2 ‘ (x)( 1 1 N14€ . Y ) This impurity potential can be “gauged” aw&yby a trans-
Wi o | TN -1 1)y _qei@ray formation
1 -1 772‘qe—i(Q—Q)y 5 y _
g0, @@y [ (33 W(r)ﬁexp{(i/v)f Vix,y)dy' i |¥(r), (42

where the two terms correspond to the two branches neavhich eliminates the impurity potential. Hence the transport
+Q and of chiral states is equivalent to that of a pure system. Chiral-
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ity implies no channel for backscattering; hence impuritieSyhere f(h)z(f)Z_kg)/Zm and we introduce the gauge-
are indeed expected to be ineffective. As noted in Sec. lllipyariant potentialsa=21V —eA and ao=1(d/dt) 6—eq.
(100 surface states with energy A’ may mix with bulk  The ¢ derivatives arise from the spinor transformation
states by impurities. The QHE is then limited to temperatures[,(r)ﬁexmng(r)/z]q,(r). Integrating out the fermions

T<A'. . . (Appendix B and expansion to second orderaifa, leads to
To evaluate the spin Hall conductance, we define a spifhe effective action

voltageV(x) (x is a coordinate perpendicular to the efige

such that £/2)ps(X)V(X) is the coupling energy density to 2qdw

a densityp4(x) of #/2 spins. This can be represented by a Sett= f—3Pﬂy(q,w)aﬂ(q.w)au(—q,w)- 47
Zeeman term withV¢(x) =eB,(x)/mc wherem is the elec- (2)

tron mass; the corresponding force in tkedirection is At T=0 andqg,w—0 we obtainPy=N, (density of states

(g/mc)zd B,(x)/dx. The unit of spin conductio?, in analogy \yhich is No=m/27 in two dimensions and Py;=—Noc?
vl_\|/|th e /:]1 of _th?_| C”hargeOI conducgi(r)ﬂ,l |7<L/(2) Ih=%/87.  \\here csva/ﬁ, while P().j(q):-isgn(AA’)E()ijqi/(477)
ence the spin Hall conductanegy'"=14/Vs is and €g;; is the antisymmetric unit tensor. The latter term
" reflects BTRS and is derived fax' <A.
Uigin: 28—sgr(AA’). 43 Integrating out the phas@w_e obtain _the effective action
™ in terms of the electromagnetic potentidlse:
The thermal Hall conduction is derived in a similar way d2ade c2q2
from the heat conduction of an ideal gas, yielding Se”{A,QD}:eZJ q S Pod @(a, w)|?
(2m)° | cs0”~ w?
Ky _ 27 AA") (44) i
—_= sg ). i
Toosh ~ 7 €0ij0i¢(0,@)A(— 0, — w) + O(w?A[?)
HenceK,,/T is also quantized in this weakly disordered
system. Cs\? 5
We reconsider now the effect of disorder on the spin Hall ~Pod o | [A(G,@)[%. (48)

conductance. Imagine many random Hall systems, each with
their own localized chiral states which are weakly coupled. If

: The total electromagnetic action includes also the Max-
the couplings are too weak, we expect no currents betweerIeII termsSy = [ d2rdt(E2— Fi2)/8x. A may also be inte
the systems, so overalt;?""=0. As the coupling strength M~ B (e . )

y o Ping 9 rated out, using/ - A=0, andA,=0, leading to the effec-

increases we expect a finite current to circulate around th

ensemble of grains, leading to Eq43) and(44). The tran- ve action
sition is in fact induced by disorder: For weak disorder the 5 2a2p 24
argument of Eq(42) holds and the Hall coefficients have Serdl )= | $|2 s4Foo 4 X(9,0)
their quantized values, Eqé43) and (44). As disorder in- eff x(q,w) c2q’—w? 8me? '
creases, opposite chiral channels get coupled, leading to the
formation of localized chiral loops which eventually have an 1 cig®
insulating behavior, i.e., the Hall conduction vanishes. This N (87¢)? (c2q2— w?)?|’
quantum Hall plateau transitibhhas been simulated by a SR
network model, showing a novel type of QHE criticality. 5 -

w°q dw?

CS
X(q,w)=P00?+

+
V. QUANTUM HALL EFFECTS: A BULK APPROACH (87)2C%Pyy(c29?— w?)  8mc?e?

We consider next the effective action of a budk-id’ do?
superconductor and derive it€harge Hall conductance — N (49
oy/(0,w). We assume a thin-film situation with the scalar 8me

and vector potentialgh,A being z independent, as well as Tha coefficient ofl 4|2 vanishes whem—0 at the plasma

A;=0. In terms of thezNar]bu spinors, E@®), the off- frequencyw,=(4mne?/m)?=c/\; there are no acoustic
diagonal Hamiltonianf d“r'(r)h,#(r) [Eq. (A6)] is plasmons.

Al 2 a2 , 2 The Hall current, is identified by a functional derivative
hy=—[A(=dx+ 3y 1+ A" 9,9y 7o)/ Ke (49 with respect toA,, leading to the Hall coefficient
and we neglect terms witi #<<kg. The action in presence ) -
of the electromagnetic potentiads ¢ is then Csq
oxy(q,w)=SgNAA") — ———. (50
Xy q g 4’7Tﬁ ngz_wz

_ 2t T (19— (B — R —
S= J drdty (19, = 73e(p) —ha = 2) b, Transport is defined by taking thg—0 limit first—i.e.,

ox,=0. Hence the conventional Hall coefficient vanishes, as
> =ry(ag+a/2m)+a-p/m—iV-a2m, (46) expected from Galilean invariané® A limit in which
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—0 is taken first yields a quantized “static” conductance supported by the Israel Science Foundation founded by the
e/2h which was argued to corresponddg,# 0 in presence Israel Academy of Sciences and Humanities.

of a boundary? In the absence of an external magnetic field

and given a spontaneous magnetization decaying in the bulk  APPENDIX A: HAMILTONIAN FOR A  d-WAVE

(as shown in Sec. I)) Ampere’s law yields zero total current, SUPERCONDUCTOR

and hencer,,=0; this is valid also with a boundary and an ) ) ) .

external electric field. It is intriguing, however, that VVe derive here the interaction term foda id" conduc-
7,(0,®) has a nontrivial structure and space resolved meat-or_- A general |_nteract|on Hamiltonian in terms of a Nambu
surement of a Hall current could then probe the full equatiorsPinor, Ea.(2), is

(50). We note that a result similar to E¢60) was obtained

for superfluid *He. " Hint=— f W) g W (r) Wi(rp) W (1) V(r,—1y).

(A1)

VI. CONCLUSIONS The order parameter has the form

We consider now in more detail the experimental data on 00+ _ +
the spontaneous magnetizatibithe data show that for a "0 A () =(V(r) W (1) V(= ra), (A2)
YBCO disk with a perimeter of.,~2 cm the spontaneous where the phas#(r) depends only on the center-of-mass
magnetization is temperature independent in the rangeoordinater=(r,+r,)/2. The factorA(r,,r,) may be com-
80—-89 K and is also thickness independent in the range 30plex; however, its real and imaginary components are deter-
300 nm with a value ot~37¢,. Taking \A~\A,, their  mined by the interactions and their ratio is not allowed to
T=0 value, and typical YBCO parameters we fil  vary in space. Ad-wave superconductor is defined by a mo-
~10"3. The temperature and thickness independence indimentum dependend€—k; for the relative coordinate, i.e.,
cate weak BTRS withké’ >\. For either thick or thin films
we estimaten/&'~10 2 or A'/A~10*. We propose there-
fore that increasing the ratia’/A—e.g., by using over-
doped YBCO(Ref. 2—one can enhance the spontaneous
magnetization up to a maximum of10°¢, when A'/A =A(r) (= 32+ 55) 3 (p)IKE, (A3)
~0.01 within the thick-film regime.

For strong BTRS\/¢'>1, the film thickness matters;
i.e., we expect a temperature dependence due to the cro
over from thick- to thin-film regimes at~ ¢’ asT—T... For

P . ’ ST raes H'MF: f dzrdzquT
thin films (d<£&'<\) we obtaind=2\/12¢'; i.e., for YBCO int
the total flux can reach 20A'/A) ¢, per cm of boundary, y 5
much higher than thick-film values. The situation of a strong X[ag—5]6%(r)/K . (Ad)
BTRS with thin films is interesting also as being the most
likely one to show the paramagnetic anoméfig. 4) at a
temperature=T.[1— (&/&)?]. we 1 . _ ,

In conclusion, we have shown that surface states df a  Hint :ZJ d?r ([ (a5 —dy) A(r)e' " 7s] 7 W (r)/KkE
+id’ superconductor lead to spontaneous magnetization

2

A(ry,ra)=A(r) f eik‘(rl_rz)(ki_kszf)m
F

where the relative coordinate ip=r;—r,=(&,7). The
Srg_ean-field Hamiltonian is then

1 ) 1
r+5p e 7sr P r=5p A(r)

After partial integrations,

which is T independent and thickness independent for weak 2 it ()

BTRS, M ¢'<1, in accordance with the dataFor strong - J AW i(r)[a,A(r) e 730,

BTRS with \/£'>1, as expected in overdoped YBCQG _

crossover from thick- to thin-film behavior can leadft@and —9yA(r)€' "My, 17, W (r)/KE, (A5)

thickness dependence, as well as to an observable paramag: ..o in the first term
netic anomaly neaf.. We have shown gapless chiral sur-
face states for thd+id’ state which lead to quantization of
the spin and thermal Hall conductances. Theis state has
surface currents only at th@10) surface; its surface excita-
tions have a gap and therefore insulating, i.e. no nontriviaﬂeme &r)/2]W (1) vields the off-diagonal Hamiltonian
guantization of Hall conductances. For the charge Hall con- dzrllng(r)h W (r) where

ductance we find a vanishing transport value, however, thJ A

structure ofo,,(q,w) has an unusual form which exhibits ha=—[A(— 02+ 32) 7y + A’ 9,9, 7] K2. (A6)
the Goldstone mode of the supeconductor. 4 x Ty Ty 2l mE

&~ %) operates only within the
square brackets. Ad component corresponds to
A’(r)ﬁgﬁnéz(p) and a similar analysis can be followed. We
assume here that all gradients are small—i.e.,
|V6|,|VA|/A<kF, hence with the transformatiod(r)

The issue of gauge invariance is of some intetégthe
full interaction form, Eq.(Al), is manifestly invariant under
V(r)—exdirs [TA(r’)-dr’J¥(r). Whether the mean-field

We thank Y. Dagan, G. Deutscher, A. J. Legget, O. Milo,form is also gauge invariant is a matter of some debaté.
and E. Polturak for valuable discussions. This research wasrom the definition, Eq(A3), it seems that
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_ ry , , the Hall effect. It is a topological effect dependifa least at
A(ry,rp)—expgirs j A(r')-dr small values of thel, , order parametgronly on the sign of

A’. In the same long-wave length limit we hawy;(q)
r
xex;{irsj 2A(r’)-dr’

=isgn(AA’')eu;q;/(4m) where €y; is the antisymmetric
unit tensor.

and thenHiMntF is gauge invariant without having explicit

A(r)-dependent terms. This, however, implies thatapgj, APPENDIX C: EFFECTIVE ACTION WITH BOUNDARY

terms do not follow the usual substitution law as in the ki-  \ye study here the Hall term with boundary and show that
netic term. For the present work this issue is irrelevant sinc&¢ offect on London’s equation is small at eitier0 or T
we neglect these terms altogether; i.e., we assume,t  The electromagnetic response to the surface charge
[V 6].|VA[<k. and currents couples in general the vector and scalar poten-
tials A, ¢ with the Hall coefficient. We estimate this effect
APPENDIX B: DERIVATION OF P first at T=0. The Hall term relates the current along the

We derive here an effective action foda-id’ supercon- SP”a‘?e y.directior‘) and the electric fielde/ox in the x
ductor in terms of the gauge-invariant potentialg(q, w), direction, i.e.,
Eq. (47). Integrating out the fermionic variables in the parti-

A(rler)! (A7)

tion function we arrive at the following action: 1 (9_2 A(x)— 4_7TU dp __Am )
N2 ax2) YT de Tax T e Jedee):
z= f Dde'S, (CD
A The equation forp(x) involves the Debye screening length
S(d)=—i TrinG™Y, G !'=G,*-3, Ng=1NAameE<¢' ¢,
Go '=id,— ra3e(p) —hy. (B1) 1P
) . o N (P(X):47Tnedgéx)- (C2
We are interested in the long-wavelength limit; also the ANg X

order parameter is taken at the extremum of the effective . . :

action with only phase fluctuations. We retain the first and! "€ Hall term is neglected here as we wish to estimate the
second orders it to derive an expansion of the effective I0West- order effect. The solution withe/Jx=0 involves
action in the fluctuating fielda,,(q, ). The expansion cor- € Green's function, Eq(18); at x<¢&' it has de/ix

responds to a one-loop calculation with the coefficidys, ~Ng/&" while atx>\q
in Eq. (47) given by (latin indices stand for space coordi- )
nate \e 2 o
> o(x)=— —2 ki d{ cos¢ sinP e 2xsindlé’
Podqe)=5T 2 Tr{G(p,w')73G(p+0,0' + )7, (3
p.o'

(B2)  The ratio of dp/dx and jeqge terms in Eq.(C1) is then
1/(32mkgé’)<1; for a (110 surface replac€’ —&. Since
i keé&' >kp&>1 is the criterion for excluding the order param-
Pijqo= RT 2 Tr[G(p,w")G(p+q,0" + ) eter fluctuations very nedt., we can neglect the Hall term
p.w in London’s equation(C1).

n We consider nexT —T.. The polarization functiorP,
Xpi(p+a/2)j]= 5 -4, (B3)  Eq.(B2), is obtained by replacintyy— N(T) where
i , , _ 2 A2 E
Poj(qw):ﬁTpEw:’ Tr[G(p,0')73G(p+q,0’ +w)p;]. N(T)= - PPk (C4
| (B4)

with E= \/é?(p) + g%+ g2 where
The diagonal time polarization operatdty,, depends

weakly on temperature and therefore in the limit of small g1=A(r)cos 2, g,=A’'(r)sin2¢. (C5)
momentum and frequenay— 0,0— 0 is given by itsT=0

value—i.e., the mean-field compressibilityyo(q) =Np. The polarization function(B3) defines the temperature-
The space componeni ; include the diamagnetic term and dependent London penetration depthf:(fr).

paramagnetic current correlator. In the ligit> 0,0— 0 they We consider in more detail the Chern-Sim@n Hall) part
give the mean-field superfluid stiffness; &at-0, Pj;(q)  of the action which is the product of scalar and vector po-
=— Nocﬁ wherecs=vg/\/2. Of special significance is the tentials[Eq. (B4)]. We consider a superconductor that occu-
off-diagonal polarization bubblB,; which is responsible for  pies the half spacex(>0) where the order parameteisA’
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may become functions af. The Chern-Simon part of the

action can be written in configuration space in the form

Se_=€2T >, fdr b(

rr")ag(rw)ay(rw)

+bz(rr’)ao(rw)w K (Co)
Du(11)= 755 Pyl Forr OO (€T
Da(1') = 5 3 ByFy(r DG o gj() (<)
F ()= 2[E’tannE/2T)—EtanHE'/2T)] (9

EE/(E/Z_EZ)

whereE=E(r),E'=E(r"). Similary as for the infinite sys-
tem we can integrate out the Goldstone mode:

Poop?(r) —

2
‘ >) AXD)

Sb{A"P}:ezf dr : (x T

y()

b1 e(r)Ay(r)+ba(r)e(r)

(C10

In this equation we took the polarization function at zero

frequency which is legitimate for finite systeftne effective
momentum deviates from zero The coefficients b,
=by(rr")|,_;, ba=by(rr’)|,_,  are given as

2

e
47T62b1=Fd§fl(X,T), (C1)

2

€
47Tezb2:_f2(X,T).

fcd (C12

PHYSICAL REVIEW B 68, 214503 (2003

fl(x,T)=§dixln[A(A’)(1+5)/2] if T=0 (C13

AA’ .
:Olng_gd_Xln[AA] if T—>TC,
(C14
f(x,T)=1 if T=0
AN
2021? if THTC, (C15)

c

with 6=2/(1+A'/A) and A(x),A’(x)>0 is assumed.
Thus, in the limitT— T, we we can write\~\q//7,b(r)
=0.11(AA'/T?)(d/dx)In[AA"]/2hcd and b,(r)
=0.21(AA'/T2)/2hcd.

The next step involved the equations for electromagnetic
potentials—generalized London equations by the variations
of the total action(including the Maxwell pajtover these
potentials. We consider here the half-plane geometry; i.e., the
superconductor occupies the>0 half-plane. The nonzero
electromagnetic potentials, , ¢ obey the equations

1 & 47e? o
AG o ox? ¥ ch

1 aZA
z o oax?)

7T.
_Tledge(x)a

dA,  Ame?

29x  ch

b;Ay=4mengygd X),
(C10

47762b o7go+47762 b.—a.b
ch "2 ax Ch(l WD2) ¢

(C17

wherenggge jedge@re the edge charge and edge current den-
sities[Eq. (16)].
Using the expressions above fbg,b, we find that the

The functionf, appears only for a system with a boundary Chern-Simon term affects the spontaneous magnetization,
and depends on the space derivative of the order parametetsading to an additional flux-(A’/A)7 which vanishes at
while f, at T=0 is the same as for an infinite supercon-T—T,; i.e., it is negligible compared with the other terms in

ductor. We calculate these function far=0 and for T
—>TC,

Eq. (C17 which lead to constant magnetization Bs- T,
as shown in Sec. .
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