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Superconductors with broken time-reversal symmetry: Spontaneous magnetization
and quantum Hall effects
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Broken time-reversal symmetry~BTRS! in d1 id8 as well as ind1 is superconductors is studied and is
shown to yield current carrying surface states. We evaluate the temperature and thickness dependence of the
resulting spontaneous magnetization and show a marked difference between weak and strong BTRS. We also
derive the Hall conductance which vanishes at zero wave vectorq and finite frequencyv; however, at finite
q,v it has an unusual structure. The chirality of the surface states leads to quantum Hall effects for spin and
heat transport ind1 id8 superconductors.
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I. INTRODUCTION

Recent data on the high-Tc superconductor YBa2Cu3Ox

~YBCO! have supported the presence of broken tim
reversal symmetry~BTRS!.1–3 A sensitive probe of BTRS is
Andreev surface states. For ad wave with time-reversal sym
metry bound states at zero energy are expected for a su
parallel to the nodes@i.e., a ~110! surface in YBCO#. When
BTRS is present, by either a complex order parameter o
an external magnetic field, the bound states shift to a fi
energy. Indeed tunneling data usually show a zero-bias p
which splits in an applied field; the splitting is nonlinear
the magnetic field, indicating a proximity to a BTRS state2,4

In fact, in some samples tunneling data show a splitting e
without an external field,1,2 consistent with BTRS; the split
ting increases with increasing overdoping.2,5

Further support for a spontaneous BTRS state is spo
neous magnetization data as observed in YBCO,3 setting in
abruptly atTc and being almost temperature (T) independent
below Tc . The phenomenon has been attributed to eithe
dx22y21 idxy state (d1 id8) or to the formation ofp junc-
tions. No microscopic reason was given, however, for
spontaneous magnetization being independent of bothT and
film thickness.3

It has been shown theoretically that BTRS can occur
cally in a dx22y2 superconductor near certain surfaces6–9

leading to eitherd1 id8 or d1 is states with surface cur
rents. The onset of such BTRS is expected to be belowTc
and therefore does not correspond to the spontaneous
netization data.3 We note that in response to an external ma
netic field the surface states are paramagnetic and com
with Meissner currents. This effect has been proposed to
count for a minimum in the magnetic penetration length.10 In
fact, it was proposed that this paramagnetic effect lead
spontaneous currents and BTRS in a puredx22y2 state.11,12

The onset of this BTRS is much belowTc
12 and therefore

does not correspond to the data.3

Of further theoretical interest is the relation of the BTR
state to quantum Hall systems with a variety of H
effects.13–18 In particular a finite-charge Hall conductanc
has been suggested,13 though this has been questioned.16
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In the present work we expand our earlier work19 and
study variety of phenomena related to surface currents
Sec. II we show that bulkd1 id8 state has surface states wi
finite surface currents; a similar situation was found for t
bulk p-wave state.20 We also consider ad1 is state which
has surface currents only on the~110! surface. In Sec. III we
evaluate the spontaneous magnetization and show tha
d1 id8 it is dominated by~100! surfaces; for thin films it
increases with the ratioD8/D (D andD8 are the amplitudes
of dx22y2 anddxy , respectively! while for thick films it has a
maximum atl/j8'1 wherej85vF /D8 with vF the Fermi
velocity andl the penetration length—i.e., atD8/D'0.01
for YBCO. We show that for weak BTRS,l/j8,1, the
spontaneous magnetization isT and thickness independen
while for strong BTRS thickness andT dependence may oc
cur. For the sample of Ref. 3 we estimateD8/D'1024—i.e.,
weak BTRS. In Sec. IV we consider a surface approach
the quantum Hall effect, showing quantization for spin a
thermal Hall conductances for thed1 id8 state. We also de-
rive in Sec. V the effective action in the bulk and identify th
Hall coefficient which has an unusual wave vector and f
quency dependence.

II. SURFACE STATES

We present here the Bogoliubov–de Gennes~BdG! equa-
tions for quasiparticles in a bulkd1 id8 or d1 is state in the
presence of a boundary and study the resulting surface st
We consider first ad1 id8 state where the order parameter

D~ p̂x ,p̂y!5D~ p̂x
22 p̂y

2!/kF
21 iD8p̂xp̂y /kF

2 , ~1!

where p̂52 i\“ is the momentum operator andkF is the
Fermi momentum. The quasiparticles are represented b
electron-hole Nambu spinor

C~r !5S C↑~r !

C↓
†~r !

D ~2!

and are described by the following mean-field Hamiltoni
~see Appendix A!:
©2003 The American Physical Society03-1
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Ĥ5
1

2m F S i“1
e

c
t3A~r ! D 2

2kF
2 Gt3

1S 0 D~ p̂x ,p̂y!

D* ~ p̂x ,p̂y! 0
D e2 iu(r )t3, ~3!

wherem is the electron mass andt i are the Pauli matrices
We assume here thatu“uu!kF so that the issue of gaug
invariance in the interaction term can be avoided~Appendix
A!. Rotating by the unitary transformationC(r )
→exp@it3u(r )/2#C(r ) yields

Ĥ5
1

2m
~2¹22kF

2 !t31
1

2m
p•S“u2

2e

c
A~r ! D

1S 0 D~ p̂x ,p̂y!

D* ~ p̂x ,p̂y! 0
D , ~4!

whereA is kept to first order.
We consider a vacuum-superconductor boundary atx50

and assume for now thatD,D8 are constants atx.0 and
vanish atx,0. For D.D8 this corresponds to a~100! sur-
face; to describe a~110! surfaceD andD8 need to be inter-
changed. The spinor wave functions for the up and do
components of Eq.~2!, respectively,u(r )5u exp@ifx1ikyy#
and v(r )5v exp@ifx1ikyy#, with eigenvaluese, satisfy the
BdG equations

~ f 22kF
21ky

222mẽ !u12mD~ f ,ky!v50,

~2 f 21kF
22ky

222mẽ !v12mD* ~ f ,ky!u50, ~5!

whereẽ5e1(e/mc)kyAy(x), A has only anAy component
consistent with a current in they direction, and“u50. This
Doppler shift assumes thatAy(x) is slowly varying on the
scalekF

21 so that a local eigenevalueẽ can be defined. Define
k51AkF

22ky
2, then f has two surface solutions with Imf

.0,

f 15k1 i
m

k
AuD~k,ky!u22 ẽ2,

f 252k1 i
m

k
AuD~2k,ky!u22 ẽ2, ~6!

where the replacementD( f ,ky)→D(6k,ky) is valid for
uDu,ẽ!kF

2/2m. The eigenvectors are

v152 i
AuD~k,ky!u22 ẽ21 i ẽ

D~k,ky!
u1 ,

v25 i
AuD~2k,ky!u22 ẽ22 i ẽ

D~2k,ky!
u2 . ~7!

We assume specular reflection which preservesky but mixes
these two solutions so that atx50 the wave functions van
ish. A linear combination for which both spinor componen
21450
n
vanish at x50—i.e., au11bu25av11bv250—yields
v1 /u15v2 /u2, hence an equation for the eigenvalues:

i ẽ1AuD~1k,ky!u22 ẽ2

2 i ẽ1AuD~2k,ky!u22 ẽ2
52

D~1k,ky!

D~2k,ky!
. ~8!

Its solutions are readily seen to beẽ52sgn(ky)D(k2

2ky
2)/kF

2 . In terms of the incidence anglez, ky

5kF sin z, k5kF cosz, the eigenvalues are

ez52sgn~z!D cos~2z!2
e

c
vFAy sinz. ~9!

Note that the spectrum is not symmetric inky or in z ~it is in
fact antisymmetric! resulting in a finite surface current. Fig
ure 1 shows the anglez whereez50 ~solid lines! and the
range for whichez.0. The velocities]ez /]ky are positive
for both6ky branches, i.e., the surface states are chiral. T
property leads to quantization of Hall effects, as discusse
Sec. IV.

We note that self-consistency would imply thatD850
at x50 ~Ref. 8!; the eigenfunctions would then b
;exp@2 *0

x D8(x8)dx8u sinzu/vF#, resulting in a very similar
dependence onj8. Note also that quasiparticles in the bu
have a spectral gapuD(k,ky)u which for any givenz is higher
than the surface statesez ~neglecting the Doppler shift!. Im-
purities, however, may destroyky conservation and scatte
high-energy (.D8) surface states into degenerate bu
states. When impurity scattering is essential~e.g., Sec. IV!
our results apply only when these excitations can
neglected—e.g., atT,D8. This restriction is not needed a
the ~110! surface where the whole surface spectrum is,D8
—i.e., below the lowest bulk state.

The decay length of the surface states becomes, u

Eqs. ~6! and ~9!, (Imf )215@(m/k)AuDu22 ẽ2#21

FIG. 1. Surface~vertical line! and anglez where the spectrum is
e50 ~solid lines!; in the absence ofAy these lines would be atz
56p/4 ~dashed lines!. The range for whiche.0 is shown as the
hatched area; the spectra span the rangee50 up toe5D as shown.
3-2
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5j8/u sinzu with j85vF /D8. Since uui u5uv i u, i 51,2 @Eq.
~7!#, the normalized eigenfunctions are

uz~r !5A2u sinzu

j8Ly

sinkxeikyy2xu sin zu/j8,

vz~r !52sgn~ky!u~r !, ~10!

whereLy is the length of the surface. It is remarkable th
uuz(r )u5uvz(r )u for all z—i.e., for all energies of the surfac
states—implying maximal electron-hole mixing. As not
above, a~110! surface has the same solution~10! with j8
replaced byj5vF /D.

We note that in general the spinor, Eq.~2!, can be decom-
posed in terms of eigenoperatorshz↑ ,hz↓ where

S C↑~r !

C↓
†~r !

D 5 (
z

S uz~r ! 2vz* ~r !

vz~r ! uz* ~r !
D S hz↑

hz↓
† D , ~11!

leading to the diagonal Hamiltonian

Ĥ5 (
z

E dxez@hz↑
† hz↑1hz↓

† hz↓21#@ uu~x!u21uv~x!u2#,

~12!

with ez being x dependent via the Doppler shift. The spe
trum has exact particle-hole symmetry, i.e., for each eig
vector u,v with eigenvalue e there is an eigenvecto
2v*, u* with eigenvector2e. The form, Eq.~12!, incorpo-
rates, however, both6e states and its sum is therefore r
stricted toez>0.

We consider next ad1 is state at a~110! surface with an
order parameter

D~ p̂x ,p̂y!5D p̂xp̂y /kF
21 iDs . ~13!

Equation~8! has then the solutionẽ5sgn(ky)Ds , i.e.,

e5sgnzDs2
e

c
vFAy sinz. ~14!

Positive eigenvalues are now atky>0 @for weak Doppler
effect (e/c)vFuAyu,Ds] with a weak dispersion due to th
Doppler term. Note in particular that the spectrum has a
—i.e., noe50 states; hence to probe these states one n
either high voltage or high temperatureT.Ds . This d1 is
state corresponds to a~110! surface at which it breaks bot
parity and time reversal. At a~100! surface the stated1 is
state is symmetric under reflection and in fact has no sur
bound states. Hence tunneling data at the~100! may distin-
guish betweend1 id8 andd1 is states; i.e., thed1 id8 state
shows a weak structure at a bias'D while ad1 is state has
no effect at all. The magnetization data3 show an effect for
both ~110! and ~100! surfaces, supporting ad1 id8 state for
YBCO.

III. SPONTANEOUS MAGNETIZATION

The d1 id8 or d1 is order parameters break both tim
reversal invariance and reflection along the surface; he
21450
t

-
-

p
ds

ce

ce

they allow surface currents@d1 is refers to~110! only#. The
current density parallel to a surface~the y direction! and the
charge density are

j edge~x!5
2 i\e

2md (
s

F K Cs
†~r !

]

]y
Cs~r !L 2H.c.G

5
22\e

md (
z

kyuu~r !u2tanhS ez

2TD ,

nedge5
e

d (
s

^Cs
†~r !Cs~r !&5

2e

d (
z

uuz~r !u2, ~15!

where d is the interlayer spacing, and̂gz,s
† gz,s&5@1

1exp(ez /T)#21 and uuz(r )u5uvz(r )u were used. The expres
sion for j edge can also be obtained from Eq.~12! by j edge
5cdH/dAy(x). In addition to the explicitT dependence in
Eqs. ~15! the order parameters areT dependent asD
'D0At, D8'D08At where t5(Tc2T)/Tc ; hence j
'j0 /At, j8'j08/At.

In principle the current has also a diamagnetic te
(e/c)nedge(x)Ay(x); the ratio of this term to the London
term (c/4pl2)Ay(x) is 1/@(kFj08)

2t# where t5(Tc

2T)/Tc . Hence the effect of this diamagnetic current
small except very nearTc—i.e., for t.(kFj08)

22 @or t
.(kFj0)22 for the ~110! surface#. In the range where the
order parameter fluctuations exceed their mean value
mean field breaks down; this range, which is betweent
,1/kFj0 in two dimensions andt,(1/kFj0)4 in three di-
mensions, is excluded in our analysis.

We consider firstd1 id8; the factor ky tanh(ez/2T) is
symmetric inky . Therefore within the integration in Eq.~15!
in the ez>0 range~Fig. 1! the z,0 segment can be shifte
into a z.0 one so that a complete (0,p/2) range results. In
terms of the densityn5kF

2/2pd and theT50 penetration
length l0(l'l0 /At) where l0

2254pne2/mc252kF
2e2/

mc2d we obtain

4p

c
j edge~x!5

2f0

pj8l0
2 E0

p/2

dz cosz sin2z e22x sin z/j8

3tanhFD cos 2z1~e/c!vF sin zAy~x!

2T G ,
nedge~x!5

ekF

pdj8
E

0

p/2

dz cosz sinze22x sin z/j8, ~16!

where the rapid oscillatory sin2 kx is replaced by its averag
1
2 . Note that forD50 or D850 all anglesz are allowed in
the solution of Eq.~8! and then the current vanishes. Th
demonstrates that BTRS leads to current carrying surf
states. We note also that if the Doppler shift;Ay(x) is ig-
nored, the integrated currentj edge(x) vanishes, unlike the
p-wave case.19

The response of the condensate toj edge involves the Lon-
don terms as well as coupling to the scalar potential at
surface; the latter terms are small as 1/kFj0 at low T or
3-3



—

er

ry
e

-

t

o

di

ler

is
into

at

BARUCH HOROVITZ AND ANATOLY GOLUB PHYSICAL REVIEW B 68, 214503 ~2003!
vanish atT→Tc ~see Appendix C!. London’s equation with
j edge(x) as a source term is then

2¹2Ay~x!5@2~1/l2!Ay~x!1~4p/c! j edge~x!#u~x!,
~17!

whereu(x) is a step function. This assumes a thick film
i.e., no dependence on thez direction; the thin-film limit is
considered below. For a thick film the condition of no ext
nal field atx→2` impliesHy(0)50. Equation~17! is then
solved by the Green’s function

G~x,x8!52~l/2!@exp~2ux2x8u/l!1exp~2ux1x8u/l!#,
~18!

which satisfies the boundary condition]xG(x,x8)ux5050
equivalent toHy(x50)5]xAyux5050. HereAy(x) then sat-
isfies an integral equation

Ay~x!5
f0l

pj8l0
2 E0

p/2

dz cosz sin2z E
0

`

dx8

3tanhFD cos 2z1~e/c!vF sinzAy~x8!

2T G@e2ux2x8u/l

1e2ux1x8u/l#e22x8 sin z/j8. ~19!

The Doppler shift, as shown below, is significant only ve
near Tc or at very low temperatures. Neglecting first th
Doppler shift and atT→Tc , Eq. ~19! becomes

Ay~0!5~2f0lD/pl0
2Tc! E

0

p/2

dz cosz sin2z cos 2z ~2 sinz

1j8/l!21. ~20!

The total spontaneous flux isF5Ay(0)Ly whereLy is the
length of the boundary. We consider 2f0LylD/pl0

2Tc

as a flux unit; e.g., for3 Ly52 cm and typical YBCO
parameters it is'105f0. This flux unit is weakly tempera
ture dependent sincelD'l0D0 is finite atT→Tc . The ratio
F̃52F/(2f0LylD/pl0

2Tc) is plotted in Fig. 2; it varies
betweenl/12j8 at l!j8 ~weak BTRS! and j8/12l at l
@j8 ~strong BTRS! with a maximum of 0.014 atl' j8.
For a ~110! surface replacingj8 by j ~considering onlyj
!l)we obtain F̃5jD8/12lD, much smaller than for a
~100! surface. The reason for the dominance of the~100!
surface is the steeper spectrae;D for this case. The resul
that F is weakly temperature dependent atT→Tc is consis-
tent with the spontaneous magnetization data3; more details
on the data follow in Sec. VI.

At low temperaturesT!Tc the result for the~100! surface
is of the same order as that nearTc while for the~110! F is
enhanced upon cooling, becoming atT!Tc ,D8 of the order
of F̃'j/l. The various limiting forms ofF̃ are collected in
Table I.

We consider next the results with the Doppler shift. F
the ~100! surface andj8@l the kernelG(x,x8) is localized
at x'x8 so thatAy(x8) can be replaced byAy(x) in Eq. ~19!.
NearTc we expand the tanh and obtain a term which mo
fies 1/l2, i.e.,
21450
-

r

-

F d2

dx2
2

1

l2
1

D8

2Tl0
2GAy~x!5

4p

c
j y
(0)~x!, ~21!

where j y
(0)(x) is the current in the absence of the Dopp

term. Very nearTc , the effective London lengthle f f where
1/le f f

2 51/l22D8/2Tl0
2 becomes imaginary so that there

no Meissner effect, i.e., a magnetic field can penetrate
the bulk. Hence a sharp sign change ofAy(0) from paramag-
netic to diamagnetic is expected att'(D8/D)2. For T!Tc

we obtain from j y
(0) that (e/c)vFAy(0)'D8!D, i.e., the

Doppler shift is negligible.
For the~100! surface andj8!l the x8 integration in Eq.

~19! is limited toj8; hence we can replaceAy(x8) by Ay(0)
to yield

Ay~x!5
f0l

pl0
2 E0

p/2

dz8 cosz sinz

3tanhFD cos 2z1
e

c
vF sinzAy~0!

2T
Ge2x/l. ~22!

At T→Tc this becomes

S 12
\vFl

3Tl0
2D Ay~0!5Ay

(0) ; ~23!

hence the response changes sign att&(j/l)2. ForT!Tc the
Doppler term can be neglected, (e/c)vFAy(0)'D0jj8/l2

!D0. For the ~110! surface the form~23! applies withj8
→j ~considering alwaysj!l) which does not affect the
left-hand side of Eq.~23!, hence a paramagnetic anomaly
t'(j/l)2.

FIG. 2. Spontaneous flux for a~100! boundary in thick films

(j8,d̄) in units of 2f0LylD/pl0
2Tc .
3-4
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TABLE I. Spontaneous fluxF̃ @flux in units of 2f0LylD/(pl0
2Tc)] for various surfaces, weak (j8

@l) or strong BTRS (j8!l), and various temperature limits. Comments:~i! If thin film is not specified, the

entry corresponds to thick films with thicknessd̄@l,j8 @~100! surface# or d̄@l,j @~110! surface#. ~ii ! All
entries correspond tod1 id8 except thed1 is one which refers only to the~110! surface; for thin films it is
the same as~110! d1 id8 ~except a factor of25 in the T→Tc line!. ~iii ! T→Tc entries forF̃ exclude
paramagnetic anomaly regions which are given in the last column.~iv! BTRS which sets in at a temperatur
Tc8!Tc hasF̃ values corresponding to modified temperature intervals. The only paramagnetic anoma
this case are~100! T,Ts and~110! thin film. ~v! The fluctuation region~e.g.,t&1/kFj0 in two dimensions!
is excluded; hence the regiont5(Tc2T)/Tc in the last column is relevant only if it is a larger one.

Geometry Temperature CaseTc8!Tc F̃ Paramagnetic anomaly

~100! j8@l T→Tc
l

15j8
t'S D8

D D 2

T!Tc T,Tc8 ~22A2!
lTc

6j8D0

~100! j8!l T→Tc
j8

12l
t'S j

l D 2

T!Tc T,Tc8 ~A221!
j8Tc

2lD0

~110! T→Tc T→Tc8
j2

12lj8
t'S j

l D 2

Ts,T!Tc ,D8 Ts,T!Tc8 ~A221!
jTc

2lD0

T,Ts T,Ts
Tc

D0

Ts'
j

l
Tc

~100! thin film T→Tc

l

15j8
t'S D8

D D 2

T!Tc T,Tc8 ~22A2!
lTc

j8D0

~110! thin film T→Tc T→Tc8 2
2l0Tc

15j8D0 Doppler dominated

T!Tc T!Tc8 6
2lTc

3jD0 Doppler dominated

d1 is T→Tc T→Tc8
j

2js
t'Sj

lD2

T!Tc ,Ds T!Tc8
Tc

D0

Ts'
j

l
Tc
ed
g

’s
A remarkable feature of Eq.~22! is that it allows sponta-
neous magnetization for the~110! surface even ifD850, as
studied earlier.11,12 The critical temperature can be deduc
from Eq. ~22! ~with D→D8) by assuming a small probin
D8 and looking for theAy response, which from Eq.~23!
diverges atTs5vF/3l0'(j/l)Tc!Tc . Furthermore, atT
50, Eq. ~22! yields

Ay~0!5
f0

pl0
sgn@Ay~0!#, ~24!
21450
hence a spontaneous magnetization flux of6f0Ly /pl0.
In Fig. 3 we show the low-temperature form ofAy(0) for

~110!. ForD850 it shows a spontaneous magnetization~dot-
ted lines! below a critical temperature, while forD8Þ0 it
shows enhancement nearTs where it joins one of the lowT
branches. In comparison the~100! flux depends weakly on
temperature and is much stronger than that of~110! at least at
high temperatures.

We consider next the thin-film case, for which London
equation is
3-5
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2¹2A~x,z!5d̄F2
1

l2
Ay~x!1

4p

c
j ~x!Gu~x!d~z!,

~25!

whered̄ is the film thickness. Assuming that one can Four
transformA(x,z) into A(q,k), integration of thek depen-
dence;(q21k2)21 yields for Ay(x)5Ay(x,z50)

Ay~x!5 E dq

2puqu E dx8eiq(x2x8)d̄F2
1

l2
Ay~x!

1
4p

c
j ~x!Gu~x!. ~26!

The q integration then yields

Ay~x!2Ay~0!5 E
0

`

dx8lnUx2x8

x8
U d̄F2

1

l2
Ay~x!

1
4p

c
j ~x!G , ~27!

implying a slow decay ofAy(x). While a solution forAy(x)
appears difficult to obtain, the value ofAy(0) is readily no-
ticed from the boundary condition. The absence of an ex
nal field requires a finiteHy(x50) for the thin film geom-
etry. Hence, to avoid divergence ofdA/dxux50 where

dA~x!

dx U
x50

5 E
0

` dx8

x8
d̄F 1

l2
Ay~x!2

4p

c
j ~x!G , ~28!

one must haveAy(0)5l2(4p/c) j (0), i.e.,

FIG. 3. Spontaneous flux at a~110! surface forD850 ~dotted
lines! showing a critical temperatureTs . For D8/D50.01 it shows
enhancement belowTs .
21450
r

r-

Ay~0!5
2l2f0

pj8l0
2 E0

p/2

dz8 coszsin2 z

3tanhFD cos 2z1
e

c
vF sinzAy~0!

2T
G , ~29!

which interestingly has the same form as Eq.~22! except that
here it is valid for allj8. In particular, when the Dopple
shift can be neglected we obtainF̃5l/15j8 which in Fig. 2
is the tangent line to the thick-film curve at the origin. Hen
we can define two regimes: weak BTRS withl/j8,1 where
the spontaneous flux isT and d̄ independent and stron
BTRS with l/j8.1 where film thickness matters, with th
thin film showing a stronger effect. For strong BTRS aT

dependence is induced asj8,d̄ changes to the thin-film cas
j8.d̄ asT→Tc .

Consider now the Doppler shift for thin films; expansio
near Tc yields 1/le f f

2 51/l22D8/2Tl0
2 which as above

changes sign att'(j/j8)2—i.e., a paramagnetic anomal
This temperature is the same as for the thick-film case ex
that here it is valid also forj8,l. Hence forD8/D50.1 we
can have an anomaly at an accessible temperature ofTc
2T)/Tc'1022, as shown in Fig. 4. ForT!Tc the Doppler
effect is small.

For a~110! surface the scales ofAy(x) arel,j; hence the
thin film situation applies whend̄!j, which is more difficult
to achieve. NearTc we obtainAy(0)5(2f0/15pj)D8D.0
which is paramagnetic, while atT!Tc we have Ay(0)
564f0/3pj0. A spontaneous flux even withD850 is pos-
sible also here as in the~110! thick-film case.

All the various forms for the magnetization and Doppl
effects are summarized in Table 1. The table also consid
the possibility that BTRS sets in at a temperatureTc8!Tc . In
this casej8 diverges atTc8 so that nearTc8 we havej8@l
while at T!Tc8 also j8,l is possible, resulting in a

temperature-dependentF̃ for this strong BTRS case.

FIG. 4. Doppler-induced paramagnetic anomaly nearTc for thin
films with a ~100! surface andD8/D50.1
3-6
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Finally we consider thed1 is case. Here only~110! is
relevant andj!l for high-Tc materials. The edge current

4p

c
j edge~x!5

2f0

pjl0
2 E0

p/2

dz cosz sin2z e22x sin z/j

3tanhFDs1~e/c!vF sinzAy~x!

2T G . ~30!

NearTc , Eq. ~20! applies withD cos 2z replaced byDs and
j8→j, henceF̃5Ds/2D5j/2js . At low temperatures the
tanh is replaced by 1, leading toF̃5Tc /D. The various
results are given in Table I.

IV. QUANTUM HALL EFECTS: A SURFACE APPROACH

In this section we study a surface formulation of quant
Hall effects~QHE’s!. For the usual charge conduction, in th
absence of an external field and given that the surface fi
decay in the bulk~Meissner effect as shown in Sec. III!,
Ampére’s law implies a zero net current—i.e., a net H
conductancesxy50. We focus therefore on spin and therm
Hall effects. These were shown to be quantized first b
network model simulations14 and then by the relation to edg
states.15. The d1 is state has no surface states neare50,
hence no Hall effect within the linear response; there may
a response when the voltage exceeds'2Ds /e. We consider
therefore in this Sec. only thed1 id8 case.

The main ingredient is the chiral nature of the surfa
states. These states have two branches whose spectra v
at ky5Q[6kF /A2. Linearizing near this point the spec
trum for ky5q6Q is

e5vq, ~31!

where v5A8D/kF for a ~100! surface whilev5A8D8/kF
for the ~110! ~up to a small Doppler shift; the actual value
v is not important for the eventual result for the Hall co
ductance!. We wish to rewrite the surface modes in terms
two branchesh1,q ,h2,q where

h1,q5hq1Q↑ , h2,2q5hq1Q↓
† ,

h2,q5hq2Q↑ , h1,2q52hq2Q↓
† , ~32!

with the 6 signs needed for continuity~see below!. Thus,
instead of twoq.0 branches with two↑,↓ spins we have
now two branches, each of a single degree of freedom, w
bothq.0 andq,0. The transformation of Eq.~11! with the
eigenfunctions~10! is

S C↑~r !

C↓
†~r !

D 5 (
q.0

H f q~x!S 1 1

21 1D S h1,qei (Q1q)y

g2,2qe2 i (Q1q)yD
1 f 2q~x!S 1 21

1 1 D S h2,qe2 i (Q2q)y

g1,2qei (Q2q)yD J , ~33!

where the two terms correspond to the two branches n
6Q and
21450
ds

l
l
a

e

e
nish

f

th

ar

f q~x!5A2uQ1qu

j8LykF

sin@xAkF
22~Q1q!2#e2xuQ1qu/j8kF.

~34!

Note, e.g., that theQ6q Fourier components ofC↑(r ) are
2h1,q for both 6q so that the6 signs in Eq.~32! are
needed for continuity of the Fourier transform. We can the
fore define fields with continuous Fourier transforms:

C1~r !5 (
q

ei (Q1q)yh1,qf q~x!,

C2~r !5 (
q

ei (2Q1q)yh2,qf 2q~x!. ~35!

Equation~33! becomes

C↑~r !5C1~r !1C2~r !,

C↓
†~r !52C1~r !1C2~r !, ~36!

or in terms of spinor

C̃~r !5S C1~r !

C2~r !
D , ~37!

we have for the spinor, Eq.~11!,

C~r !5S C↑~r !

C↓
†~r !

D 5S 1 1

21 1D C̃~r !. ~38!

The kinetic energy has the form

HK5 (
q

vq@h1,q
† h1,q1h2,q

† h2,q#

5 E dxdyC̃†~r !@2 iv]y#C̃~r !. ~39!

A crucial observation for QHE’s is the role of impuritie
which in general have the form

Himp5 E dxdyC†~r !t3C~r !V~r !. ~40!

Within the subspace of surface states this interaction
comes, using Eq.~38!,

Himp5 E dxdyC̃†~r !t1C̃~r !V~r !. ~41!

This impurity potential can be ‘‘gauged’’ away15 by a trans-
formation

C̃~r !→expF ~ i /v ! Ey

V~x,y8!dy8t1GC̃~r !, ~42!

which eliminates the impurity potential. Hence the transp
of chiral states is equivalent to that of a pure system. Chi
3-7
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ity implies no channel for backscattering; hence impurit
are indeed expected to be ineffective. As noted in Sec.
~100! surface states with energy.D8 may mix with bulk
states by impurities. The QHE is then limited to temperatu
T,D8.

To evaluate the spin Hall conductance, we define a s
voltageVs(x) (x is a coordinate perpendicular to the edg!
such that (\/2)rs(x)Vs(x) is the coupling energy density t
a densityrs(x) of \/2 spins. This can be represented by
Zeeman term withVs(x)5eBz(x)/mc wherem is the elec-
tron mass; the corresponding force in thex direction is
(e/mc)dBz(x)/dx. The unit of spin conduction, in analog
with e2/h of the charge conduction, is (\/2)2/h5\/8p.
Hence the spin Hall conductancesxy

spin5I s /Vs is

sxy
spin52

\

8p
sgn~DD8!. ~43!

The thermal Hall conduction is derived in a similar wa
from the heat conduction of an ideal gas, yielding

Kxy

T
5

2p2kB
2

3h
sgn~DD8!. ~44!

Hence Kxy /T is also quantized in this weakly disordere
system.

We reconsider now the effect of disorder on the spin H
conductance. Imagine many random Hall systems, each
their own localized chiral states which are weakly coupled
the couplings are too weak, we expect no currents betw
the systems, so overallsxy

spin50. As the coupling strength
increases we expect a finite current to circulate around
ensemble of grains, leading to Eqs.~43! and ~44!. The tran-
sition is in fact induced by disorder: For weak disorder t
argument of Eq.~42! holds and the Hall coefficients hav
their quantized values, Eqs.~43! and ~44!. As disorder in-
creases, opposite chiral channels get coupled, leading to
formation of localized chiral loops which eventually have
insulating behavior, i.e., the Hall conduction vanishes. T
quantum Hall plateau transition14 has been simulated by
network model, showing a novel type of QHE criticality.

V. QUANTUM HALL EFFECTS: A BULK APPROACH

We consider next the effective action of a bulkd1 id8
superconductor and derive its~charge! Hall conductance
sxy(q,v). We assume a thin-film situation with the scal
and vector potentialsf,A being z independent, as well a
Az50. In terms of the Nambu spinors, Eq.~2!, the off-
diagonal Hamiltonian* d2rc†(r )hDc(r ) @Eq. ~A6!# is

hD52@D~2]x
21]y

2!t11D8]x]yt2#/kF
2 ~45!

and we neglect terms with¹u!kF . The action in presence
of the electromagnetic potentialsA,w is then

S5 E d2rdtc†~ i ] t2t3e~ p̂!2hD2S!c,

S5t3~a01a2/2m!1a•p/m2 i“•a/2m, ~46!
21450
s
I,

s
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where e( p̂)5( p̂22kF
2)/2m and we introduce the gauge

invariant potentialsa5 1
2“u2eA and a05 1

2 (]/]t)u2ew.
The u derivatives arise from the spinor transformatio
C(r )→exp@it3u(r )/2#C(r ). Integrating out the fermions
~Appendix B! and expansion to second order ina,a0 leads to
the effective action

Se f f5 E d2qdv

~2p!3
Pmn~q,v!am~q,v!an~2q,v!. ~47!

At T50 andq,v→0 we obtainP005N0 ~density of states
which is N05m/2p in two dimensions! and Pi j 52N0cs

2

where cs5vF /A2, while P0 j (q)5 isgn(DD8)e0i j qi /(4p)
and e0i j is the antisymmetric unit tensor. The latter ter
reflects BTRS and is derived forD8!D.

Integrating out the phaseu we obtain the effective action
in terms of the electromagnetic potentialsA,w:

Se f f$A,w%5e2 E d2qdv

~2p!3 H cs
2q2

cs
2q22v2 FP00uw~q,v!u2

2
i

4p
e0i j qiw~q,v!Aj~2q,2v!1O~v2uAu2!G

2P00S cs

c D 2

uA~q,v!u2J . ~48!

The total electromagnetic action includes also the M
well termsSM5 * d2rdt(EW 22HW 2)/8p. A may also be inte-
grated out, using“•A50, andAz50, leading to the effec-
tive action

Se f f$f%5
e2

x~q,v!
ufu2H F cs

2q2P00

cs
2q22v2

1
q2d

8pe2Gx~q,v!

2
1

~8pc!2

cs
4q6

~cs
2q22v2!2J ,

x~q,v!5P00

cs
2

c2
1

v2q2

~8p!2c2P00~cs
2q22v2!

1
dv2

8pc2e2

2
dq2

8pe2
. ~49!

The coefficient ofufu2 vanishes whenq→0 at the plasma
frequencyvp5(4pne2/m)1/25c/l0; there are no acoustic
plasmons.

The Hall currentJy is identified by a functional derivative
with respect toAy , leading to the Hall coefficient

sxy~q,v!5sgn~DD8!
e2

4p\

cs
2q2

cs
2q22v2

. ~50!

Transport is defined by taking theq→0 limit first—i.e.,
sxy50. Hence the conventional Hall coefficient vanishes,
expected from Galilean invariance.16 A limit in which v
3-8
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SUPERCONDUCTORS WITH BROKEN TIME-REVERSAL . . . PHYSICAL REVIEW B 68, 214503 ~2003!
→0 is taken first yields a quantized ‘‘static’’ conductan
e2/2h which was argued to correspond tosxyÞ0 in presence
of a boundary.13 In the absence of an external magnetic fie
and given a spontaneous magnetization decaying in the
~as shown in Sec. III!, Ampére’s law yields zero total current
and hencesxy50; this is valid also with a boundary and a
external electric field. It is intriguing, however, tha
sxy(q,v) has a nontrivial structure and space resolved m
surement of a Hall current could then probe the full equat
~50!. We note that a result similar to Eq.~50! was obtained
for superfluid 3He.17

VI. CONCLUSIONS

We consider now in more detail the experimental data
the spontaneous magnetization.3 The data show that for a
YBCO disk with a perimeter ofLy'2 cm the spontaneou
magnetization is temperature independent in the ra
80–89 K and is also thickness independent in the range
300 nm with a value of'37f0. Taking lD'l0D0, their
T50 value, and typical YBCO parameters we findF̃
'1023. The temperature and thickness independence i
cate weak BTRS withj8.l. For either thick or thin films
we estimatel/j8'1022 or D8/D'1024. We propose there
fore that increasing the ratioD8/D—e.g., by using over-
doped YBCO~Ref. 2!—one can enhance the spontaneo
magnetization up to a maximum of'103f0 when D8/D
'0.01 within the thick-film regime.

For strong BTRS,l/j8.1, the film thickness matters
i.e., we expect a temperature dependence due to the c
over from thick- to thin-film regimes atd̄'j8 asT→Tc . For
thin films (d̄,j8,l) we obtainF̃5l/12j8; i.e., for YBCO
the total flux can reach 105(D8/D)f0 per cm of boundary,
much higher than thick-film values. The situation of a stro
BTRS with thin films is interesting also as being the mo
likely one to show the paramagnetic anomaly~Fig. 4! at a
temperature'Tc@12(j/j8)2#.

In conclusion, we have shown that surface states ofd
1 id8 superconductor lead to spontaneous magnetiza
which is T independent and thickness independent for w
BTRS, l/j8,1, in accordance with the data.3 For strong
BTRS with l/j8.1, as expected in overdoped YBCO,2 a
crossover from thick- to thin-film behavior can lead toT and
thickness dependence, as well as to an observable para
netic anomaly nearTc . We have shown gapless chiral su
face states for thed1 id8 state which lead to quantization o
the spin and thermal Hall conductances. Thed1 is state has
surface currents only at the~110! surface; its surface excita
tions have a gap and therefore insulating, i.e. no nontri
quantization of Hall conductances. For the charge Hall c
ductance we find a vanishing transport value, however,
structure ofsxy(q,v) has an unusual form which exhibit
the Goldstone mode of the supeconductor.
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APPENDIX A: HAMILTONIAN FOR A d-WAVE
SUPERCONDUCTOR

We derive here the interaction term for ad1 id8 conduc-
tor. A general interaction Hamiltonian in terms of a Nam
spinor, Eq.~2!, is

Hint52 E C†~r1!t3C~r1!C†~r2!t3C~r2!V~r12r2!.

~A1!

The order parameter has the form

eiu(r )t3t1D~r1 ,r2!5^C~r1!C†~r2!&V~r12r2!, ~A2!

where the phaseu(r ) depends only on the center-of-ma
coordinater5(r11r2)/2. The factorD(r1 ,r2) may be com-
plex; however, its real and imaginary components are de
mined by the interactions and their ratio is not allowed
vary in space. Ad-wave superconductor is defined by a m
mentum dependencekx

22ky
2 for the relative coordinate, i.e.

D~r1 ,r2!5D~r ! E eik•(r12r2)~kx
22ky

2!
d2k

~2pkF!2

5D~r !~2]j
21]h

2 !d2~r!/kF
2 , ~A3!

where the relative coordinate isr5r12r25(j,h). The
mean-field Hamiltonian is then

H int
MF5 E d2rd2rC†S r1

1

2
rDeiu(r )t3t1CS r2

1

2
rDD~r !

3@]j
22]h

2 #d2~r !/kF
2 . ~A4!

After partial integrations,

H int
MF5

1

4 E d2rC†~r !@~]x
22]y

2!D~r !eiu(r )t3#t1C~r !/kF
2

2 E d2rC†~r !@]xD~r !eiu(r )t3]x

2]yD~r !eiu(r )t3]y#t1C~r !/kF
2 , ~A5!

where in the first term (]x
22]y

2) operates only within the
square brackets. A d8 component corresponds t
D8(r )]j]hd2(r) and a similar analysis can be followed. W
assume here that all gradients are small—i
u“uu,u“Du/D!kF , hence with the transformationC(r )
→exp@it3u(r )/2#C(r ) yields the off-diagonal Hamiltonian
* d2rC†(r )hDC(r ) where

hD52@D~2]x
21]y

2!t11D8]x]yt2#/kF
2 . ~A6!

The issue of gauge invariance is of some interest.18 The
full interaction form, Eq.~A1!, is manifestly invariant under
C(r )→exp@ i t3 * r A(r 8)•dr 8#C(r ). Whether the mean-field
form is also gauge invariant is a matter of some debate.21,22

From the definition, Eq.~A3!, it seems that
3-9
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D~r1 ,r2!→expF i t3 E r1
A~r 8!•dr 8G

3expF i t3 E r2
A~r 8!•dr 8GD~r1 ,r2!, ~A7!

and thenH int
MF is gauge invariant without having explic

A(r )-dependent terms. This, however, implies that the]x ,]y
terms do not follow the usual substitution law as in the
netic term. For the present work this issue is irrelevant si
we neglect these terms altogether; i.e., we assu
u“uu,u“Du!kF .

APPENDIX B: DERIVATION OF Pij

We derive here an effective action for ad1 id8 supercon-
ductor in terms of the gauge-invariant potentialsam(q,v),
Eq. ~47!. Integrating out the fermionic variables in the par
tion function we arrive at the following action:

Z5 E DFeiS,

S~F!52 i Tr ln Ĝ21, G215G0
212S,

G0
215 i ] t2t3e~p!2hD . ~B1!

We are interested in the long-wavelength limit; also t
order parameter is taken at the extremum of the effec
action with only phase fluctuations. We retain the first a
second orders inS to derive an expansion of the effectiv
action in the fluctuating fieldsam(q,v). The expansion cor-
responds to a one-loop calculation with the coefficientsPm,n
in Eq. ~47! given by ~latin indices stand for space coord
nates!

P00~qv!5
i

2
T (

p,v8
Tr@G~p,v8!t3G~p1q,v81v!t3#,

~B2!

Pi j qv5
i

2m2
T (

p,v8
Tr@G~p,v8!G~p1q,v81v!

3pi~p1q/2! j #2
n

2m
d i , j , ~B3!

P0 j~qv!5
i

2m
T (

p,v8
Tr@G~p,v8!t3G~p1q,v81v!pj #.

~B4!

The diagonal time polarization operatorP00 depends
weakly on temperature and therefore in the limit of sm
momentum and frequencyq→0,v→0 is given by itsT50
value—i.e., the mean-field compressibility,P00(q)5N0.
The space componentsPi , j include the diamagnetic term an
paramagnetic current correlator. In the limitq→0,v→0 they
give the mean-field superfluid stiffness; atT→0, Pi j (q)
52N0cs

2 wherecs5vF /A2. Of special significance is th
off-diagonal polarization bubbleP0,j which is responsible for
21450
-
e
e

e
d

l

the Hall effect. It is a topological effect depending~at least at
small values of thedx,y order parameter! only on the sign of
D8. In the same long-wave length limit we haveP0 j (q)
5 isgn(DD8)e0i j qi /(4p) where e0i j is the antisymmetric
unit tensor.

APPENDIX C: EFFECTIVE ACTION WITH BOUNDARY

We study here the Hall term with boundary and show t
its effect on London’s equation is small at eitherT50 or T
→Tc . The electromagnetic response to the surface cha
and currents couples in general the vector and scalar po
tials A,w with the Hall coefficient. We estimate this effec
first at T50. The Hall term relates the current along th
surface (y direction! and the electric field]w/]x in the x
direction, i.e.,

S 1

lL
2

2
]2

]x2D Ay~x!2
4p

dc
sxy

]w

]x
52

4p

c
j edge~x!.

~C1!

The equation forw(x) involves the Debye screening leng
ld51/A4me2!j8,j,

S 1

ld
2

2
]2

]x2D w~x!54pnedge~x!. ~C2!

The Hall term is neglected here as we wish to estimate
lowest- order effect. The solution with]w/]x50 involves
the Green’s function, Eq.~18!; at x!j8 it has ]w/]x
;ld /j8 while at x@ld

w~x!52
ld

2ekF

2pdj8
E

0

p/2

dz cosz sin2z e22x sin z/j8.

~C3!

The ratio of ]w/]x and j edge terms in Eq. ~C1! is then
1/(32pkFj8)!1; for a ~110! surface replacej8→j. Since
kFj8.kFj@1 is the criterion for excluding the order param
eter fluctuations very nearTc , we can neglect the Hall term
in London’s equation~C1!.

We consider nextT→Tc . The polarization functionP00
Eq. ~B2!, is obtained by replacingN0→N(T) where

N~T!5 (
p

uDu2

2E3
tanhS E

2TD , ~C4!

with E5Ae2(p)1g1
21g2

2 where

g15D~r !cos 2z, g15D8~r ! sin 2z. ~C5!

The polarization function~B3! defines the temperature
dependent London penetration depth 1/lL

2(T).
We consider in more detail the Chern-Simon~or Hall! part

of the action which is the product of scalar and vector p
tentials@Eq. ~B4!#. We consider a superconductor that occ
pies the half space (x.0) where the order parametersD,D8
3-10
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may become functions ofx. The Chern-Simon part of the
action can be written in configuration space in the form

Sc2s5e2T (
v

E drFb1~rr 8!a0~rv!ay~rv!

1b2~rr 8!a0~rv!
]ay~rv!

]x G
r→r 8

, ~C6!

b1~rr 8!5
e i j

2m(
p

py

]

]x
@Fp~r ,r 8!gi~r !#

]gj

]px
~C7!

b2~rr 8!5
e i j

2m(
p

pyFp~r 8,r !gi~r 8!
]gj~r !

]px
, ~C8!

Fp~rr 8!5
2@E8tanh~E/2T!2E tanh~E8/2T!#

EE8~E822E2!
, ~C9!

whereE5E(r ),E85E(r 8). Similary as for the infinite sys-
tem we can integrate out the Goldstone mode:

Sb$A,w%5e2 E drFP00w
2~r !2

c

4p S 1

lL~T! D
2

A2~r !

1b1~r !w~r !Ay~r !1b2~r !w~r !
]Ay~r !

]x G .
~C10!

In this equation we took the polarization function at ze
frequency which is legitimate for finite system~the effective
momentum deviates from zero!. The coefficients b1
5b1(rr 8)ur→r 8 , b25b2(rr 8)ur→r 8 are given as

4pe2b15
e2

\cdj
f 1~x,T!, ~C11!

4pe2b25
e2

\cd
f 2~x,T!. ~C12!

The functionf 1 appears only for a system with a bounda
and depends on the space derivative of the order parame
while f 2 at T50 is the same as for an infinite superco
ductor. We calculate these function forT50 and for T
→Tc ,
C

21450
rs,

f 1~x,T!5j
d

dx
ln@D~D8!(11d)/2# if T50 ~C13!

50.11j
DD8

Tc
2

d

dx
ln@DD8# if T→Tc ,

~C14!

f 2~x,T!51 if T50

50.21
DD8

Tc
2

if T→Tc , ~C15!

with d52/(11D8/D) and D(x),D8(x).0 is assumed.
Thus, in the limitT→Tc we we can writel'l0 /At,b1(r )
50.11(DD8/Tc

2)(d/dx)ln@DD8#/2hcd and b2(r )
50.21(DD8/Tc

2)/2hcd.
The next step involved the equations for electromagn

potentials—generalized London equations by the variati
of the total action~including the Maxwell part! over these
potentials. We consider here the half-plane geometry; i.e.,
superconductor occupies thex.0 half-plane. The nonzero
electromagnetic potentialsAy ,w obey the equations

S 1

ld
2

2
]2

]x2D w2
4pe2

c\
b2

]Ay

]x
2

4pe2

c\
b1Ay54penedge~x!,

~C16!

S 1

lL
2

2
]2

]x2D Ay2
4pe2

c\
b2

]w

]x
1

4pe2

c\
~b12]xb2!w

52
4p

c
j edge~x!, ~C17!

wherenedge, j edgeare the edge charge and edge current d
sities @Eq. ~16!#.

Using the expressions above forb1 ,b2 we find that the
Chern-Simon term affects the spontaneous magnetiza
leading to an additional flux;(D8/D)t which vanishes at
T→Tc ; i.e., it is negligible compared with the other terms
Eq. ~C17! which lead to constant magnetization asT→Tc ,
as shown in Sec. III.
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