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Physics of low-energy singlet states of the Kagome lattice quantum Heisenberg antiferromagne

P. Nikolic and T. Senthil
Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA

~Received 22 May 2003; published 12 December 2003!

This paper is concerned with physics of the low-energy singlet excitations found to exist below the spin gap
in numerical studies of the Kagome lattice quantum Heisenberg antiferromagnet. Insight into the nature of
these excitations is obtained by exploiting an approximate mapping to a fully frustrated transverse-field Ising
model on the dual dice lattice. This Ising model is shown to possess at least two phases—an ordered phase that
also breaks translational symmetry with a large unit cell, and a paramagnetic phase. The former is argued to be
a likely candidate for the ground state of the original Kagome magnet which thereby exhibits a specific pattern
of dimer ordering with a large unit cell. Comparisons with available numerical results are made.
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I. INTRODUCTION

Geometrically frustrated quantum magnets~GFQM! are a
class of magnetic materials with various unusual proper
at low temperatures. The combination of strong frustrat
and quantum effects makes them potentially a source of
strongly correlated physics. One common possible con
quence of frustration is the macroscopically large degene
of the classical ground-states, which makes them very se
tive to even weak thermal and quantum fluctuations. For
ample, the phenomenon of order-from-disorder may occ
the fluctuations may lift the initial degeneracy and yield
symmetry-broken ground state. Alternatively, the initial d
generacy may be completely lifted, in which case the re
is a spin-liquid state. In the traditional point of view, th
liquid state is a result of fluctuations strong enough to
stroy the long-range order of the classical ground state. H
ever, in several GFQM, the starting classical ground stat
typically already disordered, so that the liquid state, even
ally shaped by the fluctuations, may be of a different kind.
general, one can hope to find various exotic phenomen
these systems.

The most studied GFQM are the Kagome and pyrochl
lattices of antiferromagnetically coupled nearest-neigh
spins. They belong to a class of lattices which are compo
of corner-sharing units, where every unit is a small frustra
spin system, like a triangle. Other examples include the
angular lattice frustrated by the higher-order exchange p
cesses and the checkerboard lattice.

This paper is concerned with the Kagome lattice spin1
2

Heisenberg antiferromagnet~see Fig. 1!. Several groups have
performed numerical calculations of spectra on finite clus
with up to 36 sites.1,2 The exact diagonalization2–4 showed
that the ground state of the 36-site Kagome lattice has sh
ranged spin spin and some other correlations. The spin-g
finite, and the extrapolation to the thermodynamic limit su
gests that it remains finite in the infinite lattice. It is, how
ever, small, estimated aroundJ/20, whereJ is the exchange
coupling. Remarkably, however, at energies below the s
gap there appear to be a large number ofsinglet
excitations.2,5 The origin and nature of these states is uncl
~see Refs. 6, 7 for some interesting approaches!. The number
of these states is found to be an exponential function of
0163-1829/2003/68~21!/214415~17!/$20.00 68 2144
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sample size: 1.15N below the spin gap, for even number o
sitesN, and there is no clear gap that separates them from
ground state. There are some indications that these l
energy singlet excitations may also occur in other frustra
quantum paramagnets. Indeed, evidence for such excita
in the multiple-ring exchange triangular lattice spin-1

2 quan-
tum antiferromagnet has been reported in Ref. 8. This led
a suggestion that there was a new spin liquid phase cha
terized by having gapless singlet excitations, which w
named the type-II spin liquid in Refs. 3, 4.

There also are interesting experimental results
SrCr9pGa1229pO19 ~or SCGO, a bilayer spin-3

2 Kagome mag-
net!. Absence of long-range order at low temperatures9 ac-
companied however by a large entropy of low-lyin
excitations10 has been reported. Furthermore, the heat cap
ity is virtually independent of magnetic field, and is not the
mally activated.10 These results suggest that the ground st
of SCGO is not magnetically ordered, and that the lo
energy sector of excited states contains a~possibly gapless!
band of singlet excitations, while spinful excitations a
separated from the ground state by a finite spin gap. Des
the obvious differences between SCGO and the theore
model of a single spin-1

2 Kagome layer, the similarities to th
picture obtained from exact diagonalization of the latter
striking. ~Other unusual phenomena such as spin-glass-
behavior in clean samples9,11 and its speculated coexistenc
with a spin-liquid component10 have also been suggested
happen in SCGO.!

These unusual properties of the Kagome Heisenberg m
net have motivated various theoretical efforts, but our und
standing of the underlying physics is still very incomple
Several controlled limits enable making some definite sta
ments. One of them is the large-N SU(N) limit explored in
Ref. 12 which gives highly degenerate mean-field solutio
and a spin-Peierls order as the 1/N correction. The ordered
state maximizes the number of fluctuating benzenelike h
agonal clusters, where three singlet bonds sitting on a h
agonal plaquette oscillate between two possible configu
tions. However, it remained unknown whether this orde
state would survive higher-order corrections. Another e
plored limit is the large-N Sp(N).13 This generalization of
the spin-12 problem retains the ‘‘spin magnitude’’ as an ind
pendent parameter. For large spins the ground state poss
©2003 The American Physical Society15-1
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FIG. 1. ~a! Kagome lattice;~b! dice lattice~dual to Kagome!. The effective theory for the low-energy singlet degrees of freedom wil
described by a fully frustrated transverse-field quantum Ising model on the dice lattice. Frustration can be achieved in this model
opposite signs to the Ising spin interactions on the normal and thick bonds.
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long-range magnetic order~in a pattern dubbed theA3
3A3 structure!, and the elementary excitations are the s
waves associated with the broken spin rotational symme
For small spins, however, the ground state does not b
any symmetries, and the elementary spin-carrying excitat
are unconfined spin-1

2 bosonic spinons.
An alternative, less controlled, but perhaps more phys

approach is to assume that the physics of the paramag
ground states of the Kagome magnet is described well by
short-ranged valence bonds, which can then be roughly
proximated by the quantum dimers on the Kagome lattice
quantum dimer model resulting from the overlap expans
of the valence-bond states was studied numerically by Z
and Elser.1 Misguich and co-workers have considered tw
simple dimer models yielding the liquid ground states: one
the Rokhsar-Kivelson point,14 and another offering more
similarity to the overlap expansion~different resonant loops
appear with different signs!.15 The former was exactly solve
by mapping to the triangular lattice Ising model, and t
latter has a large zero-temperature entropy. In a broa
framework of frustrated quantum magnetism, Moessner
co-workers have studied various related problems on dif
ent lattices and discussed connections between the d
model and various gauge theories.16

In this paper, we undertake a set of calculations that co
potentially provide considerable insight into the low-ener
singlet excitations of the Kagome Heisenberg antiferrom
net. It has been realized for some time16–18that for a number
of quantum antiferromagnets, the nature of the paramagn
phases is closely related to~and essentially determined by!
the properties of a much simpler model: the fully frustrat
Ising model in a transverse field on a lattice that is dua
that of the original spin system. This connection~which we
briefly review below! may be established in a number
different approaches. One is through a slave-particle the
of such quantum paramagnets. The theory of fluctuati
about the mean-field state in such slave-particle theories
gauge theory which for frustrated magnets17 is a Z2 gauge
theory. This is then related by duality to the transverse-fi
Ising model mentioned above. Another connection is throu
the quantum dimer description of the paramagnetic phase
the original spin system. As explained in Ref. 16, in app
21441
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priate limits, the quantum dimer model may be related to
fully frustrated transverse-field Ising model.

The connection to the transverse-field Ising model is p
ticularly useful for issues related to the low-energy sing
excitations of frustrated quantum paramagnets. First, by c
struction, the Ising model describes only thesingletsector of
the original spin system, and is best to describe states be
the spin gap. These are precisely the states one wishe
understand. Second, one can exploit the relative simplicity
the Ising model to perform calculations that would be e
tremely difficult for the original spin system. For instanc
the Ising model can be simulated by Monte Carlo withou
sign problem, unlike the original frustrated spin model. Th
has been nicely demonstrated in the extensive work
Moessner and co-workers19,20 on such Ising models.

It is therefore of extreme interest to study the particu
Ising model that one may guess describes the singlet se
of the Kagome Heisenberg antiferromagnet. This is a fu
frustrated transverse-field Ising magnet on the dual lat
@known as the dice lattice; see Fig. 1~b!#. This is an interest-
ing model in itself, and appears not to have been exami
before. As described in Appendix B, a Landau-Ginzbu
analysis ~which has been useful21 in analyzing analogous
frustrated quantum Ising magnets on other lattices! shows an
infinitely degenerate set of zero-energy modes in the Ga
ian approximation. This renders the Landau-Ginzburg ana
sis less useful for this Ising model. Thus studying the fu
frustrated quantum Ising model may also contain lesson
its own for the theory of frustrated quantum systems.

The questions of interest are the following: Does th
Ising model have a zero-temperature ordered phase? We
that the combination of frustration and quantum effects co
potentially completely destroy the ordered phase even at
temperature~as happens for instance for the transverse-fi
Ising antiferromagnet on the Kagome lattice19,20!. Generally,
the ordered states of the Ising model describe, in the orig
Heisenberg spin problem, ‘‘confined’’ paramagnets where
spin-carrying excitations are~gapped! spin-1 magnons. The
disordered states of the Ising model describe fractionali
paramagnets where there are~gapped! spin-12 spinons. What-
ever the phase diagram of the dice Ising model, the natur
the excitations is an extremely appropriate question. Inde
5-2
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PHYSICS OF LOW-ENERGY SINGLET STATES OF THE . . . PHYSICAL REVIEW B 68, 214415 ~2003!
if this Ising model has a large number of low-energy exci
tions, they would possibly correspond to the singlet exc
tions of the original Kagome lattice Heisenberg antifer
magnet.

In this paper, we first argue that the fully frustrate
transverse-field Ising model on the dice lattice supports~at
least! two distinct phases. As usual, at large transverse-fie
~Sec. IV! there is a gapped Ising paramagnet. However,
excitations are peculiar since they are either localized or
tremely heavy. At small transverse-fields~Sec. III! there is
also an ordered phase which breaks translational symm
~albeit in a rather complicated pattern with a large unit ce!.
The ordering pattern is best described in the language of
quantum dimer model on the Kagome lattice to which
model is equivalent at small transverse-fields: the dim
crystallize in a honeycomb structure of benzenelike reso
ing hexagons. The elementary excitations have a tendenc
be localized~large effective mass!, and they have a nonzer
finite gap which nevertheless is very small compared to
natural energy scales of the model. We suggest that
phase is what is actually realized in the original Kago
Heisenberg magnet~see Fig. 2!, and not a gapless spin liq
uid. We argue that properties of this phase are consistent
results from the numerical studies and experiments on SC
in two fundamental aspects: the number of singlet states
low the spin gap is very large, and the~singlet! gap~if finite!
is much smaller than the spin exchange energy scale. T
aspects are the most interesting ones about the Kagom
tiferromagnet; the former leading to a large amount of
tropy at low temperatures, and the latter to the mysteri
notion of possibly gapless modes without a broken symm
try. Therefore, this phase may provide a qualitative picture
the singlet physics below the spin gap. In some other asp
the properties of this phase do not seem to agree with
numerics, especially the presence of long-range order, bu
argue that this may be due to the finite-size effects in
numerical calculations~end of Sec. III!. We also performed a
simple Monte Carlo simulation~Sec. V! to show that the

FIG. 2. Description of the suggested ground state of the Kago
quantum antiferromagnet. Dimers formally represent the frustra
bonds of the dual dice-lattice Ising model, but physically they r
resent singlet valence bonds. The translational symmetry is bro
by a unit cell with 36 sites. Dimers on the shaded hexago
plaquettes resonate between the two possible configurations o
hexagon. Also, the six dimers around the central plaquette of e
honeycomb cell resonate in astar-shaped configuration. The
lowest-lying excitations are various excited states of thestars.
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thermal fluctuations do not introduce order from disord
and do not select the honeycomb structure out of many c
sically degenerate dimer coverings. In the appendixes
provide a discussion of various peripheral matters and de
of some calculations.

II. MODELS

We will try to understand the low-energy physics of th
Heisenberg model on the Kagome lattice:

H5J(̂
i j &

Si•Sj , ~1!

where the sum runs over the nearest-neighbor sites. From
numerical exact diagonalization calculations we know t
the ground state has no magnetic long-range order. There
nonzero gap for spin-carrying excitations. We will therefo
focus on possible nonmagnetically ordered phases of
model. A number of different arguments may be provided
relate the properties of such phases to those of the fully f
trated transverse-field Ising model on the dice lattice.

The quantum dimer model is a popular way to captu
some essential physics of quantum paramagnetic gro
states of spin systems. Moessner and Sondhi16 have estab-
lished a connection between the standard hard-core d
model and the fully frustrated Ising model in a~small!
transverse-field on the dual lattice. The connection is m
by noting that in zero transverse-field, the ground states
the classical fully frustrated Ising model are~up to a global
spin flip! in one-to-one correspondence with hard-core dim
coverings of the dual lattice. A small transverse-field ess
tially introduces quantum resonances between dimer c
figurations, leading to the quantum dimer model.

A closely related earlier approach is through a sla
particle mean-field theory of the quantum paramagne
phases of the Heisenberg model. As argued in Ref. 22,
frustrated lattices the theory of fluctuations about the me
field theory is aZ2 gauge theory, where the gauge fields li
on the links of the original~Kagome! lattice. For spin-12 sys-
tems, this gauge theory has nontrivial Berry phase terms~and
was hence dubbed the ‘‘odd’’Z2 gauge theory in Ref. 16!.
Under a duality transformation, this oddZ2 gauge theory
maps onto the fully frustrated Ising model in a transve
field on the dual~dice! lattice.

Finally, as discussed in Refs. 18, 23, it is possible to
rectly formulate the Heisenberg spin model on any lattice
a theory of fermionic spinons coupled to an oddZ2 gauge
theory. In the spin-gapped quantum paramagnetic phases
spinon fields may formally be integrated out, leaving a pu
odd Z2 gauge theory as a description of physics below
spin gap. By the duality transformation alluded to above, o
again obtains the fully frustrated transverse-field Ising mo
on the dual lattice. This approach gives a new flavor to it:
lattice does not have to be bipartite, and there is no nee
rely on the dimer model from the beginning. We presen
formal derivation and analysis in Appendix A. A rough fo
mal estimate for the relative importance of various coupl
constants is also provided.
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With these motivations, the starting point of this paper
the following frustrated Ising model in transverse-field:

H52h(
^ lm&

e lmv l
zvm

z 2K3(
l 3

v l 3
x 2K6(

l 6
v l 6

x

2K313 (
( l 3m3)

v l 3
x vm3

x 2•••. ~2!

This Hamiltonian is defined on the dice lattice, dual
Kagome, and the frustration is realized through thee lm5
61 factors, satisfying on each plaquette the following re
tion:

)
L

e lm521. ~3!

The dice lattice, and a possible choice fore lm are shown in
the Fig. 1~b!. The vx, vy, and vz operators are the Pau
matrices of the fluctuatingZ2 vortex field which correspond
to the singlet degrees of freedom. From now on we will dr
all terms denoted by the ellipses, and keep only the low
order ones involving the isolated 3-coordinated sitesl 3,
6-coordinated sitesl 6, and the pairs of next-nearest-neighb
3-coordinated sites (l 3m3). This theory is an effective theor
of the Kagome Heisenberg magnet, describing the phy
below the spin gap. In the rest of the paper we study
properties of this model in different parameter regimes.
we formally argue in Appendix A, when obtained from th
original Heisenberg model, it is natural to consider the lim
of largeh@K3,6. This is also supported by comparison wi
the results of the numerical studies. Nevertheless we
study the model more generally and not just in the largh
limit.

III. LARGE- h LIMIT: VALENCE CRYSTAL PHASE

Here we analyze the properties of the ground state
excitation spectrum of the frustrated Ising model given
Hamiltonian~2! in the h@K3 ,K6 ,K313 , . . . limit. We will
build the perturbative expansion for the exact low-ene
effective theory.

The unperturbed Hamiltonian, with allKn equal to zero, is
a classical Ising model on the fully frustrated dice lattice, a
every spin configuration is an eigenstate. The ground st
have the minimal number of frustrated bonds~the bonds with
positive energy:e lmv l

zvm
z 521). In trying to construct them

we have to leave at least one bond frustrated on ev
plaquette: otherwise, the product of four bond energ
around a plaquette could not be negative, as required by
frustration condition~3!. It is convenient to return to a dime
representation of these states on the original Kagome lat
we put a dimer on every Kagome bond that intersects a f
trated dice bond. This representation is accurate up to gl
spin flip of the Ising spins. There will be an odd number
dimers emanating from every Kagome site, and the gro
states will be given by the various hard-core dimer cov
ings.

The perturbationsKn introduce quantum fluctuations be
tween different dimer coverings, and lift degeneracy of
21441
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unperturbed ground states. The effect of av l
x operator in the

dimer picture is to toggle the dimer occupancy on all bon
of the Kagome plaquette which corresponds to the dice sil.
Since we want to construct the effective theory, we need
find the combinations ofv l

x operators which transform on
hard-core dimer covering into another, possibly throu
some virtual states. Such processes can be described as
motion along theflippable loops, and we will call them the
loop flips ~see Fig. 3 for explanation!. It is convenient to
introduce the following terminology: if a plaquette carries
dimers on its bonds, we will call it adefectplaquette, and if
it carries a flippable loop on its bonds, we will call it
perfectplaquette. A plaquette can be perfect only if it has
even number of bonds. Of special interest are the elemen
flippable loops that enclose only one hexagonal plaque
and they are explained in Table I.

The lowest-order terms in the perturbation theory are
single plaquette flips. TheK3 and K313 terms cannot con-
nect between two hard-core dimer coverings, so that to

FIG. 3. ~a! An example of a flippable loop. The flippable loop
are tangential to the dimers, so that they cannot contain only
end of any dimer.~b! An example of a loop flip between the tw
possible hard-core dimer arrangements on it. This loop contain
hexagon and a bowtie pair of triangles. The loop is flipped throu
a virtual state by the successive operations of2K6v1

x and
2K313v2

xv3
x , where 1, 2, 3 refer to the dice lattice sites whic

correspond to the depicted Kagome plaquettes.

TABLE I. The elementary flippable loops:~a! flippable hexa-
gon, ~b! flippable eight-bond loops~rhombus, arrow, and trapeze
from left to right!, ~c! the star,~d! flippable ten-bond loops. The
elementary flippable loops by definition enclose only one hexag
For arbitrary dimer covering, a unique elementary flippable lo
can be found on every hosting hexagonal plaquette: it goes thro
all the hexagon sites, and includes those surrounding trian
which hold a dimer on a bond that does not belong to the hexag
The hexagon in~a! is perfect, while the hexagon in~c! is a defect
hexagon. The length of the elementary loop is directly related to
number of dimers sitting on the hexagon, which is equal to
number ofdefecttriangles around the hexagon: 3 in~a!, 2 in ~b!, 1
in ~d!, and none in~c!.
5-4
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lowest order the effective theory is

H̃52Nh2K6W6 , ~4!

where N is the number of Kagome sites, andW6 is the
kinetic-energyoperator of the perfect hexagons:

~5!

The sum runs over all hexagonal plaquettes of the Kago
lattice. The quantum fluctuations created by the kinetic te
yield the ground states in which the number of resonat
perfect hexagons is maximized. This is an exact statem
since all perfect hexagon flips commute with one another
illustrated in Fig. 4, the perfect hexagons can never
nearest-neighbors, and therefore cannot affect one anoth
order to gain more insight about these states, we wan
recall some observations from Refs. 12 and 24. The t
number of dimers in a hard-core dimer covering on
Kagome lattice isN25N/2, and the number of triangula
plaquettes is Nn52N/3, so that N253Nn/45(1
21/4)Nn . Since a triangle can carry at most one dimer,
see that one quarter of all triangles are thedefectsin any
hard-core dimer covering:Nnd5Nn/4. Next, we note that
every perfect hexagon has exactly three neighboringdefect
triangles, and since no two perfect hexagons can be ne
bors, those defect triangles are not shared between the
follows from this that the total number of perfect hexago
has an upper bound:N

˝p<Nnd/35Nn/125N
˝

/6. The
maximum possible density of perfect hexagons is one per
hexagonal plaquettes, and it can be achieved in a variet
ways. In Fig. 5 we show two characteristic possibilities:~a!
the honeycomband ~b! the stripe state. In general, thes
states are constructed by placing the perfect hexagon
close as possible to each other. The closest they can be i
next-nearest-neighbors, provided that between them is
other hexagonal plaquette, and not a bowtie pair of triang
(q), because in the latter case there would have been a
~the center of the bowtie! involved in no dimers. This rule
allows one to arrange perfect hexagons in strings which m
21441
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be straight, bent at an angle of 120°, or forked into two n
strings at the 120° angles. The stripe state is an exampl
straight strings, while the honeycomb state has strings fo
ing at each perfect hexagon.

Before we proceed with the next order of the perturbat
theory, we need to make some additional remarks. If we lo
at the elementary flippable loops realized on the various h
agonal plaquettes in Fig. 5, we observe that between e
two closest perfect hexagons there is an eight-bond flippa
loop, right on the sides of the strings there are only ten-bo
flippable loops, and in the case of the honeycomb state, t
is a 12-bond star-shaped flippable loop sitting at the cente
every honeycomb cell. Also, one never finds anarrow-
shaped eight-bond flippable loop between two perfect he
gons. These are quite general features of the states with
maximum number of perfect hexagons, which we explain
more detail in Fig. 6.

At the second order of perturbation theory, we need
include the combinations of twoK3 , K6, and K313 flips.
One of them is the flip on the arrow-shaped eight-bond fl
pable loop@a hexagon, and a bowtie: see Fig. 3~b!#:

DHar
(2)52

K6K313

2h
W8

(ar); ~6!

FIG. 4. Two perfect hexagons cannot be nearest-neighbors,
the perfect hexagon flip does not affect length of any other elem
tary flippable loop. Consider a perfect hexagon 2 being flipped fr
the configuration~a! to ~b!. The flippable loop on hexagon 1 has
go through the sitesA, B, and C, and therefore pass through th
shaded bonds in order to be tangential to the dimers. As a co
quence, it has to include at least one triangle, so that it cannot
perfect hexagon, and also, its length is not affected by the flip
hexagon 2.
he perfect
loops, the
FIG. 5. Two hard-core dimer patterns that maximize the number of perfect hexagons:~a! honeycomb pattern;~b! stripe pattern. The
perfect hexagons are shaded to guide the eye. Note that the eight-bond flippable loops appear only as ‘‘connections’’ between t
hexagons, and the ten-bond flippable loops touch exactly one perfect hexagon. The honeycomb pattern has the 12-bond flippable
stars: they sit inside the honeycomb cells.
5-5
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FIG. 6. ~a! The hexagonal plaquette between a pair of perf
hexagons always hosts an eight-bond flippable loop. Once the
fect hexagons 1 and 3 are placed, the only way for all of the siteA,
B, C, andD to be involved in dimers is to pairA, B, andC, D. Then,
the hexagonal plaquette 2 carries two dimers on its bonds,
therefore hosts an eight-bond flippable loop. However, it canno
an arrow-shaped loop~see Table I!, because both shaded bowtie
must have one normal and one defect triangle due to the pe
hexagons, and an arrow-shaped loop must contain a bowtie
two normal triangles.~b! Only ten-bond flippable loops surroun
the perfect hexagon strings. Consider a string and a neighbo
hexagon 1. One cannot put there a six-bond flippable loop, bec
this would be a perfect hexagon next to another perfect hexa
from the string. A star-shaped 12-bond flippable loop is not an
tion either, because this hexagon always has one neighboring d
triangle from the string. There is only one way to place two dim
on the bonds of hexagon 1 in attempt to create an eight-bond
pable loop on it. However, this requires the siteA to pair with either
B or C, which in turn makes it impossible for another string
perfect hexagons to take its normal place. At least a spot is los
a perfect hexagon, and this costs energyK6! Similar is true for the
corners of the outward bending strings, while this issue does
occur for the inward bending, as in the case of the honeycomb s
since 10-bond loops are the only choice there. Relative position
various kinds of elementary flippable loops can also be establis
by using the relation between their length and the number of de
triangles around them~Table I!. When the number ofperfecthexa-
gons is maximized, all defects are placed around them (Nnd

53N
˝p), and the length of any flippable loop depends on the nu

ber of its perfect hexagon neighbors.
21441
All other allowed combinations flip the same plaquette twic
leaving the dimer configuration unchanged. A hexago
plaquette can be flipped twice if it is not a flippable loop:
has to be the part of an elementary flippable loop with 8,
or 12 bonds. As the potential energy associated with the
is different in each case, we need to know the numbersUn of
then-bond flippable loops in the dimer configuration in ord
to write the appropriate contribution in the effective theor

DH
˝32
~2! 52

K6
2

4h
U82

K6
2

8h
U102

K6
2

12h
U12. ~7!

The number operatorsUn are explicitly written in Table II.
We treat the triangular plaquette double flips similar

Every triangle can be either adefector normal in any dimer
covering. The defects contain no dimers, while the norm
triangles contain one dimer. If their numbers areNnd and
Nn , respectively, then the contribution of the triangle doub
flips is

DHn32
(2) 52

K3
2

6h
Nnd2

K3
2

2h
~Nn2Nnd!52

K3
2

h

5N

18
. ~8!

We have used the identitiesNnd5Nn/4, and Nn52N/3,
whereN is the number of Kagome sites. Finally, it remains
consider the double flips of bowties (q). They can contain
either one defect triangle or none. For every defect there
three bowties containing it, while the total number
bowties in the lattice is equal to the number of Kagome s
N. Therefore, the contribution of the bowties is

DH
q32
~2! 52

K313
2

8h
3Nnd2

K313
2

4h
~N23Nnd!

52
K313

2

h

3N

16
. ~9!

We see that the triangle and bowtie contributions reduce
mere constants for arbitrary dimer covering. Then, it pays
investigate closer the contribution of double hexagon fli
First, we want to express the number of defect triangles
terms of theUn operators. This can be achieved by noti
that every type of elementary flippable loop has a fixed nu
ber of both kinds of triangles~see Table I!: Nnd5(3U6
12U81U10)/3, where the factor of 1/3 corrects the ove
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TABLE II. The flippable loop number operators:Un counts the number ofn-bond flippable loops in the dimer configuration. The
correspond to thepotential energyin the dimer model.
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counting of triangles shared between the elementary
pable loops. Using this, we can eliminateU8 andU10 from
Eq. ~7!:

DH
˝32
~2! 52

K6
2

12h
U121

3K6
2

8h
~U62Nnd!. ~10!

Now, we can add Eqs.~6!, ~10!, ~8!, and ~9!, and write the
effective theory to the second order:

H̃52Nh2K6W62
K6K313

2h
W8

(ar)1DHn32
(2) 1DH

˝32
~2!

1DH
q32
~2! . ~11!

The ground-state of this Hamiltonian can be obtained by
second-levelperturbation theory in which the unperturbe
Hamiltonian is given by Eq.~4!. The W8

(ar) term slightly
spreads the ground-state wave function from the sharp h
eycomb or a stripelike state, but the correction to the grou
state energy due to this term appears only at the hig
orders: both honeycomb and stripe states cannot contain
arrow-shaped eight-bond flippable loops, and even if th
could, the flip would destroy the two neighboring perfe
hexagons, so that^0uW8

(ar)u0&50. Therefore, the energy shi
is dominated by thepotential-energypart of Eq.~11! involv-
ing Un operators. This part fully commutes with Eq.~4!: the
perfect hexagon flipsW6 cannot change the length of an
elementary flippable loop~see Fig. 4!, and theU operators
simply count the number of flippable loops with the giv
length. Only the double hexagon flips~10! select the actua
ground state: when the number of perfect hexagons is m
mized, theU6 operator behaves as a number, taking
valueN

˝
/65N/18, so that the potential energy is controlle

by the number of the 12-bond star-shaped flippable loo
The honeycomb state@Fig. 5~a!# maximizes their number
and therefore the quantum fluctuations select it as the gro
state. The degeneracy of this ground state is exponent
large in the system size, at this order of the perturbat
theory. It comes from the freedom to flip any star loops wi
out energy cost.

Various new kinetic and potential terms appear in the
fective dimer model at the higher-orders. They further spr
the ground-state wave function, but its main component
mains the honeycomb structure. The ground-state de
eracy is finally lifted when the star kinetic terms appear~only
the star flips do not destroy the perfect hexagons!:

~12!

In terms ofKn /h, this first happens at the fourth order b
combining the flips on one hexagon and three bowties:

DHstar
(4)}2

K6K313
3

h3
W12. ~13!
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However, since in principle it might happen thatK313

!K3
2/h, the dominant star kinetic term may occur when

hexagon flip is combined with six triangle flips:

DHstar
(7)}2

K6K3
6

h6
W12. ~14!

In any case, the ground state will be the honeycomb s
with resonating perfect hexagons and stars, while the low
lying excitations will be gapped. The gap is very small,
the order ofK6K313

3 /h3 or K6K3
6/h6, which is much smaller

than the spin exchangeJ, sinceKn,J in the effective theory
~2!. The only remaining degeneracy is 12-fold, due to t
broken translational symmetry~the honeycomb unit cell ha
12 hexagonal plaquettes!.

It is also interesting to understand this ground state in
dual Ising picture. As explained at the beginning of this s
tion, a dimer on the Kagome lattice represents a frustra
bond of the dual Ising model on the dice lattice. Eve
Kagome dimer covering corresponds to two Ising spin c
figurations on the dice lattice, related to each other by
global spin flip. If the Kagome dimers are flipped along
flippable loop, the corresponding effect in the dual picture
the simultaneous flip of all dice Ising spins which sit ‘‘in
side’’ the Kagome plaquettes enclosed by that flippable lo
Now we can translate the description of the ground sta
Every resonating perfect hexagon is aflippable spin on a
six-coordinated site of the dice lattice, in the state of eq
superposition of ‘‘up’’ and ‘‘down.’’ Every resonating star
shaped flippable loop is aflippable cluster of seven Ising
spins coherently fluctuating between two states of defi
spin orientation~one spin is on a 6-coordinated site, and t
other six are on the surrounding 3-coordinated sites!. How-
ever, certain dimers are static in the ground state: two
them reside between every pair of neighboring perfect he
gons. In order to describe them in the dual language, i
sufficient to arrange the corresponding Ising spins on
dice lattice in some appropriate static configuration. The
fore, the ground state breaks the global spin-flip symmetry
the dual Ising model, with 3/4 of all spins assuming a fix
orientation, and 1/4 of spins fluctuating. The translatio
symmetry is broken only by the arrangement of frustra
bonds, and locations of the fluctuating spins; there need
be actual long-range order in terms of the orientation of n
fluctuating spins, since this depends on a relatively arbitr
assignment ofe lm561 in Eq.~2!. In the dual language, this
state is formed first by minimizing the number of frustrat
bonds, and then by maximizing the number of flippable sp
which gain the kinetic energy from the transverse field.

Since this is a valence-bond crystal phase which bre
the spin-flip symmetry of the dual Ising model, it is also
confined phase. The elementary spinful excitations
gapped spin-1 magnons. We also note that this phase is s
against the weak fluctuations of the large loops that we h
ignored from Hamiltonian~2!. The stability has been dem
onstrated in the perturbation theory.

At the end, we ask what changes if the system becom
finite. As we have seen, the translational symmetry is bro
in the thermodynamic limit. The honeycomb pattern
5-7
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ground states are 12-fold degenerate and related to one
other by translations. When the lattice becomes finite,
degeneracy is lifted, and no symmetry is spontaneously
ken. Dimer flips on some large flippable loops~which en-
close a finite portion of the sample plaquettes! can translate
the entire dimer configuration, and mix the states that br
the translational symmetry. The coupling constants for s
flips in the dimer effective theory define the mixing ener
scale, which then depends on the sample size. The spec
of a finite system will not accurately reflect the spectrum
the infinite system. The accuracy is set by the mixing ene
scale, because it determines the fine splitting of the ene
levels which would be 12-fold degenerate in the thermo
namic limit. In order to make sure that the finite-size effe
does not obscure the signature of the long-range order in
spectrum, the mixing energy scale must be made m
smaller than the singlet gap~the smallest-energy scale in th
thermodynamic limit!. However, even forN536 sites it
could be comparable with the already small singlet gap,
the spectrum would look randomized. In our opinion, this
a likely possibility, becauseN536 is the smallest sampl
size which could admit the honeycomb valence-bond cry
~one unit cell!, and give rise to such a small singlet ga
Another finite-size effect can be the absence of the spi
confinement: it is noticeable only at distances much lar
than the size of the honeycomb pattern unit cell, so t
seeing some signature of it would require at leastN572
sites.

Ignoring the aspects that may be sensitive to the sys
size, we compare the honeycomb patterned state with
numerical data on the 36-site samples. First, the presenc
a very small singlet gap is not inconsistent with the num
ics. Second, the number of singlet states below the spin
is comparable, which we argue in the following. If th
boundary conditions allow the honeycomb pattern, then th
will be at most one star and two perfect hexagons forN
536 sites. Some basic excited states can be obtained
exciting the star and two perfect hexagons in various com
nations (23 total, including the ground state!, and each would
be 12-fold ‘‘degenerate’’ in the thermodynamic limit. Th
other are obtained by departing from the honeycomb pat
and removing some perfect hexagons. Their total num
below the spin gap (Kn,J;spin gap) is therefore greate
than 23312596. This is comparable with the number o
tained from numerics: 1.15N;153 below the spin gap.

IV. SMALL- h LIMIT: FRACTIONALIZED SPIN-LIQUID
PHASE

The limit h!K3 ,K313 ,K6 , . . . is convenient to analyz
directly in the frustrated Ising model. Ifh vanishes, then al
Ising spins in Eq.~2! are aligned with the transverse fields
the x direction, making the ground state completely dis
dered and uncorrelated in terms ofv l

z . An elementary exci-
tation is created when one spin is flipped against
transverse-field. These excitations areZ2 vortices or visons
according to Eq.~A7!, and they are localized and gappe
For finiteh, the visons can in principle hop between sites a
lower their gap by acquiring kinetic energy. However, f
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small h the gap is guarantied to persist, and the ground-s
remains disordered, and unique.

In the following we will assume thatK3 andK6 are posi-
tive, and we will ignoreK313 and other terms for simplicity.
One way to study the properties of the excited states is
consider perturbatively the effective theory for one vison.
the lowest order, this effective theory is simply the neare
neighbor hopping Hamiltonian:

H̃52h(
^ lm&

~ u l &e lm^mu1H.c.!12K3(
l 3

u l 3&^ l 3u

12K6(
l 6

u l 6&^ l 6u, ~15!

wherel 3 andl 6 are the 3- and 6-coordinated sites of the d
lattice, andu l &5v l

zu0&. It can be easily diagonalized in th
momentum space by working with the 6-site element
cells of the tile in Fig. 1. It was shown in Ref. 25 that fo
K35K6 the energy spectrum of this model is complete
dispersionless and divided into three macroscopically deg
erate levels. Remarkably, this remains true for arbitrary v
ues ofK3 andK6:

E152K6 ,

E252K32A6h,

E352K31A6h. ~16!

Therefore, the visons are localized at the lowest order
perturbation theory, in the similar way to a single electron
the magnetic field~this analogy does not hold generally!. A
natural question to ask is whether this localization persist
higher or maybe all orders of perturbation theory. We try
find an answer by considering the time-ordered Gree
function in the interaction picture:

iG~ l ,m;t l ,tm!5
^0uTv l

z~ t l !vm
z ~ tm!Su0&

^0uSu0&
, ~17!

whereT is the time-ordering operator, and

S5T expS 2 i E
2`

`

dtH8~ t ! D ,

vz~ t !5eiH 0tvz~0!e2 iH 0t. ~18!

The perturbationH8 is the vison-hopping part of Eq.~2!,
while H0 is the vison potential energy. The expansion ofS in
Eq. ~17! generates many vacuum expectation values of
products ofvz operators, which are then integrated over t
internal time variables. These vacuum expectations are e
to calculate for any given set of time moments: thevz(t)
operators can be evolved tot50 when they simply flip a
spin, while the evolution partse6 iH 0t only introduce a phase
factor, since they always act on aH0 eigenstate. We imme
diately see that a vacuum expectation that appears in Eq.~17!
can be nonzero only if the product ofvz is made from a path
of bonds bridging between the sitesl andm. We only need to
turn our attention to theconnectedclusters of bonds.
5-8
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Consider a particular pair of sitesP and Q, and the
nth-order term in the perturbative expansion
iG(P,Q;tP ,tQ). Its value, proportional tohn, is contributed
separately by all paths of the lengthn betweenP andQ. The
two paths cancel out each other if they enclose an odd n
ber of rhombic plaquettes: the total ‘‘flux’’ through the loo
formed by them isp, that is,) loope lm521. Let us distin-
guish the two types of paths:simpleandcomplex. The simple
paths never visit any site more than once, while the comp
paths visit at least one site more than once. The comp
paths can be obtained from the simple ones by adding
loop segments to them, where a loop may take some bo
an even number of times. We illustrate this in Fig. 7.

For any given simple path between some twodistantsites
P and Q, we can construct a path that cancels it out.
demonstrating this, we also explore what the sufficient d
tance between theP andQ is.

~a! Consider first the simple paths that contain only t
three 6-coordinated sites depicted in Fig. 8~a!. If the path
goes through the sitesA1-B1-A2, and never visits the siteB2,
then it can be canceled by the path that goes thro
A1-B2-A2, and continues beyond as the original one. T
only way to avoid the path cancellation is to visit all th
depictedB sites, and this can be done only by choosing
path’s end points among them~otherwise, more
6-coordinated sites would belong to the path!. We see that in
this case the path’s end points are the next-nearest-neigh

~b! Next, consider the paths that contain the fo
6-coordinated sites depicted in Fig. 8~b!. For the same reaso
as before, all theB sites must be included in the path, othe
wise there will be another path that cancels it out. But t
time, in attempting to do so we would have to introdu
another 6-coordinated site into the path~the remaining
neighbors of the depictedB sites—analyzed as the case~c!,
since the path ends can take only two out of threeB sites left
‘‘outside’’ of the straight segment of the path. We can alrea
see that all the simple paths with more than th
6-coordinated sites arranged in a chain cancel out. This c

FIG. 7. Examples of the paths between the sitesP and Q: ~a!
simple path;~b!–~d! complex paths. The thin-line doublets aroun
the bonds in~c! and ~d! mean that there are loops going throu
those bonds twice.
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may, of course, bend, but somewhat special situation oc
when a triplet of 6-coordinated sites (A1 ,A2 ,A3) of the path
sits on the three touching plaquettes, as shown in Fig. 8~c!.

~c! Again, all theB sites must be visited, or the path
canceled out, and one of them must be a path’s end poi
no other 6-coordinated sites may belong to the path. Sinc
B sites are now the next-nearest neighbors, we may try
choose another 3-coordinated site further away as the pa
end point, and construct the path like the one plotted with
solid line in Fig. 8~c!. But, again there is a path that cance
it out, and it is plotted with the dashed line. By trying to ad
more 6-coordinated sites to the case~c! we would only have
too manyB sites to cover as before. In conclusion, all t
simple paths whose end points are separated more than
next-nearest neighbors must cancel out.

Many complex paths are also canceled, namely, whene
we can construct another path of the same topology,
between the same end points, which encloses an odd num
of plaquettes with the original one. However, for some pa
this construction is not possible, and a different approac
needed in order to see whether they are canceled out or
An example of such a path which appears at the 12th orde
the perturbation theory is shown in Fig. 7~d!. The complex
paths between the sites further away than the next-nea
neighbors appear only above the sixth order, so that be
this order Green’s function between distant sites~and arbi-
trary times! strictly vanishes, and the visons appear stric
localized.

At present, we cannot tell whether the vison localizati
persists to all orders. If not, they would have an extrem
large inertia in the small-h limit, and this would be a mecha
nism for creation of the large quasiparticle effective ma
The possibility of vison localization is also hinted by th
Monte Carlo calculations presented in Sec. V: namely,
spatial vison-vison correlations effectively vanish at sepa
tions beyond the next-nearest neighbors. We would like
contrast this with another case of a fractionalized spin liq
on the Kagome lattice: in a particular easy-axis limit e
plored in Ref. 26 the vison correlations are short ranged,
they exhibit a clear exponential decay over a signific
range of separations.

Finally, we note that the phase obtained here is also
unconfined phase. The elementary singlet excitations
gapped visons, while the elementary spin-carrying exc
tions are gappedS5 1

2 spinons.

V. MONTE CARLO RESULTS

In order to gain some more insight into the frustrat
transverse-field Ising model, we attempted to study it n
n

e

FIG. 8. If the paths contain
only the marked 6-coordinated
sites, they would have to contai
also all of the marked 3-co-
ordinated sites in order not to b
cancelable~see the text!.
5-9
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P. NIKOLIC AND T. SENTHIL PHYSICAL REVIEW B 68, 214415 ~2003!
merically using the classical Monte Carlo technique. T
quantum Ising model~2! translates to the three-dimension
~3D! classical Ising model on the time-stacked dice-latt
layers: the corresponding Boltzmann weights are all posi
and hence the model can be simulated by Monte Carlo w
out a sign problem. We reliably measured the spin-spin c
relations in the disordered phase, and answered the que
of whether the thermal fluctuations alone can yield ord
from-disorder as the quantum fluctuations. However,
could not truly explore the complete phase diagram and
nature of the phase transition with this simple classical te
nique; for those purposes, a more sophisticated Monte C
technique is needed.

The model we study is given by the action analogous
Eq. ~2!:

S5(
t

F2h̃(
lm

e lmv l ,tvm,t2K̃3(
l 3

v l 3 ,tv l 3 ,t11

2K̃6(
l 6

v l 6 ,tv l 6 ,t11G . ~19!

We have to regard this problem as a classical one, bec
the quantum limith̃→0 and K̃3,6→` is not accessible. If
K̃35K̃65K̃, two regimes emerge, depicted in Fig. 9. In o
der to obtain this diagram, we scan alongK̃}h̃ lines, and
measure the heat capacity, usingh as the inverse ‘‘tempera
ture’’ b; then we record position of the heat-capacity pe
and join the peak positions (h̃,K̃) from different scans into a
crossover line between the two regimes.

For smallh̃ andK̃ a disordered regime occurs. It is cha
acterized by seemingly vanishing spatial spin-spin corre
tions beyond the nearest-neighbor sites, as shown in Fig
while the time correlations decay exponentially. This regi
corresponds to the disordered phase and the small-h limit of
Eq. ~2!. The numerical result for the spatial correlations

FIG. 9. The regimes of the~211!D classical Ising model on the

fully frustrated dice lattice in Eq.~19!. K̃[K̃35K̃6. The crossover

line was obtained by joining the points (h̃,K̃) at which the heat

capacity is peaked for several fixed ratiosK̃/h̃. In defining the heat

capacityh̃ was treated as the inverse temperatureb.
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consistent with the statement made in Sec. IV that the vis
may be localized in the vicinity of the next-nearest-neighb
sites.

For largeh̃ and K̃, a ‘‘dimerized’’ regime occurs: if the
frustrated dice bonds~with positive bond energy! are plotted
as dimers on the Kagome lattice~wherever a Kagome bond
intersects a frustrated dice bond!, then a hard-core dime
covering is obtained. Our present method was not able
establish whether the crossover line between these two
gimes is actually a phase-transition line or not. Howev
based on our analytical study we expect that this is the ph
transition. Since large coupling constants yield the dimeriz
regime in which all dimer coverings have the same acti
the remaining phase properties can be decided only by
tropy, which is a manifestation of quantum fluctuations.
the Ising language, once the action is fixed to its low
value, the maximum entropy state has the largest numbe
flippableclusters of spins~free to fluctuate without changing
the action!. In the dimer language, the honeycomb patte
will be selected, in a mechanism essentially analogous to
obtained in Sec. III. Indeed, every perfect hexagon of dim
represents aflippable spin on the dice lattice. Once the
number is maximized by the entropy, the only other elem
tary flippable loops that could possibly resonate without
tion cost are the stars, and to maximize their number,
perfect hexagons must arrange in the honeycomb patt
Unfortunately, our simulation could not reach equilibrium
this regime, at least due to very slow dynamics at large c
pling constants.

Since the quantum fluctuations are capable of produc
the order-from-disorder, it is natural to ask whether the th
mal fluctuations are capable too. If we set the transverse-fi
couplings in Eq.~2! to zero, we obtain the classical two
dimensional Ising model on the fully frustrated dice lattic
In this case, the Monte Carlo easily reveals that there are
phase transitions, measured through the ‘‘heat capacity,’’
the model is always in its disordered phase. Therefore,
thermal fluctuations alone cannot introduce a long-range
der, even whenh̃ becomes large and the dimerized regim
occurs. The presence of the transverse fields is crucial for
entropical selection of a long-range-ordered state in
Monte Carlo.

VI. DISCUSSION: IMPLICATIONS FOR THE KAGOME
QUANTUM HEISENBERG MAGNET

The analysis in the preceding sections has establis
some properties of the fully frustrated transverse-field Is
model on the dice lattice. Specifically, we analyzed the t
limits of small and large transverse-fieldsKn in Eq. ~2!, and
described the two distinct phases obtained in those limits
this section, we consider the lessons for the original Kago
Heisenberg magnet. The disordered phase of the Ising m
(h!Kn) has a unique ground state and a clear gap in
spectrum. This will describe spin-liquid phases of the ori
nal Kagome magnet. On the other hand, the honeyco
dimer phase (h@Kn) breaks translational symmetry with
unit cell of 36 sites. This phase has a number of interes
properties. It clearly describes a valence-bond crystal ph
5-10
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FIG. 10. Monte Carlo measured spatial spin-spin correlations in the disordered phase. The sample size was 20318320 unit cells~each

with six sites!, with h̃50.15 andK̃35K̃650.75. The type of the site at the origin and the spatial direction are shown in the legend.
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of the original Kagome magnet with a large unit cell. T
spinful excitations will be gapped spin-1 magnons. Howev
below the spin gap this state has a large number of l
energy excitations, with a nonzero gap which is neverthe
much smaller than the spin exchange. This is in agreem
with the numerical calculations2 on the Kagome Heisenber
magnet which also revealed a large number of seemin
gapless singlet excitations below the spin gap. Based on
we propose the honeycomb valence-bond crystal phase
description of low-energy physics of the Kagome latti
quantum antiferromagnet.

However, when making comparison with the numeri
one has to keep in mind the limitations of both approach
This theory is not able to provide quantitative informati
about the energy levels relative to the spin exchange; it o
reveals that the singlet gap is much smaller than the
change scale. On the other hand, the numerical exact di
nalization can be performed only on very limited syste
sizes, which at best contain as many sites as the unit ce
the valence-bond crystal that we propose. Due to this, s
properties deduced by the finite-size scaling~extrapolation!
may not be realized in the thermodynamic limit: the ex
magnitude of the singlet gap, the number of singlet sta
below the spin gap, the structure of the singlet spectr
below the spin gap~from which one learns about broke
symmetries!, confinement, etc. In other words, assuming t
the honeycomb valence-bond crystal is realized in
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Kagome antiferromagnet, the finite-size scaling should
well beyond 36 sites in order to yield more reliable resu
However, some gross features of the low-lying spectrum
reliably obtained in both approaches, and this is where t
agree: the presence of a large number of singlet excitat
below the spin gap and the smallness of the singlet gap.

Quite generally, we expect that analysis similar to th
presented in this paper is applicable to a variety of spin m
els in paramagnetic phases. These include the checkerb
lattice and various other lattices frustrated by the ne
nearest-neighbor exchange. Then, if we were to genera
our hypothesis to other models with near-neighbor-excha
interactions, we would expect that theh@Kn limit always
describes the effective theory for singlet excitations. T
theory is a quantum dimer model dominated by the kine
energy. A naive guess for the ground state is that the sma
resonating flippable loops assume the maximum poss
density, typically leading to aplaquettelong-range order. In-
deed, suchplaquette phases have been observed in t
Heisenberg model on the checkerboard lattice,27 and the
phase diagrams of the quantum dimer model on the squa28

and honeycomb29 lattices, while a dimer resonant valenc
bond phase was found on the triangular lattice.30 In this pa-
per we demonstrated analytically a plaquette phase in
Kagome lattice Heisenberg model, while a numerical wo
showed a similar bond order in the one-dimensional Kago
strip.31 The peculiarity of the Kagome lattice is that th
5-11
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maximum density of smallest resonating flippable loops
not sufficient to lift the macroscopic degeneracy of t
ground states. This is why the singlet gap is extremely sm
In other lattices, the checkerboard, for example, the deg
eracy is easily lifted, and the singlet gap is fairly significa

One of the remaining fundamental questions is whet
the spin liquids with gapless singlet excitations~type II! re-
ally exist in the quantum spin models, as suggested in R
3, 4. The only known examples that numerically exhibit su
properties are the Kagome lattice Heisenberg model2 and the
triangular lattice antiferromagnet with ring exchange.8 In the
latter case, a small ring-exchange coupling destroys the N´el
order and creates a spin liquid, while at a slightly larg
coupling a singlet-gap is gradually opened. Armed with o
experience on the Kagome lattice, we speculate that the
of the triangular lattice is also not a type-II spin liquid wi
gapless singlet states. Probably this phase will not be fo
in other quantum spin models either.

Another interesting feature that emerged from our cal
lations is a rather small~possibly zero! dispersion of the
excitations in either phase on the dice lattice. The elemen
excitations of both ordered and disordered phases appea
persionless at least to the sixth order of perturbation the
Although at present we do not know whether or not t
persists to all orders, we speculate that it might be the c
at least in the disordered phase. Indeed, a simple Gaus
Landau-Ginzburg analysis gives a dispersionless spect
In Appendix B we study theO(N) generalization of the Ising
model on the fully frustrated dice lattice and recover a d
persionless spectrum in the large-N limit. In addition, we
show that in this approximation the model is always in t
paramagnetic phase. It is clear that both the Land
Ginzburg approach and the large-N approximation have fun-
damental limitations in this problem. As we have argued,
correct phase diagram includes an ordered phase, albeit
somewhat unconventional kind.

VII. CONCLUSION

In this paper we have studied various aspects of the f
frustrated transverse-field Ising model on the dice latti
This model is useful as a description of the physics of sing
excitations below the spin gap of the quantum Kago
Heisenberg antiferromagnet. We argued that this transve
field Ising model supports at least two quantum phase
plaquettephase where the ground state breaks both glo
spin flip and translational symmetries, and a disorde
phase with short-ranged~Ising! spin correlations. In terms o
the original Kagome Heisenberg magnet, the former
scribes a state with a honeycomb pattern of resona
benzene-like arrangements of singlet bonds on the hexag
plaquettes, with a 36-site unit-cell. The elementary sing
excitations are gapped with a very small gap and locali
inside the cells of the honeycomb structure. Based on c
parison with the numerical studies, we suggested that
specific large-unit-cell valence-bond crystalline order d
scribes the ground state of the Kagome Heisenberg quan
magnet. The elementary spin-carrying excitations are gap
spin-1 magnons. We hope that our work stimulates attem
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to look for this ordering pattern in future studies of th
Kagome magnet.

In addition, we argued that due to frustration and unus
geometry the fully frustrated dice-lattice transverse-fie
Ising model possesses a strong tendency to localize its
ementary excitations: they are either completely localized
have an extremely large effective mass~narrow energy
bands!.
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APPENDIX A: Z2 GAUGE DESCRIPTION OF THE
KAGOME QUANTUM MAGNET

Here we briefly derive a representation of the Kago
Heisenberg quantum magnet as aZ2 gauge theory. For more
in-depth discussion, see Refs. 18, 23, 32. Our starting p
is the Heisenberg model on the Kagome lattice:

H5J(̂
i j &

Si•Sj , ~A1!

where the sum runs over the nearest-neighbor sites.
Heisenberg model can be viewed as a special limit of ano
model. Consider a theory of hopping spinonsf a i coupled to
the Z2 gauge fields i j

z which lives on the bonds of the
Kagome lattice:

H52h0(̂
i j &

s i j
x 2(̂

i j &
s i j

z F t i j (
a5↑↓

~ f a i
† f a j1H.c.!

1D i j ~ f ↑ i
† f ↓ j

† 2 f ↓ i
† f ↑ j

† 1H.c.!G . ~A2!

The spinon operators obey fermion anticommutation re
tions, and the gauge-field operators are Pauli matrices.
theory possesses a localZ2 gauge symmetry: if the signs o
f a i at a particular sitei ands i i 8

z on all bonds emanating from
that site are simultaneously changed, Hamiltonian~A2! re-
mains invariant. The appearance of the local symme
means that the Hilbert phase is larger than that of the Heis
berg model, and a constraint per site is needed to pro
back to the physical Hilbert space. This is achieved throu
a gauge requirement on the physical states:

Gi5 )
i 8P i

s i i 8
x

~21!(a5↑↓ f a i
† f a i

†
521. ~A3!

The operatorsGi are generators of the local gauge transf
mations at sitesi, and the product is over all bonds^ i i 8&
emanating from the sitei. In theh0→` limit of Eq. ~A2!, all
5-12
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gauge spins tend to align in thex direction, so that the gaug
requirement~A3! fixes the number of spinons to be one p
site. The spinon gauge theory~A2! then reduces to the
Heisenberg model at the second order of perturbation the
with J;t i j

2 /h0 ,D i j
2 /h0.

The next step assumes that the spin-carrying excitation
the original Heisenberg model are gapped. We rely on
experimental and numerical studies that show such a ga
the spectrum of the Kagome magnet. Thus, the spinon
grees of freedom can be ‘‘integrated out’’ in Eq.~A2!, leav-
ing behind a pureZ2 effective gauge theory with local term
~we will come back to this step later!:

H852h(̂
i j &

s i j
x 2K3(

n
)
n

s i j
z 2K6(̋ )̋ s i j

z

2K313(
q

)
q

s i j
z 2•••. ~A4!

The terms involvingsz operators are the sums over a
plaquette products. The elementary plaquettes appear a
lowest order, but in principle, all connected clusters of bo
loops can appear at higher orders. This form of the effec
Hamiltonian is required by theZ2 gauge symmetry: the sig
change ofs i i 8

z on all bonds emanating from any sitei must
leave the Hamiltonian invariant. The spin gap results wit
local and perturbative nature of Eq.~A4!: the coupling con-
stantsKn of the n-bond clusters are of the order ofexn,
wheree is some energy scale, andx!1. The spinon ‘‘inte-
gration’’ also modifies the gauge requirement~A3! to

Gi85 )
i 8P i

s i i 8
x

521. ~A5!

Expressions~A4! and~A5! define a pureZ2 gauge theory on
the Kagome lattice. We now express this theory in its d
form. Let v l

x,y,z be the Pauli operators defined on the sites
the lattice dual to Kagome, the dice lattice. Their relation
the Z2 gauge field of the Kagome lattice is the following:

s i j
x 5e lmv l

zvm
z , ~A6!

)
plaq.

s i j
z 5v l

x. ~A7!

In Eq. ~A6! the dual dice bond̂lm& intersects the Kagome
bond ^ i j &, while in Eq. ~A7! the dual dice sitel sits inside
the Kagome elementary plaquette appearing in the pro
on the left-hand side. The numberse lm are fixed to11 and
21 in such a way that on every dice elementary plaqu
the condition of full frustration holds:

)
L

e lm521. ~A8!

This is the consequence of the gauge requirement~A5!. One
choice of sign arrangement fore lm is depicted in Fig. 1. The
pure Z2 gauge theory~A4! can now be rewritten as th
transverse-field quantum Ising model on the fully frustra
dice lattice:
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H852h(
^ lm&

e lmv l
zvm

z 2K3(
l 3

v l 3
x 2K6(

l 6
v l 6

x

2K313 (
( l 3m3)

v l 3
x vm3

x 2•••. ~A9!

The ‘‘kinetic-energy’’ terms contain in general the produc
of v l

x on various clusters of the dice-lattice sites.
Hamiltonian~A9! captures only the form of the effectiv

theory below the spin gap. The coupling constants are
known, because the path integration of spinons in Eq.~A2!
cannot be carried out analytically. However, we can at le
attempt to estimate their relative values. For these purpo
we express the original Heisenberg model in the sla
particle path integral, as was done in Ref. 18. The act
involves the spinon Grassmann fieldf a i living on the sitesi
of the ~211!D lattice, and the gauge Ising-like fields i j liv-
ing on the lattice bonds:

S52(̂
i j &

s i j @ t̃ i j ~ f̄ a i f a j1c.c.!1D̃ i j ~ f̄ ↑ i f̄ ↓ j2 f̄ ↓ i f̄ ↑ j1c.c.!#

2(
i

f̄ a i f a i1SB , ~A10!

where the Berry phaseSB , realizing the projection to the
physical Hilbert space, is given by

e2SB5 )
i , j 5 i 2 t̂

s i j . ~A11!

Action ~A10! is an exact rewriting of the Heisenberg mod
in the limit t̃ i j ,D̃ i j !1.18 We obtain it upon integrating ou
s i j , and JDt;( t̃ i j

2 ,D̃ i j
2 ), whereDt→0 is the imaginary-

time lattice spacing used in the path integral~of the Heisen-
berg model!. We can relate the action coupling constantst̃ i j

andD̃ i j to Hamiltonian~A2! coupling constants,t i j andD i j .
In order to simplify notation, from now on we will use on
symbol t̃ to represent all the couplings in the action, andt for
all the couplings in the Hamiltonian. The connection is

t̃ i j ;H 1 on the temporal linkŝ i j &

td on the spatial links^ i j &,

where d5ADt/h0→0. Now we integrate out the spino
field and obtain a pureZ2 gauge theory with the action

S52 ln detA~s i j ; t̃ i j !1SB52(
h

K̃h)
h

s i j 1SB .

~A12!

The matrixA above is the matrix that couples the spino
in Eq. ~A10!. In the expanded form, this action must conta
various gauge-invariant products ofs i j on the closed loops
with the loop-dependent coupling constantsK̃h . The very
assumption that this expansion is possible and converge
an essential one, and it requires a large spin gap~of the order
of J), determined at a microscopic scale. A large spin g
guaranties that the effective theory will have only loc
5-13
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terms, and significance of various closed loops in Eq.~A12!
will rapidly decrease with increasing loop size, making t
expansion convergent. At this point we are not providing a
formal estimate of the spin gap. We simply use some exte
sources to obtain information about it, for example, the
merics.

Using the fact that as i j factor always comes togethe
with a t̃ i j factor in Eq.~A10!, we can make an estimate fo
the coupling constantsK̃h ~to the lowest order!:

K̃h;)
h

t̃ i j , ~A13!

and this implies thatK̃h can be treated as small numbe
scaling asdn with n being the number of spatial links in th
loop. In order to formally derive the connection between t
action and Hamiltonians~A4! and ~A9!, we neglect at this
point all the higher-order loop terms~enclosing more than
one elementary plaquette!. If the action contains only the
elementary plaquettes, we can readily construct thedual
theory, as outlined in Ref. 18. It takes the form of the Isi
model on the fully frustrated dual lattice:

S52(
^ lm&

K̃ lme lmv lvm . ~A14!

The Ising gauge fielde lm living on the links of the dual
lattice is frozensuch that its product over any dual eleme
tary plaquette is21. The only fluctuating field is the vison
Ising fieldv l . The duality transformation establishes conne
tion between the coupling constantsK̃h defined for a
plaquette andK̃ lm defined for the dual bond piercing tha
plaquette:

tanhK̃h5e22K̃ lm, tanhK̃ lm5e22K̃h. ~A15!

For simplicity, assume that there is only one kind of elem
tary plaquettes. Then, the Hamiltonian describing the d
theory has the form

H52h(
^ lm&

e lmv i
zv j

z2K(
l

v l
x . ~A16!

The connection between action~A14! and the Hamiltonian
above is

KDt5e22K̃ lm on the temporal dual linkŝlm&,

hDt5K̃ lm on the spatial dual linkŝlm&.

Now we can estimate the values of the Hamiltonian coupl
constants. The temporal elementary plaquettes always
four bonds~two spatial and two temporal!, while we assume
that the spatial elementary plaquettes haven bonds. It fol-
lows that

KDt5e22K̃ lm(dual temporal link)5tanhK̃h~spatial plaq.!

——→
Dt→0

tnS Dt

h0
D n/2

, ~A17!
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hDt5K̃ lm~dual spatial link!

52 1
2 ln tanhK̃h~ temporal plaq.!

——→
Dt→0

2 ln@ tADt/h0#. ~A18!

Taking the ratio of Eqs.~A17! and~A18!, and noting that the
Heisenberg model exchange coupling isJ;t2/h0, we obtain

K

h
5

2~JDt!n/2

u ln~JDt!u
. ~A19!

The energy scale ofJ is also a measure of the spin gap. Sin
the spinons have to be integrated out, the starting path i
gral must accurately represent the energy scales above
spin gap. The energy cutoff must be much larger than
spin gap, and henceJDt!1. This is also compatible with
the requestt̃ i j ,D̃ i j !1, needed for the path integral with ac
tion ~A10! to reduce to the Heisenberg model. Consequen
h@K ~for arbitraryn>0).

This simple analysis suggests that the large-h limit of Eq.
~A9! is a good effective theory for the singlet physics belo
the spin gap. It also seems natural to expect from Eq.~A19!
that the higher-order loop terms, present in the more accu
effective Hamiltonian, have the coupling constantsKn which
decay with the loop lengthn as Kn}xn, where x5AJDt
!1.

Finally, we can ask whether this approach is useful
extensions of the Heisenberg model. The next-nearest
further-neighbor exchange interactions are reflected in ac
~A10! as additional spinon hopping and pairing terms me
ated by theZ2 gauge field. The spinons can still be integrat
out ~provided that there is a large spin gap!, and the pureZ2
gauge theory~A12! would effectively live on the more com
plicated lattice that has bonds between all pairs of sites
host an exchange coupling. The dual theory would, in g
eral, be more complicated than the frustrated Ising mo
~the effective lattice may not even be planar!, but we could
still write an effective Hamiltonian like Eq.~A4! together
with the gauge condition~A5!, and expect a large-h limit to
be realized. Similarly, the ring exchange interactions can
implemented in action~A10! by explicitly adding the loop
products of the gauge field to it. This would yield larg
values for the loop couplingsKn in the pureZ2 gauge theory,
possibly making them comparable withh. Having in mind
the results of this paper in the small-h limit, this hints that
the multiple-spin exchange is a good candidate to yield tr
fractionalized spin liquids.

APPENDIX B: O„N… LARGE- N LIMIT

A relatively simple way to gain some first intuition for th
quantum Ising model on the frustrated dice lattice~2! is to
generalize it to a limit where the semiclassical approxim
tions become exact. Consider theO(N) generalization of
spins in the large-N limit. We will demonstrate that this
Gaussian theory has a dispersionless spectrum, and sup
only a disordered phase for all values of the coupling c
stants.
5-14
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We write the imaginary time path integral and impose
spin-magnitude constraint using a fieldl of Lagrange mul-
tipliers. The action obtained from Eq.~2! by keeping only the
elementary transverse-field terms is

Sl5E dtH 2h(
^ lm&

e lmSl tSmt2
K3

2 (
l 3

Sl 3t

]2Sl 3t

]t2

2
K6

2 (
l 6

Sl 6t

]2Sl 6t

]t2
2(

l
il l t~Sl t

2 21!J . ~B1!

In the saddle-point approximation, the Lagrange multipl
field l becomes ‘‘homogeneous,’’ with only two independe
valuesl3 andl6 corresponding to the 3- and 6-coordinat
sites. This is the consequence of theZ2 gauge invariance
namely, the arbitrariness of the choice ofe lm , subject to
condition ~3!. If e lm are chosen to be negative on the thi
bonds in Fig. 1~b!, then the action can be diagonalized on t
636 matrices in the frequency-momentum space, and
spin degrees of freedom can be easily integrated out:
e
m

21441
e

r
t

e

S̃l5NF1

2 (
v

(
qxqy

ln det~Hqxqyv1 iL!1N tr~ iL!G .
Here we used the elementary cell in Fig. 11,N is the number
of space-time sites,L5diag(l6 ,l6 ,l3 ,l3 ,l3 ,l3), and the
matrix Hqxqyv is given by

FIG. 11. A choice of the unit cell on the frustrated dice lattic
The site labeling corresponds to the internal indices of the ma
Hqxqyv .
Hqxqyv5

¨

2
K6

2
v2 0

h

2
~11e2 iqy! 2

h

2
e2 iqy

h

2
e2 iqx

h

2
e2 iqx~12e2 iqy!

0 2
K6

2
v2

h

2

h

2
~11e2 iqy!

h

2
~211e2 iqy! 2

h

2
e2 iqy

h

2
~11eiqy!

h

2
2

K3

2
v2 0 0 0

2
h

2
eiqy

h

2
~11eiqy! 0 2

K3

2
v2 0 0

h

2
eiqx

h

2
~211eiqy! 0 0 2

K3

2
v2 0

h

2
eiqx~12eiqy! 2

h

2
eiqy 0 0 0 2

K3

2
v2

©
.

r-
.
n-

se

al-

le-
The matrix under the determinant has three twofold deg
erate eigenvalues that have no dependence on the mo
tum. If we relabelil352m3

2 and il652m6
2, they are

v35
K3

2
v21m3

2 ,

v1,25
1

2 FK31K6

2
v21m3

21m6
2

6A6h21S K32K6

2
v21m3

22m6
2D 2G . ~B2!

The action then becomes
n-
en- S̃l5NN F E dv

2p
ln~v1v2v3!2~2m6

214m3
2!G . ~B3!

In order for this action to correspond to a physical He
mitian Hamiltonian, bothm3

2 andm6
2 must be real numbers

In addition, the path integral converges only when all eige
values v i are real and positive for all frequencies. The
requirements are satisfied if

m3
2.0, m6

2.0, 4m3
2m6

2.6h2. ~B4!

A failure to satisfy these conditions by the saddle-point v
ues ofm3 andm6 would signify an instability.

Now we varym3
2 andm6

2 to find the minimal action, in-
tegrate out the frequency, and obtain the following sadd
point equations:
5-15
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1

A2K3m3
2

1K3K6

~K31K6!1
2~m3

21m6
2!

Aa1a2

Aa11Aa2

56,

1

A2K3m3
2

2K3K6

~K32K6!1
2~m3

22m6
2!

Aa1a2

Aa11Aa2

52, ~B5!

where

a1,25S m3
2

K3
1

m6
2

K6
D 6AS m3

2

K3
2

m6
2

K6
D 2

1
6h2

K3K6
. ~B6!

Conditions ~B4! directly translate toa1,2.0. The saddle-
point equations are too complicated to be solved exactly
the solution that meets conditions~B4! exists for every finite
nonzeroK3 , K6, and h, then the system is always in th
paramagnetic phase. In order to prove that such solut
always exist, we can solve the inverse problem: assume
m3

2 andm6
2 are known, real and positive, fix arbitrary valu

for K3 and K6, and find the value ofh that satisfies the
saddle-point equations.

A couple of straight-forward algebraic manipulations r
duce the saddle-point equations~B5! to

K6a12m6
2

K3a12m3
2

522
1

2A2K3m3
2

, ~B7!

S a1
2m3

2

K3
D 2

58K6
2a2S m3

2

K3
1

m6
2

K6
1a D ,

anda5Aa1a2. It follows that

m3
2

K3
5

x2

2
, ~B8!
th
n

s.

et
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m6
2

K6
5

~a1x2!2

8K6
2a2

2
x2

2
2a, ~B9!

x31a@124K6~2K31K6!a#x12K6a250. ~B10!

Treating Eq.~B10! as a quadratic equation fora, we find the
real and positive solution:

a5x
11A118K6@2~2K31K6!x21#x

4K26@2~2K31K6!x21#

for x.
1

2~2K31K6!
. ~B11!

We can now study the dependence ofb56h2/K3K6 on x.
From Eq.~B6! we obtain

b54
m3

2

K3

m6
2

K6
2a2, ~B12!

and using Eqs.~B8!, ~B9!, and ~B11! we expressb as a
function of x. One can easily check thatb50 for m3

2

51/8K3 , m6
251/8K6, and b→` for m3

25hA3/2, m6
2

5hA3. In between these limiting cases,b(x) is a continu-
ous, monotonically growing function in the regionx.1/K3
for all values of K3 and K6. Due to a very complicated
dependence ofb on x, we verify this by numerical plotting
for a variety ofK3 and K6 values, including all important
limits. The fact thatb(x) is a monotonic function means tha
for every value ofh there is a unique solution forx, i.e., for
the saddle-point equations. The ‘‘squared masses’’m3

2 and
m6

2 are real and positive for allh, K3, and K6, and vary
continuously with the coupling constants. Therefore, t
theory does not support a phase transition, and always
mains in the paramagnetic phase.
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