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Physics of low-energy singlet states of the Kagome lattice quantum Heisenberg antiferromagnet
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This paper is concerned with physics of the low-energy singlet excitations found to exist below the spin gap
in numerical studies of the Kagome lattice quantum Heisenberg antiferromagnet. Insight into the nature of
these excitations is obtained by exploiting an approximate mapping to a fully frustrated transverse-field Ising
model on the dual dice lattice. This Ising model is shown to possess at least two phases—an ordered phase that
also breaks translational symmetry with a large unit cell, and a paramagnetic phase. The former is argued to be
a likely candidate for the ground state of the original Kagome magnet which thereby exhibits a specific pattern
of dimer ordering with a large unit cell. Comparisons with available numerical results are made.
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[. INTRODUCTION sample size: 1.15below the spin gap, for even number of
sitesN, and there is no clear gap that separates them from the
Geometrically frustrated quantum magneé&=QM) are a  ground state. There are some indications that these low-
class of magnetic materials with various unusual propertiesnergy singlet excitations may also occur in other frustrated
at low temperatures. The combination of strong frustratiorjuantum paramagnets. Indeed, evidence for such excitations
and quantum effects makes them potentially a source of nein the multiple-ring exchange triangular lattice sgirguan-
strongly correlated physics. One common possible consgum antiferromagnet has been reported in Ref. 8. This led to
quence of frustration is the macroscopically large degeneracg suggestion that there was a new spin liquid phase charac-
of the classical ground-states, which makes them very sensierized by having gapless singlet excitations, which was
tive to even weak thermal and quantum fluctuations. For exnamed the type-Il spin liquid in Refs. 3, 4.
ample, the phenomenon of order-from-disorder may occur: There also are interesting experimental results on
the fluctuations may lift the initial degeneracy and yield aSrCry,Gay, 9,019 (0r SCGO, a bilayer spig-Kagome mag-
symmetry-broken ground state. Alternatively, the initial de-ne?). Absence of long-range order at low temperatli@s
generacy may be completely lifted, in which case the resulcompanied however by a large entropy of low-lying
is a spin-liquid state. In the traditional point of view, the excitations® has been reported. Furthermore, the heat capac-
liguid state is a result of fluctuations strong enough to deity is virtually independent of magnetic field, and is not ther-
stroy the long-range order of the classical ground state. Howmally activated® These results suggest that the ground state
ever, in several GFQM, the starting classical ground state isf SCGO is not magnetically ordered, and that the low-
typically already disordered, so that the liquid state, eventuenergy sector of excited states containgassibly gapless
ally shaped by the fluctuations, may be of a different kind. Inband of singlet excitations, while spinful excitations are
general, one can hope to find various exotic phenomena iseparated from the ground state by a finite spin gap. Despite
these systems. the obvious differences between SCGO and the theoretical
The most studied GFQM are the Kagome and pyrochlorenodel of a single spig-Kagome layer, the similarities to the
lattices of antiferromagnetically coupled nearest-neighbopicture obtained from exact diagonalization of the latter are
spins. They belong to a class of lattices which are composestriking. (Other unusual phenomena such as spin-glass-like
of corner-sharing units, where every unit is a small frustratedehavior in clean sample' and its speculated coexistence
spin system, like a triangle. Other examples include the triwith a spin-liquid componeht have also been suggested to
angular lattice frustrated by the higher-order exchange prohappen in SCGOQ.
cesses and the checkerboard lattice. These unusual properties of the Kagome Heisenberg mag-
This paper is concerned with the Kagome lattice spin- net have motivated various theoretical efforts, but our under-
Heisenberg antiferromagnetee Fig. 1 Several groups have standing of the underlying physics is still very incomplete.
performed numerical calculations of spectra on finite cluster§everal controlled limits enable making some definite state-
with up to 36 site:? The exact diagonalizatién* showed ments. One of them is the large-SU(N) limit explored in
that the ground state of the 36-site Kagome lattice has shorRef. 12 which gives highly degenerate mean-field solutions,
ranged spin spin and some other correlations. The spin-gap &1d a spin-Peierls order as theN1¢orrection. The ordered
finite, and the extrapolation to the thermodynamic limit sug-state maximizes the number of fluctuating benzenelike hex-
gests that it remains finite in the infinite lattice. It is, how- agonal clusters, where three singlet bonds sitting on a hex-
ever, small, estimated aroudd20, wherel is the exchange agonal plaguette oscillate between two possible configura-
coupling. Remarkably, however, at energies below the spitions. However, it remained unknown whether this ordered
gap there appear to be a large number sihglet state would survive higher-order corrections. Another ex-
excitations>® The origin and nature of these states is uncleaplored limit is the largeN Sp(N).'® This generalization of
(see Refs. 6, 7 for some interesting approaghEse number the spinj problem retains the “spin magnitude” as an inde-
of these states is found to be an exponential function of th@endent parameter. For large spins the ground state possesses
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FIG. 1. (a) Kagome latticefb) dice lattice(dual to Kagomg The effective theory for the low-energy singlet degrees of freedom will be
described by a fully frustrated transverse-field quantum Ising model on the dice lattice. Frustration can be achieved in this model by giving
opposite signs to the Ising spin interactions on the normal and thick bonds.

long-range magnetic ordefin a pattern dubbed the/3  priate limits, the quantum dimer model may be related to the
X /3 structurg, and the elementary excitations are the spinfully frustrated transverse-field Ising model.
waves associated with the broken spin rotational symmetry. The connection to the transverse-field Ising model is par-
For small spins, however, the ground state does not bredicularly useful for issues related to the low-energy singlet
any symmetries, and the elementary spin-carrying excitationgxcitations of frustrated quantum paramagnets. First, by con-
are unconfined spig-bosonic spinons. struction, the Ising model describes only #irgletsector of

An alternative, less controlled, but perhaps more physicalhe original spin system, and is best to describe states below
approach is to assume that the physics of the paramagnetice spin gap. These are precisely the states one wishes to
ground states of the Kagome magnet is described well by thenderstand. Second, one can exploit the relative simplicity of
short-ranged valence bonds, which can then be roughly aghe Ising model to perform calculations that would be ex-
proximated by the quantum dimers on the Kagome lattice. Aremely difficult for the original spin system. For instance,
guantum dimer model resulting from the overlap expansiorthe Ising model can be simulated by Monte Carlo without a
of the valence-bond states was studied numerically by Zengign problem, unlike the original frustrated spin model. This
and Elsef Misguich and co-workers have considered twohas been nicely demonstrated in the extensive work of
simple dimer models yielding the liquid ground states: one aMoessner and co-workéfs® on such Ising models.
the Rokhsar-Kivelson poirtf, and another offering more It is therefore of extreme interest to study the particular
similarity to the overlap expansiofifferent resonant loops Ising model that one may guess describes the singlet sector
appear with different signs® The former was exactly solved of the Kagome Heisenberg antiferromagnet. This is a fully
by mapping to the triangular lattice Ising model, and thefrustrated transverse-field Ising magnet on the dual lattice
latter has a large zero-temperature entropy. In a broadéknown as the dice lattice; see Figbl]. This is an interest-
framework of frustrated quantum magnetism, Moessner anthg model in itself, and appears not to have been examined
co-workers have studied various related problems on differbefore. As described in Appendix B, a Landau-Ginzburg
ent lattices and discussed connections between the dimanalysis(which has been useftl in analyzing analogous
model and various gauge theoriés. frustrated quantum Ising magnets on other latlicd®ws an

In this paper, we undertake a set of calculations that couléhfinitely degenerate set of zero-energy modes in the Gauss-
potentially provide considerable insight into the low-energyian approximation. This renders the Landau-Ginzburg analy-
singlet excitations of the Kagome Heisenberg antiferromagsis less useful for this Ising model. Thus studying the fully
net. It has been realized for some titfid®that for a number frustrated quantum Ising model may also contain lessons of
of quantum antiferromagnets, the nature of the paramagnetits own for the theory of frustrated quantum systems.
phases is closely related tand essentially determined by The questions of interest are the following: Does this
the properties of a much simpler model: the fully frustratedising model have a zero-temperature ordered phase? We note
Ising model in a transverse field on a lattice that is dual tathat the combination of frustration and quantum effects could
that of the original spin system. This connectigvhich we  potentially completely destroy the ordered phase even at zero
briefly review belowy may be established in a number of temperaturgas happens for instance for the transverse-field
different approaches. One is through a slave-particle theorising antiferromagnet on the Kagome latfit&). Generally,
of such quantum paramagnets. The theory of fluctuationghe ordered states of the Ising model describe, in the original
about the mean-field state in such slave-particle theories is ldeisenberg spin problem, “confined” paramagnets where the
gauge theory which for frustrated magriétis a Z, gauge  spin-carrying excitations ar@apped spin-1 magnons. The
theory. This is then related by duality to the transverse-fieldlisordered states of the Ising model describe fractionalized
Ising model mentioned above. Another connection is througtparamagnets where there @&apped spin spinons. What-
the quantum dimer description of the paramagnetic phases efver the phase diagram of the dice Ising model, the nature of
the original spin system. As explained in Ref. 16, in appro-the excitations is an extremely appropriate question. Indeed,
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thermal fluctuations do not introduce order from disorder,
and do not select the honeycomb structure out of many clas-
sically degenerate dimer coverings. In the appendixes we
provide a discussion of various peripheral matters and details
of some calculations.
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We will try to understand the low-energy physics of the
Heisenberg model on the Kagome lattice:
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FIG. 2. Description of the suggested ground state of the Kagome H :J<i2j) S-S, @)
quantum antiferromagnet. Dimers formally represent the frustrated

bonds of the dual dice-lattice Ising model, but physically they repyhere the sum runs over the nearest-neighbor sites. From the
resent singlet valence bonds. The translational symmetry is brokeg,merical exact diagonalization calculations we know that
by a unit cell with 36 sites. Dimers on the shaded hexagonaje ground state has no magnetic long-range order. There is a

plaquettes resonate between the two possible configurations on ﬂﬁ%nzero gap for spin-carrying excitations. We will therefore
hexagon. Also, the six dimers around the central plaquette of every

. ' . ocus on possible nonmagnetically ordered phases of the
honeycomb cell resonate in atar-shaped configuration. The model. A number of different arquments mav be provided to
lowest-lying excitations are various excited states ofdtaes ) 9 y P

relate the properties of such phases to those of the fully frus-
if this Ising model has a large number of low-energy excita-trated transverse-field Ising model on the dice lattice.

tions, they would possibly correspond to the singlet excita- The quantum dimer model is a popular way to capture

tions of the original Kagome lattice Heisenberg antiferro-some essential physics of quantum paramagnetic ground
magnet. states of spin systems. Moessner and Sdfidiave estab-

In this paper, we first argue that the fully frustrated lished a connection between the standard hard-core dimer
transverse-field Ising model on the dice lattice supptats model and the fully frustrated Ising model in @mal)
leas) two distinct phases. As usual, at large transverse-fieldgansverse-field on the dual lattice. The connection is made
(Sec. IV there is a gapped Ising paramagnet. However, it®y noting that in zero transverse-field, the ground states of
excitations are peculiar since they are either localized or exthe classical fully frustrated Ising model aép to a global
tremely heavy. At small transverse-fiel@Sec. Il there is  spin flip) in one-to-one correspondence with hard-core dimer
also an ordered phase which breaks translational symmetgoverings of the dual lattice. A small transverse-field essen-
(albeit in a rather complicated pattern with a large unit)cell tially introduces quantum resonances between dimer con-
The ordering pattern is best described in the language of thégurations, leading to the quantum dimer model.
quantum dimer model on the Kagome lattice to which the A closely related earlier approach is through a slave-
model is equivalent at small transverse-fields: the dimerparticle mean-field theory of the quantum paramagnetic
crystallize in a honeycomb structure of benzenelike resonaphases of the Heisenberg model. As argued in Ref. 22, for
ing hexagons. The elementary excitations have a tendency feustrated lattices the theory of fluctuations about the mean-
be localized(large effective magsand they have a nonzero field theory is &z, gauge theory, where the gauge fields live
finite gap which nevertheless is very small compared to then the links of the originalKagoms lattice. For spinz sys-
natural energy scales of the model. We suggest that thikems, this gauge theory has nontrivial Berry phase té¢emd
phase is what is actually realized in the original Kagomewas hence dubbed the “oddZ, gauge theory in Ref. 16
Heisenberg magndtee Fig. 2, and not a gapless spin lig- Under a duality transformation, this odd, gauge theory
uid. We argue that properties of this phase are consistent withaps onto the fully frustrated Ising model in a transverse
results from the numerical studies and experiments on SCG¢eld on the dualdice) lattice.
in two fundamental aspects: the number of singlet states be- Finally, as discussed in Refs. 18, 23, it is possible to di-
low the spin gap is very large, and tt&@ngled gap(if finite) rectly formulate the Heisenberg spin model on any lattice as
is much smaller than the spin exchange energy scale. Thesetheory of fermionic spinons coupled to an odg gauge
aspects are the most interesting ones about the Kagome dieory. In the spin-gapped quantum paramagnetic phases, the
tiferromagnet; the former leading to a large amount of enspinon fields may formally be integrated out, leaving a pure
tropy at low temperatures, and the latter to the mysteriousdd Z, gauge theory as a description of physics below the
notion of possibly gapless modes without a broken symmespin gap. By the duality transformation alluded to above, one
try. Therefore, this phase may provide a qualitative picture ofigain obtains the fully frustrated transverse-field Ising model
the singlet physics below the spin gap. In some other aspecten the dual lattice. This approach gives a new flavor to it: the
the properties of this phase do not seem to agree with thiattice does not have to be bipartite, and there is no need to
numerics, especially the presence of long-range order, but wely on the dimer model from the beginning. We present a
argue that this may be due to the finite-size effects in thdormal derivation and analysis in Appendix A. A rough for-
numerical calculationéend of Sec. Il). We also performed a mal estimate for the relative importance of various coupling
simple Monte Carlo simulatioriSec. \j to show that the constants is also provided.
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With these motivations, the starting point of this paper is
the following frustrated Ising model in transverse-field:
2
H=—h> emuivh—KsX vl —Ke> v X . > >< > ;z >
(Im) PR s °
(a) (b)

—_ X X — . e .
K3+3|E) ViUm, : )

3M3

FIG. 3. (a) An example of a flippable loop. The flippable loops

This Hamiltonian is defined on the dice lattice, dual to are tangentla_l to the dimers, so that they ca_nnot contain only one
end of any dimer(b) An example of a loop flip between the two

5ag(f)me, and t.he .frUStratlon AS Ireallzed tnro;‘lg”h m: | possible hard-core dimer arrangements on it. This loop contains a
N 1_ actors, satisfying on each plaquette the following re a'hexagon and a bowtie pair of triangles. The loop is flipped through
tion: a virtual state by the successive operations -6Kq and
—Ks13v5v%, where 1, 2, 3 refer to the dice lattice sites which
1;[ €m=—1. ©) correspond to the depicted Kagome plaquettes.

The dice lattice, and a possible choice fgf, are shown in  unperturbed ground states. The effect affeoperator in the

the Fig. 1b). The v*, v¥, andv? operators are the Pauli dimer picture is to toggle th(_e dimer occupancy on a_II bo_nds
matrices of the fluctuating, vortex field which corresponds ©f the Kagome plaquette which corresponds to the dicd site
to the singlet degrees of freedom. From now on we will dropSince we want to construct the effective theory, we need to
all terms denoted by the ellipses, and keep only the lowesfind the combinations o6} operators which transform one
order ones involving the isolated 3-coordinated sitgs hard-core dimer covering into another, possibly through
6-coordinated sitek;, and the pairs of next-nearest-neighbor Some virtual states. Such processes can be described as dimer
3-coordinated sited §ms). This theory is an effective theory motion along theflippable loops, and we will call them the

of the Kagome Heisenberg magnet, describing the physic®op flips (see Fig. 3 for explanationit is convenient to
below the spin gap. In the rest of the paper we study théntroduce the following terminology: if a plaquette carries no
properties of this model in different parameter regimes. Aglimers on its bonds, we will call it defectplaquette, and if

we formally argue in Appendix A, when obtained from the it carries a flippable loop on its bonds, we will call it a
original Heisenberg model, it is natural to consider the limitPerfectplaquette. A plaquette can be perfect only if it has an
of largeh>Ks 4. This is also supported by comparison with €ven number of bonds. Of special interest are the elementary
the results of the numerical studies. Nevertheless we wilflippable loops that enclose only one hexagonal plaquette,

study the model more generally and not just in the ldrge- and they are explained in Table I. .
limit. The lowest-order terms in the perturbation theory are the

single plaquette flips. Th&; and K5, 3 terms cannot con-
Il LARGE- h LIMIT: VALENCE CRYSTAL PHASE nect between two hard-core dimer coverings, so that to the
Here we analyze the properties of the ground state and TABLE I. The elementary flippable loopga) flippable hexa-
excitation spectrum of the frustrated Ising model given bygon, (b) flippable eight-bond loopgrhombus, arrow, and trapeze,

Hamiltonian(2) in the h>K;,Kg,K5, 3, ... limit. We will from left to right, (c) the star,(d) flippable ten-bond loops. The
build the perturbative expansion for the exact low-energyelementary flippable loops by definition enclose only one hexagon.
effective theory. For arbitrary dimer covering, a unique elementary flippable loop

The unperturbed Hamiltonian, with &, equal to zero, is  can be found on every hosting hexagonal plaquette: it goes through
a classical Ising model on the fully frustrated dice lattice, anchll the hexagon sites, and includes those surrounding triangles
every Spin Configuration is an eigenstate_ The ground statexhich hold a dimer on a bond that does not belong to the hexagon.
have the minimal number of frustrated borftiee bonds with ~ The hexagon ir(@) is perfect while the hexagon irc) is a defect
positive energy'qmvarzn: —1). In trying to construct them, hexagon. The length of the elementary loop is directly related to the
we have to leave at least one bond frustrated on ever{umper of dimers sitting on the hexagon, which is equal to the
plaquette: otherwise, the product of four bond energiegumber Ofdefecn.”angles around the hexagon: 3@, 2 in (b), 1
around a plaquette could not be negative, as required by the (d, and none ir(c).
frustration condition(3). It is convenient to return to a dimer
representation of these states on the original Kagome lattice: Y /\ Y
we put a dimer on every Kagome bond that intersects a frus- AQA
trated dice bond. This representation is accurate up to global V%
spin flip of the Ising spins. There will be an odd number of (a)
dimers emanating from every Kagome site, and the ground
states will be given by the various hard-core dimer cover- ZO’:
ings.

The perturbation¥,, introduce quantum fluctuations be- (©) v
tween different dimer coverings, and lift degeneracy of the
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lowest order the effective theory is

¥
3

H=—Nh—KgWs, (4) 1 2 1c
where N is the number of Kagome sites, aMlg is the
kinetic-energyoperator of the perfect hexagons: (@ (b)

FIG. 4. Two perfect hexagons cannot be nearest-neighbors, and
) ©) the perfect hexagon flip does not affect length of any other elemen-
tary flippable loop. Consider a perfect hexagon 2 being flipped from
the configuratior(a) to (b). The flippable loop on hexagon 1 has to
The sum runs over all hexagonal plaquettes of the Kagom@o through the sited, B, andC, and therefore pass through the
lattice. The quantum fluctuations created by the kinetic tern$haded bonds in order to be tangential to the dimers. As a conse-
yield the ground states in which the number of resonatingiu€nce. it has to include at [east one t_rlangle, so that it cannqt be a
perfect hexagons is maximized. This is an exact Statemenﬁ’,erfem hexagon, and also, its length is not affected by the flip on
since all perfect hexagon flips commute with one another: a8€Xagon 2.
illustrated in Fig. 4, the perfect hexagons can never be
nearest-neighbors, and therefore cannot affect one another. e straight, bent at an angle of 120°, or forked into two new
order to gain more insight about these states, we want tetrings at the 120° angles. The stripe state is an example of
recall some observations from Refs. 12 and 24. The totadtraight strings, while the honeycomb state has strings fork-
number of dimers in a hard-core dimer covering on theing at each perfect hexagon.
Kagome lattice isN,=N/2, and the number of triangular Before we proceed with the next order of the perturbation
plaquettes is NAo=2N/3, so that N,=3N,/4=(1 theory, we need to make some additional remarks. If we look
—1/4)N, . Since a triangle can carry at most one dimer, weat the elementary flippable loops realized on the various hex-
see that one quarter of all triangles are tlefectsin any  agonal plaguettes in Fig. 5, we observe that between every
hard-core dimer coveringN,4=Nx/4. Next, we note that two closest perfect hexagons there is an eight-bond flippable
every perfect hexagon has exactly three neighbodefgct loop, right on the sides of the strings there are only ten-bond
triangles, and since no two perfect hexagons can be neiglilippable loops, and in the case of the honeycomb state, there
bors, those defect triangles are not shared between them.ista 12-bond star-shaped flippable loop sitting at the center of
follows from this that the total number of perfect hexagonsevery honeycomb cell. Also, one never finds amow-
has an upper boundNo,<N,4/3=N,/12=N,/6. The shaped eight-bond flippable loop between two perfect hexa-
maximum possible density of perfect hexagons is one per sigons. These are quite general features of the states with the
hexagonal plaquettes, and it can be achieved in a variety ahaximum number of perfect hexagons, which we explain in
ways. In Fig. 5 we show two characteristic possibilitie®:  more detail in Fig. 6.
the honeycomband (b) the stripe state. In general, these At the second order of perturbation theory, we need to
states are constructed by placing the perfect hexagons éclude the combinations of tw&;, Kg, andKj, 3 flips.
close as possible to each other. The closest they can be is the of them is the flip on the arrow-shaped eight-bond flip-
next-nearest-neighbors, provided that between them is apable loop[a hexagon, and a bowtie: see Figb)3:
other hexagonal plaguette, and not a bowtie pair of triangles
(>), because in the latter case there would have been a site
(the center of the bowtjeinvolved in no dimers. This rule AH® = _ wean- (6)
i i H ar 8
allows one to arrange perfect hexagons in strings which may

&)

W =3 (i) (e +

FIG. 5. Two hard-core dimer patterns that maximize the number of perfect hexagph&neycomb patternib) stripe pattern. The
perfect hexagons are shaded to guide the eye. Note that the eight-bond flippable loops appear only as “connections” between the perfect
hexagons, and the ten-bond flippable loops touch exactly one perfect hexagon. The honeycomb pattern has the 12-bond flippable loops, the
stars: they sit inside the honeycomb cells.
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All other allowed combinations flip the same plaguette twice,
leaving the dimer configuration unchanged. A hexagonal
plaguette can be flipped twice if it is not a flippable loop: it

1 has to be the part of an elementary flippable loop with 8, 10,
or 12 bonds. As the potential energy associated with the flip

is different in each case, we need to know the numblgrsf
then-bond flippable loops in the dimer configuration in order

E B\ B = to write the appropriate contribution in the effective theory:
1 4 2 X 3
0002 06 G, K, K
(@ (b)

AHg)xzz_mus_%Ulo_Eulz- )

FIG. 6. (a) The hexagonal plaquette between a pair of perfect The number operatots,, are explicitly written in Table II.

hexagons always hosts an eight-bond flippable loop. Once the per- We treat the triangular plaquette double flips similarly.
fect hexagons 1 and 3 are placed, the only way for all of the sites EVETY triangle can be eitherdefector normal in any dimer

B, C, andD to be involved in dimers is to pak, B, andC, D. Then, covering. The defects contain no dimers, while the normal
the hexagonal plaguette 2 carries two dimers on its bonds, anfiiangles contain one dimer. If their numbers &gy and
therefore hosts an eight-bond flippable loop. However, it cannot b& A , respectively, then the contribution of the triangle double
an arrow-shaped loofsee Table ), because both shaded bowties flips is

must have one normal and one defect triangle due to the perfect ) ) )

hexagons, and an arrow-shaped loop must contain a bowtie with @ _ K3 K3 _ K3 5N

two normal triangles(b) Only ten-bond flippable loops surround AH = @NM_%(NA_NM)_ “h 18 )

the perfect hexagon strings. Consider a string and a neighboring

hexagon 1. One cannot put there a six-bond flippable loop, becaud#/e have used the identitiedd,q=Nx/4, and N, =2N/3,

this would be a perfect hexagon next to another perfect hexagowhereN is the number of Kagome sites. Finally, it remains to
from the string. A star-shaped 12-bond flippable loop is not an opconsider the double flips of bowties«(). They can contain
tion either, because this hexagon always has one neighboring defegither one defect triangle or none. For every defect there are
triangle from the string. There is only one way to place two dimersthree bowties containing it, while the total number of
on the bonds of hexagon 1 in attempt to create an eight-bond fliphowties in the lattice is equal to the number of Kagome sites

pable loop on it. However, this requires the gitéo pair with either N Therefore. the contribution of the bowties is
B or C, which in turn makes it impossible for another string of

perfect hexagons to take its normal place. At least a spot is lost for K§+3 K§+3

a perfect hexagon, and this costs enefgy Similar is true for the AHMXZ an 3Npg— an (N=3Nuxg)

corners of the outward bending strings, while this issue does not

occur for the inward bending, as in the case of the honeycomb state, K2.. 3N

since 10-bond loops are the only choice there. Relative positions of —_ 343 — 9)
various kinds of elementary flippable loops can also be established h 16

by using the relation between their length and the number of defe
triangles around ther(Table ). When the number gberfecthexa-
gons is maximized, all defects are placed around thém 4(

=3Ngp), and the length of any flippable loop depends on the num
ber of its perfect hexagon neighbors.

Ws(al‘) = ;(><

TABLE II. The flippable loop number operatorkt,, counts the number afi-bond flippable loops in the dimer configuration. They
correspond to th@otential energyin the dimer model.

C\?Ve see that the triangle and bowtie contributions reduce to
mere constants for arbitrary dimer covering. Then, it pays to
investigate closer the contribution of double hexagon flips.
First, we want to express the number of defect triangles in
terms of theU,, operators. This can be achieved by noting
that every type of elementary flippable loop has a fixed num-
+ ‘><ﬁ| +rotations) . ber of both kinds of trianglegsee Table ) N,4=(3Ug

Y +2Ug+U;0)/3, where the factor of 1/3 corrects the over-

e = 5 (o (s ) ()
o = 3 () (x| + ) (s )2+ )] ) ] tains)
w:;(,@@wm (] 562 (] ) (] ) (] rostions)
vie = 3 (|Re) (] + ) ()
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counting of triangles shared between the elementary flipHowever, since in principle it might happen thi;, 5
pable loops. Using this, we can elimindty and U, from <K§/h, the dominant star kinetic term may occur when a

Eq. (7): hexagon flip is combined with six triangle flips:
K2 3K3 KeK$
AHg)xz:*ﬁulsz an (Us~Naa). (10) AH{De ~ 6 Wi, (14)

Now, we can add Eqg6), (10), (8), and(9), and write the In any case, the ground state will be the honeycomb state
effective theory to the second order: with resonating perfect hexagons and stars, while the lowest-
lying excitations will be gapped. The gap is very small, of

KeKas 3 the order of gK3_ 5/h® or KgK5/h®, which is much smaller

H=—Nh—KgWg— TW@“@AH@ﬁAHg;Z than the spin exchangk sinceK ,<J in the effective theory
(2). The only remaining degeneracy is 12-fold, due to the
+AH?, .. (11)  broken translational symmetghe honeycomb unit cell has

12 hexagonal plaquettes
The ground-state of this Hamiltonian can be obtained by the It is also interesting to understand this ground state in the
second-leveperturbation theory in which the unperturbed dual Ising picture. As explained at the beginning of this sec-
Hamiltonian is given by Eq(4). The Wgar) term slighty ~ tion, a dimer on the_Kagome lattice represents a frustrated
spreads the ground-state wave function from the sharp hofond of the dual Ising model on the dice lattice. Every
eycomb or a stripelike state, but the correction to the ground@gome dimer covering corresponds to two Ising spin con-
state energy due to this term appears only at the highefigurations on the dice lattice, related to each other by the
orders: both honeycomb and stripe states cannot contain ti#obal spin flip. If the Kagome dimers are flipped along a
arrow-shaped eight-bond flippable loops, and even if theyliPPable loop, the corresponding effect in the dual picture is
could, the flip would destroy the two neighboring perfectthe §|multaneous flip of all dice Ising spins which sit “in-
hexagons, so th4d|W{"|0)=0. Therefore, the energy shift side” the Kagome plaquettes enclpsgd by that flippable loop.
is dominated by th@otential-energyart of Eq.(11) involv- Now we can t_ranslate the descr|pt|_on_ of the gr_ound state.
ing U,, operators. This part fully commutes with Ed): the Every resonating perfect hgxagon_lsflm_)pable spin on a
perfect hexagon flip&Vg cannot change the length of any S|x-coord|_n_ated S"‘te ?f the “d|ce Iaftlce, in the state of equal
elementary flippable loogsee Fig. 4, and theU operators superposmon of “up apd _down. Every resonating s_tar—
simply count the number of flippable loops with the given shgped flippable loop |s.ﬁ|ppable cluster of seven Ismg
length. Only the double hexagon fligs0) select the actual spins coherently fluctuating between two states of defined

ground state: when the number of perfect hexagons is max?—pin ori_entatior(one spin is ona 6-coordir_1ated sit_e, and the
mized, theUg operator behaves as a number, taking thether six are on the surrounding 3-coordinated Sitelow-

valueN,/6=N/18, so that the potential energy is controlled ever, certain dimers are static in thg ground state: wo of
by the number of the 12-bond star-shaped flippable Ioopst.hem reside between every pair of heighboring perfect h(_axg-
The honeycomb statfFig. 5@a] maximizes their number, gons. In order to describe them in the dual language, it is

and therefore the quantum fluctuations select it as the groun ff|<:|en_t to arrange the co_rrespondmg |5|_ng Spins on the
state. The degeneracy of this ground state is exponentiall Ice lattice in some appropriate static configuration. There-

large in the system size, at this order of the perturbatio ore, the ground state breaks the global spin-flip symmetry of

theory. It comes from the freedom to flip any star loops With—th.e dua_l Ising model, with .3/4 of all spins assuming a fixed
out energy cost. orientation, and 1/4 of spins fluctuating. The translational

Various new kinetic and potential terms appear in the ef Symmetry is broken only by the ar'range.ment of frustrated
fective dimer model at the higher-orders. They further sprea@onds’ and locations of the_ fluctuating Spins, ther_e need not
the ground-state wave function, but its main component re: € actu_al Iong-range orde_r in terms of the orlen_tatlon of_non-
mains the honeycomb structure. The ground-state OIegeifll_uctuatmg spins, since this depends on a relatively arbitrary

eracy is finally lifted when the star kinetic terms appeary assignmfent Oi'i”}.: ié in EQ(Z) In tEe dual tl)angl;e;ge, thisd
the star flips do not destroy the perfect hexagons state is formed first by minimizing the number of frustrate

bonds, and then by maximizing the number of flippable spins
which gain the kinetic energy from the transverse field.
Wi = ( AR+ 1Y Ay > . (12 Since this is a valence-bond crystal phase which breaks
; IX&> <K;X‘ {$><K"é’ the spin-flip symmetry of the dual Ising model, it is also a
confined phase. The elementary spinful excitations are
gapped spin-1 magnons. We also note that this phase is stable
In terms ofK,,/h, this first happens at the fourth order by against the weak fluctuations of the large loops that we have

combining the flips on one hexagon and three bowties: ignored from Hamiltonian(2). The stability has been dem-
onstrated in the perturbation theory.
K. K3 At the end, we ask what changes if the system becomes
AH® o — 6 3+3W12. (13  finite. As we have seen, the translational symmetry is broken
h3 in the thermodynamic limit. The honeycomb patterned
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ground states are 12-fold degenerate and related to one asmallh the gap is guarantied to persist, and the ground-state
other by translations. When the lattice becomes finite, theemains disordered, and unique.

degeneracy is lifted, and no symmetry is spontaneously bro- In the following we will assume tha; andKg are posi-
ken. Dimer flips on some large flippable loopshich en-  tive, and we will ignoreK 5, 5 and other terms for simplicity.
close a finite portion of the sample plaquettean translate One way to study the properties of the excited states is to
the entire dimer configuration, and mix the states that breakonsider perturbatively the effective theory for one vison. At
the translational symmetry. The coupling constants for suclthe lowest order, this effective theory is simply the nearest-
flips in the dimer effective theory define the mixing energy neighbor hopping Hamiltonian:

scale, which then depends on the sample size. The spectrum

of a finite system will not accurately reflect the spectrum of o

the infinite system. The accuracy is set by the mixing energy H= h<|2m> (1) €im(ml + H'C')+2K3|23 [13)(1|

scale, because it determines the fine splitting of the energy

levels which would be 12-fold degenerate in the thermody-

namic limit. In order to make sure that the finite-size effect +2K6|26 s}l =
ggsgtpuor':]'()k?[flcéurrﬁi;?ﬁgsgz:'g;e So(i;?ee Irﬂzgtr?egem(;rgee r:;]ut:ﬁ/h_erel s andlg arf the 3- and 6-coordina¥ed site_s of the dice
smaller than the singlet gathe smallest-energy scale in the lattice, and|l)=v7]0). It can be easily diagonalized in the
thermodynamic limjt However, even forN=36 sites jt Mmomentum space by working with the 6-site elementary
could be comparable with the already small singlet gap, an§€!ls of the tile in Fig. 1. It was shown in Ref. 25 that for
the spectrum would look randomized. In our opinion, this isK3=Ke the energy spectrum of this model is completely
a likely possibility, becaus&l=36 is the smallest sample dispersionless and divided into three macroscoplcglly degen-
size which could admit the honeycomb valence-bond crysta‘Frate levels. Remarkably, this remains true for arbitrary val-
(one unit cell, and give rise to such a small singlet gap. Yes 0fKs andKe:
Another finite-size effect can be the absence of the spinon

confinement: it is noticeable only at distances much larger E1=2Ks,

than the size of the honeycomb pattern unit cell, so that E,=2K,— \6h

seeing some signature of it would require at lebst 72 2 3 '

sites. Es=2Ks+ \/6h. (16)

Ignoring the aspects that may be sensitive to the system
size, we compare the honeycomb patterned state with th€herefore, the visons are localized at the lowest order of
numerical data on the 36-site samples. First, the presence pérturbation theory, in the similar way to a single electron in
a very small singlet gap is not inconsistent with the numerthe magnetic fieldthis analogy does not hold generallA
ics. Second, the number of singlet states below the spin gapatural question to ask is whether this localization persists to
is comparable, which we argue in the following. If the higher or maybe all orders of perturbation theory. We try to
boundary conditions allow the honeycomb pattern, then therénd an answer by considering the time-ordered Green'’s
will be at most one star and two perfect hexagons Nor function in the interaction picture:
=36 sites. Some basic excited states can be obtained by
exciting the star and two perfect hexagons in various combi- (O[Twf(t))vm(tm) S|0)

nations (2 total, including the ground stateand each would G Mty tn) = (0[S|0) ' (7
be 12-fold “degenerate” in the thermodynamic limit. The . . .
other are obtained by departing from the honeycomb patterWhereT Is the time-ordering aperator, and
and removing some perfect hexagons. Their total number %
below the spin gapK,<J~spin gap) is therefore greater S=Tex;{ —if dtH'(t) |,
than £x12=96. This is comparable with the number ob- o
tained from numerics: 1.15- 153 below the spin gap. v?(t) = Moty 7(0)e Mo, (18)
IV. SMALL- h LIMIT: FRACTIONALIZED SPIN-LIQUID The perturbatiorH is the vison-hopping part of Eq2),
PHASE while Hy is the vison potential energy. The expansiorSar
Eq. (17) generates many vacuum expectation values of the
The limit h<K3,K3,3,Kg, . .. iS convenient to analyze products ofv* operators, which are then integrated over the

directly in the frustrated Ising model. K vanishes, then all internal time variables. These vacuum expectations are easy
Ising spins in Eq(2) are aligned with the transverse fields in to calculate for any given set of time moments: tht)

the x direction, making the ground state completely disor-operators can be evolved te=0 when they simply flip a
dered and uncorrelated in termswff. An elementary exci- spin, while the evolution parts™'Ho' only introduce a phase
tation is created when one spin is flipped against thdactor, since they always act onky, eigenstate. We imme-
transverse-field. These excitations dkevortices or visons diately see that a vacuum expectation that appears if1EZy.
according to Eq(A7), and they are localized and gapped. can be nonzero only if the product of is made from a path

For finite h, the visons can in principle hop between sites andbf bonds bridging between the siteandm. We only need to
lower their gap by acquiring kinetic energy. However, for turn our attention to theonnectectlusters of bonds.
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6\ may, of course, bend, but somewhat special situation occurs
/ / when a triplet of 6-coordinated sites{,A,,A;) of the path
sits on the three touching plaquettes, as shown in Rig). 8
/15 @% é g % % (c) Again, all theB sites must be visited, or the path is
(a) (b) (c) (d)

canceled out, and one of them must be a path’s end point if
no other 6-coordinated sites may belong to the path. Since all
B sites are now the next-nearest neighbors, we may try to
FIG. 7. Examples of the paths between the sReand Q: (a) choose another 3-coordinated site further away as the path’s
simple path;(b)—(d) complex paths. The thin-line doublets around end point, and construct the path like the one plotted with the
the bonds in(c) and (d) mean that there are loops going through solid line in Fig. &c). But, again there is a path that cancels
those bonds twice. it out, and it is plotted with the dashed line. By trying to add
more 6-coordinated sites to the cdspwe would only have
Consider a particular pair of siteB and Q, and the 100 manyB sites to cover as before. In conclusion, all the
nth-order term in the perturbative expansion of Simple paths whose end points are separated more than the

iG(P,Qitp,to). Its value, proportional th", is contributed ~NeXt-nearest neighbors must cancel out.
separately by all paths of the lengitbetweenP andQ. The Many complex paths are also canceled, namely, whenever

two paths cancel out each other if they enclose an odd nun¥/€ €an construct another path of the same topology, and
ber of rhombic plaguettes: the total “flux” through the loop between the same end points, which encloses an odd number

formed by them ism, that is, Il ,ppeim=— 1. Let us distin- of plaquettes with the original one. However, for some paths

guish the two types of pathsimpleandcomplex The simple this conetruction is not possible, and a different approach is
paths never visit any site more than once, while the comple?eeded in order to see whether they are canceled out or not.
paths visit at least one site more than once. The complex €xample of such a path which appears at the 12th order of
paths can be obtained from the simple ones by adding th&1€ perturbation theory is shown in FigdJ. The complex
loop segments to them, where a loop may take some bond@ths between the sites further away than the next-nearest
an even number of times. We illustrate this in Fig. 7. neighbors appear only above the sixth order, so that below
For any given simple path between some thgtantsites this order Green’s function between distant sitasd arbi-
P and Q, we can construct a path that cancels it out. |ptrary timeg strictly vanishes, and the visons appear strictly

demonstrating this, we also explore what the sufficient disiocalized. , o
tance between the andQ is. At present, we cannot tell whether the vison localization

(a) Consider first the simple paths that contain only thePersists to all orders. If not, they would have an extremely
three 6-coordinated sites depicted in Figa)8 If the path  large inertia in the smaltlimit, and this would be a mecha-
goes through the site%;-B;-A,, and never visits the sit®,, nism for creation of the Iarge_ qqaspartlcle effectlve mass.
then it can be canceled by the path that goes througﬂ—he possibility of vison localization is also hinted by the
A;-B,-A,, and continues beyond as the original one. Thel\/lon_te C_arlo c_alculat|ons presented in Sec. V namely, the
only way to avoid the path cancellation is to visit all the spanal vison-vison correlations eff_ectlvely vanish at separa-
depictedB sites, and this can be done only by choosing thdionS beyond the next-nearest neighbors. We would like to
path's end points among them(otherwise, more contrast this with anether_ case of a fractlonallzec_i spln_hqwd
6-coordinated sites would belong to the pailve see thatin O the Kagome lattice: in a particular easy-axis limit ex-
this case the path’s end points are the next-nearest-neighboRiored in Ref. 26 the vison correlations are short ranged, but

(b) Next, consider the paths that contain the fourthey exhibit a c_Iear exponential decay over a significant
6-coordinated sites depicted in Figh® For the same reason 'ange of separations. _ ,
as before, all thé® sites must be included in the path, other- Finally, we note that the phase obtained here is also the
wise there will be another path that cancels it out. But thisinconfined phase. The elementary singlet excitations are
time, in attempting to do so we would have to introduce9@PPed visons, Whﬂe the elementary spin-carrying excita-
another 6-coordinated site into the patthe remaining tONS are gappe®=3 spinons.
neighbors of the depicteB sites—analyzed as the cagg,
since the path ends can take only two out of tHBestes left
“outside” of the straight segment of the path. We can already
see that all the simple paths with more than three In order to gain some more insight into the frustrated
6-coordinated sites arranged in a chain cancel out. This chaimnansverse-field Ising model, we attempted to study it nu-

V. MONTE CARLO RESULTS

FIG. 8. If the paths contain
only the marked 6-coordinated
sites, they would have to contain
also all of the marked 3-co-
ordinated sites in order not to be
cancelablgsee the texjt

(a)
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K consistent with the statement made in Sec. IV that the visons
1.2 may be localized in the vicinity of the next-nearest-neighbor
1.1 dimerized sites.

1 regime

For largeh andK, a “dimerized” regime occurs: if the
frustrated dice bond&with positive bond energyare plotted
as dimers on the Kagome latti¢eherever a Kagome bond
intersects a frustrated dice bondhen a hard-core dimer
covering is obtained. Our present method was not able to
establish whether the crossover line between these two re-
gimes is actually a phase-transition line or not. However,
based on our analytical study we expect that this is the phase
transition. Since large coupling constants yield the dimerized
regime in which all dimer coverings have the same action,

FIG. 9. The regimes of thé2+1)D classical Ising model on the the remai_ning phase proper_ties can be decided 0”_|y by en-
fully frustrated dice lattice in Eq19). K=Ks=Kg. The crossover TOPY, Which is a manifestation of quantum fluctuations. In
line was obtained by joining the point$,{) at which the heat the Ising Ianggage, once the action is fixed 1o its lowest

Lo , o~ - value, the maximum entropy state has the largest number of
capacity is peaked for several fixed ratkégh. In defining the heat . . . .

e , flippableclusters of spingfree to fluctuate without changing
capacityh was treated as the inverse temperajare the action. In the dimer language, the honeycomb pattern
will be selected, in a mechanism essentially analogous to that
merically using the classical Monte Carlo technique. Theobtained in Sec. Ill. Indeed, every perfect hexagon of dimers
guantum Ising mode(2) translates to the three-dimensional represents dlippable spin on the dice lattice. Once their
(3D) classical Ising model on the time-stacked dice-latticenumber is maximized by the entropy, the only other elemen-
layers: the corresponding Boltzmann weights are all positivaary flippable loops that could possibly resonate without ac-
and hence the model can be simulated by Monte Carlo withtion cost are the stars, and to maximize their number, the
out a sign problem. We reliably measured the spin-spin corperfect hexagons must arrange in the honeycomb pattern.
relations in the disordered phase, and answered the questibmfortunately, our simulation could not reach equilibrium in
of whether the thermal fluctuations alone can yield orderthis regime, at least due to very slow dynamics at large cou-
from-disorder as the quantum fluctuations. However, wepling constants.
could not truly explore the complete phase diagram and the Since the quantum fluctuations are capable of producing
nature of the phase transition with this simple classical techthe order-from-disorder, it is natural to ask whether the ther-
nique; for those purposes, a more sophisticated Monte Carlmal fluctuations are capable too. If we set the transverse-field

disordered
regime

©O o o ©o 0o 0o o
Wb U d oo

0.2 0.4 0.6 0.8 1. 1.2 1.ah

technique is needed. couplings in Eq.(2) to zero, we obtain the classical two-
The model we study is given by the action analogous talimensional Ising model on the fully frustrated dice lattice.
Eqg. (2): In this case, the Monte Carlo easily reveals that there are no

phase transitions, measured through the “heat capacity,” and
the model is always in its disordered phase. Therefore, the
S_Z EE ~ E thermal fluctuations alone cannot introduce a long-range or-
- €ImU1Um, -~ 3Ly Vg al1g, 741 der, even wherh becomes large and the dimerized regime
occurs. The presence of the transverse fields is crucial for the
entropical selection of a long-range-ordered state in the
(19
Monte Carlo.

_Kelz Ulg, Vlg,7+1|
6

We h t d thi bl | ical b VI. DISCUSSION: IMPLICATIONS FOR THE KAGOME
e nave (0 regar IS problem as a classical one, pbecause QUANTUM HEISENBERG MAGNET

the quantum limith—0 andKgg—c is not accessible. If o . _ _
K,=Ks=K, two regimes emerge, depicted in Fig. 9. In or- The analy§|s in the preceding sections has e_stabhshed
. L = o~ some properties of the fully frustrated transverse-field Ising
der to obtain this dlagra_m, we scan aIpNgch l'TeS’ and model on the dice lattice. Specifically, we analyzed the two
mea},sure the heat capacity, usings the inverse “tempera- limits of small and large transverse-fields, in Eqg. (2), and
ture” B; then we record position of the heat-capacity Ioeakdescrlbed the two distinct phases obtained in those limits. In
and join the peak positiondi(K) from different scans into a  this section, we consider the lessons for the original Kagome
crossover line between the two regimes. Heisenberg magnet. The disordered phase of the Ising model
For smallh andK a disordered regime occurs. It is char- (h<K,) has a unique ground state and a clear gap in its
acterized by seemingly vanishing spatial spin-spin correlaspectrum. This will describe spin-liquid phases of the origi-
tions beyond the nearest-neighbor sites, as shown in Fig. 16al Kagome magnet. On the other hand, the honeycomb
while the time correlations decay exponentially. This regimedimer phase l{>K,) breaks translational symmetry with a
corresponds to the disordered phase and the dmiaftit of unit cell of 36 sites. This phase has a number of interesting
Eqg. (2). The numerical result for the spatial correlations isproperties. It clearly describes a valence-bond crystal phase
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FIG. 10. Monte Carlo measured spatial spin-spin correlations in the disordered phase. The sample size8a2@Qnit cells(each
with six siteg, with h=0.15 andR3=R6=0.75. The type of the site at the origin and the spatial direction are shown in the legend.

of the original Kagome magnet with a large unit cell. The Kagome antiferromagnet, the finite-size scaling should go
spinful excitations will be gapped spin-1 magnons. Howeverwell beyond 36 sites in order to yield more reliable results.
below the spin gap this state has a large number of lowHowever, some gross features of the low-lying spectrum are
energy excitations, with a nonzero gap which is neverthelesgeliably obtained in both approaches, and this is where they
much smaller than the spin exchange. This is in agreemergree: the presence of a large number of singlet excitations
with the numerical calculatioR®n the Kagome Heisenberg below the spin gap and the smallness of the singlet gap.
magnet which also revealed a large number of seemingly Quite generally, we expect that analysis similar to that
gapless singlet excitations below the spin gap. Based on thigresented in this paper is applicable to a variety of spin mod-
we propose the honeycomb valence-bond crystal phase ases in paramagnetic phases. These include the checkerboard
description of low-energy physics of the Kagome latticelattice and various other lattices frustrated by the next-
guantum antiferromagnet. nearest-neighbor exchange. Then, if we were to generalize
However, when making comparison with the numerics,our hypothesis to other models with near-neighbor-exchange
one has to keep in mind the limitations of both approachesnteractions, we would expect that tte>-K,, limit always
This theory is not able to provide quantitative information describes the effective theory for singlet excitations. This
about the energy levels relative to the spin exchange; it onlgheory is a quantum dimer model dominated by the kinetic
reveals that the singlet gap is much smaller than the exenergy. A naive guess for the ground state is that the smallest
change scale. On the other hand, the numerical exact diageesonating flippable loops assume the maximum possible
nalization can be performed only on very limited systemdensity, typically leading to alaquettelong-range order. In-
sizes, which at best contain as many sites as the unit cell afeed, suchplaquette phases have been observed in the
the valence-bond crystal that we propose. Due to this, somideisenberg model on the checkerboard latticand the
properties deduced by the finite-size scaliegtrapolation  phase diagrams of the quantum dimer model on the s¢fliare
may not be realized in the thermodynamic limit: the exactand honeyconf lattices, while a dimer resonant valence
magnitude of the singlet gap, the number of singlet statebond phase was found on the triangular latfit& this pa-
below the spin gap, the structure of the singlet spectrunper we demonstrated analytically a plaquette phase in the
below the spin gadfrom which one learns about broken Kagome lattice Heisenberg model, while a numerical work
symmetrie§, confinement, etc. In other words, assuming thatshowed a similar bond order in the one-dimensional Kagome
the honeycomb valence-bond crystal is realized in thestrip3! The peculiarity of the Kagome lattice is that the
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maximum density of smallest resonating flippable loops igo look for this ordering pattern in future studies of the

not sufficient to lift the macroscopic degeneracy of theKagome magnet.

ground states. This is why the singlet gap is extremely small. In addition, we argued that due to frustration and unusual

In other lattices, the checkerboard, for example, the degergeometry the fully frustrated dice-lattice transverse-field

eracy is easily lifted, and the singlet gap is fairly significant.Ising model possesses a strong tendency to localize its el-
One of the remaining fundamental questions is whetheementary excitations: they are either completely localized or

the spin liquids with gapless singlet excitatioigpe Il) re- have an extremely large effective magsarrow energy

ally exist in the quantum spin models, as suggested in Ref®iands.

3, 4. The only known examples that numerically exhibit such

properties are the Kagome lattice Heisenberg nfoated the ACKNOWLEDGMENTS
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lations is a rather smallpossibly zerp dispersion of the

excitations in either phase on the dice lattice. The elementary =~ APPENDIX A: Z, GAUGE DESCRIPTION OF THE

excitations of both ordered and disordered phases appear dis- KAGOME QUANTUM MAGNET

persionless at least to the sixth order of perturbation theory. . . .

Although at present we do not know whether or not this Here we briefly derive a representation of the Kagome

persists to all orders, we speculate that it might be the Caséﬂelsenberg quantum magnet ag;agauge theory. For more

at least in the disordered phase. Indeed, a simple Gaussi?ﬂfdepth discussion, see Refs. 18, 23, 32. Qur starting point

Landau-Ginzburg analysis gives a dispersionless spectruﬁﬁ the Heisenberg model on the Kagome lattice:

In Appendix B we study th©(N) generalization of the Ising

model on the fully frustrated dice lattice and recover a dis- H=J> S-S, (AL)
persionless spectrum in the larijedimit. In addition, we (i

show that in this approximation the model is always in théyhere the sum runs over the nearest-neighbor sites. The
paramagnetic phase. It is clear that both the Landaupgisenberg model can be viewed as a special limit of another
Ginzburg approach and the lareapproximation have fun-  ,04el. Consider a theory of hopping spindns coupled to

damental Iimitations in t.his problem. As we have argued,_ th%he 7, gauge fieldaizj which lives on the bonds of the
correct phase diagram includes an ordered phase, albeit Ofkaagome lattice:

somewhat unconventional kind.
H=—hy>, a'in—E o

VIl. CONCLUSION (ij) (i

tij :EH (fzifaj‘f‘H.C.)

In this paper we have studied various aspects of the fully
frustrated transverse-field Ising model on the dice lattice.
This model is useful as a description of the physics of singlet
excitations below the spin gap of the quantum KagomeThe spinon operators obey fermion anticommutation rela-
Heisenberg antiferromagnet. We argued that this transversgons, and the gauge-field operators are Pauli matrices. This
field Ising model supports at least two quantum phases: theory possesses a local gauge symmetry: if the signs of
plaquettephase where the ground state breaks both globaf ,; at a particular sité andcrﬁ, on all bonds emanating from
spin flip and translational symmetries, and a disorderedhat site are simultaneously changed, Hamiltoniag) re-
phase with short-rangedsing) spin correlations. In terms of mains invariant. The appearance of the local symmetry
the original Kagome Heisenberg magnet, the former demeans that the Hilbert phase is larger than that of the Heisen-
scribes a state with a honeycomb pattern of resonatingerg model, and a constraint per site is needed to project
benzene-like arrangements of singlet bonds on the hexagonghck to the physical Hilbert space. This is achieved through
plaquettes, with a 36-site unit-cell. The elementary singlef gauge requirement on the physical states:
excitations are gapped with a very small gap and localized
inside the cells of the honeycomb structure. Based on com-
parison with the numerical studies, we suggested that this
specific large-unit-cell valence-bond crystalline order de-
scribes the ground state of the Kagome Heisenberg quantuiirhe operatorss; are generators of the local gauge transfor-
magnet. The elementary spin-carrying excitations are gappeuations at sites, and the product is over all bondsi )
spin-1 magnons. We hope that our work stimulates attemptsmanating from the site In thehy— o limit of Eq. (A2), all

+A (LT =TT +H.e) | (A2)

=TT ol (-s ==t (a9

AP
1" el
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gauge spins tend to align in tixairection, so that the gauge

requirementA3) fixes the number of spinons to be one per H'=— hZ €|mv|zvﬁq—K32 U|x3— Kez lee

site. The spinon gauge theorA2) then reduces to the {Im) '3 's

Heisenberg model at the second order of perturbation theory, © x

with 3~t2/hg, A%/, ~Karg 2 vl (9)
The next step assumes that the spin-carrying excitations in s

the original Heisenberg model are gapped. We rely on th@he “kinetic-energy” terms contain in general the products

experimental and numerical studies that show such a gap iof v{ on various clusters of the dice-lattice sites.

the spectrum of the Kagome magnet. Thus, the spinon de- Hamiltonian(A9) captures only the form of the effective

grees of freedom can be “integrated out” in E¢\2), leav- theory below the spin gap. The coupling constants are not

ing behind a puré, effective gauge theory with local terms known, because the path integration of spinons in (Bg)

(we will come back to this step later cannot be carried out analytically. However, we can at least
attempt to estimate their relative values. For these purposes,
r_ X _ z_ z we express the original Heisenberg model in the slave-
H h% 7ij K3§ 1;[ 7ij KG% 1;[ 7ij particle path integral, as was done in Ref. 18. The action
involves the spinon Grassmann fidlg living on the siteg
f the (2+1)D lattice, and the gauge Ising-like fietd; liv-
K z_ .. A4y 9 : ' ’
3+3§ 1;1 7ii (Ad) ing on the lattice bonds:

The terms involvingo® operators are the sums over all ~ -
plaquette products. The elementary plaquettes appear at th&= — 2 oij[Tij (fuifuj+c.0)+ Ry (= if;+c.c)]
lowest order, but in principle, all connected clusters of bond w
loops can appear at higher orders. This form of the effective _
Hamiltonian is required by th&, gauge symmetry: the sign _Z faifaitSe, (A10)
change ofe, on all bonds emanating from any sitenust o o
leave the Hamiltonian invariant. The spin gap results with avhere the Berry phas8&g, realizing the projection to the
local and perturbative nature of EGA): the coupling con-  Physical Hilbert space, is given by
stantsK, of the n-bond clusters are of the order ek",
wheree is some energy scale, amek1. The spinon “inte- e Se= H aij . (A11)
gration” also modifies the gauge requireméAB) to ij=i—71
Action (A10) is an exact rewriting of the Heisenberg model
G/ =1l of=-1. (A5) in the limit t;; ,A;;<1."® We obtain it upon integrating out
el oij, andJA7~(t7 A7), whereAr—0 is the imaginary-

ExpressiongA4) and(A5) define a puré’, gauge theory on time lattice spacing used in the path integiail the Heisen-

the Kagome lattice. We now express this theory in its duaberg model. We can relate the action coupling constaﬁ}s
form. Letv]"¥"? be the Pauli operators defined on the sites of

: . i . ) andA;; to Hamiltonian(A2) coupling constantg;; andA;; .
the lattice dual to Kagome, the dice lattice. Their relation to ! (A2) Ping E 4

: N i In order to simplify notation, from now on we will use one
the Z, gauge field of the Kagome lattice is the following: ~ plify . . .
symbolt to represent all the couplings in the action, arfaor

o = €mvivE, (Ae) all the couplings in the Hamiltonian. The connection is
- 1 onthe temporal links(ij)
— tii~ N .
I1 i =vi (A7) Y [ts onthe spatial links(ij),
plag.

In Eq. (A6) the dual dice bondIm) intersects the Kagome Where 6=yA7/h,—0. Now we integrate out the spinon
bond(ij), while in Eq.(A7) the dual dice sité sits inside field and obtain a puré, gauge theory with the action

the Kagome elementary plaquette appearing in the product

on the left-hand side. The numbeg, are fixed to+1 and S=—In detA(o;; ;"fi].)+gB: _E RDH 0ij+Ss.
—1 in such a way that on every dice elementary plaguette U u
the condition of full frustration holds: (A12)

The matrixA above is the matrix that couples the spinons

IT en=—1. (A8)  in Eg.(A10). In the expanded form, this action must contain

0 various gauge-invariant products ef; on the closed loops,
This is the consequence of the gauge requirer®bt. One  with the loop-dependent coupling constafts . The very
choice of sign arrangement fer,, is depicted in Fig. 1. The assumption that this expansion is possible and convergent is
pure 7, gauge theory(A4) can now be rewritten as the an essential one, and it requires a large spin(g&the order
transverse-field quantum Ising model on the fully frustratedof J), determined at a microscopic scale. A large spin gap
dice lattice: guaranties that the effective theory will have only local
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terms, {:md significance_of .various. closed qups in (Eéq.Z) hA 7=K(dual spatial link

will rapidly decrease with increasing loop size, making the

expansion convergent. At this point we are not providing any = — L IntanhK(temporal plag.

formal estimate of the spin gap. We simply use some external

sources to obtain information about it, for example, the nu- Ar—0

merics. —— —In[tyA7/hg]. (A18)

_ Usirlg the fac_;t that a;; factor always comes_together Taking the ratio of Eqs(A17) and(A18), and noting that the
with a tj; factor in Eq.(A10), we can make an estimate for Hejsenberg model exchange couplinglist?/h,, we obtain

the coupling constant€; (to the lowest order
K 2JAN)"?

The energy scale afis also a measure of the spin gap. Since

and this implies thaK can be treated as small numbers, the spinons have to be integrated out, the starting path inte-
scaling ass” with n being the number of spatial links in the gral must accurately represent the energy scales above the
loop. In order to formally derive the connection between thisSpin gap. The energy cutoff must be much larger than the
action and HamiltoniangA4) and (A9), we neglect at this spin gap, and hencA7<1. This is also compatible with
point all the higher-order loop term&nclosing more than the reques?ij ,Z”«l, needed for the path integral with ac-
one elementary plaquejtelf the action contains only the tion (A10) to reduce to the Heisenberg model. Consequently,
elementary plaquettes, we can readily construct doal h>K (for arbitraryn=0).

theory, as outlined in Ref. 18. It takes the form of the Ising  This simple analysis suggests that the langémit of Eq.

(A19)

model on the fully frustrated dual lattice: (A9) is a good effective theory for the singlet physics below
the spin gap. It also seems natural to expect from(EG9)
S=— E K im€mb 10+ (A14) that the higher—ord_er loop terms, present in the more accurate
{im) effective Hamiltonian, have the coupling constaitswhich
decay with the loop lengtm as K,xx", wherex=JA7

The lIsing gauge field,,, living on the links of the dual <1
lattice isfrozensuch that its product over any dual elemen- Finally, we can ask whether this approach is useful for

tary plaqguette is- 1. The only fluctuating field is the vison . .

Ising fieldv, . The duality transformation establishes connec-e)(tens'on'.S of the Helsenb_erg mo_del. The next-nearest and

) ) ~ . further-neighbor exchange interactions are reflected in action

tion between the coupling constants; defined for a (a10) as additional spinon hopping and pairing terms medi-

plaguette andK,, defined for the dual bond piercing that ated by the’, gauge field. The spinons can still be integrated

plaquette: out (provided that there is a large spin gaand the puré,
gauge theoryA12) would effectively live on the more com-

tanhKg=e ?m,  tanhK,=e 2. (A15)  plicated lattice that has bonds between all pairs of sites that
For simplicity, assume that there is only one kind of elemen10St an exchange coupling. The dual theory would, in gen-

tary plaquettes. Then, the Hamiltonian describing the duafr@, P& more complicated than the frustrated Ising model
theory has the form (the effective lattice may not even be plapndut we could

still write an effective Hamiltonian like Eq(A4) together
with the gauge conditiofA5), and expect a largk-limit to
H= _h“2m> Elmvizij_Kzl Che (A16) be realized. Similarly, the ring exchange interactions can be
. _ o implemented in actiofA10) by explicitly adding the loop
The connection between actidAl4) and the Hamiltonian products of the gauge field to it. This would yield larger

above is values for the loop couplings,, in the pureZ, gauge theory,
- possibly making them comparable with Having in mind
KAr=e ?im on the temporal dual linkdm), the results of this paper in the smalllimit, this hints that
_ the multiple-spin exchange is a good candidate to yield truly
hA7=K,, onthe spatial dual link§ m}. fractionalized spin liquids.

Now we can estimate the values of the Hamiltonian coupling _

constants. The temporal elementary plaquettes always have APPENDIX B: O(N) LARGE-N LIMIT

four bonds(two spatial and two temporalwhile we assume A relatively simple way to gain some first intuition for the
that the spatial elementary plaquettes haveonds. It fol-  q,antum Ising model on the frustrated dice lattigg is to

lows that generalize it to a limit where the semiclassical approxima-
= . ~ tions become exact. Consider ti@&N) generalization of
— A~ 2Ky (dual temporal link)_ i . K .. . .
KA7=e “m tanhK(spatial plag. spins in the largeN limit. We will demonstrate that this

Gaussian theory has a dispersionless spectrum, and supports
(A17) only a disordered phase for all values of the coupling con-

A7—0 A 7-) n/2
n
( ' stants.

—>th—0
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We write the imaginary time path integral and impose the !
spin-magnitude constraint using a fieldof Lagrange mul- \/ §/

tipliers. The action obtained from E(R) by keeping only the i
elementary transverse-field terms is |

Sﬁf dr[—h(lzm> 6|mS|TSmT—73|2 zjsr \? \‘-\/ /

-

2

S,
-=> SGT—:—E iNAS—1)(. (B FIG. 11. A choice of the unit cell on the frustrated dice lattice.
aT ! The site labeling corresponds to the internal indices of the matrix

In the saddle-point approximation, the Lagrange muItipIieququw'

field N becomes “homogeneous,” with only two independent

valuesk; and\g corresponding to the 3- and 6-coordinated - 1
sites. This is the consequence of the gauge invariance, S)\:N{z > 2 n detHg q o TIA) +Nr(iA)].
namely, the arbitrariness of the choice gf,, subject to o By

condition (3). If ¢, are chosen to be negative on the thick

bonds in Fig. 1b), then the action can be diagonalized on theHere we used the elementary cell in Fig. Mjs the number
66 matrices in the frequency-momentum space, and thef space-time sites\ =diag(\g,\s,N3,A3,A3,A3), and the

spin degrees of freedom can be easily integrated out: matrix quqyw is given by
_ & 2 0 E(l_f_e*iqy) _ Ee*iqy Eefin Eefiqx(l_efiqy)
2 ¢ 2 2 2 2
0 Ke h h P h P h i
2 2 Ute ™ plnlrerd) o mpe
h . h Kj
E(:|__|_elqy) > -5 2 0 0 0
Ha,ay0= h h o . Ks o 0
- Ee y §(1+e v) - 7(4)
Eeiqx E(_1+eiqy) 0 0 _& 2 0
2 2 2 ¢
Eeiqx(l—eiqy) — Eeiqy O O O — &0)2
2 2 2

The matrix under the determinant has three twofold degen- _ do 5 )
erate eigenvalues that have no dependence on the momen-  S,=NN fZln(vlvzva)—(Zmefr am3)|. (B3
tum. If we relabelix ;= —m3 andihg=—m3, they are

In order for this action to correspond to a physical Her-
Ks mitian Hamiltonian, bothm3 andm3 must be real numbers.
=23 2 m2 " : i
V3T @ 3, In addition, the path integral converges only when all eigen-
valuesv; are real and positive for all frequencies. These
requirements are satisfied if

1
1% 1,225

K3+ Kg
2
K 2 A failure to satisfy these conditions by the saddle-point val-
\/Gh2 ( 2+ m;3 mG) } (B2)

w?+m3+ms m3>0, m3>0, 4mim3>6h2. (B4)

ues ofm; and mg would signify an instability.
Now we varym3 and m3 to find the minimal action, in-
tegrate out the frequency, and obtain the following saddle-
The action then becomes point equations:
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2 2\2 2
2(m3+md) ms  (a+x)? x
Ky Ko+ 2Tt M) e (B9
1 ( 3 6) @ KG 8K§a2 2
———— +K3Ks =6,
V2K m3 Vai+a
$s e X3+ a[ 1— 4K g(2K 5+ Kg) a]x+ 2K ga?=0. (B10)
2(m3—md) : . . .
(Ks—Kg)+ S i Treating Eq(B10) as a quadratic equation far, we find the
1 Vajas real and positive solution:
———— KK =2, (B5)
\ 2K3m3 \ CE1+ V&2

1+ \1+8Kg[2(2K3+Kg)x—1]x
4K —6[2(2K 3+ Kg)x—1]

where a=X

m3 m32 \/ m; mi\? 6h2
’ K3 K6 K3 K6 K3K6
Conditions (B4) directly translate tox; ,>0. The saddle-
point equations are too complicated to be solved exactly. |

the solution that meets conditioB4) exists for every finite
nonzeroKs, Kg, andh, then the system is always in the

(B6) for x> (B11)

2(2K3+Kg)

We can now study the dependence ®f 6h%/K3Kg 0N x.
From Eq.(B6) we obtain

. . 2 a2
paramagnetic phase. In order to prove that such solutions _4%%_ 2 (B12)
always exist, we can solve the inverse problem: assume that p= Kz Kg @

m3 andmg are known, real and positive, fix arbitrary values

for K3 and K4, and find the value oh that satisfies the and using Eqs(B8), (B9), and (B11) we expressg as a

saddle-point equations. function of x. One can easily check thgg=0 for m§
A couple of straight-forward algebraic manipulations re-=1/8<;, m3=1/8Ks, and B—= for m3=h.3/2, m3

duce the saddle-point equatio(B5) to

Kea+2m3 1

2 =2~ : (B7)

Kga+2m3 22K ym3

2\ 2 2 2

ms 3 6

at—| =8K2a? =+ —+al,
Ks " 1Ky K
and a=+a;a,. It follows that

m;  x2 a8
K_3_El ( )

=h+/3. In between these limiting case8(x) is a continu-
ous, monotonically growing function in the region>1/K

for all values ofK; and Kg. Due to a very complicated
dependence o8 on x, we verify this by numerical plotting
for a variety of K5 and K¢ values, including all important
limits. The fact tha{3(x) is a monotonic function means that
for every value ofh there is a unique solution fog, i.e., for
the saddle-point equations. The “squared massmé”and

mé are real and positive for al, K5, and Kg, and vary
continuously with the coupling constants. Therefore, this
theory does not support a phase transition, and always re-
mains in the paramagnetic phase.
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