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Antiferromagnetic Ising chain in a mixed transverse and longitudinal magnetic field
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We have studied the antiferromagnetic Ising chain in a transverse magnettc,faghd uniform longitudinal
field h,. Using the density-matrix renormalization group calculation combined with a finite-size scaling the
ground-state phase diagram ih,(h,) plane is determined. It is shown that there is an order-disordered
transition line in this plane and the critical properties belong to the universality class of the two-dimensional
Ising model. Based on the perturbation theorhjrthe scaling behavior of the mass gap in the vicinity of the
critical point (h,=1/2h,=0) is established. It is found that the form of the transition line near the classical
multicritical point (h,=0,=1) is linear. The connection of the considered quantum model with the quasi-
one-dimensional classical Ising model in the magnetic field is discussed.
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[. INTRODUCTION We note that the ferromagnetic Ising chain in the mixed
fields has been studied intensivély'® Though the ferro-
Recently, the study of the field-induced effects in low- magnetic and the antiferromagnetic Ising chains in the trans-
dimensional quantum spin systems has been attracting muskerse magnetic field are equivalent, properties of these two
interest from theoretical and experimental points of viefv. models are very different &k, 0. [In fact, model(2) can be
For the system with an anisotropy of exchange interactiongransformed to the ferromagnetic chain but in a staggered
the magnetic properties essentially depend on the directiolongitudinal field] For example, the ground-state phase tran-
of the applied magnetic field. For example, the behavior ofition in the ferromagnetic model is smeared out by the lon-
the one-dimensional antiferromagnet®XZ model in a gitudinal field in contrast to the antiferromagnetic model for
transverse magnetic field is drastically different in compari-which the phase transition remainshgt# 0.
son with the case of the longitudinal field. In particular, the In this paper we study modé®) using the density-matrix
transverse field induces the staggered magnetization in threnormalization-groupDMRG) technique-* This method al-
perpendicular direction and the continuous phase transitiolows us to consider the systems up to a few hundred sites and
takes places at some critical field® This effect has been to determine the transition line with high accuracy. Using the
observed in quasi-one-dimensional  antiferromagnefinite-size estimation of the ground-state energy and low-
Cs,CoCl,,° where the magnetic field has both the transversdying excitations we will show that the modé®) on the
and longitudinal components. Therefore, it is important totransition line is described by the conformal field theory with
study the properties of the antiferromagnesie 3 XXZ  the central charge=3. Besides, we consider the behavior
model in mixed transverse and longitudinal magnetic fieldsof the model in the vicinity of the special pointg=3, h,
=0 andh,=0, h,=1 and determine the form of the transi-
_ X X = zcz tion line near these points.
H=2 (SShe1+ SiShea +ASIS ) The paper is organized as follows. In Sec. Il we will pro-
vide a qualitative physical picture of the ground-state phase
—h>, S—h,>, <. (1)  diagram based on the classical approach. In Secs. Ill and IV
the behavior of the system in the vicinity of the special
points of the critical line will be considered. In Sec. V we
will present the DMRG calculation of the critical line. Sec.
VI is devoted to the connection of the mod@) with the
statistical quasi-one-dimensional Ising model in the external
H=2 S$iSi.,—h2> Si—h,> S (20 magnetic field. In Summary we discuss our results.

We consider the most simple case of this model—the an
tiferromagnetic Ising chain given by the Hamiltonian

In spite of the simple form of this Hamiltonian it capnot Il. THE CLASSICAL APPROACH
be solved exactly. In Ref. 10 the ground state phase diagram
of this model has been investigated using numerical diago- In order to provide a physical picture of the phase dia-
nalization of finite systems and finite size scaling proceduregram of model2) we use the classical approximation, when
It was found® that the transition line between the orderedspins are represented as three-dimensional vectors. The clas-
and disordered phases exists and it was assumed that thigal ground state is given by a configuration in which all
model belongs to the universality class of the two-spin vectors lie in theXZ plane with the spins on odd and
dimensional Ising model. even sites pointing at angles, and — ¢, respectively, with
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Thus, in the AF region the magnetic fields induce a per-
pendicular antiferromagnetic long-range ordeR0O). In the
classical approach the value{+ ¢,) plays the role of the
LRO and it vanishes on the transition line determined by the
equations

@1t <P2)

h,cose+h,sing=1,

h,cos¢—h,sing=sine cosey,

(€)

whereg;=—¢,= .

cal line between the antiferromagnetic and paramagnetic states ob- 1h€ solution of Eqs(9) gives the transition line in the
tained from the DMRG calculation is shown by thick solid line and €XPlicit form,

that in the classical approximation by thin solid line.

respect to theX axis. The classical energy of this state is

1 h
E/N=— Zsin @1SinE,— ZX(COS(,D]_‘F COS¢p5)
h,

3

4 (sing;—singy)

The anglesp,; and ¢,, minimizing this energy are solu-
tions of the following equations:

COS¢p4Sing,+h,cos¢;—h,sing; =0,

sin¢,cosg,— h,cose,— h,sin¢g,=0.

(4)

h,=1-h23(1+h23).

The classical phase diagram is shown in Fig. 1. The tran-
sition (critical) line separates the phase with nonzero AF
LRO from the phase with uniform magnetizati¢ihe para-
magnetic phasge

Of course, the classical approach does not give the correct
description of the phase transition. At first, the quantum fluc-
tuations shift the critical poinh,=1 to h,=3 at h,=0.
Second, the form of the critical line is certainly incorrect at
h,<1. Besides, the order parametes,{+ ¢,) vanishes on
the critical line with the critical exponerg, which is not
valid at least in the critical poirtt,=3,h,=0. Nevertheless,
the fact of the generation of the staggered magnetizations
perpendicular to the field direction is qualitatively true.

(10

The solution of these equations is simple in the particular

cases, whem,=0,

¢1=¢@p=arccosh,) h,=<1,

¢1=¢,=0, h,>1 )
andh,=0,
T
P1= @2 E’ h,<1,
T
P1= " P2= 5, h,>1. (6)

But in the general case, whénp+0 andh,+ 0, the phase
diagram is divided on two regionsee Fig. 1 In the para-

Ill. THE CRITICAL ITF POINT

Before the numerical determination of the critical line we
consider the behavior of the mod@) in the vicinity of two
special pointsh,= 3,h,=0 andh,=0h,=1. This will give
us the form of the critical line near these points.

In the caseh,=0 model(2) reduces to the exactly solv-
able one-dimensional Ising model in the transverse figld
ITF mode). This model is well studied and it belongs to
the universality class of the two-dimensional Ising model. At
h,<3 the ITF model is gapped and there is nonzero stag-
gered magnetizatiot( —1)"S3). The ground-state dt, <3
is twofold degenerated in the thermodynamic limit. At the
point h,=3% the model becomes gapless and the staggered
magnetization vanishes with the critical expongnftThis is
the transition point from the antiferromagnetic state to the

magnetic region the energy minimum is given by the conparamagnetic gapped state. The gap vanishes lineaty at

figuration with ¢1=—¢,=¢, with ¢ determined by the
equation

h,cose—h,sing=sin¢ cose. (7)
The antiferromagnetidAF) region is characterized by
nonzero staggered magnetizations in bé#@indZ directions,

1

5.
Now we consider the ITF model with small longitudinal
magnetic field. For small magnetic field, we rewrite

Hamiltonian(2) in the form

H=Ho+V,
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$15)(s/70)

0
Ho=>, SIS, —h >, S, SEP=h2Y, ( E (19
s 0 Es

The ground stat¢0) has the momentumq=0 and zero
number of then, particles P=1). Therefore, the nonzero
contribution to the sum in Eq19) is given by the interme-

After Jordan-Wigner transformation to the Fermi opera-djate statess) with zero momentum and parity=—1. As
torsc, , Cp, follows from Eq. (18), all states|s) with momentumg=0
and odd number of they, particles P=—1) have “high”
energiesE;—Eg=e,=1. On the contrary, among the states
with q=0 and even number of the, particles P=1) there
are many states likey;_, 7" . ,/0) with small k having

V=—h,> . (11)

N
ch+cy
Si= “2 j]:[n(l—ZCj*cj),

L1 small excitation energies;~k and they can lead to infrared
Sh=5 ~CnCn, (120  divergencies.
Hereinafter we consider large but finite systems of length
the ITF HamiltonianH takes a bilinear form N. We shall study the dependence of dominant contributions

to the perturbation theory oN, omitting numerical factors.

1 Using the fact that;=1 one can rewrite Eq19) as

HOZhXE (C:}rcn_ E

1
+7 2 (Cn—Cn)(Cara+ ).

13
B9 SR~ —hZ3 (0lss)(sl0) =~ hZ(0l(5970).
The HamiltoniarH, commutes with the “parity” operator (20)
p— ; + ) 14 In higher orders of the perturbatipn series for the ground-
exr{ ! WE Cn Cn (4 state energy each second intermediate $&tbas odd num-

ber of the Fermi particlesR=—1), and, therefore, high
energyes=1. For example, let us consider the fourth-order
correction to the ground-state energy,

becauseH, can change the number of, excitation by an
even number only. Therefore, the space of statesl ofis
divided on two sectors with oddP(=—1) and even P

=1) number of the Fermi particles, . 0l s\ s|S?s Vs’ | s\ s" |0
The HamiltonianH,, is diagonalized exactff SEM=h% > (O[Ss) (SIS ) s'[S1s")(s"1710)
s,s’,s" (EO_ Es)(EO_ Es’)(EO_ Es”)
1
_ + 0|S?s)(s|S%0
Ho E Ex| Mk Mk 2): (15 —5E82)h§2 < | | >< | | > 21)

s (Eo—Eyg)?
with Fermi particlesn, and spectrum
s Lo All intermediate states,s’,s” have momentung=0.
&= hi+ 7 +hycosk, (16)  The states’ haveP=1 and some of them have small exci-
tation energies ~1/N, while the states ands” have P

which gives a gap at momentum . .
g gap ome =—1 and high energies;=1. Therefore, one can sum over

m=|h—1|. (17) the intermediate statesands”, which reduces Eq21) to
2|’ ’ 2
The gap vanishes at the critical poimt=1/2, where the SEGD—ntS (0[($)7s")(s"[(S) |0>' 22)
spectrum becomes s’ Eo—Eg
_k Now we note that this expression looks like the second-
k= COS;. (18 order correction and Eq20) looks like the first-order cor-

rection to the ground-state energy with a perturbation

Below in this section we will consider the perturbation —hg(SZ)Z. In a similar way one can sum over all intermedi-
theory inV, Eqg. (11), at the critical pointh,=1/2. ate states witly=0 andP= —1 in all orders of perturbation

The transition operatd®?’=3S; in V, Eq.(11), conserves series. As a result, we arrive at the perturbation theory with
the momentum and changes the parity, because as it followlse effective perturbation
from Eq. (12) it changes the number of Fermi particles
(and also the number of, particles by odd number. There-
fore, the nonzero matrix elements with the transition operator
$* have the states with equal momentum but different parity.
The last fact means that the perturbation theory tontains We note, that the perturbation theory with the perturbation
only even orders. V; coincides with the original perturbation theofid) in a

The second-order correction to the ground-state energy isense that both perturbation series have the same order of

Vi=—h2($)?=— hgn% SESE. (23

214406-3



OVCHINNIKOV, DMITRIEV, KRIVNOV, AND CHERANOVSKII PHYSICAL REVIEW B 68, 214406 (2003

divergenciegor power ofN) at each order irh,. But nu- The mth order inV, is proportional tdﬁm. The denomi-
merical factors at each order iy can be different. nator of themth order containsri—1) small excitation en-
The perturbationV, commutes with the parity operator ergies~ 1/N and all matrix elements in the numerator are of
(14) and conserves the momentum. Therefore, the perturbahe order of unity. Therefore, thvath order inV, diverges as
tion series inV, contains the intermediate states wiik 0 hgmNm—l_ But this is not valid for odd orders iv;. The
andP=1 only, and some of these states have small excitaana|ysis shows that all odd orders ¥, diverge as
tion energiexs~1/N. These states give the most dlvergenchmNm 2. For example, the third-order correction\ify (the
contribution to the perturbation series¥q and further we S|xth order inh,) for the ground-state energy does not di-

shall take into account these states only. verge:

Now we need to estimate the matrix elements of the op-
erator §%)2. The behavior of the correlation functi¢s:S?,) SE~hEN. (29)
in the ground-state and in the low-lying states with excitation
energiess s~ 1/N on large distances is known: So, the odd orders i¥; give the next order corrections to

the ground-state energy and we omit it below.
L, (=pmm Summarizing all the above, we arrive at the perturbation
(SnSm~ m’ (24 series in the form

and therefore, due to oscillation of the correlaf8fS;,) the Y N . 2n i

sum overn andm can be estimated as OBo=~aoh;N hZNnZO bn(hzN), (30

. with a;=0.070® ... [Eq. (27)] and unknown constants
2 (S; Sm>_ - 2N E (SiSh)=0.074681)N, (25  p,. One can see that the first divergence appears only in the

eightth order inh,, and it is very difficult to observe it
where the constant was found from extrapolation of the exadtumerically. The exact numerical calculations upNe- 14
results for finite chains witiN=6, . . .,14. of the second- the fourth- and the sixth-order corrections in
The nondiagonal matrix elements of the operatgf)}  hz confirm the form of the series, EB0). .

with two different low-lying states was also calculated nu- The sum in Eq(30) forms the scaling functiorfip(x) of

merically. It was found that the only nonzero matrix elementsthe scaling parametar=hN. Thus, the ground-state energy

(in the thermodynamic limjtare given by the states,s’  takes the form

differing by two #, particles, such afs')= 7, 17,|s). All 5 .

such pairs of states give the same value for the matrix ele- 0Eo=—aoh;N—h;Nfo(x). (3D

ment
Since the ground-state energy is proportionalNjothe

(s|(S9)?|s')=0.31081), (26)  scaling functionfo(x) has finite thermodynamic limit at
—o0, Thus, the leading term of the perturbation theory for
while all other matrix elements exponentially drop with the ground-state energy is given by the second order and the
Now we estimate all terms of perturbation serieshin divergent part of the perturbation theory gives the correction
According to Eq.(25) the second-order correctiof20) is ~h‘Z‘.
proportional tohﬁN. The factor alhﬁN was found numeri- The perturbation series for low-lying states has the same
cally by exact diagonalization of finite systems and the fol-form as in Eq.(31), but each low-lying state has its own
lowing calculation of the sum(19). The data for N scaling function. Therefore, for the first excited standth

=6, ...,14 arevell extrapolated and give momentumg= 1) one has
SE@=—0.070605)h2N. 27 SE .= —a hiN—hiNf(x), (32
According to Eq.(27) the zero-field susceptibility ig, So the mass gam=oE . — 6E, appears as

=0.14141). This result is in a perfect agreement with the
value y,=0.141 B ... obtained analytically in Ref. 18.
Using Eq.(26) we find that the nonzero contribution to

the fourth-order correction to the ground-state endg®) is =x(fo(x)— f(x)). Since the gap is finite, the scaling func-

- + . . .
given by the stategs) = » 7.,|0) with the excitation en- o, g(x) in the thermodynamic limit ax— must tend to
ergy es=2cosk/2). Thus, because of small excitation ener-gome finite limit

gies atk~ in denominator in Eq(22) the fourth-order
correction to the ground-state energy turns out to be propor- m=a,h2+g()hZ. (34)
tional toN (we omit here logarithmic correctiops me z

m=anh7+g(x)hZ, (33)

where a,=(ap;—a,)N and the scaling functiong(x)

From the last equation we see that the gap is proportional
SEGntS i~h§‘N. (29 1© hZ, but the factor ah? is given not only by the second
s &g order correctiora,, but by all collected divergent orders of
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in full accord with Egs.(25) and(26). That is, the diagonal

1.75 1 o ' -
matrix elements ofV, are proportional toN and only the
1.55 1 nonzero (nondiagongl matrix elements have the pairs of
135 1 states differing by tworp, particles:
(s|S;S5.ls")=1. (39
o
0951 ot Thus, we arrive at the effective Hamiltonian
0.75 1 - L
0.55 1 /*' Heg= —ah2N+(1-bh2)>, & ﬁﬂ—EZ S¢. (40)
g 1/(Nh2)

0.35 T T T 3

0 0.5 1 15 2 Again, the original mode(11) is equivalent to the effec-

tive model (40) in a sense that the perturbation series for

both models have the same order of divergen@espower

of N) at each order oh,. But numerical factors at each

the perturbation series. The numerical estimation of thé)rd.ﬁ: ofh, can be dl]tferrlgnt. ina lies in the f hat th

second-order correction to the gap gives © advantage of this mapping lies in the fact that the
effective model(40) is of the ITF type and therefore, is an

FIG. 2. Scaled mass gap/h§ for hx=% with various values of
N andh, as a function of the reciprocal scaled parameterhf/.

a,=0.18752). (35) exactly solvable one. The spectrumtéfy is
2
In order to find the factor ah? in mass gap we performed e2= 1+J n icosk (41)
DMRG calculationgfor details see Sec. \of model(11) for k= 4 2 ’

h,=0,...,0.3 andN=20, .. .,300. The dependence of the
gap on the scaling parameter hiN is shown in Fig. 2. One
can see that the points with differeNtand h, lie perfectly

on one curve. It definitely manifests that the scaling param
eter ishiN. The DMRG calculation data give the mass gap b

m= zhﬁ. (42)

with J=1— bhg. So, according to the spectrum of the effec-
tive model(41) the magnetic fieldh, produces the gap in the
spectrum,

m=0.371)h2. (36)
From this equation it follows that the second-order cor- As was noted above, apart from numerical factors the

rection to the mass 5) gives approximately one half of . ) .
a total gap, and anc?tﬁg)h%lf is C(F))IFI)ected by ?—;n other diver-?ﬁecuve model40) has the same form of perturbation series

) . . . h, as the original mod€[11). Therefore, we can check the
ent orders contained in the scaling functigpix). Inn, . ;
) We note that in contrast to E(ﬁG)gfor thegllger)romagnetic form of the perturbation theor{80) by studying the pertur-

- . . bation series ih, of the exactly solvable mod&#0).
ITF model the mass gap at the critical poigt= % is propor- z - .
tional to h§/15 Refs. 12,13, For large but finite systems the ground-state enérgth

g=0) and the first excited statith q=7r) of Hamiltonian

_ _ (40) are known exactly’
A. Mapping to the effective model

Let us return to the estimation of the diagonal element of 1N ) T
2, /g7 HaL-g)sint| 7 -5,

— _am2N— =
the operatol/,, Eg.(25). Using the fact of the oscillation of Eo=—amN 4 &
the correlator(24) in the ground-state and in the low-lying
states, we can rewrite the sum in E85) approximately as N-1

. X 1 |
one-half of the first term: = _—ah? 9__ 2 _ 2l 22
E,=—ahN+ -7 .2 9%+4(1 g)smz< N )
(43)

2N

N N
(=7 +22 (SS=7+2 (SiSh.n). (37) )
n=m n whereg=bh;.

The perturbation series for the ground-state energy and
the gap can be easily found by formal expansion of these
expressions in small parametgrThis results in the scaling
form of perturbation series for the mass gap

The last equation suggests that the perturbatipcan be
reduced to the operatdfs,

V;—V,=—ah?N-bh?>, S¢S, ., (39 )
— 9 2 2n
with some constants, b, which we will define later. In order m=,+g ano dn(gN)*, (44)
to verify this assumption we compared the matrix elements
of the operatoiv, with those ofV;. We have found that the where constantd, determine the scaling functid@(x) of a
dependence of the matrix elements of the opefdsaonNis  scaling parametex=gN:
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g occurs. This is the so-called multicritical point. Hamiltonian
m= 7 +9G(x). (45  (2) ath,=1 has a form
The scaling functiorG(x) was found in Ref. 19. In the H=Ho+V,
thermodynamic limitx—co the functionG(x)— 1/4, result-
ing in gap(42). One can see that the scaling parameter and Ho— — EJFE Sz E)( z E)
the form of the perturbation serig¢d4) coincides with Eq. 0 4 no2/\ Tl o2
(33.
Now we define the constanssandb in Eqg. (40) so that hy o
the second-order corrections to the ground-state energy and V=—2(5"+S), (50
the gap of the effective modé&t0) numerically coincide with
Egs.(27) and(35). This leads to the values whereS*==S; .
The ground-state oH, is macroscopic degenerate; all
a=0.19a1), b=0.75Q1). (46) spin configurations, excluding those with two neighbor spins

pointing down, have the same energ\N/4. The number of

these states i61/2+ /5/2)N.2° The transverse fielth, lifts

the degeneracy. The exact calculation of the first-order cor-
m=0.3731)h§. (47) rection inh, for N>1 is rather complicated because it in-

volves the exponentially large number of degenerate states.
Surprisingly, the value of the mass gap of the effectiveWe carried out the approximate calculation of the perturba-

model turns out to be very close to one found numerically fortion theory inV within degenerate manifold using a simple

the original mode[Eg. (36)]. It means that the gap scaling variational function in the form

function G(x) of the effective mode{40) has the same ther-

modynamic limit as that for modélL1). Moreover, we have

calculated numerically the fourth-order correctionshinto q’:mzo CW'm, (51)

the ground-state energy and the gap for modEls and(40)

and found perfect numerical agreemdtiie second-order whereWV , are the sunfwith equal weightsof all admissible

corrections inh, for both models coincide by definition states withm spins down:

(46)]. Therefore, we expect that the mapping of moddl)

The mass gap of the effective modd0D) with constanta
andb defined above is

N/2

at h,=1/2 to model(40) with constantsa andb defined in \Pm=wr;1/2(S‘P)m\If,:, (52
Eq. (46) is exact for low-lying excitations in the thermody-
namic limit. WhereP is a projector excluding states with two neighbor

The mapping of modelll) to the effective ITF model can down-spinsW¢ is the ferromagnetic state with all spins up,
be extended to the casg+ 1/2. For this case the effective and the normalization factoss,, are

Hamiltonian becomes
(N—m—1)!N

W= (53
Heg=—a(h)h2N+[1-b(hh2]3 SIS 1 -h X S, mi(N—2m)!
(48) Matrix elements ol with respect to¥ ,, are
where the constants,b are now the functions olf,. The h
functionsa(h,) andb(h,) are defined in such a way that the T VPN = (5.8 tS 16 54
second-order corrections to the ground-state energy and the (I mV¥ ) = 5 (Smom m-1+ Sme 10w me 1) (54
gap for the effective modd€K0) coincide with those for the h
original model(11). where
Using the effective Hamiltonia®8) one can calculate the 5 5 5
susceptibility y,(h,). In the vicinity of the critical pointh, < \/m('\" m+2)(N=2m+1) (55
=1/2 it has a logarithmic singularity " N—m
b 1 1 Coefficientsc,, in Eq. (51) obey the equations
X2(h)=xzc— =| hy— 5]|In| hy— 5], (49
T 2 2 N
with x,.=0.1412 from Eq(27) andb=0.75[Eq. (46)]. E+7 Cm:Ex(strlCerl_*'smCmfl)- (56)
IV. THE MULTICRITICAL POINT The quantitys,, has a sharp maximum fd¥>1 at m,

Another exactly solvable limit of mode®) is the case —N(3— V5)/4 andsy, is

whereh,=0. The model ah,=0 is the classical one. At N
h,<1 its ground-state is the antiferromagnet. iA&=1 the _ _ o112
first-order phase transition to the ferromagnetic ground-state Smg 2 (\/E (\5-2)"2 (57)
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The ground-state energy in the thermodynamic limit is 012 gap

defined as a lowest eigenvalue of E§6), which is
N N 0.10 ¢
Eo=— 7 ~MuSm,= — 7 —0.300 28h,. (58)
0.08 1
In the frame of variational function approad¢bl) the
ground-state magnetizatioks;) and(S;) are 0.06
sy=2- ™ _ 309 004
(S)=35— x5 =0-309, :
0.02 1
Smo
()= =0.300028. (59)
0.00 4

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16

Function (51) has a momentung=0. To calculate the h
X

spectrum in the first order ih, it is necessary to choose the

variational function of typé51) Wlth. momentum. We omit FIG. 3. The mass gaps, (triangles andm, (circles as func-

here rather cumbersome calculations, which shows that th& s of the transverse field, ath,=0.9 from the DMRG calcula-
,=0.

mass gap corresponds d¢e= 7 and tions extrapolated to the thermodynamic limit.

m=h,. (60) .. . . .
The critical fieldh,.(h,) at a fixed valuéh, (0<h,<1) is
The numerical diagonalization of finite cyclic systemsdetermined by vanishing of the gapg andm,. Below the
shows very rapid exponential convergence to the thermodyeritical field the mass gam;(N)—0 exponentially withN.
namic limit.. The extrapolated values for the ground-stateThis behavior confirms the fact that the ground-state is dou-

energy and the mass gégt q= ) for h,<1 are bly degenerate in the thermodynamic limit lag<h,.(h,).
The true mass gap in this region is defined by the value of
Eo 1 0.30171)h m,. The typical behavior of the gaps, andm, extrapolated
N 4 Dy, to the thermodynamic limit is shown in Fig. 3. We note that

at h,>h,.(h,) the gapsm; andm, coincide atN—o°.
m=0.48411)h,. (61 The critical line obtained from the DMRG results extrapo-
) . lated to the thermodynamic limit is shown in Fig. 1. In the
Comparison of these results with E§8) shows that the  pjane (1 h.) it connects two limiting critical points studied
variational ground-state energy differs from the “exact” one j, previous sections: the critical poinb{=2,h,=0) of the
within 0.4%. As follows from Eq61) the mass gap in the |TE model and the multicritical pointh,=0h,=1). Now
multicritical point opens linearly wittn, , which is correctly  \ye discuss the properties of modg) near the critical line.
described by the variational approa@o). The ITF model in the critical point is described by a con-
formal field theory with a central charge=3. We expect
V. THE CRITICAL LINE that the ITF model is generic for modé?) on the whole
critical line (except the multicritical poinh,=0,h,=1). To
verify this suggestion we estimated the valuecobn the
critical line. For this we used the well-known fatthat for
conformal invariant model with periodic boundary condi-
tions the central charge appears al 1¢orrection to the
ground-state energy

In general, the critical line &t,# 0 andh,# 0 cannot be
found exactly. To obtain it we used the DMRG technidtie.
We have performed DMRG calculations using both the
infinite-size and the finite-size DMRG algorithms. We calcu-
lated the ground-state ener@y(N) and two lowest excita-
tions  mMy(N)=E;(N)—Eg(N) and my(N)=E5(N)
—Eq(N).

In order to check the accuracy of the DMRG method we mCv
compared the obtained results with the exact ones for the ITF Eo=€.N- BN’
model. We used the infinite-size algorithm and open bound-
ary conditions. The dependence of the results on the numbg\;hereeoc is the ground-state energy per site in the thermo-
of retained statesin the DMRG computation and on a hum- dynamic limit andv is the sound velocity.
ber Ngg of DMRG steps N=2Ngs+2) has been investi-
gated. We have found that the calculation wsth 25 gives
satisfactory accuracy up tN=300. For example, relative
errors in the ground-state energy and in the mass géw at
=3 areAE/Eq=10°(10 ") andAm/m=10""(10"°) for
N=100(300). The accuracy becomes better when the value
|hy,—1/2] is increased.

(62)

At first, we calculated the sound velocityas[similar to
the spectrum of the ITF modél8) the sound velocity on the
whole critical line is determined &= ]

N 2w
U(N):E[E(W—W)—E(W)} (63)
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v For the ITF model ah,=3% the sound velocity iz/=3.
The ground-state has a momentg 0 and the lowest ex-
citation energy in the sector with momentuqs0 is

0.500

critical point hx=0.49620 hz=0.1

0.495 1 sound velocity v=0.4960

LT
0.490 - E(q=0)—E0=23|n2—N, (65
and in the sector witly= 7 is
0.485
1 T
0.480 - E(g=m)— E0=§tanm. (66)

0.475 | Thus, the scaling dimensions axg=1 andX,=3. The

corresponding associated operators are

0.470 T T T T T

0.000 0.005 0.010 0.015 0.020 0.025 0.030

Og-0= 2 Sh
1/N2 "
FIG. 4. The extrapolation procedure of finite-size dependence of

the sound velocity in the critical poinh,=0.4962h,=0.1 (v
=0.4960).

Og--=2 (-1)"S], (67)
which is in accord with the well-known resulfsfor the
We carried out these calculations using the numerical diasymptotic of the correlation functions
agonalization of Hamiltoniax2) with the periodic boundary
condition forN=<14. The size extrapolation is carried out by
formula v(N)=wv+aN~2. The example of the extrapolation
procedure is shown in Fig. 4. The dependencesan h,
along the critical line is shown in Fig. 5. After that, the
central charge has been calculated using E§2). The size

_ (—DR
(SSR)—(Sp)*~R 7%, (SR~ 9
Using Eq.(64) we numerically checked that the scaling
dimensions related to the finite-size corrections of the lowest
extrapolation shows that the central chargee#s0.500(1) excited eigenstates on the critical line remain as in ITF
for all calculated critical points. modelX,=1 andX,. = 3. Therefore, we conclude that model
The critical exponents of the ground-state correlation(2) on the critical line belongs to the universality class of the
function(0,0g)~R™2X(R>1) is defined by the scaling di- ITF model. This means that in accord with the prediction of
mensionX of the operatorQ.?? The scaling dimension is the c(;assmal approach to tpezleft c:jfthe Cr,';“(f(al line the stag-
related to the finite-size correction of the lowest excitedd®red magnetizationy —1)"S;) and((—1)"S,) exist. But

eigenstate which can be reached from the ground-state by tfié contrast to the classical approach they vanish on the criti-

- S . . - cal line with the critical exponerg. The mass gap is closed
operatorO. The finite-size correction to this excitation en- on the critical line and the critical exponent for the gap is

ergy 1s equal to unity, i.e. the scaling behavior of the gap near the
2 1 critical line is linear. The particular casg= 0.5 illustrated in
AE;=E;— E0=Txi+o N)' (64) Fig. 6, where the scaling plot for the scaled mbisg; with
N(hy,—h,.) is shown.
v The behavior of the critical line near the ITF poihj
06 =1/2h,=0 can be found from the following consideration.
As it was established above in the vicinity of the critical line
05 "_'"\o\‘\ the gap is proportional to deviation from the line. This is
~e valid for any direction of deviation except the direction at a
0.4 1 \o\ tangent to the critical line. In the vicinity of the ITF critical
. point for fixed h,<1, according to Eq(17), the gap ism
0.3 - N =|h,—h,(h,)|. On the other hand, the gap is given by Eq.
AN (36). Combining these two expressions for the gap on the
02 - LY line h,=1/2, we obtain equation for the critical line in the
\ vicinity of the pointh,=1/2h,=0 as
*" \ heo(hy)=3—0.372, (69
N m
0.0 T T T T T T T T T L 4

00 01 02 03 04 05 06 07 08 09 1.0

FIG. 5. The dependence of the sound velocitymralong the

critical line.

This expression for the critical line is in very good agree-
ment with our numerical estimations up tg~0.5.

In the vicinity of the multicritical point the form of the
critical line can be found in a similar way. At,=1 andh,
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Nm, <T,) to the disorderedat T>T,.) phase. The critical line
250 T.(h) of the quasi-one-dimensional model are related to the
22.5 critical line h,.(h,) of model(2). By use of mapping72) we
20.0 4 obtain that the critical temperatufie.(h) is
175 L . 23,
15.0 - KTe(h)= J (73
125 - ' 3,h(h723)
1007 ] In particular, ath—0
7.5 - e
5.0 = KT — 23, -
’ “,.u' C_I <2J1 1 ( )
2.5 1 . J—
- i n \]2
0.0 T T T T T T T T
00 25 50 75 100 125 150 175 200 andT,—0 whenh—2J, as
N(h,-h, )
23,
- ; i kT.= (75
FIG. 6. Scaled mass g&bm, for h,=0.5 with various values of J;
N plotted as a function of the scaled fidith, . In 23.—h
2
<1 the mass gap is proportional g [see Eq(61)]. On the The order parameteb(o,m+onms1) vanishes atT

other hand, for fixedh,<1 this gap is proportional to a de- _,T_ with the critical exponent 1/8. We note that the phase
viation from the critical linem~(h,—h,;). Therefore, the transition does not occur if,<0 as well as in the ferromag-
critical line near the multicritical point behaves g, netic version of mode(2).

=A(1-h,). The numerical coefficienA has been found The free energy of moddl71) is related to the ground-
from the DMRG calculation of the critical line in the vicinity = state energy of Hamiltonia(®) by

of the multicritical point. As a result, the form of the critical

line ath,<1 is F=4J,E,(hy,h,). (76)

he(h,)=1.501—h,)+O[(1—h,)?]. (70 According to Eqs(49), (72), and(76) the zero-field sus-
ceptibility in the vicinity of the critical temperatur@;(0)
This form differs from that given in Ref. 10, where can be obtained using exactly solvable effective ma@de).

hee(hy) ~(1=hy)%". At |T—T(0)|<T.(0) the susceptibility is
J; T-T,0) ([T-T.0
VI. RELATION WITH THE TWO-DIMENSIONAL ISING x32=01412-0.24, 1 <(0) ( o ))
MODEL T.(0) T(0) T.(0)

It is well known that the critical properties of the two- (77
dimensional Ising model are equivalent to those of the one- The last equation has a form coinciding with the results
dimensional ITF modet® Using the formalism of Ref. 23 obtained for the two-dimensional antiferromagnetic Ising
one can show that the quantum Hamilton{@his related to  model by the series expansion mettfd.
the transfer matrix of the strong anisotropiquasi-one-
dimensional Ising model in the uniform magnetic field. This VIl. SUMMARY
model describes ferromagnetic Ising chains weakly antifer-

romagnetically coupled with each other. The Hamiltonian of We have studied the antiferromagnetic Ising chain in the
the model is mixed transverse and longitudinal magnetic field. It was

shown that the quantum phase transition existing in the ITF
model remains in the presence of the uniform longitudinal
H=-3,> "n,m“n+1ym+‘]22 "n,m"n,mﬂ_hE Onm> field. Using the DMRG simulations we have found the criti-
(71 cal line in the f,,h,) plane where the mass gap is closed
and the staggered magnetizations along Xhand Z axes
vanish. It is found numerically that the model on the critical
line is described by the conformal field theory with the cen-

whereop n==*1, J;>J,>0.
The relation between modé&) and model71) are given

by tral chargec=1/2, i.e., it belongs to the universality class of
—a 2Bl _ the ITF model.
2hpo=e <1, h=2h,, (72 The scaling behavior in the vicinity of the ITF critical
with 8=1/T. point is studied in detall. It is shown that the mass gap is

The equivalence of these two models means that modedroportional toh? and the contributions to it are given not
(71 undergoes the phase transition from the orddeedl  only by the second-order correction but also by all other
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divergent orders of the perturbation seriesjn Besides, the anisotropic statistical two-dimensional Ising model in the
analysis of the perturbation theory shows that the consideredniform magnetic field was considered. The behavior of the
model ath,<1 can be mapped to the effective ITF model susceptibility of this model near the critical temperature is
with renormalized parameters dependinghgn In a frame-  found. We expect also that the main features of the consid-
work of the effective ITF model the behavior of the suscep-ered model(2) are valid for the statistical two-dimensional

tibility at hy~1/2 is determined.

antiferromagnetic Ising model in the uniform magnetic field

The behavior of the model in the vicinity of the multicriti- 1 That is, the applied magnetic field does not smear the
cal point is investigated. Using both the variational approacthhase transition existing in the two-dimensional Ising model,
and the numerical diagonalization results we have found tha{nich is generic case for the whole transition lifigh) in

the mass gap is proportional b . Close to the multicritical
point the form of the critical line is linear.

the plane T,h). In particular, we believe that the analysis of
the perturbation series in<1 in the same manner as was

Of course, the considered model is the simplest case Qjgne in Sec. Il gives the scaling behavior for the correlation

the XXZ model (1). It is interesting to extend the present |angth and the form of the critical line near the paf0) is
analysis to this model as well as to study effects of |nterc:han1—c(0)_-|—C(h)~ h2.

interactions
model (2).
The mapping of the quantum mod@) to the strongly

in quasi-one-dimensional

generalization of
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