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Antiferromagnetic Ising chain in a mixed transverse and longitudinal magnetic field

A. A. Ovchinnikov, D. V. Dmitriev,* and V. Ya. Krivnov
Joint Institute of Chemical Physics of RAS, Kosygin Street 4, 117977 Moscow, Russia
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We have studied the antiferromagnetic Ising chain in a transverse magnetic fieldhx and uniform longitudinal
field hz . Using the density-matrix renormalization group calculation combined with a finite-size scaling the
ground-state phase diagram in (hx ,hz) plane is determined. It is shown that there is an order-disordered
transition line in this plane and the critical properties belong to the universality class of the two-dimensional
Ising model. Based on the perturbation theory inhz the scaling behavior of the mass gap in the vicinity of the
critical point (hx51/2,hz50) is established. It is found that the form of the transition line near the classical
multicritical point (hx50,hz51) is linear. The connection of the considered quantum model with the quasi-
one-dimensional classical Ising model in the magnetic field is discussed.
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I. INTRODUCTION

Recently, the study of the field-induced effects in lo
dimensional quantum spin systems has been attracting m
interest from theoretical and experimental points of view.1–4

For the system with an anisotropy of exchange interacti
the magnetic properties essentially depend on the direc
of the applied magnetic field. For example, the behavior
the one-dimensional antiferromagneticXXZ model in a
transverse magnetic field is drastically different in compa
son with the case of the longitudinal field. In particular, t
transverse field induces the staggered magnetization in
perpendicular direction and the continuous phase trans
takes places at some critical field.5–8 This effect has been
observed in quasi-one-dimensional antiferromag
Cs2CoCl4,9 where the magnetic field has both the transve
and longitudinal components. Therefore, it is important
study the properties of the antiferromagnetics5 1

2 XXZ
model in mixed transverse and longitudinal magnetic fiel

H5( ~Sn
xSn11

x 1Sn
ySn11

y 1DSn
zSn11

z !

2hx( Sn
x2hz( Sn

z . ~1!

We consider the most simple case of this model—the
tiferromagnetic Ising chain given by the Hamiltonian

H5( Sn
zSn11

z 2hx( Sn
x2hz( Sn

z . ~2!

In spite of the simple form of this Hamiltonian it cann
be solved exactly. In Ref. 10 the ground state phase diag
of this model has been investigated using numerical dia
nalization of finite systems and finite size scaling procedu
It was found10 that the transition line between the order
and disordered phases exists and it was assumed tha
model belongs to the universality class of the tw
dimensional Ising model.
0163-1829/2003/68~21!/214406~10!/$20.00 68 2144
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We note that the ferromagnetic Ising chain in the mix
fields has been studied intensively.11–13 Though the ferro-
magnetic and the antiferromagnetic Ising chains in the tra
verse magnetic field are equivalent, properties of these
models are very different athzÞ0. @In fact, model~2! can be
transformed to the ferromagnetic chain but in a stagge
longitudinal field.# For example, the ground-state phase tra
sition in the ferromagnetic model is smeared out by the l
gitudinal field in contrast to the antiferromagnetic model f
which the phase transition remains athzÞ0.

In this paper we study model~2! using the density-matrix
renormalization-group~DMRG! technique.14 This method al-
lows us to consider the systems up to a few hundred sites
to determine the transition line with high accuracy. Using t
finite-size estimation of the ground-state energy and lo
lying excitations we will show that the model~2! on the
transition line is described by the conformal field theory w
the central chargec5 1

2 . Besides, we consider the behavi
of the model in the vicinity of the special pointshx5 1

2 , hz
50 andhx50, hz51 and determine the form of the trans
tion line near these points.

The paper is organized as follows. In Sec. II we will pr
vide a qualitative physical picture of the ground-state ph
diagram based on the classical approach. In Secs. III an
the behavior of the system in the vicinity of the spec
points of the critical line will be considered. In Sec. V w
will present the DMRG calculation of the critical line. Se
VI is devoted to the connection of the model~2! with the
statistical quasi-one-dimensional Ising model in the exter
magnetic field. In Summary we discuss our results.

II. THE CLASSICAL APPROACH

In order to provide a physical picture of the phase d
gram of model~2! we use the classical approximation, whe
spins are represented as three-dimensional vectors. The
sical ground state is given by a configuration in which
spin vectors lie in theXZ plane with the spins on odd an
even sites pointing at anglesw1 and2w2 respectively, with
©2003 The American Physical Society06-1
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respect to theX axis. The classical energy of this state is

E/N52
1

4
sinw1sinw22

hx

4
~cosw11cosw2!

2
hz

4
~sinw12sinw2! ~3!

The anglesw1 and w2, minimizing this energy are solu
tions of the following equations:

cosw1sinw21hzcosw12hxsinw150,

sinw1cosw22hzcosw22hxsinw250. ~4!

The solution of these equations is simple in the particu
cases, whenhz50,

w15w25arccos~hx! hx<1,

w15w250, hx.1. ~5!

andhx50,

w15w25
p

2
, hz<1,

w152w25
p

2
, hz.1. ~6!

But in the general case, whenhxÞ0 andhzÞ0, the phase
diagram is divided on two regions~see Fig. 1!. In the para-
magnetic region the energy minimum is given by the co
figuration with w152w25w, with w determined by the
equation

hzcosw2hxsinw5sinw cosw. ~7!

The antiferromagnetic~AF! region is characterized b
nonzero staggered magnetizations in bothX andZ directions,

FIG. 1. The ground-state phase diagram of model~2!. The criti-
cal line between the antiferromagnetic and paramagnetic state
tained from the DMRG calculation is shown by thick solid line a
that in the classical approximation by thin solid line.
21440
r

-

S2n
x 2S2n11

x 5sinS w22w1

2 D sinS w11w2

2 D ,

S2n
z 2S2n11

z 5cosS w22w1

2 D sinS w11w2

2 D , ~8!

with w11w2Þ0.
Thus, in the AF region the magnetic fields induce a p

pendicular antiferromagnetic long-range order~LRO!. In the
classical approach the value (w11w2) plays the role of the
LRO and it vanishes on the transition line determined by
equations

hxcosw1hzsinw51,

hzcosw2hxsinw5sinw cosw, ~9!

wherew152w25w.
The solution of Eqs.~9! gives the transition line in the

explicit form,

hz5A12hx
2/3~11hx

2/3!. ~10!

The classical phase diagram is shown in Fig. 1. The tr
sition ~critical! line separates the phase with nonzero A
LRO from the phase with uniform magnetization~the para-
magnetic phase!.

Of course, the classical approach does not give the cor
description of the phase transition. At first, the quantum fl
tuations shift the critical pointhx51 to hx5 1

2 at hz50.
Second, the form of the critical line is certainly incorrect
hx!1. Besides, the order parameter (w11w2) vanishes on
the critical line with the critical exponent12 , which is not
valid at least in the critical pointhx5 1

2 ,hz50. Nevertheless,
the fact of the generation of the staggered magnetizat
perpendicular to the field direction is qualitatively true.

III. THE CRITICAL ITF POINT

Before the numerical determination of the critical line w
consider the behavior of the model~2! in the vicinity of two
special points:hx5 1

2 ,hz50 andhx50,hz51. This will give
us the form of the critical line near these points.

In the casehz50 model~2! reduces to the exactly solv
able one-dimensional Ising model in the transverse field~the
ITF model!. This model is well studied15 and it belongs to
the universality class of the two-dimensional Ising model.
hx, 1

2 the ITF model is gapped and there is nonzero st
gered magnetization̂(21)nSn

z&. The ground-state athx, 1
2

is twofold degenerated in the thermodynamic limit. At th
point hx5 1

2 the model becomes gapless and the stagge
magnetization vanishes with the critical exponent1

8 . This is
the transition point from the antiferromagnetic state to
paramagnetic gapped state. The gap vanishes linearly ahx
5 1

2 .
Now we consider the ITF model with small longitudin

magnetic field. For small magnetic fieldhz we rewrite
Hamiltonian~2! in the form

H5H01V,

b-
6-2
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H05( Sn
zSn11

z 2hx( Sn
x ,

V52hz( Sn
z . ~11!

After Jordan-Wigner transformation to the Fermi ope
tors cn

1 , cn ,

Sn
z5

cn
11cn

2 )
j ,n

~122cj
1cj !,

Sn
x5

1

2
2cn

1cn , ~12!

the ITF HamiltonianH0 takes a bilinear form

H05hx( S cn
1cn2

1

2D1
1

4 ( ~cn
12cn!~cn11

1 1cn11!.

~13!

The HamiltonianH0 commutes with the ‘‘parity’’ operator

P5expS ip( cn
1cnD , ~14!

becauseH0 can change the number ofcn excitation by an
even number only. Therefore, the space of states ofH0 is
divided on two sectors with odd (P521) and even (P
51) number of the Fermi particlescn .

The HamiltonianH0 is diagonalized exactly,16

H05( «kS hk
1hk2

1

2D , ~15!

with Fermi particleshk and spectrum

«k
25hx

21 1
4 1hxcosk, ~16!

which gives a gap at momentump:

m5uhx2 1
2 u. ~17!

The gap vanishes at the critical pointhx51/2, where the
spectrum becomes

«k5cos
k

2
. ~18!

Below in this section we will consider the perturbatio
theory inV, Eq. ~11!, at the critical pointhx51/2.

The transition operatorSz5(Sn
z in V, Eq. ~11!, conserves

the momentum and changes the parity, because as it fol
from Eq. ~12! it changes the number of Fermi particlesci
~and also the number ofhk particles! by odd number. There
fore, the nonzero matrix elements with the transition opera
Sz have the states with equal momentum but different pa
The last fact means that the perturbation theory inV contains
only even orders.

The second-order correction to the ground-state energ
21440
-

ws

r
y.

is

dE0
(2)5hz

2(
s

^0uSzus&^suSzu0&
E02Es

. ~19!

The ground stateu0& has the momentumq50 and zero
number of thehk particles (P51). Therefore, the nonzero
contribution to the sum in Eq.~19! is given by the interme-
diate statesus& with zero momentum and parityP521. As
follows from Eq. ~18!, all statesus& with momentumq50
and odd number of thehk particles (P521) have ‘‘high’’
energiesEs2E0[«s*1. On the contrary, among the stat
with q50 and even number of thehk particles (P51) there
are many states likehp2k

1 h2p1k
1 u0& with small k having

small excitation energies«s;k and they can lead to infrare
divergencies.

Hereinafter we consider large but finite systems of len
N. We shall study the dependence of dominant contributi
to the perturbation theory onN, omitting numerical factors.
Using the fact that«s*1 one can rewrite Eq.~19! as

dE0
(2);2hz

2(
s

^0uSzus&^suSzu0&52hz
2^0u~Sz!2u0&.

~20!

In higher orders of the perturbation series for the grou
state energy each second intermediate stateus& has odd num-
ber of the Fermi particles (P521), and, therefore, high
energy«s>1. For example, let us consider the fourth-ord
correction to the ground-state energy,

dE0
(4)5hz

4 (
s,s8,s9

^0uSzus&^suSzus8&^s8uSzus9&^s9uSzu0&

~E02Es!~E02Es8!~E02Es9!

2dE0
(2)hz

2(
s

^0uSzus&^suSzu0&

~E02Es!
2

. ~21!

All intermediate statess,s8,s9 have momentumq50.
The statess8 haveP51 and some of them have small exc
tation energies«s8;1/N, while the statess and s9 have P
521 and high energies«s>1. Therefore, one can sum ove
the intermediate statess ands9, which reduces Eq.~21! to

dE0
(4);hz

4(
s8

^0u~Sz!2us8&^s8u~Sz!2u0&

E02Es8

. ~22!

Now we note that this expression looks like the seco
order correction and Eq.~20! looks like the first-order cor-
rection to the ground-state energy with a perturbatio
2hz

2(Sz)2. In a similar way one can sum over all intermed
ate states withq50 andP521 in all orders of perturbation
series. As a result, we arrive at the perturbation theory w
the effective perturbation

V152hz
2~Sz!252hz

2(
n,m

Sn
zSm

z . ~23!

We note, that the perturbation theory with the perturbat
V1 coincides with the original perturbation theory~11! in a
sense that both perturbation series have the same ord
6-3
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divergencies~or power ofN) at each order inhz . But nu-
merical factors at each order inhz can be different.

The perturbationV1 commutes with the parity operato
~14! and conserves the momentum. Therefore, the pertu
tion series inV1 contains the intermediate states withq50
and P51 only, and some of these states have small exc
tion energies«s;1/N. These states give the most diverge
contribution to the perturbation series inV1 and further we
shall take into account these states only.

Now we need to estimate the matrix elements of the
erator (Sz)2. The behavior of the correlation function^Sn

zSm
z &

in the ground-state and in the low-lying states with excitat
energies«s;1/N on large distances is known:17

^Sn
zSm

z &;
~21!n2m

un2mu1/4
, ~24!

and therefore, due to oscillation of the correlator^Sn
zSm

z & the
sum overn andm can be estimated as

(
n,m

^Sn
zSm

z &5
N

4
12N(

n.1
^S1

zSn
z&.0.074 65~1!N, ~25!

where the constant was found from extrapolation of the ex
results for finite chains withN56, . . .,14.

The nondiagonal matrix elements of the operator (Sz)2

with two different low-lying states was also calculated n
merically. It was found that the only nonzero matrix eleme
~in the thermodynamic limit! are given by the statess,s8
differing by two hk particles, such asus8&5hk

1h2k
1 us&. All

such pairs of states give the same value for the matrix
ment

^su~Sz!2us8&50.3108~1!, ~26!

while all other matrix elements exponentially drop withN.
Now we estimate all terms of perturbation series inhz .

According to Eq.~25! the second-order correction~20! is
proportional tohz

2N. The factor athz
2N was found numeri-

cally by exact diagonalization of finite systems and the f
lowing calculation of the sum~19!. The data for N
56, . . . ,14 arewell extrapolated and give

dE0
(2)520.070 60~5!hz

2N. ~27!

According to Eq.~27! the zero-field susceptibility isxz
50.1412(1). This result is in a perfect agreement with th
valuexz50.141 18 . . . obtained analytically in Ref. 18.

Using Eq.~26! we find that the nonzero contribution t
the fourth-order correction to the ground-state energy~22! is
given by the statesus&5hk

1h2k
1 u0& with the excitation en-

ergy «s52cos(k/2). Thus, because of small excitation ene
gies at k;p in denominator in Eq.~22! the fourth-order
correction to the ground-state energy turns out to be pro
tional to N ~we omit here logarithmic corrections!,

dE0
(4);hz

4(
s

1

«s
;hz

4N. ~28!
21440
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Themth order inV1 is proportional tohz
2m . The denomi-

nator of themth order contains (m21) small excitation en-
ergies;1/N and all matrix elements in the numerator are
the order of unity. Therefore, themth order inV1 diverges as
hz

2mNm21. But this is not valid for odd orders inV1. The
analysis shows that all odd orders inV1 diverge as
hz

2mNm22. For example, the third-order correction inV1 ~the
sixth order inhz) for the ground-state energy does not d
verge:

dE0
(6);hz

6N. ~29!

So, the odd orders inV1 give the next order corrections t
the ground-state energy and we omit it below.

Summarizing all the above, we arrive at the perturbat
series in the form

dE052a0hz
2N2hz

4N(
n50

`

bn~hz
2N!n, ~30!

with a050.070 59 . . . @Eq. ~27!# and unknown constant
bn . One can see that the first divergence appears only in
eightth order inhz , and it is very difficult to observe it
numerically. The exact numerical calculations up toN514
of the second- the fourth- and the sixth-order corrections
hz confirm the form of the series, Eq.~30!.

The sum in Eq.~30! forms the scaling functionf 0(x) of
the scaling parameterx5hz

2N. Thus, the ground-state energ
takes the form

dE052a0hz
2N2hz

4N f0~x!. ~31!

Since the ground-state energy is proportional toN, the
scaling functionf 0(x) has finite thermodynamic limit atx
→`. Thus, the leading term of the perturbation theory
the ground-state energy is given by the second order and
divergent part of the perturbation theory gives the correct
;hz

4 .
The perturbation series for low-lying states has the sa

form as in Eq.~31!, but each low-lying state has its ow
scaling function. Therefore, for the first excited state~with
momentumq5p) one has

dEp52aphz
2N2hz

4N fp~x!, ~32!

So the mass gapm5dEp2dE0 appears as

m5amhz
21g~x!hz

2 , ~33!

where am5(a02ap)N and the scaling functiong(x)
5x( f 0(x)2 f p(x)). Since the gap is finite, the scaling fun
tion g(x) in the thermodynamic limit atx→` must tend to
some finite limit

m5amhz
21g~`!hz

2 . ~34!

From the last equation we see that the gap is proportio
to hz

2 , but the factor athz
2 is given not only by the second

order correctionam but by all collected divergent orders o
6-4
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the perturbation series. The numerical estimation of
second-order correction to the gap gives

am50.1875~2!. ~35!

In order to find the factor athz
2 in mass gap we performe

DMRG calculations~for details see Sec. V! of model~11! for
hz50, . . .,0.3 andN520, . . .,300. The dependence of th
gap on the scaling parameterx5hz

2N is shown in Fig. 2. One
can see that the points with differentN andhz lie perfectly
on one curve. It definitely manifests that the scaling para
eter ishz

2N. The DMRG calculation data give the mass g

m50.37~1!hz
2 . ~36!

From this equation it follows that the second-order c
rection to the mass gap~35! gives approximately one half o
a total gap, and another half is collected by all other div
gent orders contained in the scaling functiong(x).

We note that in contrast to Eq.~36! for the ferromagnetic
ITF model the mass gap at the critical pointhx5 1

2 is propor-
tional to hz

8/15 Refs. 12,13.

A. Mapping to the effective model

Let us return to the estimation of the diagonal elemen
the operatorV1, Eq. ~25!. Using the fact of the oscillation o
the correlator~24! in the ground-state and in the low-lyin
states, we can rewrite the sum in Eq.~25! approximately as
one-half of the first term:

^~Sz!2&5
N

4
12 (

n,m
^Sn

zSm
z &.

N

4
1(

n
^Sn

zSn11
z &. ~37!

The last equation suggests that the perturbationV1 can be
reduced to the operatorV2,

V1→V252ahz
2N2bhz

2( Sn
zSn11

z , ~38!

with some constantsa,b, which we will define later. In order
to verify this assumption we compared the matrix eleme
of the operatorV2 with those ofV1. We have found that the
dependence of the matrix elements of the operatorV2 on N is

FIG. 2. Scaled mass gapm/hz
2 for hx5

1
2 with various values of

N andhz as a function of the reciprocal scaled parameter 1/Nhz
2 .
21440
e

-

-

-

f

ts

in full accord with Eqs.~25! and ~26!. That is, the diagona
matrix elements ofV2 are proportional toN and only the
nonzero ~nondiagonal! matrix elements have the pairs o
states differing by twohk particles:

^suSn
zSn11

z us8&5 1
2 . ~39!

Thus, we arrive at the effective Hamiltonian

Heff52ahz
2N1~12bhz

2!( Sn
zSn11

z 2
1

2 ( Sn
x . ~40!

Again, the original model~11! is equivalent to the effec-
tive model ~40! in a sense that the perturbation series
both models have the same order of divergencies~or power
of N) at each order ofhz . But numerical factors at eac
order ofhz can be different.

The advantage of this mapping lies in the fact that
effective model~40! is of the ITF type and therefore, is a
exactly solvable one. The spectrum ofHeff is

«k
25

11J2

4
1

J

2
cosk, ~41!

with J512bhz
2 . So, according to the spectrum of the effe

tive model~41! the magnetic fieldhz produces the gap in the
spectrum,

m5
b

2
hz

2 . ~42!

As was noted above, apart from numerical factors
effective model~40! has the same form of perturbation seri
in hz as the original model~11!. Therefore, we can check th
form of the perturbation theory~30! by studying the pertur-
bation series inhz of the exactly solvable model~40!.

For large but finite systems the ground-state energy~with
q50) and the first excited state~with q5p) of Hamiltonian
~40! are known exactly:19

E052ahz
2N2

1

4 (
j 51

N Ag214~12g!sin2S p j

N
2

p

2ND ,

Ep52ahz
2N1

g

4
2

1

4 (
j 51

N21 Ag214~12g!sin2S p j

N D ,

~43!

whereg5bhz
2 .

The perturbation series for the ground-state energy
the gap can be easily found by formal expansion of th
expressions in small parameterg. This results in the scaling
form of perturbation series for the mass gap

m5
g

4
1g2N(

n50

`

dn~gN!2n, ~44!

where constantsdn determine the scaling functionG(x) of a
scaling parameterx5gN:
6-5
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m5
g

4
1gG~x!. ~45!

The scaling functionG(x) was found in Ref. 19. In the
thermodynamic limitx→` the functionG(x)→1/4, result-
ing in gap~42!. One can see that the scaling parameter
the form of the perturbation series~44! coincides with Eq.
~33!.

Now we define the constantsa andb in Eq. ~40! so that
the second-order corrections to the ground-state energy
the gap of the effective model~40! numerically coincide with
Eqs.~27! and ~35!. This leads to the values

a50.190~1!, b50.750~1!. ~46!

The mass gap of the effective model~40! with constantsa
andb defined above is

m50.375~1!hz
2 . ~47!

Surprisingly, the value of the mass gap of the effect
model turns out to be very close to one found numerically
the original model@Eq. ~36!#. It means that the gap scalin
functionG(x) of the effective model~40! has the same ther
modynamic limit as that for model~11!. Moreover, we have
calculated numerically the fourth-order corrections inhz to
the ground-state energy and the gap for models~11! and~40!
and found perfect numerical agreement@the second-orde
corrections inhz for both models coincide by definition
~46!#. Therefore, we expect that the mapping of model~11!
at hx51/2 to model~40! with constantsa and b defined in
Eq. ~46! is exact for low-lying excitations in the thermody
namic limit.

The mapping of model~11! to the effective ITF model can
be extended to the casehxÞ1/2. For this case the effectiv
Hamiltonian becomes

Heff52a~hx!hz
2N1@12b~hx!hz

2#( Sn
zSn11

z 2hx( Sn
x ,

~48!

where the constantsa,b are now the functions ofhx . The
functionsa(hx) andb(hx) are defined in such a way that th
second-order corrections to the ground-state energy and
gap for the effective model~40! coincide with those for the
original model~11!.

Using the effective Hamiltonian~48! one can calculate the
susceptibilityxz(hx). In the vicinity of the critical pointhx
51/2 it has a logarithmic singularity

xz~hx!5xzc2
b

p S hx2
1

2D lnS hx2
1

2D , ~49!

with xzc50.1412 from Eq.~27! andb50.75 @Eq. ~46!#.

IV. THE MULTICRITICAL POINT

Another exactly solvable limit of model~2! is the case
where hx50. The model athx50 is the classical one. A
hz,1 its ground-state is the antiferromagnet. Athz51 the
first-order phase transition to the ferromagnetic ground-s
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occurs. This is the so-called multicritical point. Hamiltonia
~2! at hz51 has a form

H5H01V,

H052
N

4
1( S Sn

z2
1

2D S Sn11
z 2

1

2D ,

V52
hx

2
~S11S2!, ~50!

whereS65(Sn
6 .

The ground-state ofH0 is macroscopic degenerate; a
spin configurations, excluding those with two neighbor sp
pointing down, have the same energy2N/4. The number of
these states is(1/21A5/2)N.20 The transverse fieldhx lifts
the degeneracy. The exact calculation of the first-order c
rection in hx for N@1 is rather complicated because it in
volves the exponentially large number of degenerate sta
We carried out the approximate calculation of the pertur
tion theory inV within degenerate manifold using a simp
variational function in the form

C5 (
m50

N/2

cmCm , ~51!

whereCm are the sum~with equal weights! of all admissible
states withm spins down:

Cm5wm
21/2~S2P!mCF , ~52!

WhereP is a projector excluding states with two neighb
down-spins,CF is the ferromagnetic state with all spins u
and the normalization factorswm are

wm5
~N2m21!!N

m! ~N22m!!
. ~53!

Matrix elements ofV with respect toCm are

^CmVCm8&5
hx

2
~smdm8,m211sm11dm8,m11!, ~54!

where

sm5Am~N22m12!~N22m11!

N2m
. ~55!

Coefficientscm in Eq. ~51! obey the equations

S E1
N

4 D cm5
hx

2
~sm11cm111smcm21!. ~56!

The quantitysm has a sharp maximum forN@1 at m0

5N(32A5)/4 andsm0
is

sm0
5

N

2
~A521!~A522!1/2. ~57!
6-6
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The ground-state energy in the thermodynamic limit
defined as a lowest eigenvalue of Eq.~56!, which is

E052
N

4
2hxsm0

52
N

4
20.300 28Nhx . ~58!

In the frame of variational function approach~51! the
ground-state magnetizations^Sn

z& and ^Sn
x& are

^Sn
z&5

1

2
2

m0

2N
50.309,

^Sn
x&5

sm0

N
50.300 028. ~59!

Function ~51! has a momentumq50. To calculate the
spectrum in the first order inhx it is necessary to choose th
variational function of type~51! with momentumq. We omit
here rather cumbersome calculations, which shows that
mass gap corresponds toq5p and

m5hx . ~60!

The numerical diagonalization of finite cyclic system
shows very rapid exponential convergence to the thermo
namic limit.. The extrapolated values for the ground-st
energy and the mass gap~at q5p) for hx!1 are

E0

N
52

1

4
20.3017~1!hx ,

m50.4841~1!hx . ~61!

Comparison of these results with Eq.~58! shows that the
variational ground-state energy differs from the ‘‘exact’’ o
within 0.4%. As follows from Eq.~61! the mass gap in the
multicritical point opens linearly withhx , which is correctly
described by the variational approach~60!.

V. THE CRITICAL LINE

In general, the critical line athxÞ0 andhzÞ0 cannot be
found exactly. To obtain it we used the DMRG technique14

We have performed DMRG calculations using both t
infinite-size and the finite-size DMRG algorithms. We calc
lated the ground-state energyE0(N) and two lowest excita-
tions m1(N)5E1(N)2E0(N) and m2(N)5E2(N)
2E0(N).

In order to check the accuracy of the DMRG method
compared the obtained results with the exact ones for the
model. We used the infinite-size algorithm and open bou
ary conditions. The dependence of the results on the num
of retained statess in the DMRG computation and on a num
ber NRG of DMRG steps (N52NRG12) has been investi
gated. We have found that the calculation withs525 gives
satisfactory accuracy up toN5300. For example, relative
errors in the ground-state energy and in the mass gap ahx
5 1

2 areDE0 /E051029(1027) andDm/m51027(1025) for
N5100(300). The accuracy becomes better when the v
uhx21/2u is increased.
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The critical fieldhxc(hz) at a fixed valuehz (0,hz,1) is
determined by vanishing of the gapsm1 andm2. Below the
critical field the mass gapm1(N)→0 exponentially withN.
This behavior confirms the fact that the ground-state is d
bly degenerate in the thermodynamic limit athx,hxc(hz).
The true mass gap in this region is defined by the value
m2. The typical behavior of the gapsm1 andm2 extrapolated
to the thermodynamic limit is shown in Fig. 3. We note th
at hx.hxc(hz) the gapsm1 andm2 coincide atN→`.

The critical line obtained from the DMRG results extrap
lated to the thermodynamic limit is shown in Fig. 1. In th
plane (hx ,hz) it connects two limiting critical points studied
in previous sections: the critical point (hx5 1

2 ,hz50) of the
ITF model and the multicritical point (hx50,hz51). Now
we discuss the properties of model~2! near the critical line.

The ITF model in the critical point is described by a co
formal field theory with a central chargec5 1

2 . We expect
that the ITF model is generic for model~2! on the whole
critical line ~except the multicritical pointhx50,hz51). To
verify this suggestion we estimated the value ofc on the
critical line. For this we used the well-known fact21 that for
conformal invariant model with periodic boundary cond
tions the central charge appears at 1/N correction to the
ground-state energy

E05e`N2
pcy

6N
, ~62!

wheree` is the ground-state energy per site in the therm
dynamic limit andy is the sound velocity.

At first, we calculated the sound velocityy as @similar to
the spectrum of the ITF model~18! the sound velocity on the
whole critical line is determined atk5p]

y~N!5
N

2p FES p2
2p

N D2E~p!G . ~63!

FIG. 3. The mass gapsm1 ~triangles! andm2 ~circles! as func-
tions of the transverse fieldhx at hz50.9 from the DMRG calcula-
tions extrapolated to the thermodynamic limit.
6-7
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We carried out these calculations using the numerical
agonalization of Hamiltonian~2! with the periodic boundary
condition forN<14. The size extrapolation is carried out b
formula y(N)5y1aN22. The example of the extrapolatio
procedure is shown in Fig. 4. The dependence ofy on hz
along the critical line is shown in Fig. 5. After that, th
central chargec has been calculated using Eq.~62!. The size
extrapolation shows that the central charge isc50.500(1)
for all calculated critical points.

The critical exponents of the ground-state correlat
function ^Ô1ÔR&;R22X(R@1) is defined by the scaling di
mensionX of the operatorÔ.22 The scaling dimension is
related to the finite-size correction of the lowest excit
eigenstate which can be reached from the ground-state b
operatorÔ. The finite-size correction to this excitation e
ergy is

DEi5Ei2E05
2py

N
Xi1oS 1

ND . ~64!

FIG. 4. The extrapolation procedure of finite-size dependenc
the sound velocity in the critical pointhx50.4962,hz50.1 (v
50.4960).

FIG. 5. The dependence of the sound velocity onhz along the
critical line.
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For the ITF model athx5 1
2 the sound velocity isy5 1

2 .
The ground-state has a momentumq50 and the lowest ex-
citation energy in the sector with momentumq50 is

E~q50!2E052sin
p

2N
, ~65!

and in the sector withq5p is

E~q5p!2E05
1

2
tan

p

4N
. ~66!

Thus, the scaling dimensions areX051 andXp5 1
8 . The

corresponding associated operators are

Ôq505(
n

Sn
x ,

Ôq5p5(
n

~21!nSn
z , ~67!

which is in accord with the well-known results17 for the
asymptotic of the correlation functions

^S0
xSR

x &2^S0
x&2;R22, ^S0

zSR
z &;

~21!R

R1/4
. ~68!

Using Eq.~64! we numerically checked that the scalin
dimensions related to the finite-size corrections of the low
excited eigenstates on the critical line remain as in I
modelX051 andXp5 1

8 . Therefore, we conclude that mod
~2! on the critical line belongs to the universality class of t
ITF model. This means that in accord with the prediction
the classical approach to the left of the critical line the st
gered magnetizationŝ(21)nSn

z& and ^(21)nSn
x& exist. But

in contrast to the classical approach they vanish on the c
cal line with the critical exponent18 . The mass gap is close
on the critical line and the critical exponent for the gap
equal to unity, i.e. the scaling behavior of the gap near
critical line is linear. The particular casehz50.5 illustrated in
Fig. 6, where the scaling plot for the scaled massNm1 with
N(hx2hxc) is shown.

The behavior of the critical line near the ITF pointhx
51/2,hz50 can be found from the following consideratio
As it was established above in the vicinity of the critical lin
the gap is proportional to deviation from the line. This
valid for any direction of deviation except the direction at
tangent to the critical line. In the vicinity of the ITF critica
point for fixed hz!1, according to Eq.~17!, the gap ism
5uhx2hxc(hz)u. On the other hand, the gap is given by E
~36!. Combining these two expressions for the gap on
line hx51/2, we obtain equation for the critical line in th
vicinity of the pointhx51/2,hz50 as

hxc~hz!5 1
2 20.37hz

2 . ~69!

This expression for the critical line is in very good agre
ment with our numerical estimations up tohz;0.5.

In the vicinity of the multicritical point the form of the
critical line can be found in a similar way. Athz51 andhx

of
6-8
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!1 the mass gap is proportional tohx @see Eq.~61!#. On the
other hand, for fixedhx!1 this gap is proportional to a de
viation from the critical linem;(hz2hzc). Therefore, the
critical line near the multicritical point behaves ashxc
5A(12hz). The numerical coefficientA has been found
from the DMRG calculation of the critical line in the vicinit
of the multicritical point. As a result, the form of the critica
line at hx!1 is

hxc~hz!51.50~12hz!1O@~12hz!
2#. ~70!

This form differs from that given in Ref. 10, wher
hxc(hz);(12hz)

0.75.

VI. RELATION WITH THE TWO-DIMENSIONAL ISING
MODEL

It is well known that the critical properties of the two
dimensional Ising model are equivalent to those of the o
dimensional ITF model.23 Using the formalism of Ref. 23
one can show that the quantum Hamiltonian~2! is related to
the transfer matrix of the strong anisotropic~quasi-one-
dimensional! Ising model in the uniform magnetic field. Thi
model describes ferromagnetic Ising chains weakly anti
romagnetically coupled with each other. The Hamiltonian
the model is

H52J1( sn,msn11,m1J2( sn,msn,m112h( sn,m ,

~71!

wheresn,m561, J1@J2.0.
The relation between model~2! and model~71! are given

by

2hxbJ25e22bJ1!1, h52hzJ2 , ~72!

with b51/kT.
The equivalence of these two models means that mo

~71! undergoes the phase transition from the ordered~at T

FIG. 6. Scaled mass gapNm1 for hz50.5 with various values of
N plotted as a function of the scaled fieldNhx .
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,Tc) to the disordered~at T.Tc) phase. The critical line
Tc(h) of the quasi-one-dimensional model are related to
critical line hxc(hz) of model~2!. By use of mapping~72! we
obtain that the critical temperatureTc(h) is

kTc~h!5
2J1

lnS J1

J2hx~h/2J2! D
. ~73!

In particular, ath→0

kTc5
2J1

lnS 2J1

J2
D , ~74!

andTc→0 whenh→2J2 as

kTc5
2J1

lnS J1

2J22hD . ~75!

The order parameter12 ^sn,m1sn,m11& vanishes atT
→Tc with the critical exponent 1/8. We note that the pha
transition does not occur ifJ2,0 as well as in the ferromag
netic version of model~2!.

The free energy of model~71! is related to the ground
state energy of Hamiltonian~2! by

F54J2E0~hx ,hz!. ~76!

According to Eqs.~49!, ~72!, and~76! the zero-field sus-
ceptibility in the vicinity of the critical temperatureTc(0)
can be obtained using exactly solvable effective model~40!.
At uT2Tc(0)u!Tc(0) the susceptibility is

xJ250.141220.24
J1

kTc~0!

T2Tc~0!

Tc~0!
lnS T2Tc~0!

Tc~0! D .

~77!

The last equation has a form coinciding with the resu
obtained for the two-dimensional antiferromagnetic Isi
model by the series expansion method.24

VII. SUMMARY

We have studied the antiferromagnetic Ising chain in
mixed transverse and longitudinal magnetic field. It w
shown that the quantum phase transition existing in the
model remains in the presence of the uniform longitudi
field. Using the DMRG simulations we have found the cri
cal line in the (hx ,hz) plane where the mass gap is clos
and the staggered magnetizations along theX and Z axes
vanish. It is found numerically that the model on the critic
line is described by the conformal field theory with the ce
tral chargec51/2, i.e., it belongs to the universality class
the ITF model.

The scaling behavior in the vicinity of the ITF critica
point is studied in detail. It is shown that the mass gap
proportional tohz

2 and the contributions to it are given no
only by the second-order correction but also by all oth
6-9
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divergent orders of the perturbation series inhz . Besides, the
analysis of the perturbation theory shows that the conside
model athz!1 can be mapped to the effective ITF mod
with renormalized parameters depending onhz . In a frame-
work of the effective ITF model the behavior of the susce
tibility at hx;1/2 is determined.

The behavior of the model in the vicinity of the multicrit
cal point is investigated. Using both the variational approa
and the numerical diagonalization results we have found
the mass gap is proportional tohx . Close to the multicritical
point the form of the critical line is linear.

Of course, the considered model is the simplest cas
the XXZ model ~1!. It is interesting to extend the prese
analysis to this model as well as to study effects of interch
interactions in quasi-one-dimensional generalization
model ~2!.

The mapping of the quantum model~2! to the strongly
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