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We investigate magnetic and superconducting instabilities of the two-dimensionblubbard model on a
square lattice at van Hove densities from weak to intermediate coupling by means of the two-particle self-
consistent approach. We find that as the next-nearest-neighbor hdppimgcreases from zero, the leading
instability is towards an incommensurate spin-density wave whose wave vector moves slowly away from
(7, ). For intermediate values ¢f’|, the leading instability is towards,._,>-wave superconductivity. For
larger |t’|>0.33, there are signs of a crossover to ferromagnetism at extremely low temperatures. The
suppression of the crossover temperature is driven by Kanamori screening that strongly renormalizes the
effective interaction and also causes the crossover temperature to depend only wedaklyEb&ctronic
self-energy effects for largit’| lead to considerable reduction of the zero-energy single-particle spectral
weight beginning at temperatures as hightTas0.1t, an effect that may be detrimental to the existence of a
ferromagnetic ground state at weak coupling.
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[. INTRODUCTION edges. Metallic ferromagnetism at weak coupling, usually
known as Stoner ferromagnetism, has in fact been ruled out a
Historically, the single-band Hubbard model was sug-long time ago by Kanamotbased on the argument that the
gested independently by Gutzwiller,Hubbard® and  renormalization of the interaction strength brought about by
Kanamor? to gain insight into the origin of metallic ferro- T-matrix effects(Kanamori screeningvould never allow the
magnetism. However, despite enormous effottsat were  Stoner criterion to be satisfied when the density of states at
undertaken to find answers to this question, only a few relithe Fermi levelp(Eg) is nonsingular. Physically, the largest
able results have been obtained even for this simplest pogpossible effective interaction, according to Kanamori, is
sible microscopic model. The Hubbard model also exhibits aqual to the kinetic-energy cost for making the two-particle
variety of other competing phases, including antiferromagwave function vanish when the two particles are at the same
netic and superconducting phases. site. That energy scales like the bandwig(Eg) " so that
The first exact results for ferromagnetism were obtainedhe Stoner criterion +Up(Eg)=0 cannot be fulfilled.
in the strong-coupling limit,U—«, by Nagaokd and Quantum Monte Carlo calculations confirm the quantitative
Thoules§ who showed that the ground state of the Hubbarchature of Kanamori'sT-matrix result*
model with one hole or electron is ferromagnetic at an infi-  If there is Stoner-type ferromagnetism in weak to inter-
nitely large Coulomb repulsion. That result did not answermediate coupling, it is thus clear that, as in the moderate to
the question of stability to a finite concentration of holes instrong-coupling case, one needs at least a singular density of
the thermodynamic limit. Improved bounds for the Nagaokastates to overcome Kanamori screening. An example of a
state have recently been deriVedr various lattices in two model with singular density of states at the Fermi energy as
and three dimensions. Ferromagnetic ground states also oaell as band asymmetry is the two-dimensiof@D) Hub-
cur if one of the several bands of the model is dispersionlesbard model with both nearest neighboand next-nearest-
(so-called Lieb’s ferrimagnetism and flat-band ferro- neighbort’ hoppings. When the Fermi energy is close to the
magnetism). Mielke and Tasaki proved the local stability of van Hove singularity the corresponding filling is usually re-
ferromagnetic ground states in the Hubbard model withferred to as a “van Hove filling.” At that filling, the Fermi
nearly flat® and partially filled* bands. Reference 12 con- surface passes through the saddle points of the single-particle
tains a short review of these works as well as new results fodispersion. There are, however, other phases competing with
Hubbard models without the singularities associated with flaferromagnetism. At weak to moderate values of the on-site
bands. A review of resultd obtained for the simple one-band Coulomb repulsioi, for smallt’/t and close to half-filling,
Hubbard model in the last few years as well as the results ahe 2Dt-t’ Hubbard model shows an antiferromagnetic in-
Mielke and Tasaki suggest that the important ingredients fostability. That instability due to nesting is however
ferromagnetism in that model afe) an interaction strength destroyedf for a sufficiently large ratia’/t at weak interac-
that is in the intermediate to strong coupling regime émnd tions in two and three dimensions, thus leaving room for
a band that exhibits a strong asymmetry and a large densityther instabilities, includingd-wave superconductivity and
of states near the Fermi energy or near one of the bandhetallic ferromagnetism.
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The questions that we address in this paper are thus thend the d,>_,2-wave susceptibilit’ in two dimensions.
following. Can the asymmetry of the band and the large denThroughout the paper we consider the 2B’ Hubbard
sity of states near the Fermi energy overcome the Kanamorhodel at van Hove fillings from weak to moderate couplings.
argument and lead to ferromagnetism in the 2D HubbardVe determine the regions of thet’ plane where the uni-
model? What are the competing phases? Most results on thigrm paramagnetic phase becomes unstable to various types
problem(particularly for a square lattigdall into three dif-  Of fluctuations. We also estimate the electronic self-energy
ferent classes. effects for larget’ where ferromagnetic effects are present.

(a) Momentum-cutoff renorma“zation-group(RG) The foIIowing section recalls the methodology. We then
method$®!” and quantum Monte Carlo calculatidhsug- ~ Present the results and conclude.
gest that there is no evidence for ferromagnetism. But the
problem, in particular with numerical methods, is that only  Il. TWO-PARTICLE SELF-CONSISTENT APPROACH
very small system sizes can be used in a regime where the ) , )
size dependence is important. In addition, momentum-cutoff Ve consider the-t’ Hubbard Imodgl on a square lattice
RG does not allow the contribution of ferromagnetic With nearestt) and next-nearest() neighbor hoppings

fluctuations'® So these results should not be considered con-

clusive. H=—t> (¢l c,+Hec)—t' > (clcj,+H.c)
(b) The second class of results is based on Wegner’s flow (e (ii)e
equations. They shd¥¥a tendency towards weak ferromag-
netism withs* -wave charactefthe order parameter changes + UE NN, (1)
I

sign close to the Fermi energyAccording to the flow equa-
tions calculations this phase competes with other instabilitie§ arec
in the particle-hole channel, in particular with the Pomeran

. . - . ‘electrons with spin projectiomre {1,]}, U is the local Cou-
&%‘;\;nisstiggghzﬁrggﬂ%ﬂ%thtggse weark—c?ui)rllr;]g C?ICU' lomb repulsion for two electrons of opposite spins on the
9 phase occurs at stronger cou-g, o, site, anahigzcit,cia is the occupation number. The

pling than the regime of validity of the second-order analysi ; o ( . ) )
in U of the flow equations. Soar.e smgle.par.'ucle ghspersmn has the form, in units where
lattice spacing is unity,

(c) The third class suggests clear evidence for ferromag-
netic ground states. These_works incl_ude a projector quantum &= — 2t(cosk, + cosk,) — 4t cosk,cosk, . 2
Monte Carlo calculation with 2820 sites and th@-matrix
techniquél a generalized random-phase approximationThis spectrum leads to a van Hove singularity in the density
(RPA) including particle-particle scatterifg and exact Of states coming from saddle points of the dispersion relation
diagonalization$® Similar tendencies have been found by that are located d= (0, 7) and (+ 7,0). The correspond-
the authors of Refs. 24 and 25 within the renormalizationing energy isyy=4t’. In this paper we always consider the
group and parquet approaches for the so-called two-patctase where the noninteracting chemical potentialtis 4o
model. Honerkamp and Salmhofer recently stutfi¢ke sta- that the noninteracting Fermi surface crosses the saddle
bility of this ferromagnetic region at finite temperatures by points and the noninteracting density of states diverges loga-
means of a temperature-cutoff renormalization-grougithmically at the Fermi energy. The filling corresponding to
(TCRG) technique analogous to that used earlier for onethis choice of chemical potential is a “van Hove filling.” For
dimensional systentS. For U=3, they have found that the t’=0 and half-filling the Fermi surface is perfectly nested,
ferromagnetic instability is the leading one fief|>0.33t] ~ namely, ey, o= — &y, With Q=(r, ), which leads to an
at van Hove fillings with the critical temperature strongly antiferromagnetic instability fod >0. The perfect nesting is
dependent on the value 6f. When the electron concentra- removed fort’/t#0. We work in units where Bolzmann’s
tion deviates slightly away from the van Hove filling, the constantkg and nearest-neighbor hoppih@re all unity.
tendency towards ferromagnetism is cut off at low tempera- The TPSC approaéh can be summarized as follows.
tures and a triplep-wave superconducting phase dominatesWe use the functional method of Schwinger-Martin-
The U dependence of these ferromagnetic and supercondudadanoff-Baym with source field to first generate exact
ing phases in the ground state has been studied in Ref. 27 lgguations for the self-energyy and responséfour-poind
means of the same TCRG at weak coupling. functions for spin and charge excitatiorispin-spin and

In the present paper we study ferromagnetism and comdensity-density correlation functionsn such a scheme, spin
peting phases in thiet’ Hubbard model at weak to interme- and charge dynamical susceptibilities can be obtained from
diate couplings by means of the two-particle self-consistenthe functional derivatives of the source-dependent propaga-
(TPSQ approactt® Antiferromagnetism andd,2_y2-wave  tor G with respect top. Our nonperturbative approach then
superconductivity are the competing instabilities. The TPSCGonsists in two steps.
approach is nonperturbative and applies up to intermediate At the first level of approximation, we use the following
coupling. It enforces the Pauli principle, conservation laws two-particle self-consistent scheme to determine the two-
and includes the Kanamori screening effect. Comparisonparticle quantities: We apply a Hartree-Fock-type factoriza-
with quantum Monte Carlo calculations have shown thattion of the four-point response function that defines the prod-
TPSC is the analytical approach that gives the most accuratect 3G, but we also impose the important additional
results for the spin structure factSithe spin susceptibilitt¥  constraint that the factorization is exact when all space-time

iTg (ci,) is the creatior(annihilatior) operator for the

214405-2



WEAK FERROMAGNETISM AND OTHER INSTABILITIES . . . PHYSICAL REVIEW B 68, 214405 (2003

coordinates of the four-point function coincide. From the xo(Q)
corresponding self-energy, we obtain the local momentum- X(c}\)(Q)= . (7)
and frequency-independent irreducible particle-hole vertex 1+ =Ucnxo(Q)
appropriate for the spin response 2
5S 53 (niny) The spin and charge su_sceptibilitzig.\s qbtained from Eﬁ)s
o= T_=1_ U7 (3)  and(7) satisfy conservation law&:*® This approach, which
0G| Gy (ni)(n;) satisfies the Pauli principle by construction, also satisfies the

The renormalization of this vertex mainly com&® from  Mermin-Wagner theorem: There is no finite-temperature
Kanamori screeningThe double occupandin;n,) entering phase transition breaking a continuous symmetry. Neverthe-
this equation is then obtained self-consistently using thd€SS, there is a crossover temperature below which the mag-
fluctuation-dissipation theorem and the Pauli principle. Morenetic correlation length grows exponentidfiyntil it reaches

specifically, the Pauli principlén2)=<na> implies that infinity at zero temperature. Detailed comparisons of the
7 charge and spin structure factors, spin susceptibility, and
<(”T_”L)2>:<”T>+<”L>_2<”T”1>v double occupancy obtained with the TPSC scheme are in

, ) L _ Qquantitative agreement with quantum Monte Carlo simula-
while the fluctuation-dissipation theorem leads to an equalityjons for both nearest-neight¥8?° and next-nearest-

between the equal-time equal-position correlatiofn;  neighbof? Hubbard models in two dimensions.

—n,)?) and the corresponding susceptibility, namely, In loop expansions, response functions are computed at
. the one-loop level and self-energy effects appear only at the

<(”T_ni)2>:ﬁ > Xélp)(Q):n—meﬁl (4)  two-loop level. Similarly, in our case the second step of the

q approach gives a better approximation for the self-energy.

We start from exact expressions for the self-energy with the

is over all wave vectors and all Matsubara frequencies With fully reducible vertex expanded in either the angltudmal or
being the temperatura) being the electron filling, and the transverse channels. These exact expressions are easy to
being the numpber of lattice gsites The latter qu{Jation i é)btain within the functional derivative formalism. We insert
self-consistent equation for the double occupancy, or equiva'pt those exlp rsssmnz S‘e TP(SS: resul(tls) Obtam%deeﬁ)tte first
lently for Ug,, in Eq. (3), because the spin susceptibility en- S'°P» NaMEWJsp and Hen, Xsp(Q), Xeri(0), and G(k
tering the above equation is +q) so that Green functions, susceptibilities, and irreducible

vertices entering the self-energy expression are all at the

where, using the shorthargi=(q,2i mmT), the summation

Xo(a) same level of approximation. Then considering both longitu-

D q) = 0 ; . . )

Xsp(Q)= 1 ' (5  dinal and transverse channels, and imposing crossing sym-
1— zUsto(Q) metry of the fully reducible vertex in the two particle-hole

channels, the final self-energy formula re¥ds

whereyxo(q) is the particle-hole irreducible susceptibility in- UT
cluding the contribution from both spin components, 2) (1Y — 11— 1
g pin comp 2Q00=Ungt g § 2 [3Usp(a)

2o flen—flersg)
Xo(Q)—NEKZ 2immT—g+ &g

(6) +Uenx () 16H (k+q). ®)

with f(&) being the Fermi-Dirac distribution function. Equa- ' Nis self-energy@) SatiSﬁegg'Sl’?fathe consistency condition
tion (4) is also known as the local-moment sum rule. Theb€tween single- and two-particle properties, JRGM)
Green functions at this first level of approximatiod(®), ~ =2U{n;n). Internal consistency of the approach may be
contain a self-energ ) that depends on double occu- checked by verifying by how much TE((Z)G(Z)) differs
pancy; but, since this self-energy is momentum and frefrom 2U(n;n ). The results for single-particle properties
quency independent, it can be absorbed in the definition ofiven by the self-energy formulas) are in quantitative

the chemical potential. In the above the®(! is the bare agreemerft*=*with numerical simulations at weak to mod-
propagator ang, is the bare particle-hole susceptibility both €raté couplings. At temperatures much lower than the cross-
evaluated with the noninteracting chemical potergiglcor- ~ OVer temperature where the correlation length increases ex-
responding to the desired filling. The irreducible charge verPonentially, the consistency condition signals that the method
tex Uep= 03, /8G, + 83 ,15G; strictly speaking is not mo- becomes less accurate, although it does extrapolate in most
mentum and frequency independent. Nevertheless, assumiffgSes to a physically reasonable zero-temperature firiit.

for simplicity that it is, it can be simply found by using the the present paper, we will not present results below the cross-

fluctuation-dissipation theorem for charge fluctuations and®Ve temperature so we are always within the domain of
the Pauli principle, validity. It should be noted that the self-energy E8). takes

into account the fluctuations that are dominant already at the
T " 5 Hartree-Fock level, namely, the antiferromagnetic ones.
N Eq Xer (@)=n+2(n;n;)—n<, The above formalism can be extendtth compute pair-
ing correlations. Physically, the,._,>-wave susceptibility
with shows up after antiferromagnetic fluctuations have built up
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since it is the latter that give some nontrivial momentumon a coarser mesh without loss of precision. To speed up the
dependence to the vertices. Momentum dependence of tlealculations and to overcome increasing memory require-
vertices is absent in the bare Hamiltonian and also at the firshents, especially at low temperatures, we use the
level of TPSC. It appears from the momentum dependence aEnormalization-group acceleration schethdnterpolation
the self-energy at the second level of approximation. In otheis used to obtain quantities at temperatures that fall between
words, our formalism physically reflects old ideas about pairthose directly obtained with the renormalization-group accel-
ing by antiferromagnetic spin wavésWhat it contains that eration scheme.
is absent in other formalisms is the possibility of suppression
of superconductivity by pseudogap effects also induced by
antiferromagnetic fluctuations.

The mathematical procedure to obtain ttie 2-wave
pairing susceptibility is as follows. Basically, the above steps Without loss of generality, we can take-0 andt’<0. In
are repeated in the presence of an infinitesimal external paithat case, the van Hove filling is alwaysma&1. The van
ing field that is eventually set to zero at the end of the calHove fillingsn=1 occur only whert andt’ have the same
culation. This allows us to obtain the particle-particle irre-sign, but this case can be mapped back to the situation
ducible vertex in Nambu space from the functional<1 using the particle-hole transformatimi{,ﬁ(—l)idm
derivative of the off-diagonak ®) with respect to the off- andc;,—(—1)'d| where the phase factor takes the value
diagonal Green function. The-wave susceptibility is de- 41 on one of the two sublattices of the bipartite lattice and
fined by xq=/§d7(T,A(7)AT) with the d,2_y2-wave order 1 on the other sublattice. The sign bfandt' can be
parameterATzEiEyg(y)c;’Tch, the sum overy being  changed simultaneously with the particle-hole transformation
over nearest neighbors, with(y)=+1/2 depending on defined byc! —d,, andc;,—d . Whenever a particle-hole
whethery is a neighbor on th& or on they axis.3=1/T, T.  transformation is performed, the occupation number changes
is the time-ordering operator, andis imaginary time. The from n to 2—n. The van Hove filling vanishes gt’|

IIl. WEAK FERROMAGNETISM AND OTHER
INSTABILITIES

final expression for the,2_2-wave susceptibility is =0.5t| so we restrict ourselves ta’'|<0.5t|. For larger
|t’| there is a change in Fermi surface topology.
x4(9=0,iq,=0) We begin with the RPA phase diagram in the’ plane,
- then move to the TPSC crossover diagram and conclude with
=N ; [gﬁ(k)G%Z)( — k)G(f)(k)] ﬁ;?son:t section on effects that can be detrimental to ferromag-
(T (2) (2) ;
7N 2 94(K) G (= k)G 7 (k) A. RPA phase diagram
ok Within RPA or mean field, the transition temperaturg
3 1 may be found from
X +
USP , Uch /
1= xo(k' k) 1+ =" xo(k'=K) 2-Uxo(q.0)=0, (10
><G(T1)( _ k’)G(f)(k’)gd(k’), 9) wherex(q,0) is the zero-frequency limit of the noninteract-

ing particle-hole susceptibility given by E). In the case

with gq(k) = (cosk,—cosk,) being the form factor appropri- of ferromagnetisng=(0,0), whileq= Q= (,7) in the case
ate for d-wave symmetry. The above expression containsf commensurate antiferromagnetism. The temperature at
only the first two terms of the infinite series corresponding towhich the uniform paramagnetic phase becomes unstable to
the Bethe-Salpeter equation. It should be noted that the afluctuations at the antiferromagnetiaFM) or at the ferro-
pearance of3(?) on the right-hand side of the equation for magnetic(FM) wave vector is plotted in Fig. 1. One should
the susceptibility Eq(9) allows pseudogap effects to sup- keep in mind that, in all cases, we are speaking of spin-
press superconductivity. This effect is absent in conven- density waves, namely, the local moment is in general
tional treatments of pairing induced by antiferromagnons. smaller than the full moment. Furthermore, fof| different

Since the crossover to the ferromagnetic ground statérom zero, the real wave vector where the instability occurs
found in our work appears at very low temperaturds ( is incommensurate. The question of incommensurability is
=<1/200), a large lattice is required in order to avoid finite- considered in more details in the TPSC section. Note that in
size effects at those temperatures. In the case of ferromagentrast to the casel=3, the ferromagnetic critical tem-
netism, sensitivity of the results to the lattice size at [bw perature forU=6 does not increase with', it even de-
can be avoided by making sure that the lattice is largecreases slightly. We do not explore the stability of the various
enough at any given temperature to reproduce the we@k Inphases that could occur in mean-field theory below the indi-
behavior of the bare particle-hole susceptibilipg(q=0, cated transition lines.
ign = 0). That singularity reflects the singular density of In both RPA and TPSC, the wave vector where the insta-
states at the van Hove filling. We found that Br=2048  bility first develops is related to thg dependence of,. In
X 2048 lattice suffices to computg, entering the TPSC TPSC, it is not only the maximum value ¢fy(g,0) that
phase diagram. The sum owglin Eq. (4) can be performed determines the crossover temperature, but also the whole
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FIG. 1. The RPA critical temperatufie, as a function of the van
Hove fillings indicated on the upper horizontal scale and the corre-
sponding value of next-nearest-neighbor hoppihgn the lower
horizontal scale. The critical temperatdrgis determined from Eq.

(10). AFM stands for the region where the uniform paramagnetic §-

phase becomes unstable to fluctuationsmats) while FM is the 1l
region where the instability is at (0,0). Vertical lines denote the
boundary between AFM and ferromagnetic phases. 05 |
©0 mm  q @m0 ©0) 0 mm q m0) ©0)

dependence of, that comes in the sum rule E@}) for Ug,.

From the plot ofx, as a function of wave vector af FIG. 2. The noninteracting particle-hole susceptibijtyat zero
=0.01 in Fig. 2, one can see thattat=0 the antiferromag- frequency as a function of wave vectgralong a path in the Bril-
netic wave vectoQ leads to the largest value gf,. With louin zone is drawn for various values of next-nearest-neighbor
increasing|t’| the maximum ofy, is at an incommensurate hoppingt” at T=0.01. The filling is obtained by placing the chemi-
wave vectorQ ;= (7— 8,) close to r,), while for large cal potential at the energy of the van Hove singularity for the given
[t"|>0.32 the maximum moves clearly to (0,0). For interme-

diate negative valges of the next—near.es.t.-neighbor hoppingmall denominator caused, for larljé| by x,(0,0), and for
[t"|~0.3 the magnitudes of the susceptibility at (0,0) and afy 4 It'] by xo(Q.,0). As the coefficient before the loga-
(m,m) are comparable so the chapgg in the relative magnizithm scales a§\1— 4t 11)2]" L for xo(0,0), and as Iff1
tude as af.unctlo.n.of temperature is important. +V1I=4(t10)2)/(2t'11)) for xo(Q,0), it turns out that
The main deficiencies of RPA ai@) finite-temperature +(0,0) increases rapidly foft’| near 0.5. This means that
phase transitions in two dimensions that contradict th ., has to decrease at larig| to satisfy the sum rulé4)
Mermin-Wagner theorentp) an overestimation of the effect Whpere, in addition, the quantitp—2(n;n,) on the right-

of U on T, because of the neglect of the renormalization ofyang side is a decreasing function of denségpd hence of
U brought about by quantum fluctuatioftSanamori screen- It']).

ing). One can see from Fig. 1 that the RPA critical tempera- To find the crossover lines, we consider the zero-
ture is quite a bit larger than the crossover lines predicted bytrequency limit of the spin susceptibility given by E¢)
the TCRG(see Fig. 1 of Ref. 19 The TPSC remedies these and thed,2_y.-wave pairing susceptibility given by E¢9)
deficiencies. above. The crossover temperatirefor the magnetic insta-
bilities is chosen as the temperature where the enhancement
factor xsp(d,0)/x0(0,0) is equal to 500. We have checked
that this corresponds to a magnetic correlation length that
We begin by considering the effective interactidg, that  fluctuates around 25 lattice spacings fof| between|t’|
plays a crucial role in TPSC. In Fig. 3 we plats;, as a =0 and|t’|=0.3. The crossover temperatufg is not very
function of t’ as obtained from Eqg3)—(5). One can see sensitive to the choice of criterion because near and below
that Kanamori screening strongly renormalizes the effectivehe crossover region the enhancement factor grows very rap-
interactions. This weakly temperature dependent renormalely (exponentially.
ization effect is stronger for largg’| in comparison with For pairing, we proceed as follows. Equati@) contains
small|t’|. To explain this behavior we consider the sum ruleonly the first two terms of the infinite Bethe-Salpeter series.
that determinedJs,, Eq. (4). The main contribution to the The first term(direct term) describes the propagation of
sum on the left-hand side of this equation comes from thelressed electrons that do not interact with each other while

B. TPSC crossover diagram
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FIG. 3. Irreducible spin verteld s, as a function of next-nearest- 10

neighbor hopping’ (or corresponding van Hove fillings on the 0 0.1 02 t 03 04 05
upper horizontal scaleat T=0.125. Horizontal lines at)=3,6
denote the bare Hubbard repulsion FIG. 4. The TPSC phase diagram as a function of next-nearest-

neighbor hopping’ (lower horizontal axis The corresponding van
Hove filling is indicated on the upper horizontal axis. Crossover

fluctuation exchange. This comes about in our formalism“nes for r_nagnetlc instabilities near the antlferrqmagnetlc and fe_r-
romagnetic wave vectors are represented by filled symbols while

(@) i (1) -
becausex™ is a functional ofG'”. We would have ob open symbols indicate instability towardi2_,>-wave supercon-

tained an _|nf|n|te number of spin- and charg_e-fluctuatlon eX'ducting. The solid and dashed lines below the empty symbols show,
changes, in the usual Bethe-Salpeter way, if we could hav

. ) - ) L ) %spectively, forU=3 and U=6, where the antiferromagnetic
written 3% as a functional ofG'®. This is not possible roesover temperature would have been in the absence of the super-

within TPSC. We have only the first two terms of the full ¢ongucting instability. The largest system size used for this calcu-
series. The superconducting transition temperature in two dixtion is 2048< 2048,

mensions is of the Kosterlitz-Thouless type and is expected

to occur somewhat below the temperature determined frorthe noninteracting susceptibility with moment@s= (=

the Bethe-Salpeter equatidiThouless criterion We thus  — &,) is the largest wheti #0. The incommensurate wave
use, as a rough estimate for the transition temperature forectors are plotted in Fig. 5 as a functiont6f One can see
d-wave superconductivity, the temperature where the contrithat the degree of incommensurability is strongly tempera-
bution of the vertex par(exchange of one spin and charge ture dependent, and that it increases with increasing tempera-
fluctuation becomes equal to that of the direct péiitst  ture.

the second term contains one spin-fluctuatiand charge-

term) of the d-wave pairing susceptibilis In other words, In the second region of the TPSC phase diagram
we look for the equality of the sign and the magnitude of thedx2—y2-wave superconductivity is the leading instability. In
two terms appearing in E@9). This choice is motivated by 1.0 092 TVH gg3 073
the statement that #x+--- resummed to 1/(+x) di- w4 r I r I r T
verges wherx=1. T=1/1024 ——
The TPSC phase diagram shows three distinct regions il- 16 - E}g;g s /]
lustrated forU =3 and forU=6 in Fig. 4:(a) fort’=0, the T=1/128 oo /
leading instability is at the antiferromagnetic wave vector 2] =164 == /./
and for small nonvanishing’| it is at an incommensurate w8 - 7 -
wave vector close to#, 7). We will loosely refer to that -
region as the region where antiferromagnetism dominates. el i
(b) For intermediate values of the next-nearest-neighbor hop- /16 [~ . //’ i

ping, dy2_2-wave superconductivity dominateg) At large
negative|t’|>0.33 a crossover to a magnetic instability at
the ferromagnetic wave vector occurs. Let us consider these 0 0.1 , 02 03
different regions in turn. t

Neart’=Q, Ty is relat_ively high and the susceptibilit_y FIG. 5. Incommensurate wave vecQg= (7— 6, 7) where the
near the antiferromagnetic wave vector grows most rapidlymaximum of the noninteracting susceptibility is located as a func-
When we increasft’|, the crossover temperature decreasesjon of next-nearest-neighbor hoppibgat van Hove fillings. Dif-
because of reduced nesting of the Fermi surface. In TPSC thgrent lines correspond to different temperatures. Giveand a
wave vector of the instability is incommensurate for any fi- crossover temperature in the TPSC phase diagram, one can use the
nite value of the next-nearest-neighbor hopgiriggas can be  present figure to find out the incommensurate wave vector at which
concluded from the structure of E¢p) and from the fact that the instability first occurs.

214405-6



WEAK FERROMAGNETISM AND OTHER INSTABILITIES . . . PHYSICAL REVIEW B 68, 214405 (2003

this regime the transition temperaturedg _,»-wave super- RPA can be explained by the following simple argument.

conductivity appears higher than the temperature at whicfaking into account Kanamori's improvemémif the naive

the antiferromagnetic correlation length becomes larger thaBtoner criterion for ferromagnetism, we expect that the

about 25. The latter crossover lines are denoted by the solicrossover temperatuiB, can be roughly approximated by

(U=3) and by the dashed line¥J&6) in Fig. 4. Note that

dy2_2-wave superconductivity is here induced by incom- 1

mensurate antiferromagnetic fluctuations. While high- Tx~Toexr< - —) 11

temperature superconductors are not generally close to van P(ER)Ues

Hove singularities, incommensurate dynamic spin fluctua- ) i

tions are concomitant wittl,2_ 2 superconductivity in these where T, is a constantp(Eg) = x0(0,0)/2, andU is the

compounds’ renormalized effective |r_1tera<_:t|orl1Jgp in the case_of TPSC
Finally, the third regime occurs 4t’|>0.33 where the We have allrea,dy explamgd in the context of_F|g_. 3 tha_t the

ferromagnetic susceptibilitys(0,0) is the leading one at increase WI'th | of the weight of the logarithmic singularity

low temperatures. Ferromagnetism occurs because of the dft the density of states at the Fermi level leads to a decrease

verging density of states at the van Hove singularity. of Ug,, so the crossover temperature is almost constant in
Note that forU infinitesimally small the phase boundaries TPSC: o ) .

happen close to zero temperature. Disregarding superconduc- A distinctive feature of the TPSC phase diagram is that

tivity for the moment, let us consider where the phase bound'® crossover to ferromagnetism generally occurs at a much

ary between antiferromagnetism and ferromagnetism woullPWer temperature than the crossover to antiferromagnetism.

be at smallU. In that case, the asymptotic behavior of the This partially comes from the peculiarity of the temperature

Lindhard function neag=0 andg=Q is, respectivelj dependence of the zero-frequency limit of the noninteracting
' ’ particle-hole susceptibility. To demonstrate this, let us use, as
0,0)~In[ 1/max ,T)]/V1- RZ, an estimate for the crossover temperatures in TPSC, the RPA
Xo(00) [ AwT)] criterion Eq.(10) with U replaced byJ, and let us look for
Yo(Q,0)~ In[ 1/max T)]In[(1+m)/R] values of the temperature when the left-hand side of that

equation becomes smait will vanish only at zero tempera-

with R=2t'/t so that, looking at the equality of the coeffi- ture). At small|t’| the leading noninteracting staggered sus-
cients of the logarithms, one finds that the change from anceptibility xo(Q,0) behaves like (If)* with temperature,
tiferromagnetic to ferromagnetic behavior occurs |gff ~ while for [t'|>0.33 the leading noninteracting uniform sus-
=0.27 instead oft’|=0.33 as found abov&:*® To under- ~ ceptibility xo(0,0) scales afin T|. We find that these suscep-
stand the difference between these two results, we need tiilities have comparable size for temperatufes1, while
look at subdominant corrections. For example, a numericahe divergences of(Q,0) andy,(0,0) begin, respectively,
fit reveals thatyo(Q,0)=0.52+0.24 log(1/T). This means atT<1 andT<1. Therefore, since the Stoner criterion Eq.
that for the leading term with a logarithmic structure to be,(10) is satisfied in RPA with bar&)=3,6 at temperatures
say, about ten times larger than the subdominant term, th&1, RPA shows the same temperature scale for ferromag-
temperature should be as low as #® The correspondiny ~ netism and antiferromagnetism. But in TPSC the strong
(or Ugp) that satisfies £U (or Ugp) xo(Q,0)/2 at this tem-  renormalization of the interaction strengthy,<U means
perature is very small, namely, ®.4Therefore, unlest) is  that the crossover occurs for larger valuesyg{Q,0) and
very small, the next leading term plays an important role angvo(0,0), in a regime where they already have different scales
a straightforward application of the asymptotic foftaking  sincex(Q,0) for small|t’| starts to grow logarithmically at
only the leading termis not justified. ForU=6 andU  much higher temperature than(0,0) for large|t’|. Thus,
=3, for example, TPSC shows that near the antiferromagthe crossover to antiferromagnetism in TPSC occurs at much
netic to ferromagnetic boundary, the crossover temperature Righer temperatures than the crossover to ferromagnetism.
of order 102 and 10°3, respectively. For this temperature, ~ Another interesting feature of the TPSC phase diagram at
the subleading term 0.52 is comparable to the logarithmidJ=3 is that the crossover temperature for antiferromag-
contribution. netism is of the same order of magnitude as that of the

The TPSC phase diagram is in qualitative agreement witf CRG result of Ref. 19, whereas the crossover to ferromag-
the TCRG phase diagratfiin addition, the critical valueg, ~ netism is at a much lower temperature than that observed in
for the stability of superconductivity and ferromagnetism arethe TCRG calculations. The naive explanation is as follows.
the same in both approaches. But in contrast with the TCRG;€t us assume that the approximate mean-field-like expres-
ferromagnetism in TPSC occurs at very low temperaturession Eq.(11) for Tyx has meaning both within TPSC and
and increasindt’| does not lead to a dramatic increase inWithin TCRG except thalle¢ has a different value in both
crossover temperature. One can see from Fig. 4 that the crittpproaches. Simple algebra then shows that the relation be-
cal values oft’ for the stability of ferromagnetism are un- tween the crossover temperatures for TPSC and TCRG in the
changed for different), whereas the criticgk.| for the sta- ferromagnetically fluctuating regime is
bility of dy2_y>-wave superconductivity decreases with

increasing coupling strengtt. TEEARG To 1-1a
The fact that the crossover temperature towards ferromag- wpsc = | —Fpsc ,
netism depends even more weakly Bnin TPSC than in Tewm Tem
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with a=UJf"% Uy, characterizing the different renormaliza- dy2_y2-wave superconductivity as long as they are not strong
tions of U in both approaches. Whem=1, both crossover enough to create a pseudogap, in which case they are detri-
temperatures are equal. Far 1 the TCRG value foify is ~ mental to superconductivity.

larger than for TPSC while the reverse is true wheenl. The above-mentioned renormalization-group calculations
Using the numerical resdftfor the TCRG effective interac- were done in the one-loop approximation without self-energy
tion atU=3 and|t’|~0.45 we havea=1.4-1.8. Then, re- effects. By contrast, in the RG work of Ref. 43, self-energy
placing T, by the bandwidth 8 and taking TEE,,SC:3_4 effects showing up at two loops were included in the calcu-

%103 corresponding tdt’|=0.42 we obtain the estimate lation for thet’=0 model. There it was found that dressing

TEI\CARG/TEI\P/ISC% 10-30. This agrees with the crossover tem-the flow equations for AFM and superconducting response

peratures extracted from the TPS$Eg. 4 and the TCRG functions with the one-particle wave-vector-dependent
phase diagraméFig. 1 of Ref. 19. Similarly in the antifer- Weight factorsZ results in a reduction of both AFM and
romagnetically fluctuating regime neft'|=0, we use the superconducting correlations, the latter suppression being

improved mean-field estimate fdr , more pronounced. Within TPSC, the momentum- and
frequency-dependent self-energy effects that appe&(h
Ty~ Toexp — V8t/Up), in the pairing susceptibility Eq9) do tend to decrease the

] ) tendency to pairing when AFM fluctuations become very
to extract the following relation between the crossover teMstrong at and near half-fillindf in qualitative agreement with
peratures: the RG resulf® In particular, in the presence of an AFM-
induced pseudogap, the tendency to superconductivity is de-

1-1Na ; ;
TL(IEI\F;IG_ To creased compared to what it would be if we replaGétl by
T/T\Efnc_ TXEI\S/IC G™@ everywhere(Such a replacement is not allowed within

our formalisnm). Because of the excellent agreement between

Using the value otJs, from the TPSC and the TCRG effec- TPSC at the first level of approximation and quantum Monte

tive interactiof® at U=3 and |t'|~0.1 we havea Carlo calculation€®?*momentum- and frequency-dependent

=1.0-1.4. This leads t@ \ch I Trry~1-2.5 forTirw~4  self-energy effects are not expected to be very important for

X 1072 at [t'|~0.1, which is in good agreement with the AFM fluctuations unless we are deep in the pseudogap re-

data extracted from the phase diagrams. gime. They have not been taken into account at this point.
As mentioned at the beginning of this section, the crossThey might be more important in the case of ferromag-

over temperature$y for the magnetic instabilities in TPSC netism, which is already a very weak effect in TPSC. This is

have been chosen such that the enhancement factor is eqeligcussed below.

to 500. The enhancement factor scales like the square of the

correlation length¢?. For such larget? the value ofTy is C. Additional effects that may be detrimental

rather insensitive to the choice 500 since the correlation to ferromagnetism

length grows exponentially. Our criterion fdry leads to a

good estimate of the real phase-transition temperature witp9

&= when a very small coupling term is added in the thirdI

spatial direction. The dependence Tf on coupling in the

The TCRG phase diagrdrhis computed at the one-loop
vel. Self-energy effects occur at the two-loop level. Simi-
arly, self-energy effects in TPSC are calculated at the second
. . ) ) e 4 level of approximation. Since analytical continuation of
third dimension has been studied, within TPSC, in Ref. 405 inary time results is difficult at low temperature, we es-

The latter reference also contains expressions for the relatio[ﬂnate the quasiparticle weight with the helo of the quantit
between the enhancement factor &3d On the other hand, 2'(T) defin?ad inpRefs. 28 ar?d 44 by P g y

Ty depends more strongly on the precise criterion if we

choose a moderate value of the enhancement factor. In par- do Ake,w)

ticular, the TPSC value ofy in the antiferromagnetic fluc- Z'(T)=—2G(kg,BI2)= f 27 cosi Bal2)’ (12)

tuation region increases by a factor 2-5 if we choose 10 for

the enhancement factor, close to the valghosen in Ref. Physically, this quantity is an average of the single-particle

19. In this caseTy agrees essentially perfectly with the spectral weightA(kg,w) within T of the Fermi level

value obtained in the TCRG phase diagram. =0). When quasiparticles exist, this is a good estimate of
Note however that our estimate for the superconductinghe usual zero-temperature quasiparticle renormalization fac-

transition temperature is smaller than that obtained with théor z=(1—3J3/dw) . However, in contrast to the usua|

TCRG of Ref. 19. Because in TPSC the pairing fluctuationghis quantity gives an estimate of the spectral weight

do not feed back in the antiferromagnetic fluctuations, thisA(kg,w) around the Fermi level, even if quasiparticles dis-

result suggests that the feedback, usually included in TCR&Gppear and a pseudogap forms.

enhances superconductivity in this region of the phase dia- Figure 6 shows the quasiparticle renormalization faztor

gram. Such a positive feedback effect was also found in that a value|t’|=0.4 where ferromagnetic fluctuations domi-

RG calculations of Refs. 42 and 17. On the other hand, theate at very low temperatures. One observes a progressive

RG approach of Ref. 24 suggests instead that antiferromaglecrease of’(T) with decreasing temperature. We checked

netism and superconductivity oppose each other. Somthat the single-particle spectral functidi(kr, ) begins to

particle-particle diagrams were however neglected in the latshow a smalpseudogamt the temperature whee begins

ter approach. In TPSC, antiferromagnetic fluctuations helgo decrease significantly. Since the ferromagnetic fluctuations
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1

hopping the leading instability is a spin-density wave with
slightly incommensurate antiferromagnetic wave ve¢kag.
5). We could find incommensurability at smail| only for

0.8
very large lattice sizes. The TCRG seems to indicate that
06 very close to|t’|=0, the wave vector remains pinned at
. (7r,7) (Ref. 27 but that could be due to the fact that cou-
N pling constants in TCRG represent a finite region in wave-
04 vector space and hence very small incommensurabilities can-
not be resolved. For intermediate valuestf we also find
02 dy2_ 2-wave superconductivity. The precise value|f for
the onset ofd,> ,2-wave superconductivity depends some-
0 1 1 1 1 what on the criterion used for the crossover temperature. One
0 0.2 0.4 T 0.6 0.8 1 clear difference with TCRG, however, is that the range of

|t'| where superconductivity appears increases with
FIG. 6. Temperature dependencezt(T) defined by Eq(12) at ~ whereas it decreases with in TCRG?’ At large |t'|
the van Hove filling corresponding {¢'|=0.4. >0.33, a crossover to ferromagnetism occurs as a result of
the diverging density of states. TPSC cannot tell us what
are not yet strong enough at that temperature to create lappens below the crossover temperature, but that tempera-
pseudogap, this effect is completely driven by the singulature is the relevant one in practice since any small coupling
density of states at the van Hove filling. In other words,in the perpendicular direction would lead to a real phase
second-order perturbation theory should suffice to observéfansition.
the effect. The analogous feature was previously found by The critical value for ferromagnetisnfi’|=0.33, coin-
one of the authors and his co-workErin a second-order cides with that found in TCR&??’ This value of|t'| is
perturbation study of the nearest-neighbor two-dimensionasmaller than that found within tHE-matrix approximatiorf,
Hubbard model at half-filling. Self-energy effects near vanbut that may be because of the cutoff to the van Hove sin-
Hove points have also been discussed in Ref. 46. The rathgularity imposed by the small system sizes used in that ap-
strong suppression of spectral weight at the Fermi wave vegroach. The critical value for ferromagnetisf;|=0.33,
tors for temperatures larger than the crossover temperatugso differs from the valu@t’|=0.27 obtained in Ref. 24 in
found in the above section would probably reduce the trughe limit of zero temperature. We have explained in Sec.
Ty or even completely eliminate the possibility of a ferro- 11l B that for the crossover to occur sufficiently close To
magnetic ground state if we could include the feedback of=0 for the arguments of Ref. 24 to be correct, one needs
this self-energy effect into the spin susceptibility. values ofU that are unrealistically small. At finit&) (we
The ferromagnetic fluctuation regime is also very sensistudiedU=3 and U=6), subdominant corrections to the
tive to doping within TPSC. In fact, deviations of the filling logarithms shift the criticalt’/t|=0.27 found in Ref. 24 to
by 2—3% away from the van Hove filling remove the cross-the value|t’/t|=0.33 found by us and TCRG.
over to the ferromagnetic regime. The differences between TCRG and other approaches, as
There is also an argument that suggests that a Stoner-typeell as their strengths and weaknesses, are well explained in
ferromagnetic ground state is unstable in the two-Refs. 19 and 27. The smaller temperature scale for crossover
dimensional Hubbard model. Within RPA in the ferromag-to d,2_,2-wave superconductivity in TPSC is a difference
netic staté the spin stiffness constant for spin waves in theworth noting between our approach and TCRGhis may
ferromagnetic state is proportional to minus the second debe due to the fact that our calculations include self-energy
rivative of the density of states at the Fermi le$&8ince the  effects which are absefitin one-loop TCRG. But the most
density of states as a function of eneigyvay from the van striking difference is the temperature scale for ferromag-
Hove filling) has a positive curvature in two dimensions, it netism that in our case remains extremely small away from
leads to a negative spin stiffness constant and thus to ae critical|t’|=0.33.
instability. This argument is based on the noninteracting den- We have shown that the low-temperature scale for the
sity of states. The pseudogap effect mentioned aboverossover to ferromagnetic fluctuations comes from Kan-
changes the curvature of the density of states at the Fermimori screening that strongly renormalizes the effective in-
level and may stabilize the ferromagnetic state. teraction(this effect is smaller in the antiferromagnetic re-
gime). In TPSC this renormalization comes from the
constraint that the spin response function witg, should
satisfy the local moment sum rule, E@). This causes the
As found within temperature-cutoff renormalization group crossover temperature to ferromagnetic fluctuations to de-
(TCRG),'*?" TPSC suggests that ferromagnetism may append weakly ort’ and to remain small. As in th&matrix
pear in the phase diagram of the 2B’ Hubbard model at approximatior?! Kanamori screening seems much stronger
van Hove fillings for weak to intermediate coupling. It is than what is obtained with TCRG. The latter approach per-
striking that the overall phase diagrams of TCRG and TPSQaps does not include all the large wave vectors and large
have some close similarities. As in TCRG, we find, Fig. 4,energies entering the screening of the effective interaction.
that for small negative values of the next-nearest-neighbor Within TPSC then, the tendency to ferromagnetism seems

IV. CONCLUSIONS
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very fragile. In addition, we checked that in TPSC ferromag-the Pomeranchuk instability, i.e., a spontaneous deformation
netism disappears for electron concentrations that are onlgf the Fermi surface reducing its symmetry from the tetrag-
very slightly (2—39% away from van Hove fillings, in overall onal to the orthorhombic one. Temperature cutoff fRefs.
agreement with the results of the TCR¥’ So the question 27,49 disagrees with a suggesti§rf®*that this is one of
of the existence of Stoner-type ferromagnetism at weak téhe possible leading instabilities of the 2Bt’ Hubbard
intermediate coupling is not completely settled yet, despitanodel at van Hove fillings.
the positive signs and the concordance of the most reliable Note added in proof:B. Binz, D. Baeriswyl, and B.
approaches. We have estimated the electronic self-energy édouwt[Ann. Phys.(Leipzig) 12 (2003; cond-mat/0309645
fects for largdt’| and found that the quasiparticle renormal- have recently questioned the application of one-loop renor-
ization factor is reduced significantly at temperatufes malization group to ferromagnetism, suggesting that the
<0.1. As a result, the single-particle spectral functionerror produced by the one-loop approximation is of the
A(kg ,w) starts to show a small pseudogap which, at highsame order as the term which produces the ferromagnetic
temperature, is completely driven by the singular density ofnstability.
states, and not by the ferromagnetic fluctuations that appear
only at very onv temperature. This rather strong suppression ACKNOWLEDGMENTS
of spectral weight at the Fermi wave vectors Tor Ty may
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to a ferromagnetic ground state. We have argued in Sec. Ill @npublished data with us and for numerous useful discus-
that other factors could be detrimental to a ferromagnetisions. The authors also thank M. Salmhofer, C. Honerkamp,
ground state in two dimensions. In particular, as is the cas€. Bourbonnais, M. Azzouz, and M. Gingras for valuable
with RG calculationg®?” a consistent treatment of the elec- discussions. The present work was supported by the Natural
tronic self-energy effects on the spin response function reSciences and Engineering Research CoufNBERQ of
mains an open issue. Canada, the Fonds Qoeeois de la recherche sur la nature et
Another interesting problem for future investigations isles technologies, the Canadian Foundation for Innovation
the question of whether ferromagnetism could compete witland the Tier | Canada Research Chair ProgtAmM.S.T.).

IM.C. Gutzwiller, Phys. Rev. Lettl0, 59 (1963. 2IR. Hlubina, S. Sorella, and F. Guinea, Phys. Rev. |#t.1343
2J. Hubbard, Proc. R. Soc. London, Ser226, 238 (1963. (1997; R. Hlubina, Phys. Rev. B9, 9600(1999.
3J. Kanamori, Prog. Theor. Phy30, 275 (1963. 22M. Fleck, A.M. Oles and L. Hedin, Phys. Rev. B6, 3159
4For a review see, P. Fazekascture Notes on Electron Correla- (1997.

tion and MagnetisnfWorld Scientific, Singapore, 1999 23, Arrachea, Phys. Rev. B2, 10 033(2000. These exact diago-
°Y. Nagaoka, Phys. Rew47, 392 (1966. nalizations were done on larger lattices than those in Ref. 18
®D.J. Thouless, Proc. Phys. Soc. Londifh 893 (1965. which did not find a ferromagnetic solution, in contradiction
’T. Hanisch, G.S. Uhrig, and E. Mar-Hartmann, Phys. Rev. B with this more recent work. The recent work also considered a
. 56, 13 960(1997. wider range of boundary conditions.

E.H. Lieb, Phys. Rev. Let62, 1201(1989. 243 V. Alvarez, J. Gondaz, F. Guinea, and A.H. Vozmediano, J.
9A. Mielke and H. Tasaki, Commun. Math. Phy&8 341(1993. Phys. Soc. Jpr67, 1868(1998.
'H. Tasaki, Prog. Theor. Phy39, 489 (1998. 25\, yu. Irkhin, A.A. Katanin, and M.I. Katsnelson, Phys. Rev6B,

1A, Mielke, Phys. Rev. Lett82, 4312(1999.

124, Tasaki, cond-mat/0301071, Commun. Math. Plf§sbe pub-
lished 2003.

13p. Vollhardt, N. Blumer, K. Held, M. Kollar, J. Schlipf, M.
Ulmke, and J. Wahle, Adv. Solid State Phg%, 383(1999.

L. Chen, C. Bourbonnais, T. Li, and A.-M.S. Tremblay, Phys.
Rev. Lett.66, 369 (1991).

165107(2001).

26C. Bourbonnais, Ph.D. thesis, Univefside Sherbrooke, 1985
(unpublishegt C. Bourbonnais, Mol. Cryst. Lig. Crysi19, 11
(1985; L.G. Caron and C. Bourbonnaithid. 119, 451(1985;
C. Bourbonnais and L.G. Caron, Int. J. Mod. Phys5,B1033
(1991); H. Ndisse, C. Bourbonnais, H. Touchette, Y.M. Vilk,

'SW. Hofstetter and D. Vollhardt, Ann. Phyd.eipzig) 7, 48(1998. . and A.-M.S. Tremblay, Eur. Phys. J. B2, 351(1999.

16C. Halboth and W. Metzner, Phys. Rev. Le86, 5162 (2000; A.A. Katanin and A.P. Kampf, cond-mat/030418™published
Phys. Rev. B51, 7364(2000. 28y M. Vilk and A.-M.S. Tremblay, J. Phys. 7, 1309(1997).

17C. Honerkamp, M. Salmhofer, N. Furukawa, and T.M. Rice, Phys.zgY-M- Vilk, L. Chen, and A.-M.S. Tremblay, Phys. Rev. &9,
Rev. B63, 035109(2001). 13267(1994.

184 Q. Lin and J.E. Hirsch, Phys. Rev. 35, 3359(1987. %9B. Kyung, J.-S. Landry, and A.-M.S. Tremblay, Phys. Re\6®

19C. Honerkamp and M. Salmhofer, Phys. Rev. L&, 187004 174502 (2003; B. Kyung, S. Allen, and A.-M. S. Tremblay
(200D); Phys. Rev. B64, 184516(2001). (unpublishedl

20y, Hankevych, I. Grote, and F. Wegner, Phys. Re6@ 094516  3!S. Allen, A.-M. S. Tremblay, and Y. M. Vilk, iTheoretical Meth-
(2002; V. Hankevych and F. Wegner, Eur. Phys. J3B 333 ods for Strongly Correlated Electronsedited by David
(2003. Senechal, AndreMarie Tremblay, and Claude Bourbonnais,

214405-10



WEAK FERROMAGNETISM AND OTHER INSTABILITIES . . . PHYSICAL REVIEW B 68, 214405 (2003

CRM Series in Mathematical PhysidSpringer, New York, ture where the coupling constant reached, 18hich corre-
2003. sponds to the enhancement factor~e20. C. Honerkampgpri-
S2AF. Veilleux, A.-M. Dare L. Chen, Y.M. Vilk, and A.-M.S. vate communication
Tremblay, Phys. Rev. B2, 16 255(1995. 42C. Bourbonnais and R. Duprat, Eur. Phys. 2B 219 (2007).
%3s. Moukouri, S. Allen, F. Lemay, B. Kyung, D. Poulin, Y.M. Vilk, 43p_ Zzanchi, Europhys. Let65, 376 (2002).
" and A.-M.S. Tremblay, Phys. Rev. &L, 7887(2000. 44Y.M. Vilk and A.-M.S. Tremblay, Europhys. Letg3, 159(1996.
B. Kyung, J.S. Landry, D. Poulin, and A.-M.S. Tremblay, Phys. 45 | emay, Y. M. Vilk, and A.-M. S. Tremblayunpublishegt F.
Rev. Lett.QO, 099702(2003. Lemay, Ph.D. thesis, Universitge Sherbrooke, 200Qunpub-
%D.J. Scalapino, Phys. Rep50, 329 (1995. lished.

36C.-H. Pao and N.E. Bickers, Phys. Rev4B, 1586 (1994.

37K. Yamada, C.H. Lee, K. Kurahashi, J. Wada, S. Wakimoto, S.
Ueki, H. Kimura, Y. Endoh, S. Hosoya, G. Shirane, R.J. Birge-
neau, M. Greven, M.A. Kastner, and Y.J. Kim, Phys. Re%6B
6165(1998.

46\ Yu. Irkhin and A.A. Katanin, Phys. Rev. B4, 205105(2001);
Erratum, cond-mat/0105564inpublishe@t cond-mat/0310112
(unpublished

47s. Doniach and E.H. SondheimedBreen's Functions for Solid

38BWe thank A. Katanin for pointing this out to us. State Physicist¢imperial College Press, London, 1998

48 . i
39A.A. Katanin (private communication 49P' Noziges (unpublishedl _
40A -M. Daré, Y.M. Vilk, and A.-M.S. Tremblay, Phys. Rev. B3, C. Honerkamp, M. Salmhofer, and T.M. Rice, Eur. Phys. 27B

14 236(1996. . 127 (2002.
41| the RG phase diagram of Ref. T3 is defined as the tempera- ~ A- Neumayr and W. Metzner, Phys. Rev.68, 035112(2003.

214405-11



