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Extended variational principle for the Sherrington-Kirkpatrick spin-glass model
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The recent proof by Guerra that the Parisi ansatz provides a lower bound on the free energy of the
Sherrington-KirkpatricK SK) spin-glass model could have been taken as offering some support to the validity
of the purported solution. In this work we present a broader variational principle, in which the lower bound as
well as the actual value are expressed through an optimization procedure for which ultrametric/hierarchal
structures form only a subset of the variational class. The validity of Parisi’s ansatz for the SK model is still in
question. The new variational principle may be of help in critical review of the issue.
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I. INTRODUCTION Il. THE MODEL

The SK model concerns Ising-type spinsg
The statistical mechanics of spin-glass models is charac=(o73, . ..,0y), with ana priori equidistribution over the
terized by the existence of a diverse collection of competingzalues{ + 1}, and the random Hamiltonian
states, very slow relaxation of the quenched dynamics, and a
rather involved picture of the equilibrium state. -1
A great deal of insight on the subject has been produced Hn(o)= W 1s2:jsN Jijoi Uj_hizl Oi, @
through the study of the Sherrington-KirkpatrictSK)
model® After some initial attempts, a solution was proposedwhere{J;;} are independent normal Gaussian variables.
by Parisi which has the requisite stability and many other Our analysis applies to a more general class of Hamilto-
attractive featuredlts development has yielded a plethora of nians which includes all the evenpspin” models®’
applications of the method, in which a key structural as-Namely,
sumption is a particular form of the replica symmetry break-

N

ing (i.e., the assumption of “ultrametricity,” or the hierarchal Ho(0) = — Ky(o)— h% @)
structure, of the overlaps among the observed spin n(o) = n(o = i
configurationg®

Yet to this day it was not established that this very appealWith
ing proposal does indeed provide the equilibrium structure of . N
the SK model. A recent breakthrough is the proof by Giferra N a
Kn(o) = 521 2 Jll i

that the free energy provided by Parisi’s purported solution is N2 g Tl i Tigm i
1o r
a rigorous lower bound for the SK free energy. (3)
More completely, the result of Guerra is that for any value . )
of the order parameter, which within the assumed ansatz is §here all the{J; ;} are independent normal Gaussian

function the Parisi functional provides a rigorous lower variables(for convenience, the tensor is not assumed here to
bound. Thus, this relation is also valid for the maximizerbe symmetrig, and=;"_,|a,|?=1. As in Ref. 7, our argu-
which yields the Parisi solution. ment requires that the functidifq) ==;"_,|a,|?q" be convex

In this work we present a variational principle for the freeon[ —1,1].
energy of the SK model which makes no use of a Parisi-type One may note thaKy(o) form a family of centered
order parameter, and which yields the result of Guerra as &aussian variables with the covariance
particular implication. More explicitly, the new principle al-
lows more varied bounds on the free energy, for which there
is no need to assume a hierarchal organization of the Gibbs
state(e.g., as expressed in the assumed ultrametricity of the ] )
overlaps). Guerra’s results follow when the variational prin- Which derzends on the spin-spin overlapq,, .
ciple is tested against the Derrida-Ruelle hierarchal probabil= 1/2N21‘7J oj . The standard SK model correspondsf {q)
ity cascade model§GREM).® =q°. N .

This leads us to a question which is not new: is the ultra- 1 N€ partition functiorZ, the quenched free energy and
metricity an inherent structure of the SK mean-field modeI,What we shall call here the pressufeare defined as
or is it only a simplifying assumption. The new variational
principle may provide a tool for challenging tests of this Zn(B,h)= 2 g~ AHN(9), (5)
issue. o1, on==1

N
E[KN(U)KN(O’,)]:Ef(q(r,(r’)r (4)
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We shall now denote byi(-) the combined average,
Pn(B,h)= E['” Zn(B,h)]=—=BFn(B,h), (6)  which corresponds to integrating over three sources of ran-
domness: the SK random coupling; }, the random over-
whereli(—) is an average over the random couplifds}. lap structure described by the measyiédw), and the
The thermodynamic limit for the free energy, i.e., the exis-Gaussian variablegc,} and{7; .}
tence of lim_..Pn(B,h)=P(B,h), was recently established Guided by the cavity picture, we associate with each
by Guerra-Toninelfi through a much-awaited argument. ROSt the following quantity:

Ill. THE VARIATIONAL PRINCIPLE Gu(B.h;p)

Our variational expression fdP(B,h) employs a setup M
which may at first appear strange, but is natural from the 1 D £.ex ,321 (7)o h)o;
cavity perspective, when one considers the change in the = | In 7 = NGEY)
total free energy caused by the additionvEpins to a much 175
larger system of siz&l. The expression foZy y/Zy Sim- 2 LaHBMI2K,)
plifies in the limitN—oe, at fixedM. In the following ideal-
ized definition one may regard the symhols representing whereo= (o, ... ,0n)
the configuration of the bulk. The discreteness seen in the Our main result is the following:
definition (¢,) is just for the convenience of the formula- ~ Theorem 1(i). For any finiteM,
tion of the variational bounds, and not an assumption on the
Gibbs state, though such an assumption may well be tAue. Pm(B,h) < inf Gy(B8,h;u) < Py(B,h), (12
more general formulation is possible, but not much is lost by (Q,p)
restricting attention to the “ROSt” defined below. o ) ,
Definition (random overlap structuresh.random overlap  Where the infimum is over ROSt's ari|,(,h) qulotes the
structure(ROSY consists of a probability spadé), u(dw)} free ene“rg_y><(—,3) obtained through the Parisi “ultramet-
where for eachw there is associated a system of Welghts”C (or “hierarchal”) ansatz(ii). The infinite volume limit

{¢.,(w)} and an “overlap kernel’{qw (w)} such that, for of the free energy satisfies
eachwe (),

(i) = 4é4(@) <o (i) the quadratic form corresponding to '3(,6’,h)=w|llinoc (!I)ni)Gm(ﬁ,h;M)- (13
{Qu.o'} is positive definite;iii) g, ,=1, for eacha, and
hence (by the Schwarz inequalityalso |qa,a/|<1 for all Proof. These results can be seen as consisting of two
pairs{a,a’}. separate parts: lower and upper bounds, which are derived by

An important class of ROSt’s is provided by the Derrida- different arguments.
Ruelle probability cascade model which is formulated in Ref.  (i). The upper bound: The left inequality in E{.2) em-
5 (called there GREM ploys an interpolation argument which is akin to that used in
Without additional assumptions, one may associate to théhe analysis of Guerra,but which here is formulated in
points in any ROSt two independent families of centerecbroader terms without invoking the ultrametric ansatz. The
Gaussian variablesy; ,}j-12, ... and{«,} with covariances second inequality in E¢(12) holds since the Parisi calcula-
(conditioned on the random configuration of weights andtion represents the restriction of the variation to the subset of
overlaps hierarchal ROSt’s.
_ _ To derive the first inequality let us introduce a family of
B9’ a'|9aa) =38,/ F (Aaar), (7)  Hamiltonians for a mixed system ofM spins o
=(oy, ...,0y) and the ROSt variables, with a parameter

E(KaKa’|aa,a’):aa,a’f’(aa,a’)_f(aa,a’)- (8) Os=t=1:
The existence of such processes requires positive definite- M
ness of the joint covariance, but that is evident from the —HM(a,a;t):/l—t(KM(cr)Jr \/:Ka)
following explicit construction in the case that thés areN 2
vectors, withq,, . =52, a; :

M M
\/_ + \/EJZ:L 771'“01+hj21 O'j y (14)
ar ~ B B
Tj.a= \/;2 N2 2 Jiiig, i@y @iy 9

and let
where the second sum is ovigr, . . . ,i,_; which range from
1 toN, and > ¢ e AHmloan)
1 a,T “
F—1a, N A RM(ﬁ,h;t)=ME In “ . (19
KQIZ N ..E.,ir=1 Ji, . geipa . (10 ; £ 0P M2k
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Then Putting the positivity of the derivative together with Egs.
(16) and (17) clearly implies the first bound in Eq12).
Rm(B.h;0)=Py(B,h), (16) As was noted earlier, a particular class of random overlap
structures is provided by the Derrida-Ruelle probability cas-
Rum(B,h;1)=Gn(B,h;p), (170 cade model$GREM) of Ref. 5, which are parametrized by a

and we shall show tha$ Ry,(3,h:t)=0 monotone functiorx:[0,1]—[0,1]. These models have two
M sty =Y.

We use the following notation for replica averages overhice features(i) the distribution of{¢,,} is invariant, except

. . . for a deterministic scaling factor, under the multiplication by
seir\s((tj Zp::, i{n,()j_ROSt variables. For aiy=X(«,a) and random factors as in Eql1) [consequently the value of

Gum( . .. .uxy) for such ROSt does not depend M; (i)
quantities like Gy( . ..,ux.)) can be expressed as the
) , boundary values of the solution of a certain differential equa-
tion, which depends omx(-). Evaluated for such models
Gum( - .. uxy) reproduces the Parisi functional for each

Egz)(Y)=E<E > W(U’a;t)w(g/,a/;t)y> (18  Vvalue of the order parametex(-). The Parisi solution is

E§1>(X)=E(E w(o,a;t)X

a,o

a0 o o obtained by optimizindtaking the inj over the order param-
, , . eterx(-). This relation gives rise to the second inequality in
with the “Gibbs weights” Eq. (12).
(ii) To prove Eq.(13) we need to supplement the first
W(o,a;t) =g, e Fmea) > ¢ o=BHu(oat) - (19)  inequality in Eq.(12) by an opposite bound.
a0 Our analysis is streamlined by continuity arguments,
which are enabled by the following basic estimgieoven
We now have by two elementary applications of the Jensen inequality
Lemma 2.Let Z(H) denote the partition function for a
) (20) system with the Hamiltoniatd (o), and letU(o) be, for
eacho, a centered Gaussian variable which is independent
of H. Then

d B d

— )= — ) — .

dtRM(Blhvt) MEt (dtHM(Uva;t)
The term$ Hy (o, a;t) includes Gaussian variables, and one
may apply to it the generalized Wick's formul&aussian
integration by parts for correlated Gaussian variables, 0= E( In

Z(H+U) 1 )
)sEE(U ). (25
Xy oo Xyt

Z(H)
Using the above, it suffices to derive our result for inter-

AV[Xih(Xy, - Xn)] actions with the sum over, in Eqg. (3), truncated at some

n Xy X finite value.
=> Av(Xlxj)Av(#» (21) A convenient tool is provided by the superadditivity of
=1 268 Qn=NPy, which was established in the work of
The result is(after an elementary calculatipn Guerra-Toninelffl and its extension§® The statement is that
for the systems discussed hdend in fact a broader class
B d B? for eachM,Ne N,
- aHMw,a;t)) =7 E(e) (22)
Qum+n(B:h)=Qu(B,h)+Qn(B;h). (26)
with The superadditivity was used in Ref. 8 to establish the exis-
_ tence of the limit lim,_,.Py . However, it has a further im-
e(o,a;0",a")=[f(dy.o) = T(Aa,a)] plication based on the following useful fact.
- - Lemma 3For any superadditive sequen{dé@y} satisfying
~(Ug,0 = Ya,a) ' (daar). (23 Eq. (26) the following limits exist and satisfy
Therefore, lim Qy/N= lim liminf [Quin—QnI/M.  (27)
N-— o0 M—oo N-—owo
d
aRM(ﬁ-h?t) For our purposes, this yields.
1 Z
32 . _ . _ — - w( N+M)
= TP )~ T (@] lim Py= lim liminf bl =z =) @8
—(q, =T o) (Aya))=0. (24) We now claim, based on an argument employing the cav-

ity picture, that for anyM,
The last inequality, which is crucial for us, follows from the
assumed convexity df For the SK model, the above expres- lim inf iE

sion simplifies to $2/4) [ (Ao — u.ar)?]- New M

ZN-%—M
Zy

In = inf Gy(B,h;un), (29

()
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which would clearly imply Eq(13). The reason for this in- Taking

equality is that when a block dfl spins is added to a much N

larger “reservoir” of N spins, the change in the free energy is . =

exactly in the form of Eq.(11)—except for corrections Ea= exp{ﬂ( Kn(a)+ hgl ai) } (33

whose total contribution t@,, is of orderO(M/N). [The

spin-spin couplings within the smaller block and the sublead

ing terms from the changll— (N+M) in Eg. (3).] Thus,

the larger block of spins acts as a ROSt. IV. DISCUSSION
To see that in detall, let us split the systen\f- N spins

into  o=(o,a), with o=(0q,...,0y) and «

=(om+1, - - Omen)- With this notation, the interaction

decomposes into

we find that Eq.(29) follows by directly substituting the
above into Eq(11) [using Egs.(25) and(32)].

At first glance, the recent result of Ref. 4 may be read as
offering some support to the widely shared belief that the
Parisi ansatz has indeed provided the solution of the SK
model. However, we showed here that the Guerra bound is

M part of a broader variational principle in which no reference

¥ = ~ is made to the key assumption of Ref. 2 that in the liMit

Kmn(o) KN(a)+j21 MeoptUleia), G0 the SK Gibbsystate dgvelops a hierarchal organization.
o~ , . The reasons for such an organization, which is equivalently
where:(i) {Kn(@)} consists of the terms &€y, (o) which gy hressed in terms of “ultrametricity” in the overlags. . ,
involve only spins in the larger blockii) the second sum-  5re nota priori obvious.(A step, approaching the issue from
mand includes all the terms which involve exactly one spin, gynamical perspective, was taken in Ref. 10, but this result
in the smaller block, andiii) U consists of the remaining 55 yet to be extended to the interactive cavity evolution.
terms of Ky (o), including the spin-spin interactions oy result(12) raises the possibility that perhaps some other
within the smaller block. organizing principles may lead to even lower upper-bounds.

One should note thgKy(a)}#{Ky(a)} since, as a con- This reinstates the question whether the ultrametricity as-
sequence of the addition of the smaller block, the terms isumption, which has enabled the calculation of Ref. 2, is
{Kn(a)} are weighted by powers ofN+ M) rather tharlN, ~ correct in the context of the SK-type models.
as presented in Eq3). By the law of addition of indepen- It should be emphasized, however, that the question is not
dent Gaussian variablef{y(a)} [which are of higher vari- whether the SK model exhibits replica symmetry breaking at

ance thadRN(a)}] have the same distribution as the sum of lOW temperatures. That, as well as many other aspects of the

independent variables accepted picture, are supported by both intuition and by rig-
orous result$!~® The question concerns the validity of a

~ M solution-facilitating ansatz about the hierarchal form of the

[KN(a)+ \/;Ka], (3D replica symmetry breaking. The interest in this question is

enhanced by the fact that this assumption yields a computa-
where{k,} are centered Gaussian variables independent dfonal tool with many other applicatiorts.

Kn(a). Up to factors[1+O(M/N)], the covariances of

{77,3&} and{«,} satisfy Eqs(7) and(8), respectively, and ACKNOWLEDGMENTS
This work was supported, in part, by NSF Grant No.
(32) PHY-9971149 and NSF Postdoctoral Fellowshi(R.S.,

L i oz M
miLU(ea)]<C S.L.S).

W .

ip. Sherrington and S. Kirkpatrick, Phys. Rev. LeB35, 1792 9P. Contucci, M. Degli Esposti, C. Giardina, and S. Graffi, Com-

(1975. mun. Math. Phys236, 55 (2003.

2G. Parisi, J. Phys. A3, 1101(1980. 1A, Ruzmaikina and M. Aizenmatunpublishel

3M. Mezard, G. Parisi, and M. Virasor&pin Glass Theory and M. Aizenman, J. Lebowitz, and D. Ruelle, Commun. Math. Phys.
Beyond World Scientific Lecture Notes in Physics Vol (@/orld 112 3 (1987.
Scientific, Teaneck, NJ, 1987 123, Frdhlich and B. Zegarlinski, Commun. Math. Phykl2 553

4F. Guerra, Commun. Math. Phy233 1 (2003. (1987).

5D. Ruelle, Commun. Math. Phy408 225 (1987. B3L.A. Pastur and M.V. Shcherbina, J. Stat. Phga. 1 (1997).

5B. Derrida, Phys. Rev. B4, 2613(1981). 14F.L. Toninelli, Europhys. Lett60, 764 (2002.

"F. Guerra and F. Toninelli, Markov Proc. Rel. Fiel@s 195 15M. Talagrand,Spin Glasses: A Challenge for Mathematicians
(2003. (Springer-Verlag, Berlin, 2003

8F. Guerra and F. Toninelli, Commun. Math. Phg80, 71(2002.  ¢C. Newman and D. Stein, cond-mat/0301202.

214403-4



