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Extended variational principle for the Sherrington-Kirkpatrick spin-glass model
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The recent proof by Guerra that the Parisi ansatz provides a lower bound on the free energy of the
Sherrington-Kirkpatrick~SK! spin-glass model could have been taken as offering some support to the validity
of the purported solution. In this work we present a broader variational principle, in which the lower bound as
well as the actual value are expressed through an optimization procedure for which ultrametric/hierarchal
structures form only a subset of the variational class. The validity of Parisi’s ansatz for the SK model is still in
question. The new variational principle may be of help in critical review of the issue.
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I. INTRODUCTION

The statistical mechanics of spin-glass models is cha
terized by the existence of a diverse collection of compet
states, very slow relaxation of the quenched dynamics, a
rather involved picture of the equilibrium state.

A great deal of insight on the subject has been produ
through the study of the Sherrington-Kirkpatrick~SK!
model.1 After some initial attempts, a solution was propos
by Parisi which has the requisite stability and many ot
attractive features.2 Its development has yielded a plethora
applications of the method, in which a key structural a
sumption is a particular form of the replica symmetry brea
ing ~i.e., the assumption of ‘‘ultrametricity,’’ or the hierarch
structure, of the overlaps among the observed s
configurations!.3

Yet to this day it was not established that this very appe
ing proposal does indeed provide the equilibrium structure
the SK model. A recent breakthrough is the proof by Guer4

that the free energy provided by Parisi’s purported solutio
a rigorous lower bound for the SK free energy.

More completely, the result of Guerra is that for any val
of the order parameter, which within the assumed ansatz
function, the Parisi functional provides a rigorous low
bound. Thus, this relation is also valid for the maximiz
which yields the Parisi solution.

In this work we present a variational principle for the fr
energy of the SK model which makes no use of a Parisi-t
order parameter, and which yields the result of Guerra a
particular implication. More explicitly, the new principle a
lows more varied bounds on the free energy, for which th
is no need to assume a hierarchal organization of the G
state~e.g., as expressed in the assumed ultrametricity of
overlaps3!. Guerra’s results follow when the variational prin
ciple is tested against the Derrida-Ruelle hierarchal proba
ity cascade models~GREM!.5

This leads us to a question which is not new: is the ult
metricity an inherent structure of the SK mean-field mod
or is it only a simplifying assumption. The new variation
principle may provide a tool for challenging tests of th
issue.
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II. THE MODEL

The SK model concerns Ising-type spins,s
5(s1 , . . . ,sN), with an a priori equidistribution over the
values$61%, and the random Hamiltonian

HN~s!5
21

AN
(

1< i , j <N
Ji j s is j2h(

i 51

N

s i , ~1!

where$Ji j % are independent normal Gaussian variables.
Our analysis applies to a more general class of Hami

nians which includes all the even ‘‘p-spin’’ models.6,7

Namely,

HN~s!52KN~s!2h(
i 51

N

s i ~2!

with

KN~s!5AN

2 (
r 51

`
ar

Nr /2 (
i 1 , . . . ,i r51

N

Ji 1 , . . . ,i r
s i 1

•••s i r
,

~3!

where all the$Ji 1 , . . . ,i r
% are independent normal Gaussia

variables~for convenience, the tensor is not assumed her
be symmetric!, and ( r 51

` uar u251. As in Ref. 7, our argu-
ment requires that the functionf (q)5( r 51

` uar u2qr be convex
on @21,1#.

One may note thatKN(s) form a family of centered
Gaussian variables with the covariance

E@KN~s!KN~s8!#5
N

2
f ~qs,s8!, ~4!

which depends on the spin-spin overlap:qs,s8
51/N( js js j8 . The standard SK model corresponds tof (q)
5q2.

The partition functionZ, the quenched free energyF, and
what we shall call here the pressureP, are defined as

ZN~b,h!5 (
s1 , . . . ,sN561

e2bHN(s), ~5!
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PN~b,h!5
1

N
E@ ln ZN~b,h!#52bFN~b,h!, ~6!

whereE(2) is an average over the random couplings$Ji j %.
The thermodynamic limit for the free energy, i.e., the ex
tence of limN→`PN(b,h)5P(b,h), was recently establishe
by Guerra-Toninelli8 through a much-awaited argument.

III. THE VARIATIONAL PRINCIPLE

Our variational expression forP(b,h) employs a setup
which may at first appear strange, but is natural from
cavity perspective, when one considers the change in
total free energy caused by the addition ofM spins to a much
larger system of sizeN. The expression forZN1M /ZN sim-
plifies in the limitN→`, at fixedM. In the following ideal-
ized definition one may regard the symbola as representing
the configuration of the bulk. The discreteness seen in
definition ((ja) is just for the convenience of the formula
tion of the variational bounds, and not an assumption on
Gibbs state, though such an assumption may well be true~A
more general formulation is possible, but not much is lost
restricting attention to the ‘‘ROSt’’ defined below.!

Definition (random overlap structures).A random overlap
structure~ROSt! consists of a probability space$V,m(dv)%
where for eachv there is associated a system of weigh

$ja(v)% and an ‘‘overlap kernel’’$q̃a,a8(v)% such that, for
eachvPV,

~i! (aja(v),`; ~ii ! the quadratic form corresponding t

$q̃a,a8% is positive definite;~iii ! q̃a,a51, for eacha, and
hence~by the Schwarz inequality! also uq̃a,a8u<1 for all
pairs$a,a8%.

An important class of ROSt’s is provided by the Derrid
Ruelle probability cascade model which is formulated in R
5 ~called there GREM!.

Without additional assumptions, one may associate to
points in any ROSt two independent families of cente
Gaussian variables$h j ,a% j 51,2, . . . and$ka% with covariances
~conditioned on the random configuration of weights a
overlaps!

E~h j ,ah j 8,a8uq̃a,a8!5 1
2 d j , j 8 f 8~ q̃a,a8!, ~7!

E~kaka8uq̃a,a8!5q̃a,a8 f 8~ q̃a,a8!2 f ~ q̃a,a8!. ~8!

The existence of such processes requires positive defi
ness of the joint covariance, but that is evident from
following explicit construction in the case that thea ’s areN
vectors, withqa,a85

1
N ( ja j ,a j8 :

h j ,a5AN

2(
r

Arar

Nr /2 ( J̃ j ,i 1 , . . . ,i r 21
a i 1

•••a i r 21
, ~9!

where the second sum is overi 1 , . . . ,i r 21 which range from
1 to N, and

ka5(
r

Ar 21ar

Nr /2 (
i 1 , . . . ,i r51

N

Ĵi 1 , . . . ,i r
a i 1

•••a i r
. ~10!
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We shall now denote byE(•) the combined average
which corresponds to integrating over three sources of r
domness: the SK random couplings$Ji j %, the random over-
lap structure described by the measurem(dv), and the
Gaussian variables$ka% and$h j ,a%.

Guided by the cavity picture, we associate with ea
ROSt the following quantity:

GM~b,h;m!

5
1

M
EF lnS (

a,s
jaexpS b(

j 51

M

~h j ,a1h!s j D
(
a

jaexp~bAM /2ka!
D G , ~11!

wheres5(s1 , . . . ,sM)
Our main result is the following:
Theorem 1.~i!. For any finiteM,

PM~b,h! < inf
(V,m)

GM~b,h;m! < PU~b,h!, ~12!

where the infimum is over ROSt’s andPU(b,h) denotes the
free energy3(2b) obtained through the Parisi ‘‘ultramet
ric’’ ~or ‘‘hierarchal’’! ansatz.~ii !. The infinite volume limit
of the free energy satisfies

P~b,h!5 lim
M→`

inf
(V,m)

GM~b,h;m!. ~13!

Proof. These results can be seen as consisting of
separate parts: lower and upper bounds, which are derive
different arguments.

~i!. The upper bound: The left inequality in Eq.~12! em-
ploys an interpolation argument which is akin to that used
the analysis of Guerra,4 but which here is formulated in
broader terms without invoking the ultrametric ansatz. T
second inequality in Eq.~12! holds since the Parisi calcula
tion represents the restriction of the variation to the subse
hierarchal ROSt’s.

To derive the first inequality let us introduce a family
Hamiltonians for a mixed system ofM spins s
5(s1 , . . . ,sM) and the ROSt variablesa, with a parameter
0<t<1:

2HM~s,a;t !5A12tS KM~s!1AM

2
kaD

1At(
j 51

M

h j ,as j1h(
j 51

M

s j , ~14!

and let

RM~b,h;t !5
1

M
EF lnS (

a,s
jae2bHM(s,a;t)

(
a

jaebAM /2ka
D G . ~15!
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Then

RM~b,h;0!5PM~b,h!, ~16!

RM~b,h;1!5GM~b,h;m!, ~17!

and we shall show thatddt RM(b,h;t)>0.
We use the following notation for replica averages ov

pairs of spin and ROSt variables. For anyX5X(s,a) and
Y5Y(s,a;s8,a8):

Et
(1)~X!5ES (

a,s
w~s,a;t !XD ,

Et
(2)~Y!5ES (a,s

(
a8,s8

w~s,a;t !w~s8,a8;t !YD ~18!

with the ‘‘Gibbs weights’’

w~s,a;t !5jae2bHM(s,a;t)/(
a,s

jae2bHM(s,a;t). ~19!

We now have

d

dt
RM~b,h;t !52

b

M
Et

(1)S d

dt
HM~s,a;t ! D . ~20!

The term d
dt HM(s,a;t) includes Gaussian variables, and o

may apply to it the generalized Wick’s formula~Gaussian
integration by parts! for correlated Gaussian variable
X1 , . . . ,Xn :

Av@X1c~X1 , . . . ,Xn!#

5(
j 51

n

Av~X1Xj !AvS ]c~X1 , . . . ,Xn!

]Xj
D . ~21!

The result is~after an elementary calculation!

2
b

M
Et

(1)S d

dt
HM~s,a;t ! D5

b2

4
Et

(2)~w! ~22!

with

w~s,a;s8,a8!5@ f ~qs,s8!2 f ~ q̃a,a8!#

2~qs,s82q̃a,a8! f 8~ q̃a,a8!. ~23!

Therefore,

d

dt
RM~b,h;t !

5
b2

4
Et

(2)
„@ f ~qs,s8!2 f ~ q̃a,a8!#

2~qs,s82q̃a,a8! f 8~ q̃a,a8!…>0. ~24!

The last inequality, which is crucial for us, follows from th
assumed convexity off. For the SK model, the above expre
sion simplifies to (b2/4) Et

(2)@(qs,s82q̃a,a8)
2#.
21440
r

Putting the positivity of the derivative together with Eq
~16! and ~17! clearly implies the first bound in Eq.~12!.

As was noted earlier, a particular class of random over
structures is provided by the Derrida-Ruelle probability c
cade models~GREM! of Ref. 5, which are parametrized by
monotone functionx:@0,1#→@0,1#. These models have two
nice features:~i! the distribution of$ja% is invariant, except
for a deterministic scaling factor, under the multiplication
random factors as in Eq.~11! @consequently the value o
GM( . . . ,mx(•)) for such ROSt does not depend onM ]; ~ii !
quantities like GM( . . . ,mx(•)) can be expressed as th
boundary values of the solution of a certain differential eq
tion, which depends onx(•). Evaluated for such model
GM( . . . ,mx(•)) reproduces the Parisi functional for eac
value of the order parameterx(•). The Parisi solution is
obtained by optimizing~taking the inf! over the order param
eterx(•). This relation gives rise to the second inequality
Eq. ~12!.

~ii ! To prove Eq.~13! we need to supplement the firs
inequality in Eq.~12! by an opposite bound.

Our analysis is streamlined by continuity argumen
which are enabled by the following basic estimate~proven
by two elementary applications of the Jensen inequality!.

Lemma 2.Let Z(H) denote the partition function for a
system with the HamiltonianH(s), and let U(s) be, for
eachs, a centered Gaussian variable which is independ
of H. Then

0 < ES ln
Z~H1U !

Z~H ! D <
1

2
E~U2!. ~25!

Using the above, it suffices to derive our result for inte
actions with the sum overr, in Eq. ~3!, truncated at some
finite value.

A convenient tool is provided by the superadditivity
QN[NPN , which was established in the work o
Guerra-Toninelli8 and its extensions.7,9 The statement is tha
for the systems discussed here~and in fact a broader class!
for eachM ,NPN,

QM1N~b,h!>QM~b,h!1QN~b,h!. ~26!

The superadditivity was used in Ref. 8 to establish the e
tence of the limit limN→`PN . However, it has a further im-
plication based on the following useful fact.

Lemma 3.For any superadditive sequence$QN% satisfying
Eq. ~26! the following limits exist and satisfy

lim
N→`

QN /N5 lim
M→`

lim inf
N→`

@QM1N2QN#/M . ~27!

For our purposes, this yields.

lim
N→`

PN5 lim
M→`

lim inf
N→`

1

M
ES ln

ZN1M

ZN
D . ~28!

We now claim, based on an argument employing the c
ity picture, that for anyM,

lim inf
N→`

1

M
ES ln

ZN1M

ZN
D> inf

(V,m)
GM~b,h;m!, ~29!
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which would clearly imply Eq.~13!. The reason for this in-
equality is that when a block ofM spins is added to a muc
larger ‘‘reservoir’’ ofN spins, the change in the free energy
exactly in the form of Eq.~11!—except for corrections
whose total contribution toGM is of orderO(M /N). @The
spin-spin couplings within the smaller block and the suble
ing terms from the changeN°(N1M ) in Eq. ~3!.# Thus,
the larger block of spins acts as a ROSt.

To see that in detail, let us split the system ofM1N spins
into s5(s̃,a), with s̃5(s1 , . . . ,sM) and a
5(sM11 , . . . ,sM1N). With this notation, the interaction
decomposes into

KM1N~s!5K̃N~a!1(
j 51

M

h̃ j ,as j1U~ s̃,a!, ~30!

where:~i! $K̃N(a)% consists of the terms ofKM1N(s) which
involve only spins in the larger block,~ii ! the second sum
mand includes all the terms which involve exactly one s
in the smaller block, and~iii ! U consists of the remaining
terms of KM1N(s), including the spin-spin interaction
within the smaller block.

One should note that$K̃N(a)%Þ$KN(a)% since, as a con-
sequence of the addition of the smaller block, the terms

$K̃N(a)% are weighted by powers of (N1M ) rather thanN,
as presented in Eq.~3!. By the law of addition of indepen
dent Gaussian variables,$KN(a)% @which are of higher vari-
ance than$K̃N(a)%] have the same distribution as the sum
independent variables

H K̃N~a!1AM

2
kaJ , ~31!

where$ka% are centered Gaussian variables independen
K̃N(a). Up to factors@11O(M /N)#, the covariances o

$h̃ j ,a% and$ka% satisfy Eqs.~7! and ~8!, respectively, and

1

M
E@U~ s̃,a!2# < C

M

N
. ~32!
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Taking

ja ª expFbS K̃N~a!1h(
i 51

N

a i D G , ~33!

we find that Eq.~29! follows by directly substituting the
above into Eq.~11! @using Eqs.~25! and ~32!#.

IV. DISCUSSION

At first glance, the recent result of Ref. 4 may be read
offering some support to the widely shared belief that
Parisi ansatz has indeed provided the solution of the
model. However, we showed here that the Guerra boun
part of a broader variational principle in which no referen
is made to the key assumption of Ref. 2 that in the limitN
→` the SK Gibbs state develops a hierarchal organizat
The reasons for such an organization, which is equivale
expressed in terms of ‘‘ultrametricity’’ in the overlapsqs,s8 ,
are nota priori obvious.~A step, approaching the issue from
a dynamical perspective, was taken in Ref. 10, but this re
has yet to be extended to the interactive cavity evolutio!
Our result~12! raises the possibility that perhaps some oth
organizing principles may lead to even lower upper-boun
This reinstates the question whether the ultrametricity
sumption, which has enabled the calculation of Ref. 2,
correct in the context of the SK-type models.

It should be emphasized, however, that the question is
whether the SK model exhibits replica symmetry breaking
low temperatures. That, as well as many other aspects o
accepted picture, are supported by both intuition and by
orous results.11–16 The question concerns the validity of
solution-facilitating ansatz about the hierarchal form of t
replica symmetry breaking. The interest in this question
enhanced by the fact that this assumption yields a comp
tional tool with many other applications.3
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