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Phase diagram of an empirical potential: The case of Fe-Cu
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Molecular dynamics simulations are used to calculate the Gibbs free energy in the entire compositional
range of Fe-Cu alloys described with a set of embedded atom potentials available in the literature. Thermo-
dynamic integration and switching Hamiltonian techniques are used to obtain the phase diagram at high
temperaturegneglecting phonon quantum effects and electronic contributieitk no further approximations.
Limitations of the model were confirmed, such as the absence gféinel 5 phases, a bcc to fcc transformation
before melting for pure Fe, the unexpected existence of a stable bcc phase in pure Cu @t higth
consequently complete solid solubility of Fe in Cu in the bcc phase in some temperature range. This work
seeds light on the power and limitations of the empirical description of complex systems.
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INTRODUCTION complex chemical composition that includes Cu, Mn, Ni, Si,
and P

Steels in nuclear reactor pressure vessels undergo em- The complexity of the processes fueled a significant effort
britlement as a consequence of radiation damage. Coppdrom the computational materials science community. At
an impurity present in commercial steels in a saturated solidpresent, a contribution to the microscopic knowledge about
solution phase, precipitates as a consequence of the micrerese phenomena comes from bathinitio calculations®~*2
structure damage generated by energetic neutrons. These pegrd classic molecular dynamigMD) and Monte Carlo
cipitates, which act as obstacles for dislocation motion, ar§MC) simulations, mostly based on the embedded atom
one of the most significant contributions to embrittlement.model for the atomic interactiord.In what follows we focus
Therefore, understanding the precipitation process and then classic potentials and in particular in the way they have
evolution of the precipitate structure is an important step inbeen used to study properties of the Fe-Cu system. In this
the description of the embrittlement process. paper we are interested in the capabilities and limitations of

The experimental contributions to the study of this phe-the model potential to describe the thermodynamics of the
nomenon started long ago, and more complexity was coralloy.
tinuously added to the picture. In 1960, Hornbogen showed [n 1990 Phythiaret al}**°reported a MD simulation that
that, on aging, precipitation of Cu from-Fe occurs first by  supported the first direct experimental evidence that the
the formation of spherical Cu clusters that transforms intosmall Cu precipitate$2 nm) have bcc structure. They used
fcc Cu when they become large enoudgm 1965, Speich interatomic potentials for pure Cu derived in 1987 by Ack-
and Oriani demonstrated that these spherical Cu particléandet al® The simulations predict for bulk Cu a metastable
subsequently transform into rods upon further ading.  bcc structure with lattice parameter larger than that-de.
1990, Pizziniet al. reported a direct observation of small However, in both of these papers Cu precipitates invefe
clusters having a bcc structure in the peak hardnesmatrix could not be simulated because of the absence of a
condition? and Buswellet al. reported the development of a Fe-Cu potential. In 1995, Osetsley al. published a series of
distribution of precipitate sizes with aging tifieAging papers on the Fe-Cu system. In Ref. 17 they present poten-
causes the precipitates to grow past a critical size where thejals for the pure elements; in Ref. 18 they report the first pair
undergo a phase transformation from bcc to a close-packegbtentials for Fe-Cu system, used to simulate small Cu clus-
structure. ters and coherent precipitates in the bcc-Fe matrix. In Ref.

Phythianet al. assumed that this close-packed structure is|9, MD is used to examine vacancy migration inside Cu
fcc® However, in 1994 Otheret al. concluded that the precipitates in Fe. A key result was that precipitates act as
intermediate-sized7—15 nm Cu precipitates have a twinned vacancy traps, implying that during growth the precipitates
9R structure, probably transform martensitically int&R,9 can absorb vacancies.
and grow in this structure from a diameter of 6 nm up to at In 1997 Odetteet al. reported lattice-MQLMC) simula-
least 15 nnf. Shortly after Otheret al. concluded that, dur- tions for complex Cu-Mn-Ni-Si structures in E&LMC cas-
ing aging at 550 °C, the bcc-toRmartensitic transforma- cade aging simulations were done using pair potentials based
tion of Cu precipitates occurred at a size of about 4’rwith on a regular solution theorfRST) approximation. They re-
complementary studies on the role of temperature. Recentlyort parameters of the lattice embedded-atom-m@daMm)
in 2000, Monzeret al. reported more high-resolution elec- Fe-Cu potential used in LMC cascade aging simulations. In
tron microscopéHREM) images of twinned B Cu precipi- 1999, Wirth et al. on one sid&" and Domainet al. on the
tates in a Fe-Cu alloy aged at 550 éC. other? performed kinetic-LMC simulations of Fe-Cu alloys.

The three-dimensional3D) atom probe technique has These authors focused specifically on the development of
recently shown that precipitates in ferritic steels have aacancies and Cu clusters after irradiation damage. These
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simulations confirm the presence of high vacancy concentreand Helmholtz,f, free energies, as well as internal energy
tions in the precipitates. The results were in good agreemersind enthalpy, because some integrals or averages can be bet-
with small-angle neutron scattering data. ter calculated at consta and others at constam. For

In 1998, Ludwiget al. used static relaxation and a Fe-Cu clarity however, steps are formulated in termsfodr g to
EAM potential to study the instability of bcc copper precipi- make the ensemble where the calculation is done explicit.
tates embedded in amFe matrix?® In 2001, Le Bouar ex- We calculate the free energy per particle at a given tem-
tended the study of the coherency loss during the dRc-9 peratureT, f(T), through a thermodynamic integration be-
transformation of the precipitates also using static simulaiween the state of interest and a reference state at tempera-
tions and the same Fe-Cu potential developed by Ludwigure T, with known free energyf(T,), using the Gibbs-
et al?* Duhem equation

In 2001, Blackstock and Ackland, reported computer T her)
simulations of the phase transition of Cu precipitates in Th(r
Fe-Cu alloys™® For the first time in a simulation a precipitate HT)=1(To) T _TLO = ar (1)
is followed during the phase transition from the bcc structure
coherent with the iron matrix to the twinned@rystal struc-  Whereh() is the enthalpy per particle. The enthalpy is ob-
ture. They used the interatomic potentials derived in 1997 byained from a MD run and it is fitted with a second-order
Ackland et al 16 polynomial inT, which allows an analytic integration in Eq.

As this brief Introduction shows, the real problem of mi- (1)
crostructure evolution of ferritic steels under irradiation in-  The coupling-constant integration method, or switching
volves complex thermodynamics of nonequilibrium and ki-Hamiltonian method? is used to calculaté(To). We con-
netic processes in alloys, while the computational approachider a system with Hamiltoniald = (1—X)W+AU, where
is still in its infancy, dealing with an oversimplified descrip- U describes the actual systém this work, described with a
tion of Fe and Fe-Cu alloys. In fact, the classic many-bodyEAM-type Hamiltonian and W is the Hamiltonian of the
potentials, based on the EAM, have extensively been used t&ference system, with known free energy. The parameter
get insight into complex processes in several types of simpléllows us to switch fronJ (for A\=1) toW (for A=0). With
solids, in particular transition metals and some of theirthis Hamiltonian we can obtain the free-energy difference
alloys?5-27 Extensive work has been done in the applicationbetweenW and U by calculating the reversible work re-
of this model to many solid solutions and intermetallic com-quired to switch from one system to the other. Then the
pounds, but limited effort was devoted to the calculation ofunknown free energy associated with f(T,), is given by
the complete equilibrium phase diagram predicted by this

| —
type of approximation and, from there, of the driving forces F90(To) = fw(To) +Afy,
that govern nonequilibrium processes. In summary, little is
still known about the ability of empiricah-body potentials :i t/H _ E ! _
. o . Afq dA (U—=W),dx, 2
to reproduce details of equilibrium phase diagrams of N Jo \ A N Jo

transition-metal alloys. .
In this work, we consider one of the EAM potentials for Wherefw(To) is the free energy of the reference system at

Fe-Cu developed by Acklandt all® to extract the phase To . The integration is carried over the coupling paramater
diagram of this model alloy. We report Gibbs free energiedvhich varies between 0 and 1, afd-) stands for the aver-
calculated using MD simulations for pure elements and al&g€ Over a canonical ensemble, or a time average T & (
loys in both the fcc and bee solid phases, and for the liquid\) constant MD simulation. _
phase. We follow the procedure that we already applied to For the solid phases the reference systahis a set of
the study of the Au-Ni syster. To our knowledge this is the Elnsteln oscillators centered on the average pos_ltlons of the
first calculation of a noncoherent phase diagram from thétoms in the To, P=0, N) ensemble corresponding to the
knowledge of an empirical EAM potential. No approxima- Har_nlltonlanU. The nonmter_actlng Emstgln oscillators have
tions are used in the formalism to calculate the phase dia0 internal pressure, so their ensemble is the\(, N) one.
gram besides those coming from a classic potential: no quari-ne free energy per atom of the Einstein crysta is
tum phonon effects and no electronic or magnetic degrees of
freedpom. However, the numerical evaluatior?s, on thgir side, feins=-3ksToIN(To/Te), )
have uncertainties originated in both the finite size of th@yhere T, is the Einstein temperature of the oscillatoFs,
samples and the finite time used in the averages, which de=7 ,_/k,; wherekg is the Boltzmann constantyg is the
termine the overall accuracy of the results. Einstein frequency of oscillations, aridis the Planck con-
stant divided by 2.
For the liquid phase, the reference systéims an ideal
gas at the same temperature and density as the EAM sample.
For details on the calculation of the free energy, we refefThe process to switch frotd to W involves an intermediate
the reader to our previous publicati®hHere we highlight  step to avoid particle overlap during the integration. First, we
the basic aspects of the method, as well the differences witbompute the free-energy difference between the true system
this multiphase case. For convenience, in the derivation thatith potential U (the EAM potentialand a system with a
follows we shall not make a distinction between Gibgs, repulsive potentialW, (soft spheres In this work, we use

FREE-ENERGY CALCULATION
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W, =0.1U"¢P, wh.ere_Urep is the pair potential part of the fia(c,To.p)=c f5"(p)+(1—c)fFE(p)— ToScont(C),
EAM energy, which is purely repulsive for the potential we (8)
are using. As in the solid phase, the integration is carried , ) ,
over the coupling parametar, which varies between 0 and Wherep is the total densitypc, andpg. are tr}e partial den-
1. The system is kept at the constant voluMig which  Sities[cp and (1-c)p, respectively, and thef;y's are given
equilibrates theU Hamiltonian at temperatur@, and P in the preceding section. _ o
—1 bar. Therefore, the free-energy change for a pure ele- N summary, the steps and equations used in this work are
ment due to the switch is given kyf,, as in the second line (i) MC generation of solid-solution samples in both solid
of Eq. (2). phases and

The second step is a reversible expansion of the repulsive (i) MD runs to determine the enthalpy V& for solid
gas, fromV, and high pressure, to reach the Iow-densitysomt'ons for different compositions and phases. For some
limit (where it becomes identical to the ideal pdsllowed ~ cOMPositions and phasécc or beg this step may not be
by a reversible compression of the ideal gas, to recover theoable if the sample is too far from equilibrium, because
initial density or volume. The change in free energy due toSPontaneous transformation to the equilibrium phase may oc-

both processes is cur. Those situations are not relevant for the determination of
the equilibrium phase diagram.
oo P dp (iii) Second-order polynomial fits to the enthalpy:
AfzszToj . = :|_y (4)
o [PkeTo P h?(c,T)=al+blT+c?T2 ©)

where po=N/V, is the particle density. After the processes
represented by Eq4) have taken place we end up with an
ideal gas at Ty, pg), whose free energy is given U}b\',q
=kg To[In(poA3)—1], where A is the de Broglie thermal T he(c,7)
wavelength (\>=h?/2rmksT,), with h the Planck constant -T f >—dr=al—blTIn(T)—cfT?+d?T.
andm the atomic mas¥ Then the free energy of the liquid T

phase is calculated as the sum of these contributions: (10

(iv) Analytic integration of the Gibbs-Duhem relations,
Eq. (1), using a polynomial expression fbr

To

(v) MD simulations of the switching Hamiltonian process
to obtain(U—W) for the three phases and at each composi-

Equations(1)—(5) give the free energies of the solid and tON- o . _ _
liquid phases for the pure elements as a function of tempera- (Vi) Afy evaluation via analytic integration of sixth-
ture. degree polynomial fits tU —W).

(vii) MD simulations of the adiabatic expansion of the
repulsive fluid, Eq(4), at each composition.

(viii) Af, evaluation via analytic integration of sixth-

The strategy for the alloy calculations is to construct fordegree polynomial fits to the integrand in Ed).
each of the three phases={bcc,fcc, and liqui§l a set of (ix) Second-order polynomial fits to the coefficients
free-energy functions versus temperatgféT), for several i%"/’(C), b?(c), c?(c), andd?(c), as functions of composi-
values of the composition, extract from theng(c) curves,  tion.
and then perform the common tangent construction to deter- These lead to the following general equation for the free
mine the phase diagram. energy of each phasg:

The equations presented so far are readily applicable to s 4 s ¢ 2 b
alloys provided the samples used for both the switching and 9°(¢,T)=a%(¢c)=b?(c)TIn(T)—c®(c)T*+dg(c)T
the enthalpy evaluations are large enough to self-average the _
di f s : : Tsconf(c)- (11)

iversity of short-range configurations that appears in a real

macroscopic sample. Similarly, the free energies of the refin this last expression, the fourth term comes from both the
erence mixture of Einstein oscillators can be calculated usingtegration appearing in Eq1) and the first term on the
the following expressioR’ right-hand side of that same equation—namely,

gu9(To) = Afy+Af,+ 4 (To,p0). (5)

ALLOYS

fEins(CaTO):C f(E:iuns"'(1_C)fE?ns_TOSconf(C)a (6) dg(C)de’(C)-l— .Iig¢’(c,T0). (12)
wherec measures the Cu composition, affef,; and f£, 0
are given by EQq.(3). The configurational entropy per The last term in Eq(11) is the configurational entropy con-
particle, s.on(C), is given by the usual expression tribution, conveniently left explicit to provide accurate de-
—kg [cIn(c)+(1—c)In(1—c)], assuming the solution is com- rivatives close tac=0 andc=1.

pletely random. For the ideal gas,

SIMULATIONS

fi(c, Toup)=c fig(pcu) +(1=O)fif(pre) (D)
(G To.p a Py a(Pre We consider the EAM potential of Acklaret al® for our
or, making the entropy of mixing appear explicitly, simulations, using samples of 686 atoms for the bcc phase
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and 500 atoms for the fcc phase.
The generation of samples in either bcc or fcc solid-  -244
solution phases represents a delicate issue. In our case, tt
configurations for different values of the Cu composition g
were obtained by Metropolis MC runs in the transmutation =
ensemble T=1500 K, P=0, N, Au), whereAu is the dif-
ference in chemical potentials, adjusted to get the desirec—

V/a

-3.24

Yy |e

composition. Sufficiently long runglonger than 16 MC %
steps/atom allow the development of any eventual short- £ -381
range order, while still retaining the metastable solid solu- 5

tions, if it happens not to be the equilibrium phase. After 4.0
equilibration, every MC step generates a possible sample

with different enthalpy and composition. Selecting among a4
them those with the desired composition, a histogram of the o sp0 1000 1500 2000 2500 3000
enthalpy shows a Gaussian-like distribution around a mear
enthalpy value. Then we select a sample in the central bin ot
the histogram as the most representative of all possible local FIG. 1. Enthalpy of Cu and Fe as a function of temperature.

arrangements at that composition. The short-range order apteating and cooling runs are indicated by the arrows.

pears to be below 0.14 at all compositions in both phases

which rules out the existence of ordered phases. lytically. We then expand the sample keeping the temperature

A Nose thermostat provides the temperature control inconstant and equal t6,. This is done in consecutive runs
MD runs, and constant-pressure simulations use theeducing the pressure from about 125 kbar to 1 bar. Two
Parrinello-Rahman algorithrit. In all simulations the time more values are added to this data: the origh=Q, p
step was 2 fsec. The first 4@ime steps are used to equili- =0), corresponding to the ideal gas limit, and the average
brate the sample, and the statistical average of the thermodpressure and density obtained for the case0. Once the
namic variables is performed on the next Kdeps. Samples evolution of pressure as a function of density is obtained, we
in both solid phases are heated up in successive runs betweproceed to calculate the integrand of E¢), P/pkgT—1,

0 K and 3000 K, and then cooled down to 0 K, with a and to fit a sixth-degree polynomial to this function. The
temperature interval of 50 K. Solid-to-liquid and liquid-to- Helmholtz free-energy changkf, is obtained by analytical
solid transformations are observed with large hysteresis duiategration of this polynomial.

to finite-size effects.

The reference free energy of the soligé’,(To), is calcu-
lated atT,=296 K using Einstein temperatures equal to ex-
perimental Debye temperatures—i.ége=470 K andT‘E:u Figure 1 shows the behavior of the solid and liquid inter-
=343 K.3? The Einstein temperature can in fact be chosen tmal enthalpiesh?, ¢, and hi, ¢, as a function of tempera-
minimize the structure of the switch curve in order to im- tyre. MD runs last 30 psec at each temperature, with an in-
prove the numerical precision. cremental temperature step of 50 K. Discontinuities show the

To calculate the integral involving the switch, we first temperature at which solids become liquids and vice versa
cool down the samples 0 K at thevolume corresponding to  under the particular conditions of the simulation and do not
P=0 atT=296 K and determine the equilibrium positions reflect the thermodynamic melting temperatures. The points
{rio}, of the Einstein crystal. Typically, we calculate the av- shown in the figure correspond to heating and cooling runs,
erage(U—Ws,) at constant temperature and constant vol-as indicated by the arrows. The latent heat of melting esti-
ume, for values oh varying between 0 and 1 with an inter- mated from these figures for pure Fe is 0.221 eV/atoms and
val AN=0.05. Again, calculations at a givenare carried for pure Cu 0.134 eV/atoms, while the experimental values
out in two successive runs each of*1leps, and averages are 0.143 eV/atoms and 0.135 eV/atoms, respectively.
(U—Wys,) are taken on the second set of time steps. We fit Figure 2 shows the integrand in the switching Hamil-
a polynomial curve of sixth degree to these points and solvéonian method, Eq2), for both pure elements. Each point is
the integral in Eq(2) analytically. an MD run at constant volume and at=296 K. These

In the liquid phase, the Helmholtz free-energy changecurves are essentially featureless, except close\ #ol,

Afq is evaluated at a reference temperailge 3000 K. The  where the negative slope becomes significant. A denser grid
average volumé/,, of a sample equilibrated at 3000 K is of points is used there to ensure a numerical precision of the
used to generate a cubic sample with voluné integral of a few meV/atoms. An important technical point is
=V,,(3000 K). This cubic sample is taken as the startingthat in thex =~0 region, the dynamics is essentially gov-
sample for each run for every value af The switching erned by the noninteracting Einstein oscillators. The thermo-
parametei varies between 0 and 1, in intervals of 0.05, andstat, which provides the energy necessary to keep the isother-
before eachlU—W,;,) average process we equilibrate the mal condition, does not provide interaction between the
sample, as for the solid case. A sixth-degree polynomial i®scillators and, therefore, only the small contribution of the
fitted to the points and the integral of E@) is solved ana- EAM-type Hamiltonian provides the interaction necessary to

Temperature [K]

RESULTS AND DISCUSSION
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FIG. 2. Average values dfu —W) vs \ for bcc Fe and fcc Cu,
corresponding to the integrand of the switching Hamiltor{ieuf.
Eq.(2)].

FIG. 4. Evaluation of the integrand of E¢4) (expansion and
compression cycledor Fe and Cu in the gas phase. Note the over-
lap of the curves in the limit of low densitiideal gases

reach thermal equilibrium. For this reason, for values\of ) o ) . ) )
close to 0 long runs of up to 100 psec are done as equilibrd® gain precision in the sixth-order polynomial used in the fit.
tion steps. As mentioned earlier, these curves are fitted with Figures 1—-4 show examples of the computational steps to
sixth-order polynomials and integrated analytically. obtaing for the case of pure elements Fe and Cu. It is to be
Figure 3 shows the equivalent switching Hamiltonian pro-noticed that these steps have to be repeated for every com-
cesses for the liquid phase of both pure elements. Each poippsition fromc=0 to c=1 in the alloy case. In doing so,
is an MD run at constant volume and Bt 3000 K. In this  values of the coefficienta, b, ¢, andd in Eq. (11) become
case the reference potential is the repulsive pair potentiafunctions of composition. Tablegad)—I(c) show these coef-
Here again these curves are fitted with a sixth-order polynoficients of the Gibbs free energy, Eq. (11), for all three
mial and integrated analytically. phases bcc, fcc, and liquid in terms of their second-degree
FinaIIy,_ Fig..4 shows _the last siml_JIation step represente%o|ynomia|s in compositiore.
by the adiabatic expansion of the fluid to reach the ideal gas Eqr the particular case af=0 or c=1, these functions

limit at low pressures, where both curves, and in fact for allyj o\ ys to find the equilibrium phases of the pure elements.
materials, meet a/pkgT = 1. Here againl =3000 K. TWo g, rhrisingly, we find that Fe shows a bce-to-fec transition

open symbols indicate the density corresponding to the pre?ust below its melting point, and Cu shows a fcc-to-bec tran-
sure arrived at the end of the preceding switching Hamil- '

) . . . sition at 0.75T,.
tonian process, fox =0—that is, for the repulsive potential. m

As is clear, only densities lower or equal to thosea &0 are
needed, but the simulations run for higher as well as low

-2.0
-2.4

-2.84

<U-W>/N [eV/at]

-3.2

-3.6

0.

o 02 04 06 08
Switching Parameter A

FIG. 3. Same as Fig. 2. for the liquid phases.

r : .
eaehase fields. Figure 5 shows as example curves for the ex-

For the phase diagram, the usual common tangent con-
struction between the three phases provides the limits of the

céss free energies of the three phases at two temperatures—
namely, 1143 K, right at the transition from fcc Cu to bcc Cu
and inside the miscibility gap, and at 2000 K where bcc solid
solution and liquid coexist. Note the energy scale in these
figures and the dispersion of points determined in the nu-
merical simulations, which is of the order of a few meV/
atoms. Figure 6 shows the complete phase diagram. An en-
larged view of the high-temperature Fe-rich region is shown
in Fig. 7.

Comparison between Figs. 6 and 7 and the experimental
phase diagram, Fig. 8, redrawn from Ref. 34, shows signifi-
cant differences. There are three salient features in the cal-
culated diagram—namely, the properties of the pure ele-
ments and the properties of the solid solutions. Pure Fe
shows a transition to fcc phase right below melting that has
no relation to the experimental one, which is driven by mag-
netism. The melting point of Fén the fcg phase is at 4/3 of
the experimentar ,,. Here Cu has a transition to a bcc phase
at about 3/4 ofT,,, which does not appear in real Cu; its

214205-5



E. M. LOPASSO, M. CARO, A. CARO, AND P. E. A. TURCHI PHYSICAL REVIEW B8, 214205 (2003

TABLE I. Second-order polynomial fits to the coefficients appearing in(E%.for (a) the bcc phasegp)
the fcc phase, angt) the liquid phase. Units are such that the resulting free energy is obtained in meV/atoms
when the temperature is in K.

Coefficient Quadratic Linear Independent R2
(@
a —2.3340< 107 % 1.0525<10"%° —4.3115¢107 % 0.99996
b 5.2625< 10 % —1.8929< 10 % 2.4080<10 % 0.96928
c —2.6634x 10 %8 1.3548< 10 %8 1.6894x 1008 0.94598
Afy —2.2456< 10 % 1.0501x 10" %° —4.3507x 10" 0.99996
fo —2.4105< 10”2 3.5382¢ 10 %2 Exact
dg 3.2143<10° % —1.9336x 10 % 1.3624x 10703
(b)
a —2.7365< 10 % 1.0182x 1070 —4.,2599x 1070 0.99973
b 2.4096x 107 % —2.6616<10°% 2.4469 107 % 0.20519
c 1.2173<10°%8 8.0491x 107 %° 8.9973< 107 0.96553
Afy —2.6284<10° % 1.0221x10"%° —4.3080< 10" 0.99985
fo —2.4105< 10" ? 3.5382¢ 10 %2 Exact
dg 1.7722<10 % —2.1733 10 % 1.3520< 103
(©
a —1.0897 10 % 9.0441x 107 % —4.3060x 1070 0.99827
b —8.8953x 10 %° 1.0958x 10 % 3.5475< 10 % 0.57650
c 1.2556x 10 ©8 —2.0791x 10 %8 6.8886x 10 %° 0.68924
Afy —2.2224x 10 7.9600< 10 —3.2507 10" 0.99994
Af, —1.1117x 10 % 4.2365<10 2 4.2398<10 % 0.99779
fo 2.0187 10 %2 —1.0794< 10 % —3.3942¢< 10" 0.99974
dg —7.4261x 10 % 7.5694x 107 % 2.2226x10° %

melting point, in the bcc phase, is at 1.14 of the experimentaing configurations, confirming the expectations, with the ex-
Thm- ception that the Cu precipitate has a coherent bcc structure,

The medium temperature region of the alloy shows arprobably as a result of a gain in interfacial energy and the
eutectoid atcc,=0.91 and a peritectic at,=0.005 and a fact that bcc Cu is only slightly more energetic than the
segregating bcc solid solution system with a low mixing en-equilibrium phase which is fcc at this temperature. We point
ergy, producing a miscibility gap that closes in the solidout here again that the bcc precipitate is in agreement with
phase, contrary to experiment. As a consequence of thigxperimental observations and computer simulations, as
there is a region around 1600 K of complete solid solubilitycommented on in the Introduction.
in the bcc phase. Finally, Figs. 6 and 7 also explain a curious observation

The behavior of these potentials for the Fe-Cu mixture isrom the heating and cooling runs that lead to Fig. 1. Even if
modeled on the basis of the dilute limits of the heats ofwe clearly understand that the cooling rate involved in the
solution. According to Ref. 16, the heat of solution of athermal treatment described earlier in connection to this fig-
single impurity was fitted to unrelaxed values for Cu in Feure is extremely fast compared to experimental accessible
and Fe in Cu, both at 0.317 eV. The low-temperature soluvalues, our experience indicates that for most potentials un-
bility limits at both extremes of the diagram are well aboveder equivalent simulation conditions, samples crystallize in
the experimental values. This can be qualitatively understoodtructures without defects. For these potentials, however, the
in terms of the nearby high-temperature phase of({&bcc  enthalpy of the solid phases on the cooling run lies several
phase¢, which makes the concentrated solution much lessneV above the enthalpy on the heating runs, indicating the
energetic than the extrapolated dilute limit may suggest.  presence of defects. Visual inspection does not help to eluci-

From these considerations, we conclude that the main eflate the nature of the defects but the pair correlation function
fect that affects the entire phase diagram is the existence offar pure Cu clearly shows traces of bcc structure, confirming
bcc phase of Cu. the existence of this phase.

As a test of the consistency of these results, we performed We believe the relevance of the present work is twofold.
MC calculations of the microstructure at two locations in theOn the one hand, it shows the methodology to construct
phase diagram, represented by asterisks in Fig. 6—namelghase diagrams derived from empirical potentials for a sys-
Fe,oCugg at 1600 K and FgCuys at 900 K, expecting to see tem involving multiple phases. The simpler case of the cal-
a bcc solid solution in the first case and a Cu precipitate irculation of a coherent phase diagram for Au-Ni was pub-
bce Fe in the second. Figuresa®and 9b) show the result-  lished earlief® Knowledge of the phase diagram predicted
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FIG. 7. Enlarged view of Fig. 6 showing the bcc-to-fcc transi-
tion of Fe and the peritectic at;,=0.005.

from empirical potentials is essential for analyzing the re-
sults of simulations of equilibrium and nonequilibrium pro-
cesses. On the other hand, the ability to construct these dia-
grams can be used in a feedback procedure to improve the
empirical potentials themselves. In other terms, is it the en-
thalpy or the entropy that is responsible for the spurious
phases we observe? Is it possible to modify the potentials to
avoid these phases without affecting the properties that are
correctly predicted? These issues are addressed in a forth-
coming paper, where we analyze in detail the enthalpy, en-
tropy, and free energy of the three phases and compare them
with standard thermodynamic databases, getting qualitative
and quantitative insight into the limitations of the EAM in its
present form. In particular, we can highlight the importance
of the magnetic contribution to enthalpy and entropy, which

FIG. 5. Example curves for the excess free energies of the threlcnS absent in the model.

phases at two temperatures, 1142 K, right at the transition from fcc
Cu to bcec Cu and inside the miscibility gap, and at 2000 K, where

bcec solid solution and the liquid coexist. Rhombudéguid),
squaregfcc), and circleg(fcc).

2000

1600

TK]

1200

800

Fe Xc, [at %] Cu

FIG. 6. Phase diagram of Fe-Cu as obtained from the EAM

For the particular case of the Fe-Cu system, another EAM
potential by Ludwiget al?® has extensively been used. Here
again, starting from the description of the pure elements
given in previously published potentia$>® a cross pair
term was designed to reproduce the heat of solution of a
single impurity. We are currently studying the phase diagram
of such a potential. The results reported in this paper, those

potential of Ref. 16. Note the fcc-to-bcc transition of Cu and the

2400 . L : L L . L

2200 4 L
2000 bce ||q =
1800 4 L
| fcc |
3 1600i foc \ L
1400 4 L
1200 5
1000-}\ boe -

800 — . —
0 20 40 60 80 100
Fe Cu

c., [at %]

eutectoid atc,=0.91. Asterisks indicate the composition and tem-

perature of the MC simulations of microstructure reported in Fig. 8.

FIG. 8. Phase diagram of Fe-Cu, redrawn from Ref. 34.
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getics. In particular, shape and phases within the Cu precipi-

..:.n,' r;.-".s:._.p 7 N ..
:‘:':,';,::'.{:7:17: ;?‘;;2:;55' y tates, such as the bcdR9fcc transitions mentioned in the
‘.::,;,5:.-:.{._‘;-;.-;-: ,-:f:;;,—)::.'-}j’,_ﬁ Introduction, are determined by interface structures and en-
‘::.' :‘f}"'{‘?g.&ﬁ :..',.:",-;,;’.;,-:_f,.;f:‘.::‘_' ergies, and S|ze_-m|sm§chh-|nduced stress. T_hese issues are
:c;::-::t‘(.?;.};': .;'.-* .-’,4-;_-;‘..:{.5 not addressed in equilibrium thermodynamic calculations
:;f%;fti-'}:c‘_;:.o::. :.-{-;,",'_';-;}."j,:;,. such as those reported here and would deserve a similar
Seete "5"":'1':1 e guantitative analysis assessing the adequacy of the model
used to describe the right interface energetics.
a b In summary, these computational thermodynamics proce-

FIG. 9. Monte Carlo calculations of the microstructure at two dUres can be used to improve the quality of the description of

locations in the phase diagram,,fus, at 1600 K and FaCuys at propgrt.ies.of pure mgtals anc_j alloys, and to bettgr_ understand
900 K (represented by asterisks in Fig. 6 the limitations associated with the use of empirical poten-

tials.

for the potential of Ludwiget al., which will come soon, and
simulations on microstructure evolution based on a Metropo-
lis or lattice Monte Carlo model based on them, like those of This work was performed under the auspices of the U.S.
Khrushchevaet al,*” will provide a deep insight into the Department of Energy by the University of California,
model’s ability to describe this complex system. Lawrence Livermore National Laboratory under Contract

Besides thermodynamic equilibrium phases, microstrucNo. W-7405-Eng-48, and CONICET, Argentina, Grant No.
ture is the consequence of kinetic processes and defect en@HP-0664/98.
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