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Phase diagram of an empirical potential: The case of Fe-Cu
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Molecular dynamics simulations are used to calculate the Gibbs free energy in the entire compositional
range of Fe-Cu alloys described with a set of embedded atom potentials available in the literature. Thermo-
dynamic integration and switching Hamiltonian techniques are used to obtain the phase diagram at high
temperatures~neglecting phonon quantum effects and electronic contributions! with no further approximations.
Limitations of the model were confirmed, such as the absence of theg andd phases, a bcc to fcc transformation
before melting for pure Fe, the unexpected existence of a stable bcc phase in pure Cu at highT, and
consequently complete solid solubility of Fe in Cu in the bcc phase in some temperature range. This work
seeds light on the power and limitations of the empirical description of complex systems.
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INTRODUCTION

Steels in nuclear reactor pressure vessels undergo
brittlement as a consequence of radiation damage. Cop
an impurity present in commercial steels in a saturated so
solution phase, precipitates as a consequence of the m
structure damage generated by energetic neutrons. These
cipitates, which act as obstacles for dislocation motion,
one of the most significant contributions to embrittleme
Therefore, understanding the precipitation process and
evolution of the precipitate structure is an important step
the description of the embrittlement process.

The experimental contributions to the study of this ph
nomenon started long ago, and more complexity was c
tinuously added to the picture. In 1960, Hornbogen show
that, on aging, precipitation of Cu froma-Fe occurs first by
the formation of spherical Cu clusters that transforms i
fcc Cu when they become large enough.1 In 1965, Speich
and Oriani demonstrated that these spherical Cu parti
subsequently transform into rods upon further aging.2 In
1990, Pizziniet al. reported a direct observation of sma
clusters having a bcc structure in the peak hardn
condition,3 and Buswellet al. reported the development of
distribution of precipitate sizes with aging time.4 Aging
causes the precipitates to grow past a critical size where
undergo a phase transformation from bcc to a close-pac
structure.

Phythianet al. assumed that this close-packed structure
fcc.5 However, in 1994 Othenet al. concluded that the
intermediate-sized~7–15 nm! Cu precipitates have a twinne
9R structure, probably transform martensitically into 9R,
and grow in this structure from a diameter of 6 nm up to
least 15 nm.6 Shortly after Othenet al. concluded that, dur-
ing aging at 550 °C, the bcc-to-9R martensitic transforma
tion of Cu precipitates occurred at a size of about 4 nm,7 with
complementary studies on the role of temperature. Rece
in 2000, Monzenet al. reported more high-resolution elec
tron microscope~HREM! images of twinned 9R Cu precipi-
tates in a Fe-Cu alloy aged at 550 °C.8

The three-dimensional~3D! atom probe technique ha
recently shown that precipitates in ferritic steels have
0163-1829/2003/68~21!/214205~9!/$20.00 68 2142
m-
er,
d-
ro-
re-
e
.
he
n

-
n-
d

o

es

ss

ey
ed

s

t

tly

a

complex chemical composition that includes Cu, Mn, Ni,
and P.9

The complexity of the processes fueled a significant eff
from the computational materials science community.
present, a contribution to the microscopic knowledge ab
these phenomena comes from bothab initio calculations10–12

and classic molecular dynamics~MD! and Monte Carlo
~MC! simulations, mostly based on the embedded at
model for the atomic interactions.13 In what follows we focus
on classic potentials and in particular in the way they ha
been used to study properties of the Fe-Cu system. In
paper we are interested in the capabilities and limitations
the model potential to describe the thermodynamics of
alloy.

In 1990 Phythianet al.14,15 reported a MD simulation tha
supported the first direct experimental evidence that
small Cu precipitates~2 nm! have bcc structure. They use
interatomic potentials for pure Cu derived in 1987 by Ac
landet al.16 The simulations predict for bulk Cu a metastab
bcc structure with lattice parameter larger than that ofa-Fe.
However, in both of these papers Cu precipitates in ana-Fe
matrix could not be simulated because of the absence
Fe-Cu potential. In 1995, Osetskyet al. published a series o
papers on the Fe-Cu system. In Ref. 17 they present po
tials for the pure elements; in Ref. 18 they report the first p
potentials for Fe-Cu system, used to simulate small Cu c
ters and coherent precipitates in the bcc-Fe matrix. In R
19, MD is used to examine vacancy migration inside
precipitates in Fe. A key result was that precipitates act
vacancy traps, implying that during growth the precipita
can absorb vacancies.

In 1997 Odetteet al. reported lattice-MC~LMC! simula-
tions for complex Cu-Mn-Ni-Si structures in Fe.20 LMC cas-
cade aging simulations were done using pair potentials ba
on a regular solution theory~RST! approximation. They re-
port parameters of the lattice embedded-atom-model~EAM!
Fe-Cu potential used in LMC cascade aging simulations
1999, Wirth et al. on one side21 and Domainet al. on the
other22 performed kinetic-LMC simulations of Fe-Cu alloys
These authors focused specifically on the developmen
vacancies and Cu clusters after irradiation damage. Th
©2003 The American Physical Society05-1
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simulations confirm the presence of high vacancy concen
tions in the precipitates. The results were in good agreem
with small-angle neutron scattering data.

In 1998, Ludwiget al. used static relaxation and a Fe-C
EAM potential to study the instability of bcc copper precip
tates embedded in ana-Fe matrix.23 In 2001, Le Bouar ex-
tended the study of the coherency loss during the bccR
transformation of the precipitates also using static simu
tions and the same Fe-Cu potential developed by Lud
et al.24

In 2001, Blackstock and Ackland, reported compu
simulations of the phase transition of Cu precipitates
Fe-Cu alloys.25 For the first time in a simulation a precipita
is followed during the phase transition from the bcc struct
coherent with the iron matrix to the twinned 9R crystal struc-
ture. They used the interatomic potentials derived in 1997
Ackland et al.16

As this brief Introduction shows, the real problem of m
crostructure evolution of ferritic steels under irradiation
volves complex thermodynamics of nonequilibrium and
netic processes in alloys, while the computational appro
is still in its infancy, dealing with an oversimplified descrip
tion of Fe and Fe-Cu alloys. In fact, the classic many-bo
potentials, based on the EAM, have extensively been use
get insight into complex processes in several types of sim
solids, in particular transition metals and some of th
alloys.26–27Extensive work has been done in the applicat
of this model to many solid solutions and intermetallic co
pounds, but limited effort was devoted to the calculation
the complete equilibrium phase diagram predicted by
type of approximation and, from there, of the driving forc
that govern nonequilibrium processes. In summary, little
still known about the ability of empiricaln-body potentials
to reproduce details of equilibrium phase diagrams
transition-metal alloys.

In this work, we consider one of the EAM potentials f
Fe-Cu developed by Acklandet al.16 to extract the phase
diagram of this model alloy. We report Gibbs free energ
calculated using MD simulations for pure elements and
loys in both the fcc and bcc solid phases, and for the liq
phase. We follow the procedure that we already applied
the study of the Au-Ni system.28 To our knowledge this is the
first calculation of a noncoherent phase diagram from
knowledge of an empirical EAM potential. No approxim
tions are used in the formalism to calculate the phase
gram besides those coming from a classic potential: no qu
tum phonon effects and no electronic or magnetic degree
freedom. However, the numerical evaluations, on their s
have uncertainties originated in both the finite size of
samples and the finite time used in the averages, which
termine the overall accuracy of the results.

FREE-ENERGY CALCULATION

For details on the calculation of the free energy, we re
the reader to our previous publication.28 Here we highlight
the basic aspects of the method, as well the differences
this multiphase case. For convenience, in the derivation
follows we shall not make a distinction between Gibbs,g,
21420
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and Helmholtz,f , free energies, as well as internal ener
and enthalpy, because some integrals or averages can be
ter calculated at constantV and others at constantP. For
clarity however, steps are formulated in terms off or g to
make the ensemble where the calculation is done explic

We calculate the free energy per particle at a given te
peratureT, f (T), through a thermodynamic integration b
tween the state of interest and a reference state at temp
ture T0 with known free energyf (T0), using the Gibbs-
Duhem equation

f ~T!5 f ~T0!
T

T0
2TE

T0

T h~t!

t2 dt, ~1!

whereh(t) is the enthalpy per particle. The enthalpy is o
tained from a MD run and it is fitted with a second-ord
polynomial inT, which allows an analytic integration in Eq
~1!.

The coupling-constant integration method, or switchi
Hamiltonian method,29 is used to calculatef (T0). We con-
sider a system with HamiltonianH5(12l)W1lU, where
U describes the actual system~in this work, described with a
EAM-type Hamiltonian! and W is the Hamiltonian of the
reference system, with known free energy. The parametel
allows us to switch fromU ~for l51) toW ~for l50). With
this Hamiltonian we can obtain the free-energy differen
betweenW and U by calculating the reversible work re
quired to switch from one system to the other. Then
unknown free energy associated withU, f (T0), is given by

f Sol~T0!5 f W~T0!1D f 1 ,

D f 15
1

N E
0

1K ]H

]l L dl5
1

N E
0

1

^U2W&ldl, ~2!

where f W(T0) is the free energy of the reference system
T0 . The integration is carried over the coupling parametel,
which varies between 0 and 1, and^¯& stands for the aver-
age over a canonical ensemble, or a time average in a (T, V,
N) constant MD simulation.

For the solid phases the reference systemW is a set of
Einstein oscillators centered on the average positions of
atoms in the (T0 , P50, N) ensemble corresponding to th
HamiltonianU. The noninteracting Einstein oscillators hav
no internal pressure, so their ensemble is the (T, V, N) one.
The free energy per atom of the Einstein crystal is30

f Eins5-3kBT0 ln~T0 /TE!, ~3!

whereTE is the Einstein temperature of the oscillators,TE
5\vE /kB where kB is the Boltzmann constant,vE is the
Einstein frequency of oscillations, and\ is the Planck con-
stant divided by 2p.

For the liquid phase, the reference systemW is an ideal
gas at the same temperature and density as the EAM sam
The process to switch fromU to W involves an intermediate
step to avoid particle overlap during the integration. First,
compute the free-energy difference between the true sys
with potential U ~the EAM potential!and a system with a
repulsive potentialWL ~soft spheres!. In this work, we use
5-2
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WL50.1Urep, whereUrep is the pair potential part of the
EAM energy, which is purely repulsive for the potential w
are using. As in the solid phase, the integration is carr
over the coupling parameterl, which varies between 0 an
1. The system is kept at the constant volumeV0 , which
equilibrates theU Hamiltonian at temperatureT0 and P
51 bar. Therefore, the free-energy change for a pure
ment due to the switch is given byD f 1 , as in the second line
of Eq. ~2!.

The second step is a reversible expansion of the repul
gas, fromV0 and high pressure, to reach the low-dens
limit ~where it becomes identical to the ideal gas!, followed
by a reversible compression of the ideal gas, to recover
initial density or volume. The change in free energy due
both processes is

D f 25kBT0E
0

r0F P

rkBT0
21G dr

r
, ~4!

wherer05N/V0 is the particle density. After the process
represented by Eq.~4! have taken place we end up with a
ideal gas at (T0 , r0), whose free energy is given byf W

Liq

5kB T0@ ln(r0L
3)21#, where L is the de Broglie therma

wavelength (L25h2/2pmkBT0), with h the Planck constan
andm the atomic mass.30 Then the free energy of the liqui
phase is calculated as the sum of these contributions:

gLiq~T0!5D f 11D f 21 f W
Liq~T0 ,r0!. ~5!

Equations~1!–~5! give the free energies of the solid an
liquid phases for the pure elements as a function of temp
ture.

ALLOYS

The strategy for the alloy calculations is to construct
each of the three phasesf5$bcc,fcc, and liquid% a set of
free-energy functions versus temperaturegc

f(T), for several
values of the compositionc, extract from themgT(c) curves,
and then perform the common tangent construction to de
mine the phase diagram.

The equations presented so far are readily applicabl
alloys provided the samples used for both the switching
the enthalpy evaluations are large enough to self-average
diversity of short-range configurations that appears in a
macroscopic sample. Similarly, the free energies of the
erence mixture of Einstein oscillators can be calculated us
the following expression:29

f Eins~c,T0!5c fEins
Cu 1~12c! f Eins

Fe 2T0scon f~c!, ~6!

wherec measures the Cu composition, andf Eins
Cu and f Eins

Fe

are given by Eq.~3!. The configurational entropy pe
particle, scon f(c), is given by the usual expressio
2kB @c ln(c)1(12c)ln(12c)#, assuming the solution is com
pletely random. For the ideal gas,

f id~c,T0 ,r!5c f id
Cu~rCu!1~12c! f id

Fe~rFe! ~7!

or, making the entropy of mixing appear explicitly,
21420
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f id~c,T0 ,r!5c f id
Cu~r!1~12c! f id

Fe~r!2T0scon f~c!,
~8!

wherer is the total density,rCu andrFe are the partial den-
sities@cr and (12c)r, respectively#, and thef id

i ’s are given
in the preceding section.

In summary, the steps and equations used in this work
~i! MC generation of solid-solution samples in both so

phases and
~ii ! MD runs to determine the enthalpy vsT for solid

solutions for different compositions and phases. For so
compositions and phase~fcc or bcc! this step may not be
doable if the sample is too far from equilibrium, becau
spontaneous transformation to the equilibrium phase may
cur. Those situations are not relevant for the determinatio
the equilibrium phase diagram.

~iii ! Second-order polynomial fits to the enthalpy:

hf~c,T!5ac
f1bc

fT1cc
fT2. ~9!

~iv! Analytic integration of the Gibbs-Duhem relation
Eq. ~1!, using a polynomial expression forh:

2TE
T0

T hf~c,t!

t2 dt5ac
f2bc

fT ln~T!2cc
fT21dc

fT.

~10!

~v! MD simulations of the switching Hamiltonian proces
to obtain^U2W& for the three phases and at each compo
tion.

~vi! D f 1 evaluation via analytic integration of sixth
degree polynomial fits tôU2W&.

~vii ! MD simulations of the adiabatic expansion of th
repulsive fluid, Eq.~4!, at each composition.

~viii ! D f 2 evaluation via analytic integration of sixth
degree polynomial fits to the integrand in Eq.~4!.

~ix! Second-order polynomial fits to the coefficien
af(c), bf(c), cf(c), anddf(c), as functions of composi-
tion.

These lead to the following general equation for the fr
energy of each phasef:

gf~c,T!5af~c!2bf~c!T ln~T!2cf~c!T21dG
f~c!T

2Tscon f~c!. ~11!

In this last expression, the fourth term comes from both
integration appearing in Eq.~1! and the first term on the
right-hand side of that same equation—namely,

dG
f~c!5df~c!1

1

T0
gf~c,T0!. ~12!

The last term in Eq.~11! is the configurational entropy con
tribution, conveniently left explicit to provide accurate d
rivatives close toc50 andc51.

SIMULATIONS

We consider the EAM potential of Acklandet al.16 for our
simulations, using samples of 686 atoms for the bcc ph
5-3
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and 500 atoms for the fcc phase.
The generation of samples in either bcc or fcc sol

solution phases represents a delicate issue. In our case
configurations for different values of the Cu compositi
were obtained by Metropolis MC runs in the transmutat
ensemble (T51500 K, P50, N, Dm!, whereDm is the dif-
ference in chemical potentials, adjusted to get the des
composition. Sufficiently long runs~longer than 104 MC
steps/atom! allow the development of any eventual sho
range order, while still retaining the metastable solid so
tions, if it happens not to be the equilibrium phase. Af
equilibration, every MC step generates a possible sam
with different enthalpy and composition. Selecting amo
them those with the desired composition, a histogram of
enthalpy shows a Gaussian-like distribution around a m
enthalpy value. Then we select a sample in the central bi
the histogram as the most representative of all possible l
arrangements at that composition. The short-range order
pears to be below 0.14 at all compositions in both pha
which rules out the existence of ordered phases.

A Nosé thermostat provides the temperature control
MD runs, and constant-pressure simulations use
Parrinello-Rahman algorithm.31 In all simulations the time
step was 2 fsec. The first 104 time steps are used to equil
brate the sample, and the statistical average of the therm
namic variables is performed on the next 104 steps. Samples
in both solid phases are heated up in successive runs bet
0 K and 3000 K, and then cooled down to 0 K, with
temperature interval of 50 K. Solid-to-liquid and liquid-to
solid transformations are observed with large hysteresis
to finite-size effects.

The reference free energy of the solids,gc
f(T0), is calcu-

lated atT05296 K using Einstein temperatures equal to e
perimental Debye temperatures—i.e.,TE

Fe5470 K andTE
Cu

5343 K.32 The Einstein temperature can in fact be chosen
minimize the structure of the switch curve in order to im
prove the numerical precision.

To calculate the integral involving the switch, we fir
cool down the samples to 0 K at thevolume corresponding to
P50 at T5296 K and determine the equilibrium position
$r i0%, of the Einstein crystal. Typically, we calculate the a
erage^U2WSol& at constant temperature and constant v
ume, for values ofl varying between 0 and 1 with an inte
val Dl50.05. Again, calculations at a givenl are carried
out in two successive runs each of 104 steps, and average
^U2WSol& are taken on the second set of time steps. We
a polynomial curve of sixth degree to these points and so
the integral in Eq.~2! analytically.

In the liquid phase, the Helmholtz free-energy chan
D f 1 is evaluated at a reference temperatureT053000 K. The
average volumeVav of a sample equilibrated at 3000 K
used to generate a cubic sample with volumeV0
5Vav(3000 K). This cubic sample is taken as the start
sample for each run for every value ofl. The switching
parameterl varies between 0 and 1, in intervals of 0.05, a
before eacĥ U2WLiq& average process we equilibrate t
sample, as for the solid case. A sixth-degree polynomia
fitted to the points and the integral of Eq.~2! is solved ana-
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lytically. We then expand the sample keeping the tempera
constant and equal toT0 . This is done in consecutive run
reducing the pressure from about 125 kbar to 1 bar. T
more values are added to this data: the origin (P50, r
50), corresponding to the ideal gas limit, and the avera
pressure and density obtained for the casel50. Once the
evolution of pressure as a function of density is obtained,
proceed to calculate the integrand of Eq.~4!, P/rkBT21,
and to fit a sixth-degree polynomial to this function. Th
Helmholtz free-energy changeD f 2 is obtained by analytica
integration of this polynomial.

RESULTS AND DISCUSSION

Figure 1 shows the behavior of the solid and liquid inte
nal enthalpieshFe,Cu

S and hFe,Cu
L as a function of tempera

ture. MD runs last 30 psec at each temperature, with an
cremental temperature step of 50 K. Discontinuities show
temperature at which solids become liquids and vice ve
under the particular conditions of the simulation and do
reflect the thermodynamic melting temperatures. The po
shown in the figure correspond to heating and cooling ru
as indicated by the arrows. The latent heat of melting e
mated from these figures for pure Fe is 0.221 eV/atoms
for pure Cu 0.134 eV/atoms, while the experimental valu
are 0.143 eV/atoms and 0.135 eV/atoms, respectively.33

Figure 2 shows the integrand in the switching Ham
tonian method, Eq.~2!, for both pure elements. Each point
an MD run at constant volume and atT5296 K. These
curves are essentially featureless, except close tol51,
where the negative slope becomes significant. A denser
of points is used there to ensure a numerical precision of
integral of a few meV/atoms. An important technical point
that in thel5;0 region, the dynamics is essentially go
erned by the noninteracting Einstein oscillators. The therm
stat, which provides the energy necessary to keep the iso
mal condition, does not provide interaction between
oscillators and, therefore, only the small contribution of t
EAM-type Hamiltonian provides the interaction necessary

FIG. 1. Enthalpy of Cu and Fe as a function of temperatu
Heating and cooling runs are indicated by the arrows.
5-4
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reach thermal equilibrium. For this reason, for values ol
close to 0 long runs of up to 100 psec are done as equili
tion steps. As mentioned earlier, these curves are fitted
sixth-order polynomials and integrated analytically.

Figure 3 shows the equivalent switching Hamiltonian p
cesses for the liquid phase of both pure elements. Each p
is an MD run at constant volume and atT53000 K. In this
case the reference potential is the repulsive pair poten
Here again these curves are fitted with a sixth-order poly
mial and integrated analytically.

Finally, Fig. 4 shows the last simulation step represen
by the adiabatic expansion of the fluid to reach the ideal
limit at low pressures, where both curves, and in fact for
materials, meet atP/rkBT51. Here againT53000 K. Two
open symbols indicate the density corresponding to the p
sure arrived at the end of the preceding switching Ham
tonian process, forl50—that is, for the repulsive potentia
As is clear, only densities lower or equal to those atl50 are
needed, but the simulations run for higher as well as low
densities, corresponding to a range between 1 and 120

FIG. 2. Average values of̂U2W& vs l for bcc Fe and fcc Cu,
corresponding to the integrand of the switching Hamiltonian@c.f.
Eq. ~2!#.

FIG. 3. Same as Fig. 2. for the liquid phases.
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to gain precision in the sixth-order polynomial used in the
Figures 1–4 show examples of the computational step

obtaing for the case of pure elements Fe and Cu. It is to
noticed that these steps have to be repeated for every c
position fromc50 to c51 in the alloy case. In doing so
values of the coefficientsa, b, c, andd in Eq. ~11! become
functions of composition. Tables I~a!–I~c! show these coef-
ficients of the Gibbs free energyg, Eq. ~11!, for all three
phases bcc, fcc, and liquid in terms of their second-deg
polynomials in compositionc.

For the particular case ofc50 or c51, these functions
allow us to find the equilibrium phases of the pure elemen
Surprisingly, we find that Fe shows a bcc-to-fcc transiti
just below its melting point, and Cu shows a fcc-to-bcc tra
sition at 0.75Tm .

For the phase diagram, the usual common tangent c
struction between the three phases provides the limits of
phase fields. Figure 5 shows as example curves for the
cess free energies of the three phases at two temperatu
namely, 1143 K, right at the transition from fcc Cu to bcc C
and inside the miscibility gap, and at 2000 K where bcc so
solution and liquid coexist. Note the energy scale in the
figures and the dispersion of points determined in the
merical simulations, which is of the order of a few meV
atoms. Figure 6 shows the complete phase diagram. An
larged view of the high-temperature Fe-rich region is sho
in Fig. 7.

Comparison between Figs. 6 and 7 and the experime
phase diagram, Fig. 8, redrawn from Ref. 34, shows sign
cant differences. There are three salient features in the
culated diagram—namely, the properties of the pure e
ments and the properties of the solid solutions. Pure
shows a transition to fcc phase right below melting that h
no relation to the experimental one, which is driven by ma
netism. The melting point of Fe~in the fcc! phase is at 4/3 of
the experimentalTm . Here Cu has a transition to a bcc pha
at about 3/4 ofTm , which does not appear in real Cu; i

FIG. 4. Evaluation of the integrand of Eq.~4! ~expansion and
compression cycles! for Fe and Cu in the gas phase. Note the ov
lap of the curves in the limit of low density~ideal gases!.
5-5
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TABLE I. Second-order polynomial fits to the coefficients appearing in Eq.~11! for ~a! the bcc phase,~b!
the fcc phase, and~c! the liquid phase. Units are such that the resulting free energy is obtained in meV/a
when the temperature is in K.

Coefficient Quadratic Linear Independent R2

~a!

a 22.3340310201 1.0525310100 24.3115310100 0.99996
b 5.2625310205 21.8929310205 2.4080310204 0.96928
c 22.6634310208 1.3548310208 1.6894310208 0.94598

D f A 22.2456310201 1.0501310100 24.3507310100 0.99996
f 0 22.4105310202 3.5382310202 Exact
dG 3.2143310204 21.9336310204 1.3624310203

~b!

a 22.7365310201 1.0182310100 24.2599310100 0.99973
b 2.4096310205 22.6616310205 2.4469310204 0.20519
c 1.2173310208 8.0491310209 8.9973310209 0.96553

D f 1 22.6284310201 1.0221310100 24.3080310100 0.99985
f 0 22.4105310202 3.5382310202 Exact
dG 1.7722310204 22.1733310204 1.3520310203

~c!

a 21.0897310201 9.0441310201 24.3060310100 0.99827
b 28.8953310205 1.0958310204 3.5475310204 0.57650
c 1.2556310208 22.0791310208 6.8886310209 0.68924

D f 1 22.2224310201 7.9600310201 23.2507310100 0.99994
D f 2 21.1117310201 4.2365310202 4.2398310201 0.99779
f 0 2.0187310202 21.0794310201 23.3942310100 0.99974
dG 27.4261310204 7.5694310204 2.2226310203
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melting point, in the bcc phase, is at 1.14 of the experime
Tm .

The medium temperature region of the alloy shows
eutectoid atcCu50.91 and a peritectic atcCu50.005 and a
segregating bcc solid solution system with a low mixing e
ergy, producing a miscibility gap that closes in the so
phase, contrary to experiment. As a consequence of
there is a region around 1600 K of complete solid solubi
in the bcc phase.

The behavior of these potentials for the Fe-Cu mixture
modeled on the basis of the dilute limits of the heats
solution. According to Ref. 16, the heat of solution of
single impurity was fitted to unrelaxed values for Cu in
and Fe in Cu, both at 0.317 eV. The low-temperature so
bility limits at both extremes of the diagram are well abo
the experimental values. This can be qualitatively underst
in terms of the nearby high-temperature phase of Cu~a bcc
phase!, which makes the concentrated solution much l
energetic than the extrapolated dilute limit may suggest.

From these considerations, we conclude that the main
fect that affects the entire phase diagram is the existence
bcc phase of Cu.

As a test of the consistency of these results, we perform
MC calculations of the microstructure at two locations in t
phase diagram, represented by asterisks in Fig. 6—nam
Fe40Cu60 at 1600 K and Fe75Cu25 at 900 K, expecting to see
a bcc solid solution in the first case and a Cu precipitate
bcc Fe in the second. Figures 9~a! and 9~b! show the result-
21420
al

n

-

is,

s
f

-

d

s

f-
f a

d

ly,

n

ing configurations, confirming the expectations, with the e
ception that the Cu precipitate has a coherent bcc struct
probably as a result of a gain in interfacial energy and
fact that bcc Cu is only slightly more energetic than t
equilibrium phase which is fcc at this temperature. We po
out here again that the bcc precipitate is in agreement w
experimental observations and computer simulations,
commented on in the Introduction.

Finally, Figs. 6 and 7 also explain a curious observat
from the heating and cooling runs that lead to Fig. 1. Eve
we clearly understand that the cooling rate involved in
thermal treatment described earlier in connection to this
ure is extremely fast compared to experimental access
values, our experience indicates that for most potentials
der equivalent simulation conditions, samples crystallize
structures without defects. For these potentials, however,
enthalpy of the solid phases on the cooling run lies sev
meV above the enthalpy on the heating runs, indicating
presence of defects. Visual inspection does not help to el
date the nature of the defects but the pair correlation func
for pure Cu clearly shows traces of bcc structure, confirm
the existence of this phase.

We believe the relevance of the present work is twofo
On the one hand, it shows the methodology to constr
phase diagrams derived from empirical potentials for a s
tem involving multiple phases. The simpler case of the c
culation of a coherent phase diagram for Au-Ni was pu
lished earlier.28 Knowledge of the phase diagram predict
5-6
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FIG. 5. Example curves for the excess free energies of the t
phases at two temperatures, 1142 K, right at the transition from
Cu to bcc Cu and inside the miscibility gap, and at 2000 K, wh
bcc solid solution and the liquid coexist. Rhombuses~liquid!,
squares~fcc!, and circles~fcc!.

FIG. 6. Phase diagram of Fe-Cu as obtained from the E
potential of Ref. 16. Note the fcc-to-bcc transition of Cu and
eutectoid atcCu50.91. Asterisks indicate the composition and te
perature of the MC simulations of microstructure reported in Fig
21420
from empirical potentials is essential for analyzing the
sults of simulations of equilibrium and nonequilibrium pr
cesses. On the other hand, the ability to construct these
grams can be used in a feedback procedure to improve
empirical potentials themselves. In other terms, is it the
thalpy or the entropy that is responsible for the spurio
phases we observe? Is it possible to modify the potential
avoid these phases without affecting the properties that
correctly predicted? These issues are addressed in a f
coming paper, where we analyze in detail the enthalpy,
tropy, and free energy of the three phases and compare t
with standard thermodynamic databases, getting qualita
and quantitative insight into the limitations of the EAM in i
present form. In particular, we can highlight the importan
of the magnetic contribution to enthalpy and entropy, wh
is absent in the model.

For the particular case of the Fe-Cu system, another E
potential by Ludwiget al.23 has extensively been used. He
again, starting from the description of the pure eleme
given in previously published potentials,35,36 a cross pair
term was designed to reproduce the heat of solution o
single impurity. We are currently studying the phase diagr
of such a potential. The results reported in this paper, th

ee
c

e

-
.

FIG. 7. Enlarged view of Fig. 6 showing the bcc-to-fcc tran
tion of Fe and the peritectic atcCu50.005.

FIG. 8. Phase diagram of Fe-Cu, redrawn from Ref. 34.
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for the potential of Ludwiget al., which will come soon, and
simulations on microstructure evolution based on a Metro
lis or lattice Monte Carlo model based on them, like those
Khrushchevaet al.,37 will provide a deep insight into the
model’s ability to describe this complex system.

Besides thermodynamic equilibrium phases, microstr
ture is the consequence of kinetic processes and defect

FIG. 9. Monte Carlo calculations of the microstructure at tw
locations in the phase diagram, Fe40Cu60 at 1600 K and Fe75Cu25 at
900 K ~represented by asterisks in Fig. 6!.
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getics. In particular, shape and phases within the Cu prec
tates, such as the bcc-9R-fcc transitions mentioned in the
Introduction, are determined by interface structures and
ergies, and size-mismatch-induced stress. These issue
not addressed in equilibrium thermodynamic calculatio
such as those reported here and would deserve a sim
quantitative analysis assessing the adequacy of the m
used to describe the right interface energetics.

In summary, these computational thermodynamics pro
dures can be used to improve the quality of the description
properties of pure metals and alloys, and to better unders
the limitations associated with the use of empirical pote
tials.

ACKNOWLEDGMENTS

This work was performed under the auspices of the U
Department of Energy by the University of California
Lawrence Livermore National Laboratory under Contra
No. W-7405-Eng-48, and CONICET, Argentina, Grant N
PIP-0664/98.
,

, p.

ell.

s-

,

ys

i

1E. Hornbogen, Trans. Metall. Soc. AIME218, 1064~1960!.
2G. R. Speich and R. A. Oriani, Trans. Metall. Soc. AIME233,

623 ~1965!.
3S. Pizzini, K. J. Roberts, W. J. Phythian, C. A. English, and G.

Greaves, Philos. Mag. Lett.61, 223 ~1990!.
4J. T. Buswell, C. A. English, M. G. Hetherington, W. J. Phythia

G. D. W. Smith, and G. M. Worrall, ASTM Spec. Tech. Pub
1046, 127 ~1990!.

5W. J. Phythian, A. J. E. Foreman, C. A. English, J. T. Buswell,
G. Hetherington, K. Roberts, and S. Pizzini, ASTM Spec. Te
Publ.1125, 131 ~1992!.

6P. J. Othen, M. L. Jenkins, G. D. W. Smith, and W. J. Phythi
Philos. Mag. Lett.64, 383 ~1991!.

7P. J. Othen, M. L. Jenkins, and G. D. W. Smith, Philos. Mag
70, 1 ~1994!.

8R. Monzen, M. L. Jenkins, and A. P. Sutton, Philos. Mag. A80,
711 ~2000!.

9P. Auger, P. Pareige, S. Wetzel, and J-C. Van Duysen, J. N
Mater.280, 331 ~2000!, and references therein.

10C. S. Becquart and C. Domain, Nucl. Instrum. Methods Ph
Res. B202, 44 ~2003!.

11Z. W. Lu, S. H. Wei, and A. Zunger, Phys. Rev. B41, 2699
~1990!.

12C. Domain and C. S. Becqart, Phys. Rev. B65, 024103~2001!.
13M. S. Daw and M. I. Baskes, Phys. Rev. B29, 6443~1984!.
14W. J. Phythian, A. J. E. Foreman, C. A. English, J. T. Buswell,

G. Hetherington, K. Roberts, and S. Pizzini, in Proceedings
the 15th International Symposium on the Effects of Radiation
Materials, Nashville, 1990 ASTM Spec. Tech. Publ.@ASTM
Spec. Tech. Publ.1125, 131 ~1992!#.

15W. J. Phythian and C. A. English, J. Nucl. Mater.205, 162~1993!.
16G. J. Ackland, D. J. Bacon, A. F. Calder, and T. Harry, Phil

Mag. A 75, 713 ~1997!; See also G. J. Ackland, G. Tichy, V
Vitek, and M. Finnis,ibid. 56, 735 ~1987!.
.

,

.
.

,

cl.

.

.
f
n

.

17Yu. N. Osetsky, A. G. Mikhin, and A. Serra, Philos. Mag. A72,
361 ~1995!.

18Yu. N. Osetsky and A. Serra, Philos. Mag. A73, 249 ~1996!.
19Yu. N. Osetsky and A. Serra, Philos. Mag. A75, 1097~1997!.
20G. R. Odette and B. D. Wirth, J. Nucl. Mater.251, 157 ~1997!.
21B. D. Wirth and G. R. Odette, inMicrostructural Processes in

Infrared Materials, edited by S. J. Zinkle, G. Leni, R. Ewing
and J. Williams, Mater. Res. Soc. Symp. Proc. No. 540~Mate-
rials Research Society, Pittsburgh, 1999!, p. 437.

22C. Domain, C. S. Becquart, and J. C. Van Duysen, in Ref. 21
643.

23M. Ludwig, D. Farkas, D. Pedraza, and S. Schmauder, Mod
Simul. Mater. Sci. Eng.6, 19 ~1998!.

24Y. Le Bouar, Acta Mater.49, 2661~2001!.
25J. J. Blackstock and G. J. Ackland, Philos. Mag. A81, 2127

~2001!.
26M. W. Finnis and J. E. Sinclair, Philos. Mag. A50, 45 ~1984!.
27F. Ercolessi, M. Parrinello, and E. Tosatti, Philos. Mag. A58, 213

~1988!.
28E. O. Arregui, M. Caro, and A. Caro, Phys. Rev. B66, 054201

~2002!. See also Comput. Mater. Sci.25, 297 ~2002!.
29Molecular-Dynamics Simulation of Statistical-Mechanical Sy

tems, edited by G. Ciccotti and W. G. Hoover~North-Holland,
Amsterdam, 1986!.

30D. Frenkel and B. Smit,Understanding Molecular Simulation—
From Algorithms to Applications~Academic Press, London
1996!.

31M. Parrinelo and A. Rahman, J. Appl. Phys.52, 7182~1981!.
32C. Kittel, Introduction to Solid State Theory, 6th ed.~Wiley, New

York, 1986!.
33R. Hultgren, R. L. Orr, P. D. Anderson, and K. K. Kelly,Selected

Values of Thermodynamic Properties of Metals and Allo
~Wiley, New York, 1963!.

34Binary Alloy Phase Diagrams, 2nd ed., edited by T. B. Massalsk
5-8



.
C.

PHASE DIAGRAM OF AN EMPIRICAL POTENTIAL: . . . PHYSICAL REVIEW B 68, 214205 ~2003!
~ASM International, Metals Park, OH, 1990!.
35G. Simonelli, R. Passianot, and E. J. Savino, inMaterials Theory

and Modelling, edited by J. Broughton, P. D. Bristowe, and J. M
Newsam, Mater. Res. Soc. Symp. Proc. No. 291~Material Re-
search Society, Pittsburgh, 1993!, 567.
21420
36A. F. Voter ~unpublished!.
37O. Khrushcheva, E. E. Zhurkin, L. Maleaba, C. S. Becqart,

Domain, and M. Hou, Nucl. Instrum. Methods Phys. Res. B202,
68 ~2003!.
5-9


