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First-principles thermodynamics of transition metals: W, NiAl, and PdTi
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We apply the pseudopotential density-functional-perturbation theory approach along with the quasiharmonic
approximation to calculate the thermal expansion of tungsten and two important metallic alloys NiAl and PdTi.
We derive the theory for anisotropic crystal structures and test the approximation that the anisotropic effects of
thermal expansion are equivalent to negative pressure—this simplifies the calculation enormously for complex
structures. Throughout, we find excellent agreement with experimental results.
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[. INTRODUCTION contribution to the free energy. This enables us to make a
simple test of some approximations required in the calcula-
First-principles calculations have established an excellertion of PdTi.
record for describing the ground state properties of materials The difference between the materials being studied is
at zero temperature over almost 20 years. More recently, thighlighted by the phonon spectra for tB2 phase: NiAl
full description of the electronic structure allows for accurateand PdTi both adopt th&2 structure at high temperature
calculation of phonon frequencfeand the thermodynamic While tungsten is a refractory metal and has a bcc structure at
properties derivable from themThese methods have been all temperatures. The bcc structure can be regarded as a spe-
applied to insulating systems and elemental metals. In thisial case ofB2 where both atoms are the same. NiAl has
paper, we extend the methodology to investigate transitiophonon anomalies due to Fermi-surface nesting, we
metals and compounds that have a low symmetry or phonostructure PdTi is dynamically stabilized: it has negative fre-
anomalies. Previous authors have looked at elemental metaigiency phonongi.e., mechanically unstableat low tem-
Al, Li, Na,® Ag,* Cu? and W (Ref. 6 and found that the peratures. Such a situation leads to temperature-dependent
quasiharmonic approximation holds most of the way to meltmodes, which cannot be treated within the quasiharmonic
ing. The quasi-harmonic approximation has also been apapproximation and would need to be dealt with separately
plied on investigation of the temperature-induced phase trargither in real® or reciprocal’ space.
sition in tin.” Recently, first-principles methods have been The quasiharmonic approximatitto the free energy as-
used to study anisotropic thermal expansion in silicid&  sumes that all phonons can be treated as simple-harmonic
extend this work to alloys, which introduces some differentoscillators with a frequency dependent on the volume of the
features. As our prototype materials, we study W, NiAl, andmaterial. The static lattice energff €0) is evaluated at a
PdTi, which have many similarities but each of which hasrange of volumes, and for each of these the phonon-
aspects of peculiar interest. dispersion relation is calculated. The quasiharmonic contri-
NiAl is a high melting point alloy, which finds applica- bution to the free energy at finite temperature is then evalu-
tions in aerospace and turbine blade design. Its electroniated from Bose-Einstein statistics of the phonons at a given
structure is characterized by Kohn anomalies in the phonomolume. From this the pressure can be evaluated for all con-
spectrunt, arising from a Fermi-surface nesting effect. A ditions of T andV, giving an equation of state. Alternately in
huge amount of work has been done on the system usindje zero-pressure case, the relationship betwesmdV (i.e.,
empirical potential$®~'* which cannot describe the Kohn the thermal expansigrean be determined. Since larger vol-
anomaly, and it is interesting to examine whether this negleatmes typically lead to lower phonon frequencies, the entropy
has serious structural consequences. Crystallographicallig typically lowered by expansion. Thus larger volues-
NiAl has the cubicB2 (CsC) crystal structure which is tropy) is favored at higher temperatures, and thermal expan-
stable at all temperatures. This high symmetry simplifies theion occurs.
electronic structure calculation enormously. There are, of course, other contributions to thermal expan-
PdTi provides a sharp contrast to NiAl It is a high- sion in ordered alloysantisite defect creation, vacancy cre-
temperature shape memory alloy, isostructural with NiAl atation, coupling of phonons to lattice parameters, and anhar-
high temperatures in th82 phase, but undergoing a marten- monic effects due to finite atomic displaceme¢rasd it is
sitic phase transition to the tetragor@l9 phase at 810 K interesting to test that how much of the observed expansion
and predicted to undergo a further transition to the monocan be attributed to quasiharmonic effects.
clinic B19' at very low temperatureS.The dynamically sta-
bilized high-temperature phase and low-symmetry low-
temperature phase each provides a challenging test for
theoretical prediction. Phonon dispersions can be evaluated using density-
Tungsten is another high melting point transition metal. Infunctional-perturbation theoryDFPT) (Ref. 19 and finite
addition to studying its own thermal expansion, we use thiglisplacement method8.Here we use the former. Previous
to investigate the effects of anisotropic strain on the phononvork on isotropic equations of state for cubic materials cov-
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ers much of the theory, here we investigate the practical re- (4) Evaluate the equilibrium structure Bf T=0 by mini-
quirements for lower-symmetry materials, in particular whatmizing enthalpyU(a,b,c,{u;}) + PV=Hy(V), whereu; are
approximations can be make to made calculations tractablehe internal atomic coordinates.

Virtually all implementations of density-functional theory  (5) Evaluate the phonon-dispersion relation for this re-
basedab initio codes take as input the unit-cell vecta® laxed structure, and the partition functi@{V,T) for these
andc and atomic positions. We define a matBxomprised  oscillators.

of the three unit-cell vectors: (6) Evaluate Helmholtz free energy at fix&tfor a range
of temperatures (V,T)=U(a,b,c,{u;}) —kgT In Z(V,T).
B=(ab,c). (7) Repeat steps 4, 5, and 6 for a range of positive and
negative pressures.
The volume of the unit cell is Once a coarse grid of points is generateffor thermal
expansion, as few as three different pressures suffiees
V=|B|=(axb)-c. finer grid can be generated without further expensilieni-

_ _ _ _ ~ tio calculation by interpolating force constaftsA dense
For a cubic material, the quasiharmonic approximationgrid of T points can easily be generated at a giverFrom
uses the phonon frequencies calculated at different volume to(v,T) it is straightforward to transform toG(P,T)

obtain the free energy as a function of two variables, =F(V,T)=V(5F/ V).
In terms of speed and accuracy there is little to choose
F(V,T)=E(V)—kgTInZ(V,T), (1) between DFPT or finite displacements: the former involves

calculation of second derivatives and the latter requires large

where E(V) is the cold curve energy at the volurhe(i.e., supercells. We note that for finite displacements, once the

the energy ofa system, with the atoms p.IaCEd on thg|r Iatt'ce(é\igenvectors are calculated R0, a single calculation of
siteg, kg is Boltzmann's constant, and is the vibrational

partition function. We assume that for all temperatures o %Tltj?rr:ggz forces with all atoms displaced suffices at other

interest the contribution of electronic excitations is The allowed occupation states of each phonon mode of
negligible—generally true for equation of staféshut not frequencyw aree(w) = (n+ 1/2)h w, wheren is the number

for transport properties such as heat conduction. . . o
. . of phononspopulating that mode. The canonical partition
FromF(V,T) one can obtain the equation of state of thefunction is therefore

single phase of the system:

©

1

5F = *Bfn(a’): — 4
P:_(W) @) fo)=2, e 2sintoi2kg)” P
T
and the volume thermal expansion The total partition function is then
1 ( Y, @ Z=11,¢(w). )
ay=- = -
VioT/e 250 I i T
These can be evaluated for a given structure regardless of 200 - S
whether an alternate phase of lower Gibbs free energy exists. -~ | AR :
For noncubic materials, the free energy is a function of all & 150 S | e * -
independent cell parameters, and the linear thermal expan- 2 * ! i ;
sion is a tensor quantity. Calculating the free energy across 2 100}~ | | i _
such a multidimensional space is impractical, so we examine 2 | | ;
a further approximation, that the effect of increasing tem- 50 - ! i i
perature is equivalent to a negative pres$art each pres-
sure value, the internal coordinates must be rerelaxed to their 0 : :
equilibrium position within the unit cell, since the phonon 0.5 [ggoy 0.0 [gooy 1.0 lees) 0D
Zziﬁ;{kr;:lrﬂnl”ls only well defined by an expansion about such an FIG. 1. Phonon spectra calculated for bcc Wagt=2.905 A,

using thepwscrand PHONON code (Ref. 26 with DFPT (Ref. 27
and a norm conserving pseudopotential. The electronic wave func-
L . . tions were represented in a plane-wave basis set with a kinetic
mizing U(ab,c{u})=Uo whereu; are the internal atomic energy cutoff of 32 Ry. The BZ integrations were carried out by the
coordinates. Hermite-Gaussian smearing technig(Ref. 28 using a 16<16

(2) Evaluate the force constants and hence the phononz 16 k-point mesh. Phonon calculations are exact on meshes which
dispersion relation for the relaxed structure, and the partitionyye commensurate with tliepoint mesh: a & 8 8 mesh for tung-

Thus, we proceed as follows:
(1) Evaluate the equilibrium structure Bt=0, by mini-

functionZ(V,T) for these oscillatorsv=|B|=(axb)-c. sten. Other phonons come from dynamical matrices calculated us-
(3) Evaluate Helmholtz free energy at a range of temperaing force constants determined by Fourier transform of original data
tureskF(V, T)=Uy—kgT InZ(V,T). (Ref. 27.
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250 250
200 — _ 200 FIG. 2 [00_1] and[lOQ] branches of the tung-
sten dispersion relation for(a) volume-
i i r conserving strains of 4% oi®01) (b) bulk strains
-; 150 - . -; 150 - of 1% and 2%. The key observation is that for
z < volume-conserving shear some frequencies in-
§ I 4 ’ § I crease while others decrease, meanwhile for vol-
E 100 - — E 100 . ume expansion all frequencies decrease. Thus in
] Y the former case some compensation occurs to
— bec [100] i i keep the phonon free-energy constant, while in
50~ F - C;a=i~833 l(l)ggl - sof- f £ — becia, . the latter case all modes contribute to increase
"""" cla=1.04: [001] --- boc: Balay=+1% free energy. Calculation details are as for Fig. 1.
- B 7 bee: Aafa=+2% |
(@) Or (001, (b) o [100]
For calculating thermal expansion under constaetro dG dG
pressure boundary condition, the essential quantity is the free dB. 0, du, =0. (7)
i

energy. The mean vibrational free energy
These derivatives can be split into cold cupl(B,uy) ]
o and phonon G, contributions.

—kgTINZ(V,T)=— kBTJ g(w,V)In[{(w,T)]dw, (6) To make calculations for complex structures tractable, we
0 make the assumption that the phonon part of the free energy
is a function of volumeonly, and is independent af, . We
examine this approximation in the case of anisotropic defor-
mation of tungsten and find it to be good. Intuitively, this can
points in the first Brillouin zongBZ) using the force con- ) ?aetigz:d(\i/rzt(r):igr:ft Z‘fpgogtcfhg?csotligse_\grg S'é?i;gysvgggrsseggd

q ' yorp thers, raising some frequencies and lowering others to give

by integration using the tetrahedron metHiddhis provides an overall cancellation in the small strain limit. By contrast,

Z(V,T) required in stef2) above. olume increases weaken all force constants and give a sys-

The structure obtained at a _parhcular temperature an ematic decrease in mean frequency. Hence the conditions
pressure can be found by minimizing the Gibbs free energ bove become

with respect to the lattice vectors and internal coordinates o

introducing the phonon density of stag&w,V) to make the
dependence of density of states on volume explicit.
Phonon frequencies are evaluated at a dense set of

the atoms, ensuring that the solution is a minimum in the 0
combined space d8;; anduy.**
2.5 T T T T -0.005
)
— calc. . g 0.01
2+ e €Xp. R % .
. =
— 15+ . - g -0.015
(%)
S . E
3 1+ . — E -002 boc
. £ ---- ¢/a=0.96
o’ r e c/a=0.98
L e c/a=1.02
051 gy — 0.025 — — c/a=1.04
... -
- 1 I 1 I 1 N
0 e, | 1 | ! [ 0.03, 400 800 1200
0 1000 2000 3000 Temperature (K)

Temperature (K)
FIG. 4. Graphs of tungsten phonon free energy against tempera-

FIG. 3. Calculated linear thermal expansion for tungsten, comture for 15 different strain conditions, plotted relative &V, T
pared with experimental data from Ref. 2Q.represents the room- =0) for V at the cold-curve minimum. The effect of volume strain
temperature volume. can be seen to be about ten times greater than that of shear strain.
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branches in NiAl, calculated with increasiggpoint density. Lines
FIG. 5. Calculated elastic constants, and c,, for tungsten, are calculated data, taken from force constants deduced from Fou-
compared with experimental data from Ref. 30. The constant valuger transforming thew(q) data. Labels indicate the number @f
of ¢, is well reproduced: it arises from cancellation of a number ofpoints used in the DFPT calculation. Symbols indicate experimental
terms, and is not generally observed in transition metals. data taken from Ref. 31 for a composition ofspil5,. Calculations
use thepwscr and PHONON (Ref. 26 code and DFPTRef. 29

oH using an ultrasoft pseudopotentials for {Ref. 39, and a norm
JB.. =0, (8) conserving pseudopotential for Al. The electronic wave functions
Hu, were represented in a plane-wave basis set with a kinetic energy
cutoff of 30 Ry. The BZ integratio8 used 1 12x 12 mesh for
dGphon NiAl, giving exact phonon on a 86X 6 mesh.
=0, €)
N |,
“ volumes:V,, 1.08V,, and 1.08V,. At each volume, pho-
oH non dispersion was done with the bcc structure and tetrago-
£ =0. (10 nal strained structures with four differecta ratios, i.e. 0.96,
v 0.98, 1.02, and 1.04.
We calculated phonon density of states at 15 different
Il RESULTS

structures corresponding to tetragonal straigs, | ey
=€,,, €y=6€y,=€,=0). The phonon dispersion of bcc
tungsten at equilibrium lattice parameter along with experi-
We use tungsten as a benchmark to investigate the effectsental results is shown in Fig. 1, while the phonon disper-
of anisotropic strain on the phonon contribution to the freesions under tetragonal strains and a larger volume are shown
energy. Tungsten has a bcc crystal structure. The calculationis Figs. 2a) and 2b), respectively. The calculated phonon
were done with the generalized gradient approximatiorfrequencies are in good agreement with experin{eig. 1)
(GGA) and the equilibrium lattice parameter was computedand with a recent calculatidhFigures 2a) and 2b) show
to be 2.905 A, comparable to the experimental result othat compared to volumetric strain, volume-conserving shear
2.887 A. Phonon calculations were done at three differenstrains have negligible contribution to phonon free energy.

1. Anisotropic strain—Tungsten

400 35

FIG. 7. (a) Phonon spectra cal-
culated forB2 NiAl, solid lines
are at a lattice parameter af,
=2.906 A (GGA theoretical lat-
tice constantthe dotted lines at a
I lattice of 1.02,. All phonons
2R k! " have higher frequencies under

P . compression(b) Calculated mode
15 N v _ Grineisen parameters of NiAl
along symmetry lines of simple
cubic BZ at equilibrium volume.
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3 dispersion properly requires a thorough DF§point sam-
- § pling or (equivalently large supercells in direct space meth-
25— — ods. In Fig. 6, we show the convergence of the result to
r a experimental observation wittppoint sampling density.
2= - Despite the anomalies, we find that the thermodynamic
_ - 1 properties are almost independentggpoint sampling aside
® 15 - from a rigid shift of the free energy. This does not affect the
§° - § thermal expansion, but stabilizes the structure slightly
< 1 - against alternate structures because of the increased entropy
B 1 of the low-frequency phonons.
0.5 - The entire calculated phonon-dispersion relations at two
- § different volumes are shown in Fig(aj. All phonon fre-
o - guencies increase under compression. Hence the moae Gru
Ll L eisen parameterg;(q) shown in Fig. Tb), and defined as
0 500 1000 1500 2000
Temperature (K) Jdw J-(q) \V
. . . D=y o
FIG. 8. Calculated thermal expansion for NiAl, compared with J “’J(Q)

experimental data from Ref. 33. The zero of lattice paranejés
chosen to be 2.905 A in the theory and 2.886 A in the experiment
case, which correspond to 273 K.

re positive throughout the whole BZ. There is no anomalous
hermal expansion. Integration of free energies derived from
phonon spectra gives the thermal expansion shown in Fig. 8.
The excellent agreement with experimental data suggests

The free energy was evaluated at each strain state. In Figaat hoth DEPT phonons and the quasiharmonic approxima-
3 we show the thermal expansion calculated using the thregon are valid in this case.

isotropic strains. The linear thermal expansion adopts the
form from Ref. 25. T_he agreement between theoretical and 3. Complex structure—PdTi
experimental results is very good. )
Figure 4 shows the phonon free energy with different For PdTi we calculate phonon spectra for two phases, the
; i
strain. As expected, the phonon contribution to the free enloW temperatureB19" and the ambient temperatuil9
ergy is only weakly affected by volume-conserving aniso-Phase. In both cases, the equilibrium cold-curve structure is
tropic strain. Thus it is a good approximation to neglect thisd€términed for a particular pressure by relaxing internal pa-
term: a given volume-conserving strain contributes about 5962Meters and lattice constants simultaneotistyis then as-
as much as equivalent volume strain. sumed that the effect of thermal expansion on lattice-
Using the information from Figs. 3 and 4, we are able toParameter ratios and internal parameters is equivalent to that
calculate bulk modulus and shear modutsas a function  °f (n€gative pressure, such that the phonon spectrum need
of temperature. The elastic constants andc,, can there- Only be evaluated once at each volume, and the free energy
fore be obtained. The calculated results along with experigan be interpolated as a function of volume only, with the
mental data are shown in Fig. 5. The experiment shows thdf€€-Parameter relaxation done on the cold-curve structure.
cq1 Softens by about 20% when the temperature increase-ghe results for anlsotroplc deformation in tungstéig. 4
from 0 K to 2073 K whilec,, remains nearly the same. The suggest that even if the effects of pressure and thermal ex-

excellent agreement between theory and experiment suggesﬁ@ns'on on free parameters are not equivalent, the conse-

that the quasiharmonic approximation works well in this re_quept Chf”‘”ge in thermal free energy due to nonvolumetric
gime. strains will be small.

TheB19' phase has stable phonons throughout the entire
BZ [Fig. 9a)] but theB19 phasgFig. 9b)] has some imagi-
nary frequency modes: we assume that these contribute to

The phonon spectrum dB2 NiAl is characterized by the free-energy-like free particlé5 Assuming the phonons
Kohn anomalies; as a consequence, to describe the phonanthe B19' phase to remain harmonic up to and above the

2. Anomalous phonons—NiAl

FIG. 9. Phonon spectra calcu-

300 250 |, A
— g <\,\ e lated for () B19' PdTi (b) B19

- Al P N\ / AS PdTi. B19 has many soft phonon
< 4 g 150 E Q\Q b S modes which characterize the dy-
glso Elm_ Fandl SN namical instability (gray region,
p ' N | 7 A £ 79/\ ] these frequencies are actually
£ : 0§ ; imaginary. Calculations ultrasoft

% oL \ 4 pseudopotential§Ref. 32 12x 8

i % 8 mesh and 30-Ry cutoff.
0 SOy R S Y T z U X T
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4 . I . I . I . discrepancy between these arises because one concentrates
on dynamics of a particular soft mode, while the other con-
siders the static average over all modes: experimentally, the
lower of the two is expected.

(=

'
—_

IV. DISCUSSION

'
[

w
I
F, 19'Fm 9 (meV/atom)

We have calculated the thermal-expansion properties of
W, NiAl, and PdTi using the quasiharmonic approximation
— and DFPT finding that agreement with the experiment is ex-
cellent. This shows that the harmonic phonon free energy is
by far the dominant effect in thermal expansion, and that
other effects such as thermal defects, electron free energy,
coupling of phonons to lattice parameters, and anharmonic
effects due to finite atomic displacements can safely be ne-
glected.

These three materials are chosen to represent an increas-
ingly challenging test to this methodology. The accurate ther-
mal expansion in tungsten was expected on the basis of pre-

0 200 400 600 800 vious work®>* and allowed for the demonstration that
Temperature (K) anisotropic strain has only a second-order effect on the free

FIG. 10. Calculated percentage thermal expansion for PdTi, inENergy. Slm_llarly the res‘_"ts on NiAl S_hOW that f[he method
cluding theB19-B19' phase transitioiexpanded scale in lower can be applied to alloys just as effectively as W'th, elements
inser). The dotted lines show the calculated thermal expansion fofd showed that the presence of phonon anomalies also has
the thermodynamically unstable pha@419 at lowT, B19' at high little effect on thermal expansion.

T), assuming that all modes remain harmonic. The reference vol- Without these two results, the PdTi calculation would
ume is theT=0 volume forB19':30.64 & which is indistinguish- ~have been intractable, but armed with the knowledge that the
able from the equilibrium for B19: 30.64%Aand about 0.34% anisotropic temperature effect can be treated as a pressure
larger than the cold curve minimdmwhich excludes zero-point effect on the cold curve, allowing the vibrational partition
vibrations. The upper insert shows the free-energy difference befunction to be treated as a function of volume only, calcula-
tween the two phases as a function of temperature, with the phagéon and minimizations of the fullG(B;;,u,,T) becomes
transition at 140 K. This is very much larger than the estimate takenractable. In addition, implementing the previously described
from the Landau barrier heigliRef. 15. treatment of soft phonofs!’ allow us to predict the thermal
expansion of botiB19" and the dynamically stabilizeB19
phase transition, this enables us to calculate the relative fréedTi crystal, in addition to estimating the phase-transition
energies of the two phases, and determine for each temper@mperature foB19-B19'. To our knowledge, these quanti-
ture not only the lattice parameters but also which is thdies have yet to be measured experimentally and such mea-
stable phase. This gives rise to the thermal expansion showsurement will provide a sensitive test to our methods.
in Fig. 10 with a discontinuity marking the phase transition. In sum, this paper represents a significant theoretical ad-

The calculated phase-transition temperature for thevance in the type of materials whose thermal expansion can
B19-B19 phase, on the basis of equal quasiharmonic frede calculated fronab initio simulation.
energies, is 140 K. This can be compared with another esti-
mate based on treating ti&l9 phase as a barrier between  This work was carried out under Grant No. AFOSR/
equivalentB19’ variants, which barriefabout 0.0007 eV/ MURI F49620-98-1-0433. The calculations were performed
atom can continually be crossed when the temperaturen the SGI Origin 2k/3k at ARL MSRC. G.J.A. would also
reachesAE/kg=9 K in the higher-temperature phase. The like to acknowledge the Fulbright Foundation for support.
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