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First-principles thermodynamics of transition metals: W, NiAl, and PdTi

Graeme J. Ackland, Xiangyang Huang, and Karin M. Rabe
Department of Physics and Astronomy, Rutgers University, Piscataway, New Jersey 08854-8019, USA

~Received 24 July 2003; published 24 December 2003!

We apply the pseudopotential density-functional-perturbation theory approach along with the quasiharmonic
approximation to calculate the thermal expansion of tungsten and two important metallic alloys NiAl and PdTi.
We derive the theory for anisotropic crystal structures and test the approximation that the anisotropic effects of
thermal expansion are equivalent to negative pressure—this simplifies the calculation enormously for complex
structures. Throughout, we find excellent agreement with experimental results.

DOI: 10.1103/PhysRevB.68.214104 PACS number~s!: 64.70.Kb, 65.40.2b, 71.15.Nc
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I. INTRODUCTION

First-principles calculations have established an excel
record for describing the ground state properties of mater
at zero temperature over almost 20 years. More recently,
full description of the electronic structure allows for accura
calculation of phonon frequencies1 and the thermodynamic
properties derivable from them.2 These methods have bee
applied to insulating systems and elemental metals. In
paper, we extend the methodology to investigate transi
metals and compounds that have a low symmetry or pho
anomalies. Previous authors have looked at elemental m
Al, Li, Na,3 Ag,4 Cu,5 and W ~Ref. 6! and found that the
quasiharmonic approximation holds most of the way to m
ing. The quasi-harmonic approximation has also been
plied on investigation of the temperature-induced phase t
sition in tin.7 Recently, first-principles methods have be
used to study anisotropic thermal expansion in silicates.8 We
extend this work to alloys, which introduces some differe
features. As our prototype materials, we study W, NiAl, a
PdTi, which have many similarities but each of which h
aspects of peculiar interest.

NiAl is a high melting point alloy, which finds applica
tions in aerospace and turbine blade design. Its electr
structure is characterized by Kohn anomalies in the pho
spectrum,9 arising from a Fermi-surface nesting effect.
huge amount of work has been done on the system u
empirical potentials,10–14 which cannot describe the Koh
anomaly, and it is interesting to examine whether this neg
has serious structural consequences. Crystallographic
NiAl has the cubicB2 ~CsCl! crystal structure which is
stable at all temperatures. This high symmetry simplifies
electronic structure calculation enormously.

PdTi provides a sharp contrast to NiAl. It is a hig
temperature shape memory alloy, isostructural with NiAl
high temperatures in theB2 phase, but undergoing a marte
sitic phase transition to the tetragonalB19 phase at 810 K
and predicted to undergo a further transition to the mo
clinic B198 at very low temperatures.15 The dynamically sta-
bilized high-temperature phase and low-symmetry lo
temperature phase each provides a challenging test
theoretical prediction.

Tungsten is another high melting point transition metal.
addition to studying its own thermal expansion, we use t
to investigate the effects of anisotropic strain on the pho
0163-1829/2003/68~21!/214104~7!/$20.00 68 2141
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contribution to the free energy. This enables us to mak
simple test of some approximations required in the calcu
tion of PdTi.

The difference between the materials being studied
highlighted by the phonon spectra for theB2 phase: NiAl
and PdTi both adopt theB2 structure at high temperatur
while tungsten is a refractory metal and has a bcc structur
all temperatures. The bcc structure can be regarded as a
cial case ofB2 where both atoms are the same. NiAl h
phonon anomalies due to Fermi-surface nesting, whileB2
structure PdTi is dynamically stabilized: it has negative f
quency phonons~i.e., mechanically unstable! at low tem-
peratures. Such a situation leads to temperature-depen
modes, which cannot be treated within the quasiharmo
approximation and would need to be dealt with separa
either in real16 or reciprocal17 space.

The quasiharmonic approximation18 to the free energy as
sumes that all phonons can be treated as simple-harm
oscillators with a frequency dependent on the volume of
material. The static lattice energy (T50) is evaluated at a
range of volumes, and for each of these the phon
dispersion relation is calculated. The quasiharmonic con
bution to the free energy at finite temperature is then eva
ated from Bose-Einstein statistics of the phonons at a gi
volume. From this the pressure can be evaluated for all c
ditions ofT andV, giving an equation of state. Alternately i
the zero-pressure case, the relationship betweenT andV ~i.e.,
the thermal expansion! can be determined. Since larger vo
umes typically lead to lower phonon frequencies, the entro
is typically lowered by expansion. Thus larger volume~en-
tropy! is favored at higher temperatures, and thermal exp
sion occurs.

There are, of course, other contributions to thermal exp
sion in ordered alloys~antisite defect creation, vacancy cr
ation, coupling of phonons to lattice parameters, and an
monic effects due to finite atomic displacements! and it is
interesting to test that how much of the observed expans
can be attributed to quasiharmonic effects.

II. THEORY

Phonon dispersions can be evaluated using dens
functional-perturbation theory~DFPT! ~Ref. 19! and finite
displacement methods.20 Here we use the former. Previou
work on isotropic equations of state for cubic materials co
©2003 The American Physical Society04-1
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ers much of the theory, here we investigate the practical
quirements for lower-symmetry materials, in particular wh
approximations can be make to made calculations tracta

Virtually all implementations of density-functional theor
basedab initio codes take as input the unit-cell vectorsa,b
andc and atomic positions. We define a matrixB comprised
of the three unit-cell vectors:

B5~a,b,c!.

The volume of the unit cell is

V5uBu5~a3b!•c.

For a cubic material, the quasiharmonic approximat
uses the phonon frequencies calculated at different volum
obtain the free energy as a function of two variables,

F~V,T!5E~V!2kBT ln Z~V,T!, ~1!

whereE(V) is the cold curve energy at the volumeV ~i.e.,
the energy of a system with the atoms placed on their lat
sites!, kB is Boltzmann’s constant, andZ is the vibrational
partition function. We assume that for all temperatures
interest the contribution of electronic excitations
negligible—generally true for equation of states,21 but not
for transport properties such as heat conduction.

From F(V,T) one can obtain the equation of state of t
single phase of the system:

P52S dF

dVD
T

~2!

and the volume thermal expansion

aV5
1

V S dV

dTD
P

. ~3!

These can be evaluated for a given structure regardles
whether an alternate phase of lower Gibbs free energy ex

For noncubic materials, the free energy is a function of
independent cell parameters, and the linear thermal ex
sion is a tensor quantity. Calculating the free energy acr
such a multidimensional space is impractical, so we exam
a further approximation, that the effect of increasing te
perature is equivalent to a negative pressure.22 At each pres-
sure value, the internal coordinates must be rerelaxed to
equilibrium position within the unit cell, since the phono
spectrum is only well defined by an expansion about such
equilibrium.

Thus, we proceed as follows:
~1! Evaluate the equilibrium structure atP50, by mini-

mizing U(a,b,c,$ui%)[U0 whereui are the internal atomic
coordinates.

~2! Evaluate the force constants and hence the phon
dispersion relation for the relaxed structure, and the parti
function Z(V,T) for these oscillators.V5uBu5(a3b)•c.

~3! Evaluate Helmholtz free energy at a range of tempe
turesF(V,T)5U02kBT ln Z(V,T).
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~4! Evaluate the equilibrium structure atP, T50 by mini-
mizing enthalpyU(a,b,c,$ui%)1PV[H0(V), whereui are
the internal atomic coordinates.

~5! Evaluate the phonon-dispersion relation for this
laxed structure, and the partition functionZ(V,T) for these
oscillators.

~6! Evaluate Helmholtz free energy at fixedV for a range
of temperaturesF(V,T)5U(a,b,c,$ui%)2kBT ln Z(V,T).

~7! Repeat steps 4, 5, and 6 for a range of positive a
negative pressures.

Once a coarse grid ofV points is generated~for thermal
expansion, as few as three different pressures suffices!, a
finer grid can be generated without further expensiveab ini-
tio calculation by interpolating force constants.21 A dense
grid of T points can easily be generated at a givenV. From
F(V,T) it is straightforward to transform toG(P,T)
5F(V,T)2V(dF/dV)T .

In terms of speed and accuracy there is little to cho
between DFPT or finite displacements: the former involv
calculation of second derivatives and the latter requires la
supercells. We note that for finite displacements, once
eigenvectors are calculated atP50, a single calculation of
restoring forces with all atoms displaced suffices at ot
volumes.2

The allowed occupation states of each phonon mode
frequencyv areen(v)5(n11/2)\v, wheren is the number
of phononspopulating that mode. The canonical partitio
function is therefore

j~v![ (
n50

`

e2ben(v)5
1

2sinh~\v/2kBT!
. ~4!

The total partition function is then

Z5Pvj~v!. ~5!

FIG. 1. Phonon spectra calculated for bcc W ata052.905 Å,
using thePWSCFand PHONON code~Ref. 26! with DFPT ~Ref. 27!
and a norm conserving pseudopotential. The electronic wave fu
tions were represented in a plane-wave basis set with a kin
energy cutoff of 32 Ry. The BZ integrations were carried out by
Hermite-Gaussian smearing technique~Ref. 28! using a 16316
316 k-point mesh. Phonon calculations are exact on meshes w
are commensurate with theq-point mesh: a 83838 mesh for tung-
sten. Other phonons come from dynamical matrices calculated
ing force constants determined by Fourier transform of original d
~Ref. 27!.
4-2
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FIG. 2. @001# and@100# branches of the tung-
sten dispersion relation for ~a! volume-
conserving strains of 4% on~001! ~b! bulk strains
of 1% and 2%. The key observation is that fo
volume-conserving shear some frequencies
crease while others decrease, meanwhile for v
ume expansion all frequencies decrease. Thus
the former case some compensation occurs
keep the phonon free-energy constant, while
the latter case all modes contribute to increa
free energy. Calculation details are as for Fig.
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For calculating thermal expansion under constant~zero!
pressure boundary condition, the essential quantity is the
energy. The mean vibrational free energy

2kBT ln Z~V,T!52kBTE
0

`

g~v,V!ln@j~v,T!#dv, ~6!

introducing the phonon density of statesg(v,V) to make the
dependence of density of states on volume explicit.

Phonon frequencies are evaluated at a dense setq
points in the first Brillouin zone~BZ! using the force con-
stant matrix obtained by fourier transform of the ‘‘exac
DFPT frequencies. The density of phonon states is calcul
by integration using the tetrahedron method.23 This provides
Z(V,T) required in step~2! above.

The structure obtained at a particular temperature
pressure can be found by minimizing the Gibbs free ene
with respect to the lattice vectors and internal coordinate
the atoms, ensuring that the solution is a minimum in
combined space ofBi j anduk .24

FIG. 3. Calculated linear thermal expansion for tungsten, co
pared with experimental data from Ref. 29.a0 represents the room
temperature volume.
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dG

duk
50. ~7!

These derivatives can be split into cold curve@H(B,uk)#
and phonon (Gphon) contributions.

To make calculations for complex structures tractable,
make the assumption that the phonon part of the free en
is a function of volumeonly, and is independent ofuk . We
examine this approximation in the case of anisotropic de
mation of tungsten and find it to be good. Intuitively, this c
be understood if the force constants vary linearly with se
ration: we might expect that volume-conserving shears
changes inuk will stiffen some force constants and weake
others, raising some frequencies and lowering others to g
an overall cancellation in the small strain limit. By contra
volume increases weaken all force constants and give a
tematic decrease in mean frequency. Hence the condit
above become

-
FIG. 4. Graphs of tungsten phonon free energy against temp

ture for 15 different strain conditions, plotted relative toG(V,T
50) for V at the cold-curve minimum. The effect of volume stra
can be seen to be about ten times greater than that of shear s
4-3
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]H

]Bi j
U

uk

50, ~8!

]Gphon

]V U
uk

50, ~9!

]H

]uk
U

V

50. ~10!

III. RESULTS

1. Anisotropic strain—Tungsten

We use tungsten as a benchmark to investigate the ef
of anisotropic strain on the phonon contribution to the fr
energy. Tungsten has a bcc crystal structure. The calcula
were done with the generalized gradient approximat
~GGA! and the equilibrium lattice parameter was compu
to be 2.905 Å, comparable to the experimental result
2.887 Å. Phonon calculations were done at three differ

FIG. 5. Calculated elastic constantsc11 and c12 for tungsten,
compared with experimental data from Ref. 30. The constant v
of c12 is well reproduced: it arises from cancellation of a number
terms, and is not generally observed in transition metals.
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volumes:V0 , 1.013V0, and 1.023V0. At each volume, pho-
non dispersion was done with the bcc structure and tetra
nal strained structures with four differentc/a ratios, i.e. 0.96,
0.98, 1.02, and 1.04.

We calculated phonon density of states at 15 differ
structures corresponding to tetragonal strains (exx ; eyy

5ezz; exy5eyz5ezx50). The phonon dispersion of bc
tungsten at equilibrium lattice parameter along with expe
mental results is shown in Fig. 1, while the phonon disp
sions under tetragonal strains and a larger volume are sh
in Figs. 2~a! and 2~b!, respectively. The calculated phono
frequencies are in good agreement with experiment~Fig. 1!
and with a recent calculation.6 Figures 2~a! and 2~b! show
that compared to volumetric strain, volume-conserving sh
strains have negligible contribution to phonon free energ

e
f

FIG. 6. Phonon-dispersion relations along the acoustic~110!
branches in NiAl, calculated with increasingq-point density. Lines
are calculated data, taken from force constants deduced from
rier transforming thev(q) data. Labels indicate the number ofq
points used in the DFPT calculation. Symbols indicate experime
data taken from Ref. 31 for a composition of Ni50Al50. Calculations
use thePWSCF and PHONON ~Ref. 26! code and DFPT~Ref. 27!
using an ultrasoft pseudopotentials for Ni~Ref. 32!, and a norm
conserving pseudopotential for Al. The electronic wave functio
were represented in a plane-wave basis set with a kinetic en
cutoff of 30 Ry. The BZ integrations28 used 12312312 mesh for
NiAl, giving exact phonon on a 63636 mesh.
-

r

l

FIG. 7. ~a! Phonon spectra cal
culated for B2 NiAl, solid lines
are at a lattice parameter ofa0

52.906 Å ~GGA theoretical lat-
tice constant! the dotted lines at a
lattice of 1.02a0. All phonons
have higher frequencies unde
compression.~b! Calculated mode
Grüneisen parameters of NiA
along symmetry lines of simple
cubic BZ at equilibrium volume.
4-4
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The free energy was evaluated at each strain state. In
3 we show the thermal expansion calculated using the th
isotropic strains. The linear thermal expansion adopts
form from Ref. 25. The agreement between theoretical
experimental results is very good.

Figure 4 shows the phonon free energy with differe
strain. As expected, the phonon contribution to the free
ergy is only weakly affected by volume-conserving anis
tropic strain. Thus it is a good approximation to neglect t
term: a given volume-conserving strain contributes about
as much as equivalent volume strain.

Using the information from Figs. 3 and 4, we are able
calculate bulk modulus and shear modulusc8 as a function
of temperature. The elastic constantsc11 and c12 can there-
fore be obtained. The calculated results along with exp
mental data are shown in Fig. 5. The experiment shows
c11 softens by about 20% when the temperature increa
from 0 K to 2073 K whilec12 remains nearly the same. Th
excellent agreement between theory and experiment sug
that the quasiharmonic approximation works well in this
gime.

2. Anomalous phonons—NiAl

The phonon spectrum ofB2 NiAl is characterized by
Kohn anomalies; as a consequence, to describe the ph

FIG. 8. Calculated thermal expansion for NiAl, compared w
experimental data from Ref. 33. The zero of lattice parametera0 is
chosen to be 2.905 Å in the theory and 2.886 Å in the experime
case, which correspond to 273 K.
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dispersion properly requires a thorough DFPTq-point sam-
pling or ~equivalently! large supercells in direct space met
ods. In Fig. 6, we show the convergence of the result
experimental observation withq-point sampling density.

Despite the anomalies, we find that the thermodynam
properties are almost independent ofq-point sampling aside
from a rigid shift of the free energy. This does not affect t
thermal expansion, but stabilizes the structure sligh
against alternate structures because of the increased en
of the low-frequency phonons.

The entire calculated phonon-dispersion relations at
different volumes are shown in Fig. 7~a!. All phonon fre-
quencies increase under compression. Hence the mode G¨n-
eisen parametersg j (q) shown in Fig. 7~b!, and defined as

g j~q!52
]v j~q!

]V

V

v j~q!
,

are positive throughout the whole BZ. There is no anomal
thermal expansion. Integration of free energies derived fr
phonon spectra gives the thermal expansion shown in Fig
The excellent agreement with experimental data sugg
that both DFPT phonons and the quasiharmonic approxi
tion are valid in this case.

3. Complex structure—PdTi

For PdTi we calculate phonon spectra for two phases,
low temperatureB198 and the ambient temperatureB19
phase. In both cases, the equilibrium cold-curve structur
determined for a particular pressure by relaxing internal
rameters and lattice constants simultaneously.15 It is then as-
sumed that the effect of thermal expansion on latti
parameter ratios and internal parameters is equivalent to
of ~negative! pressure, such that the phonon spectrum n
only be evaluated once at each volume, and the free en
can be interpolated as a function of volume only, with t
free-parameter relaxation done on the cold-curve struct
The results for anisotropic deformation in tungsten~Fig. 4!
suggest that even if the effects of pressure and thermal
pansion on free parameters are not equivalent, the co
quent change in thermal free energy due to nonvolume
strains will be small.

The B198 phase has stable phonons throughout the en
BZ @Fig. 9~a!# but theB19 phase@Fig. 9~b!# has some imagi-
nary frequency modes: we assume that these contribut
the free-energy-like free particles.21 Assuming the phonons
in the B198 phase to remain harmonic up to and above

al
-

-

ly
FIG. 9. Phonon spectra calcu
lated for ~a! B198 PdTi ~b! B19
PdTi. B19 has many soft phonon
modes which characterize the dy
namical instability ~gray region,
these frequencies are actual
imaginary!. Calculations ultrasoft
pseudopotentials~Ref. 32! 1238
38 mesh and 30-Ry cutoff.
4-5
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phase transition, this enables us to calculate the relative
energies of the two phases, and determine for each temp
ture not only the lattice parameters but also which is
stable phase. This gives rise to the thermal expansion sh
in Fig. 10 with a discontinuity marking the phase transitio

The calculated phase-transition temperature for
B19-B198 phase, on the basis of equal quasiharmonic f
energies, is 140 K. This can be compared with another e
mate based on treating theB19 phase as a barrier betwee
equivalentB198 variants, which barrier~about 0.0007 eV/
atom! can continually be crossed when the temperat
reachesDE/kB59 K in the higher-temperature phase. T

FIG. 10. Calculated percentage thermal expansion for PdTi
cluding theB19-B198 phase transition~expanded scale in lowe
insert!. The dotted lines show the calculated thermal expansion
the thermodynamically unstable phase~B19 at lowT, B198 at high
T), assuming that all modes remain harmonic. The reference
ume is theT50 volume forB198:30.64 Å3 which is indistinguish-
able from the equilibrium for B19: 30.64 Å3 and about 0.34%
larger than the cold curve minimum15 which excludes zero-poin
vibrations. The upper insert shows the free-energy difference
tween the two phases as a function of temperature, with the p
transition at 140 K. This is very much larger than the estimate ta
from the Landau barrier height~Ref. 15!.
ev

. B
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discrepancy between these arises because one concen
on dynamics of a particular soft mode, while the other co
siders the static average over all modes: experimentally,
lower of the two is expected.

IV. DISCUSSION

We have calculated the thermal-expansion properties
W, NiAl, and PdTi using the quasiharmonic approximati
and DFPT finding that agreement with the experiment is
cellent. This shows that the harmonic phonon free energ
by far the dominant effect in thermal expansion, and t
other effects such as thermal defects, electron free ene
coupling of phonons to lattice parameters, and anharmo
effects due to finite atomic displacements can safely be
glected.

These three materials are chosen to represent an inc
ingly challenging test to this methodology. The accurate th
mal expansion in tungsten was expected on the basis of
vious work,3,4 and allowed for the demonstration th
anisotropic strain has only a second-order effect on the
energy. Similarly the results on NiAl show that the meth
can be applied to alloys just as effectively as with eleme
and showed that the presence of phonon anomalies also
little effect on thermal expansion.

Without these two results, the PdTi calculation wou
have been intractable, but armed with the knowledge that
anisotropic temperature effect can be treated as a pres
effect on the cold curve, allowing the vibrational partitio
function to be treated as a function of volume only, calcu
tion and minimizations of the fullG(Bi j ,uk ,T) becomes
tractable. In addition, implementing the previously describ
treatment of soft phonons21,17allow us to predict the therma
expansion of bothB198 and the dynamically stabilizedB19
PdTi crystal, in addition to estimating the phase-transit
temperature forB19-B198. To our knowledge, these quant
ties have yet to be measured experimentally and such m
surement will provide a sensitive test to our methods.

In sum, this paper represents a significant theoretical
vance in the type of materials whose thermal expansion
be calculated fromab initio simulation.

This work was carried out under Grant No. AFOS
MURI F49620-98-1-0433. The calculations were perform
on the SGI Origin 2k/3k at ARL MSRC. G.J.A. would als
like to acknowledge the Fulbright Foundation for support
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