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Spinon deconfinement above a finite energy gap in two-dimensional quantum
Heisenberg antiferromagnets

G. Baskaran
Institute of Mathematical Sciences, CIT Campus, Madras 600113, India

~Received 10 September 2003; published 23 December 2003!

The familiar spin-12 quantum Heisenberg antiferromanget in a two-dimensional~2D! square lattice is shown,
within the nonlinear sigma model approximations, to be another state of matter that has excitations with
fractional quantum numbers above a finite energy gap. The 1-skyrmion with an energy'2pJ is shown to be
made of two ‘‘deconfined spinons’’ or ‘‘O~3! vortices.’’ The many skyrmion operator and the wave functions
that we have found are strikingly similar to quantum Hall quasiparticle operators and wave functions. We also
predict the presence of finite energy ‘‘spin-S spinon’’ for a general spinS Heisenberg antiferromagnets in 2D.
Some consequences are briefly discussed.
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Neutral spin-12 fermionic excitations,1 now called
‘‘spinons’’2 were conjectured to be present in the quant
spin liquid states of spin-half two-dimensional~2D! Heisen-
berg antiferromagnets, by Anderson in 1987. While this w
readily shown to be present in the resonating valence b
~RVB! mean-field analysis3 of the spin liquid vacua and
short-range RVB states,4 their presence as a finite energ
deconfined excitation in the ordered antiferromagnetic va
has remained unclear.

A conjecture by Dzhyaloshinskii, Wiegman, an
Polyakov5 and the early work of Wilczek and Zee5 suggested
statistics transmutation of skyrmion in ordered spin1

2

Heisenberg antiferromagnets in 2D. Anderson, John, Dou
Liang, and the present author6 however conjectured that fi
nite energy ‘‘half-skyrmion’’ or ‘‘meron’’7 is the ‘‘decon-
fined’’ spinons based on some heuristic arguments.

Recent inelastic neutron-scattering results covering
large energy and momentum range in the insulat
cuprates,8 and also Raman9 and infrared measurement
make the search for any signatures of spinons at low
high energies very meaningful and urgent.

The aim of the present paper is to study the spectrum
quantum Heisenberg antiferromagnet in 2D and look for
confined spinons above a finite energy gap, within the O~3!
nonlinear sigma~NLS! model approach. We look carefully a
Belavin-Polyakov10 n-skyrmion static classical solutions.
The mathematical structure of then-skyrmion solution in one
particular parametrization readily suggests that each s
mion is made of 2n constituent point particles.7,11,12

To understand the quantum dynamics of these constit
particles we construct the skyrmion operator for our spin1

2

Heisenberg antiferromagnet and discover that the crea
operator for these constituent particles has mathema
structure similar to Laughlin’s quasihole and quasiparti
operators of quantum Hall effect. By a Berry phase analy
we show their spin to be half. Asymptotic form of the mod
lus of then-skyrmion wave function in terms of collectiv
coordinates is also found.

Our starting point is the spin-S quantum Heisenberg ant
ferromagnet in a 2D square lattice with nearest-neighbor
teractions. Following the standard derivation13 one arrives at
the O~3! NLS model action along with the important lattic
sum of Berry phases:
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2 E dxdydtS [ ­mn(r )] 22
1

vs
2

[ ] tn(r )] 2D 1 iSB@n#.

~1!

Herem5x,y andn(r ) is a normalized@n(r )•n(r )51# sub-
lattice magnetization vector.

The coefficientr0'J for S5 1
2 case, andvs is the spin

wave velocity. The Berry phase term is a lattice sum:

SB@n#52pS(
m,n

~21! umu1unuVo~nm,n!. ~2!

Here the integers (m,n) stand for a lattice site, and
Vo(nm,n)5*dtdu/8pnm.n•(] tnm.n3]unm.n) is the single-
site Berry phase.

Inspired by the conjecture of Ref. 6 we look at the fin
energy topological solutions in our search for spinons. T
multiskyrmion solutions found by Belavin and Polyakov10

are extended objects with nontrivial topology. Their Eucli
ean solutions of the O~3! model in~111!D become the time-
independent classical solutions of our O~3! model in ~2
11!D.

An n-skyrmion solution is given by

w~z!5)
i 51

n S z2ai

z2bi
D . ~3!

Here z5x1 iy . The n complex coordinatesai and bi char-
acterize the skyrmion solution. The functionw(z) and
the sublattice magnetization n(r )[@sinf(r )cosu(r ),
sinf(r )sinu(r ),cosf(r )] are related by

w~z![cot
f~r !

2
eiu(r ). ~4!

The n-antiskyrmion solutions are obtained by replacingz by
z̄. In our convention the spins at infinityn(`)5(1,0,0) for
the ground as well as the skyrmion/antiskyrmion states, si
w(`)51.

The energy of then-skyrmion solution is given by

Ecl
n 54pr0n, ~5!
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a constant independent of the skyrmion coordinates$ai ,bi%
This means that at the classical level then-skyrmions do not
interact; thus the set$ai ,bi% represents the 2n ‘‘zero-mode’’
~two-dimensionall! coordinates of then-skyrmion. We will
call a andb the coordinates of the 2n constituent particles o
an n-skyrmion.

Physically the coordinatesa andb represent the ‘‘centers’
of local vortex distortions of thexy component of the three
vector fieldn. However, unlike the6 vortex pair of anxy
model, there is a freedom in the choice of the positions of
vortex pair; for a 1-skyrmion any two diametrically oppos
points on the circleuz2(a1b)/2u5u(a2b)/2u can be chosen
as centers of the vortex pair, with the local vortex distorti
occurring in appropriately rotated 2D plane in the spin spa
It is remarkable that the extended spin twists of
1-skyrmion, which are more of a ‘‘ringlike’’ distortion of the
n field than two point vortices, are characterized by just t
points a and b, which we will later elevate to the level o
particle degrees of freedom in the plane. We say that
n-skyrmion is made of 2n ‘‘O ~3! vortices.’’

It should be remarked that the Belavin-Polyakov ex
solutions describe either skyrmions or antiskyrmions. No
act solution containing both skyrmions and antiskyrmio
exists. In approximate solutions containing 1-skyrmion a
1-antiskyrmion there is a dipolelike interaction between th
even at the classical level.7

The two O~3! vortices of a 1-skyrmion state are finit
energy solutions and they have twisted their way out of
lnua2bu energy dependence, characteristic ofxy vortices in
2D. We will see later that quantum fluctuations produce
pulsion between the two O~3! vortices of a 1-skyrmion. Fur-
ther, once anxy anisotropy is introduced the O~3! vortices
degenerate to twoxy vortices with an energy diverging a
(Jx2Jz)/Jzlnua2bu as ua2bu→`.

An n-skyrmion/antiskyrmion carries a topological ‘‘quan
tum number’’ or a ‘‘winding number’’6n, the degree of the
map (x,y)→S2 of the field n(x,y). Here S2 is the order
parameter space. The ‘‘topological density’’q(r ) is given by

q~r !5
1

8p
n~r !•@]xn~r !3]yn~r !#5

@]zw] z̄w̄2] z̄w]zw̄#

p~11uw~z!u2!2
,

~6!

and*dxdyq(r )5n is the winding number.
To keep comparison with other formalisms, the above

pological density is related to the U~1! magnetic flux of the
RVB gauge field:14

Si•~Sj3Sk![ i ~t i j t jktki2t iktk jt j i !;ei rArvb•dl, ~7!

wheret i j 5(scis
† cj s andni↑1ni↓51.

To understand the quantum dynamics of the skyrmion
citation and its constituent particles for our spin-1

2 Heisen-
berg model on the square lattice, we first construct the
erator for the 1-skyrmion on the lattice.~No exact classica
solution is available for the ‘‘lattice version’’ of the NLS
model in 2D; whenua2bu@1, in units of the lattice param
eter, the continuum skyrmion solution should be a good
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proximation to the lattice solution.! The spin-wave ground
state of our spin-12 Heisenberg antiferromagnet is

Csw@z,z̄#;~21!NAexpH 2(
i , j

f ~ uzi2zj u!J , ~8!

where zi[mi1 ini stands for the lattice coordinates of th
N0/2 down-spin electrons in the square lattice containingN0
sites. This is ahard-core boson~or equivalentlysz) represen-
tation of the spin-wave ground state, where the Jastrow
tor f (uzi2zj u);1/uzi2zj u arises from the zero-point quan
tum fluctuations of the gapless spin-wave modes of
ordered antiferromagnet and (21)NA is the Marshall sign
factor, whereNA counts the number of down spins on su
latticeA. The off-diagonal long-range order exhibited by th
above N0/2 hard-core boson wave function represents
long-range antiferromagnetic order, with a finite sublatt
magnetizationm, lying in the xy plane. We can fix the di-
rection ofm in thexy plane by giving an additional coheren
superposition with respect toStotal

z ~the total number of hard
core bosons! in the above wave function.15

After some algebra the coordinate representation of
1-skyrmion operator is shown to be

ÔSk
(1)~a,b![)

i 51

N0/2 S zi2a

zi2bD . ~9!

While w(z) of Eq. ~3! represents the distortion of the subla
tice magnetization in space, Eq.~9! provides the operato
that produces the distortion. To prove the above, it is con
nient to put the sublattice magnetization along the1 x axis
in the ground state and use thesz representation,

ÔSk
(1)~a,b![) i 51

N0 S zi2a

zi2bD si
z
11/2

.

@Note, that unlike Eq.~9!, herezi ’s run over all sites.#
This is an important result, which shows that

1-skyrmion operator actually creates one Laughlin16 quasi-
hole and one quasielectron-like object, when acting on
hard-core Bose fluid. Similarly ann-skyrmion state can be
created by a product ofn of Laughlin quasiholes andn of
quasi-electron-like operators. The operator for antiskyrm
is obtained by replacing$zi% by $z̄i% in Eq. ~9!. Our quasi-
hole operator exactly coincides with Kalmayer-Laugh
spinon operator.16

Since at the classical level, thea andb coordinates of the
n-skyrmion solution represent the zero-mode coordinate
is legitimate to elevate them to the level of new low-ener
collective coordinates or ‘‘particle degrees of freedom,’’12 as
in the case of Laughlin’s quasiholes and quasielectrons.

While thea andb ‘‘quasiparticles’’@O~3! vortices# do not
have any interaction at a classical level, the modified qu
tum fluctuations in the presence of a skyrmion can indu
interactions among the constituent particles. The induced
teractionVqu(a,b) is obtained from the difference in zero
point energy of the spin-wave modes in the presence\vm

(a,b)

and absence\va
0 of a 1-skyrmion:
9-2
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Vqu~a,b![
1

2 (
m

\vm
(a,b)2

1

2 (
a

\va
0 . ~10!

Using the method of Rodriguez17and also Marino,18 who did
not use the constituent particle interpretation, we have ca
lated the induced interaction between ana and b particles.
We find that thea andb particles always repel. It is energet
cally advantageous for the constituent particles to be i
nitely apart and reduce the zero-point fluctuation energy
particular the quantum fluctuation corrected energy o
1-skyrmion state is

Equ
n51~ ua2bu→0!'4pJ,

Equ
n51~ ua2bu→`!'2pJ.

This proves that the two constituent particles are indeed
confined.

I have obtained an asymptotically exactmodulus of the
wave functionof the ground state of then-skyrmion state, for
large separation of thea andb coordinates as

uCn@a,b#u;)
i , j

uai2aj uubi2bj u)
i , j

uai2bj u21. ~11!

The method I have devised involves expressing the path
tegral for vacuum to vacuum amplitude in a way that giv
the desired wave function in terms of the Jacobian of tra
formation from the functionw(z) to the zero-mode coordi
nates. A plasma analogy shows that thea andb particles are
indeed unbound, giving another proof for the deconfinem
of the a andb particles in the skyrmion state.

The spin of a skyrmion or the constituent O~3! vortices
and their exchange statistics are rather ill defined in view
the large quantum fluctuation contained in the spin-wa
ground state. The ‘‘mathematically sharp’’ point particlesa
and b are extended physical objects with power-law fo
factors.~This is similar to the case19 of vortices in 2D super-
fluid 4He). The integrated missing or excess density aro
a vortex gives thez component of the spin of thea and b
particles. This calculation turns out to be hard with our ha
core Bose fluid. So we take a Berry phase approach.

In our Berry phase analysis the spin of the constitu
particle or the O~3! vortices appears as a ‘‘chain anomaly
We consider a 1-skyrmion solution and analyze the lat
sum of the Berry phases under a global rotation of all
spins through 2p about x axis, the direction of sublattice
magnetization at infinity. If the spin projections of the co
stituent particle along thex axis aresa and sb , the corre-
sponding lattice sum of Berry phases should contrib
2psa and 2psb for the a and b particles in a spatially
separated fashion.

We find an interesting phenomenon which we call a ch
anomaly. We group, following Haldane,13 the square lattice
sum of Berry phases into sums over chains, running para
to thex axis:

SB52pS(
n

~21!nVn
1d , ~12!
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where thenth chain Berry phase is given by the sum

Vn
1d[ (

m52N, . . . ,N21
~2 !mVo~nm,n!

5E dxdt

8p
n~x,n;t !•@]xn~x,n;t !3] tn~x,n;t !#.

~13!

The chain Berry phase counts the winding number of m
(x,t)→S2 of the fieldn(x,n;t) for nth chain.

We choose the length of our lattice along thex axis to be
2N, whereN is an odd integer. For convenience we choo
(0,0) to be the center of the square lattice and the two s
mion coordinates to be the lattice sites,a5(m,o) and b
5(2m,0) on thex axis at time t50 and T. Our global
rotation amounts to giving the following time dependen
a(t)5mei2pt/T andb(t)52mei2pt/T to the constituent par-
ticle coordinates.

During the time evolution, the spin fieldn(x,n;t) of the
1-skyrmion state of any chainn attempts to wrap theS2

sphere. All, except thex-axis chain (n50), fail to wrap the
S2 sphere completely. They all leave a hole, as shown in F
1, making the winding number~Berry phase! identically
zero. Thex axis chain just manages to wrap theS2 sphere,
once for the chain sum2N, . . . ,21 and again in the oppo
site sense for the chain sum 0,1, . . . ,N21, thereby contrib-
uting a phase ofp for the left half and2p for the right half
of the chain. We identify these two phases, which arise p
dominantly from thea-vortex region andb-vortex region,
with the spin-12 Berry phases ofa andb particles.

The lattice sum of Berry phases can be grouped in m
different ways andwe always find one singular chainpassing
through two diametrically opposite points of the circleuz
2a1b/2u5ua2b/2u, of our 1-skyrmion solution. The two
ends of the chain either close on themselves or go of
infinity. The spin fieldn for these singular chains traces

FIG. 1. The ‘‘hole’’ in S2 of the map (x,t)→S2 of the field
n(x,n;t) for a nÞ0 chain. The hole just vanishes for then50
chain; inset shows itsn(x,0;t) at t50.
9-3
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closed curve inS2 connecting two antipodal points at an
given time; it undergoes‘‘ p-twist’’ twice, corresponding to
the presence of two spinons. For example, the circleuz2a
1b/2u5ua2b/2u itself is a singular chain, for which then
field traces a great circle onS2 at any given time.

In spin-12 Heisenberg chain eachp twist of n field in
space corresponds to one spinon.20 In a sense,in the
1-skyrmion configuration a ‘‘1D-chain’’ or a ‘‘string’’ con-
taining two spinons is embedded in the 2D plane in an ir
ducible and degenerate fashion.

Our chain anomaly is missed if we use Haldan
argument13 for the calculation of the Berry phase. Halda
suggested that if then(x,y;t) field is continuous and non
singular ~as it is for the case forn-skyrmion solution!, the
chain Berry phases should be all identical and as a resul
staggered sum should be identically zero, for an even n
ber of chains. However, we find that our singular chain c
taining thea andb coordinate is an exception to this and
contributes a Berry phase ofp and2p to the two particles
a andb.

The two O~3! vortices or the two spinons of a 1-skyrmio
state, by the argument given above, carry spin half pro
tions of value 1

2 and 2 1
2 along thex axis. In addition the

spinons carry11 chirality quantum number because they a
constituent particles ofa 1 1-skyrmion state. Thus a spino
in addition to a spin quantum number carries a61 chirality
quantum number. As the antiferromagnetically orde
ground state has zero chirality, the finite energy skyrm
an

21240
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states are chiral doublets. It should be interesting to look
this degeneracy in the excited states in numerical studie
finite systems. This degeneracy is also reminiscent of
degeneracy of the spinon states in the 1D Haldane-Sha
model arising from the Yangian symmetry.

Our analysis goes through for any spin. In general for
spin-S square lattice Heisenberg model we get deconfin
spin-S spinons or the O~3! vortices.

The spinon deconfinement that we have found has sev
interesting consequences which we hope to discuss in
future: ~i! suggests a way to produce charge 2e skyrmions to
get superconductivity in the doped Mott insulator,~ii ! as the
energy of a deconfined spinon'pJ, its possible signature a
the top of the spin-wave band as well as in the infrared a
two magnon Raman measurements,~iii ! short-range RVB
state viewed as the condensation of skyrmion and antis
mion in the ground state; chiral symmetry broken Kalmay
Laughlin-like states as condensation of unequal density
skyrmion and antiskyrmion, and~iv! consequence of ou
present picture to skyrmion doping in quantum Hall ferr
magnets.

Our identification of O~3! vortices as spinons and the
deconfinement in an ordered antiferromagnet is a non-tri
result. This is missed in approximate treatments,21 where cer-
tain U~1! vortices are identified with spinons, which are co
fined by linear potential in the ordered phase.

I wish to thank R. Shankar for discussions and M.
Silva Neto for bringing Ref. 18 to my attention.
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