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Spinon deconfinement above a finite energy gap in two-dimensional quantum
Heisenberg antiferromagnets
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The familiar spin% guantum Heisenberg antiferromanget in a two-dimensiial square lattice is shown,
within the nonlinear sigma model approximations, to be another state of matter that has excitations with
fractional quantum numbers above a finite energy gap. The 1-skyrmion with an ea@rgy is shown to be
made of two “deconfined spinons” or “@) vortices.” The many skyrmion operator and the wave functions
that we have found are strikingly similar to quantum Hall quasiparticle operators and wave functions. We also
predict the presence of finite energy “sgispinon” for a general spits Heisenberg antiferromagnets in 2D.
Some consequences are briefly discussed.
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Neutral spins fermionic excitationd, now called P 1
“spinons”? were conjectured to be present in the quantum S= -2 dxdyd( [d,n(r)]*~ —2[,9tn(r)]2 +iSg[n].
spin liquid states of spin-half two-dimension@D) Heisen- 2 Us
berg antiferromagnets, by Anderson in 1987. While this was (1)
readily shown to be presgsnt in the resonating valence bon
(RVB) mean-field analysrsof the spin liquid vacua and . o
short-range RVB statéstheir presence as a finite energy lattice magngt;zatmn vector. 3 . :
deconfined excitation in the ordered antiferromagnetic vacua The coeff|C|entpO~J for S=3 case, and)s_ls the spin
has remained unclear. wave velocity. The Berry phase term is a lattice sum:
A conjecture by Dzhyaloshinskii, Wiegman, and
Polyal_<0\? and the early work of Wilczek and Z%euggeste_d Sg[n]=2mSY, (— 1)\m\+|n\90(nmyn)_ 2
statistics transmutation of skyrmion in ordered spin- mn
Heisenberg antiferromagne%s in 2D. Anderson, John, Douco
Lian nd the presen wever conj r hat fi- ; ;
ni?e %nzrgyt“ﬁailjf-ils(?/rr;ﬁ)unt” %“ro“rﬁefon?’? ijse(t:;luee‘%écg;- Q.O(nmv”):fdtdwswnm-”'wtnm-“xaunm-”) is the single-
fined” spinons based on some heuristic arguments. site Berry phase. _ -
Recent inelastic neutron-scattering results covering a 'NSpired by the conjecture of Ref. 6 we look at the finite
large energy and momentum range in the insulatingn€rgy top_ologlcal _solut|0ns in our searph for spinons. The
cuprate$ and also Ramdhand infrared measurements, Multiskyrmion solutions found by Belavin and PolyakBv
make the search for any Signatures of Spinons at low andgl€ extended ObJeCtS with nontrivial tOpO'Ogy. Their Euclid-
high energies very meaningful and urgent. ean solutions of the @) model in(1+1)D become the time-
The aim of the present paper is to study the spectrum oihdependent classical solutions of our3D model in (2
qguantum Heisenberg antiferromagnet in 2D and look for de<+1)D.
confined spinons above a finite energy gap, within ttg) O An n-skyrmion solution is given by
nonlinear sigmdNLS) model approach. We look carefully at

ﬁere,uzx,y andn(r) is a normalizedn(r)-n(r)=1] sub-

}-’|ere the integers nj,n) stand for a lattice site, and

Belavin-Polyako¥® n-skyrmion static classical solutions " (z—a
The mathematical structure of theskyrmion solution in one w(z)= |H:L 7—b. | )
particular parametrization readily suggests that each skyr- '
mion is made of & constituent point particles!*2 Herez=x+iy. Then complex coordinates; andb; char-

To understand the quantum dynamics of these constituemcterize the skyrmion solution. The function(z) and
particles we construct the skyrmion operator for our spin- the  sublattice magnetization n(r)=[sin¢(r)cosé(r),
Heisenberg antiferromagnet and discover that the creatiosin(r)siné(r),cose(r)] are related by
operator for these constituent particles has mathematical
structure similar to Laughlin’s quasihole and quasiparticle W(Z)Ecot@e‘ o(r)
operators of quantum Hall effect. By a Berry phase analysis 2 '

we show their spin to be half. Asymptotic form of the modu- i , ) ) )
lus of then-skyrmion wave function in terms of collective | N€n-antiskyrmion solutions are obtained by replacinby

coordinates is also found. z. In our convention the spins at infinity() =(1,0,0) for
Our starting point is the spiB-quantum Heisenberg anti- the ground as well as the skyrmion/antiskyrmion states, since
ferromagnet in a 2D square lattice with nearest-neighbor inw(*)=1.

4

teractions. Following the standard derivafidone arrives at The energy of the-skyrmion solution is given by
the O3) NLS model action along with the important lattice N
sum of Berry phases: Eci=4mpon, )
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a constant independent of the skyrmion coordindggsb;} proximation to the lattice solutionThe spin-wave ground
This means that at the classical level thekyrmions do not state of our spirs Heisenberg antiferromagnet is

interact; thus the sdf; ,b;} represents ther2“zero-mode”

(two-dimensiona)l coordinates of than-skyrmion. We will —

call a andb the coordinates of ther2constituent particles of Ysulz,2]~(~ 1)NAeXp[ - ;] f(lz _Zi|)] , 8
an n-skyrmion.

Physically the coordinatesandb represent the “centers” wherez,=m;+in; stands for the lattice coordinates of the
of local vortex distortions of th&y component of the three- Ny/2 down-spin electrons in the square lattice contairiiyg
vector fieldn. However, unlike thet vortex pair of anxy  sites. This is dard-core bosorior equivalentlys®) represen-
model, there is a freedom in the choice of the positions of theation of the spin-wave ground state, where the Jastrow fac-
vortex pair; for a 1-skyrmion any two diametrically opposite tor f(|z —z;|)~1/z—zj] arises from the zero-point quan-
points on the circléz— (a+b)/2|=|(a—b)/2| can be chosen tum fluctuations of the gapless spin-wave modes of the
as centers of the vortex pair, with the local vortex distortionordered antiferromagnet and-(L)N» is the Marshall sign
occurring in appropriately rotated 2D plane in the spin spacefactor, whereN, counts the number of down spins on sub-
It is remarkable that the extended spin twists of alattice A. The off-diagonal long-range order exhibited by the
1-skyrmion, which are more of a “ringlike” distortion of the above Ny/2 hard-core boson wave function represents the
n field than two point vortices, are characterized by just twolong-range antiferromagnetic order, with a finite sublattice
points a and b, which we will later elevate to the level of magnetizationrm, lying in the xy plane. We can fix the di-
particle degrees of freedom in the plane. We say that apection ofm in thexy plane by giving an additional coherent
n-skyrmion is made of @ “O (3) vortices.” superposition with respect &, (the total number of hard

It should be remarked that the Belavin-Polyakov exactcore bosonsin the above wave functiof?.
solutions describe either skyrmions or antiskyrmions. No ex- After some algebra the coordinate representation of the
act solution containing both skyrmions and antiskyrmionsi-skyrmion operator is shown to be
exists. In approximate solutions containing 1-skyrmion and

1-antiskyrmion there is a dipolelike interaction between them A No2 /o _ o
even at the classical levél. Of)aby=]] I—b . 9)
The two Q3) vortices of a 1-skyrmion state are finite =117

energy solutions and they have tW'Steq t_helr way out .Of th‘?Nhile w(z) of Eq. (3) represents the distortion of the sublat-
InjJa—b| energy dependence, characteristicxgfvortices in tice magnetization in space, E() provides the operator

iaéiz\;ebvgltl\lxvséii L?]teertvt\lfz)za(é?sir&tig;ns f(l)t]ﬂc;uff gok;fmﬁg%du;li_re'that produces the disto_rtion. To prpve_the above, it is conve-
ther. once amy anisot is introduced th t.' nient to put the sublattice magnetization along the axis
' y anisotropy Is introduce e(G)_ VOTUCES i the ground state and use therepresentation,

degenerate to tway vortices with an energy diverging as
(Ix—3J)/Jnja—b| as|a—b|—ce.

An n-skyrmion/antiskyrmion carries a topological “quan- O(l)(a b)EH.NO
tum number” or a “winding number’+n, the degree of the Sk = i=1
map (x,y)—S? of the field n(x,y). Here S? is the order

parameter space. The “topological density(r) is given by ~ [Note, that unlike Eq(9), herez’s run over all sited.
This is an important result, which shows that a

— — 1-skyrmion operator actually creates one Laudfiliquasi-
[dzwaan— dand ] hole and one quasielectron-like object, when acting on the
m(1+]|w(z)|?)? ’ hard-core Bose fluid. Similarly an-skyrmion state can be

(6) created by a product af of Laughlin quasiholes and of
quasi-electron-like operators. The operator for antiskyrmion
and fdxdydr)=n is the winding number. is obtained by replacingz} by {z} in Eq. (9). Our quasi-
To keep comparison with other formalisms, the above tohole operator exactly coincides with Kalmayer-Laughlin
pological density is related to the(l) magnetic flux of the  spinon operatot®
RVB gauge field"* Since at the classical level, tireandb coordinates of the
n-skyrmion solution represent the zero-mode coordinates, it
S (SXS)=i (7 TjkTi— TikTij i) ~ € Ao Al (7) s legitimate to elevate them to the level of new low-energy
collective coordinates or “particle degrees of freedothds
where; =EUciT Cj, andn;;+n; =1. in the case of Laughlin’s quasiholes and quasielectrons.

V4
zi—a si+1/2

zi—b

1
4(r)= g=n(r)-[3n(r) X 3,n(1)]=

o

To understand the quantum dynamics of the skyrmion ex- While thea andb “quasiparticles”[O(3) vorticeg do not
citation and its constituent particles for our sgirHeisen- have any interaction at a classical level, the modified quan-
berg model on the square lattice, we first construct the optum fluctuations in the presence of a skyrmion can induce
erator for the 1-skyrmion on the latticéNo exact classical interactions among the constituent particles. The induced in-
solution is available for the “lattice version” of the NLS teractionVg,(a,b) is obtained from the difference in zero-
model in 2D; wherla—b|>1, in units of the lattice param- point energy of the spin-wave modes in the prese’mga‘b)
eter, the continuum skyrmion solution should be a good apand absencéwg of a 1-skyrmion:

212409-2



BRIEF REPORTS PHYSICAL REVIEW B8, 212409 (2003

1 1
= (ab)_ = 0
Vou(@,b)= 3 % Rl -3 % fiwd. (10

Using the method of Rodrigu&and also Marind® who did

not use the constituent particle interpretation, we have calcu-
lated the induced interaction between amnd b particles.

We find that thea andb particles always repel. It is energeti-
cally advantageous for the constituent particles to be infi-
nitely apart and reduce the zero-point fluctuation energy. In
particular the quantum fluctuation corrected energy of a
1-skyrmion state is

Eq. '(Ja—b|—0)~4mJ,

Equ '(Ja—b|—o)~2mJ.

This proves that the two constituent particles are indeed de-

confined. el o2 2 '
. . FIG. 1. The “hole” in S° of the map &,t)—S° of the field
| have obtained an asymptotically exanbdulus of the n(x,n:t) for a n#0 chain. The hole just vanishes for tine=0

wave functiorof the ground state of the-skyrmion state, for  ..in: inset shows ita(x,0:t) att=0.
large separation of tha andb coordinates as ’ o

where thenth chain Berry phase is given by the sum
¥ofab]l~ 11 lai-alibi~by[ 1T lai-bj| "% D

1d_ m@) o
The method | have devised involves expressing the path in- n m=,NZ,_,N,1 (=)o)
tegral for vacuum to vacuum amplitude in a way that gives
the desired wave function in terms of the Jacobian of trans- - f dx_dtn(x n;t) - [ 2 n(X,N:t) X dn(x,n;t)]
formation from the functiorw(z) to the zero-mode coordi- 8w e R
nates. A plasma analogy shows that ¢hendb particles are (13
indeed unbound, giving another proof for the deconfinement
of thea andb particles in the skyrmion state. The chain Berry phase counts the winding number of map

The spin of a skyrmion or the constituent3p vortices  (x,t)—S? of the fieldn(x,n;t) for nth chain.
and their exchange statistics are rather ill defined in view of We choose the length of our lattice along thaxis to be
the large quantum fluctuation contained in the spin-waveN, whereN is an odd integer. For convenience we choose
ground state. The “mathematically sharp” point particees (0,0) to be the center of the square lattice and the two skyr-
and b are extended physical objects with power-law formmion coordinates to be the lattice sites=(m,0) and b
factors.(This is similar to the cageé of vortices in 2D super- =(—m,0) on thex axis at timet=0 and T. Our global
fluid “He). The integrated missing or excess density aroungotation amounts to giving the following time dependence
a vortex gives the component of the spin of tha andb  a(t)=méd?™T andb(t)=—me?™T to the constituent par-
particles. This calculation turns out to be hard with our hard+jcle coordinates.
core Bose fluid. So we take a Berry phase approach. During the time evolution, the spin field(x,n;t) of the
In our Berry phase analysis the spin of the constituent-skyrmion state of any chain attempts to wrap thé&?
particle or the @) vortices appears as a “chain anomaly.” sphere. All, except the-axis chain a=0), fail to wrap the
We consider a 1-skyrmion solution and analyze the lattices2 sphere completely. They all leave a hole, as shown in Fig.
sum of the Berry phases under a global rotation of all the making the winding numbe(Berry phasg identically
Spins through Zr about x axis, the direction of sublattice zero. Thex axis chain just manages to wrap tﬁé Sphere,
magnetization at infinity. If the spin projections of the con- gnce for the chain sumN, ...,—1 and again in the oppo-
stituent particle along the axis arec, and oy, the corre-  sjte sense for the chain sum 0,1. ,N—1, thereby contrib-
sponding lattice sum of Berry phases should contributgting a phase ofr for the left half and—  for the right half
2mo, and 2may, for the a and b particles in a spatially  of the chain. We identify these two phases, which arise pre-
separated fashion. dominantly from thea-vortex region andb-vortex region,
We find an interesting phenomenon which we call a chainyith the spins Berry phases o& andb particles.
anomaly. We group, following Haldari8 the square lattice  The |attice sum of Berry phases can be grouped in many
sum of Be.rry phases into sums over chains, running parallelifferent ways anave always find one singular chapassing
to thex axis: through two diametrically opposite points of the cirdle
—a+b/2|=|a—b/2|, of our 1-skyrmion solution. The two
SBZZ’JTSE (_1)nQ%d’ (12 gn_d; of the chain_ either close on _themselves_ or go off to
n infinity. The spin fieldn for these singular chains traces a
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closed curve inS? connecting two antipodal points at any states are chiral doublets. It should be interesting to look for

given time;it undergoes* 7-twist’ twice, corresponding to this degeneracy in the excited states in numerical studies of
the presence of two spinanBor example, the circlgz—a  finite systems. This degeneracy is also reminiscent of the

+b/2|=|a—b/2| itself is a singular chain, for which the  degeneracy of the spinon states in the 1D Haldane-Shastry
field traces a great circle o8 at any given time. model arising from the Yangian symmetry.

In spin< Heisenberg chain eachr twist of n field in _Our analysis goes thrqugh for any spin. In general for_the
space corresponds to one spifdnin a sense,in the spin-S square lattice Heisenberg model we get deconfined
1-skyrmion configuration a “1D-chain” or a “string” con-  SPIN'S spinons or the ) vortices.
taining two spinons is embedded in the 2D plane in an irre-__ '€ SPinon deconfinement that we have found has several
ducible and degenerate fashion interesting consequences which we hope to discuss in the

Our chain anomaly is missed if we use Haldane’sfuwre:(i) suggestg away to produce cha.rges;kyr.mions to
argument® for the calculation of the Berry phase. Haldane get superconductlv_lty In th_e doped. Mott m_sulat@r) as the
suggested that if tha(x,y;t) field is continuous and non- energy of a deconfmed spineAJ, its poss!ble signature at
singular (as it is for the case fon-skyrmion solutiop, the the top of the spin-wave band as well as in the infrared and

chain Berry phases should be all identical and as a result {HY/0 magnon Raman measuremertis) short-range RVEB

staggered sum should be identically zero, for an even numate v lewed as the conglen_saﬂon of skyrmion and antiskyr-
ber of chains. However, we find that our singular chain con mion in the ground state; chiral symmetry broken Kalmayer-

taining thea andb coordinate is an exception to this and it Laughlin-like states as condensation of unequal density of

contributes a Berry phase af and — 7 to the two particles skyrmion .and antiskyrmi'on, an(jv) consequence of our
aandb present picture to skyrmion doping in quantum Hall ferro-

The two Q3) vortices or the two spinons of a 1-skyrmion magnets.

state, by the argument given above, carry spin half projec- Our_|dent|f|c§t|on of @) vortices as spinons and the_lr_
1 deconfinement in an ordered antiferromagnet is a non-trivial

tions of value; and —; along thex axis. In addition the result. This is missed in approximate treatméetishere cer-
spinons carryt+ 1 chirality guantum number because they are y bp

constituent particles cd + 1-skyrmion state. Thus a spinon tain U(1) vortices are identified with spinons, which are con-

in addition to a spin quantum number carriesa chirality fined by linear potential in the ordered phase.
guantum number. As the antiferromagnetically ordered | wish to thank R. Shankar for discussions and M. B.
ground state has zero chirality, the finite energy skyrmiorSilva Neto for bringing Ref. 18 to my attention.
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