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Discommensurate and inhomogeneous states induced by a strong magnetic field in low-dimension
antiferromagnets

B. A. Ivanov,1 C. E. Zaspel,2,* and A. Yu. Merkulov1
1Institute of Magnetism, NASU, Vernadskii Avenue 36-B, 03142 Kiev, Ukraine

2Department of Physics, Montana State University-Bozeman, Bozeman, Montana 59717, USA
~Received 12 June 2003; published 8 December 2003!

Anisotropic antiferromagnetic systems of dimensionality greater than 1 in an external field are shown to
exhibit a complicated array of ground states depending on the spin structure of the surface. The simplest
structure that exhibits these effects is the spin ladder with the surface being the ladder end, which can be either
compensated or noncompensated spins. The structure with the compensated end has a surface spin-flop phase,
the noncompensated end has a discommensurational phase, and the transition to these phases can be either first
or second order with a tricritical point.
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Spin-flop transitions in antiferromagnetic~AFM! systems
induced by magnetic fields have been studied for more t
50 years,1–3 and this area still generates much interest. Us
the classical semi-infinite spin chain model with single-i
anisotropy, Mills mentioned3 that spin-flop states could b
localized at the surface of an AFM system at a critical fie
that is lower than the bulk critical field. This surface spi
flop ~SSF! state recently was observed4,5 in Fe/Cr multilayer
systems, which stimulated renewed interest in the natur
localized surface states.4–8 In all of these references the on
dimensional model has been used since it is obviou
adequate3 for multilayer systems, as well as for AFM sys
tems with a simple surface consisting of spins from one s
lattice only.

In this paper the nature of the surface states and the t
sitions to these states are investigated for systems of dim
sionality greater than 1. Even for the simple spin ladd
which is intermediate between one- and two-dimensio
systems, there are unexpected and interesting effects a
from the simple spin-chain model considered previously.3,6–8

These effects originate in the more complicated surfaces
are possible in ladder structures and in two-dimensional~2D!
arrays. In general there can be two types of surfaces~com-
pensated, with an equal number of spins from different s
lattices on the surface and zero surface magnetization in
AFM state, and noncompensated, with nonzero surface m
netization!. For the last case, with the noncompensated
spin antiparallel to the external field, the discommensura
state with a 180° domain wall common to that considered
spin chains6–8 appears. In contrast, for compensated surfa
the SSF phase, as proposed by Mills,3 is found. In this state
the surface spins rotate to about 90° from the external fi
with a net magnetic moment at the surface, and there is
form decay to the AFM phase moving into the bulk. For bo
cases a critical field is lower than the bulk critical field.

In past investigations of chain models only first-ord
transitions were reported in the literature.6–8 However, for
these more complicated structures it is shown here that
transition to the SSF phase or discommensurational st
can be either first or second order depending on the typ
anisotropy~exchange or single-ion anisotropy! as well as on
the character~compensated or noncompensated! of the sur-
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face spins. For the second-order transition the amplitude
the nonuniform spin distribution goes to zero at the transit
point. In the vicinity of this point the state is neither SSF n
discommensurational; rather, it is a slightly broken Ne´el state
with the deviation from the Ne´el state decaying into the bul
with oscillations. Moreover, with both types of anisotropy,
tricritical point can be present.

Both numerical and analytical methods are used to inv
tigate the nature of the ground state with different surfa
and anisotropies. We begin with the discrete Hamiltonian
the uniaxial spin ladder with classical spinsSi at sitesi of a
dimer lattice and an AFM interaction between nearest nei
bors,

W5(
i,d

~JSiSi1d1kSz,iSz,i1d!2k(
i

Sz,i
2 2H(

i
Sz,i .

~1!

Here, the first term describes the interaction of neighbor
spins connected by the vectord, J is the exchange integral,k
is the measure of the exchange anisotropy,k is the single-ion
anisotropy constant, andH is the external field along the
easyz axis in energy unitsgmB , whereg is gyromagnetic
ratio andmB is the Bohr magneton. For a description of th
ladder system it is natural to take a single dimer as the m
netic unit cell and use the net magnetizationmn and the
antiferromagnetic vector,ln for the nth dimer,

mn5~S11S2!/2S,ln5~S12S2!/2S. ~2!

It is sufficient to consider the spins confined to one plane
to expressmn and ln through the angular variableun and the
length of the magnetization,mn :

l z5 l cosu, l x5 l sinu, mz5m sinu,

mx52m cosu, l 5A12m2. ~3!

Elimination of m for the infinite antiferromagnet without a
surface gives the energyW(u) as a function ofu. In the
lowest approximation in the small parametersk/kJ andk/J,
one can find the effective magnetic anisotropy per dim
W(u)5K sin2 u, K5S2(2k1Zk), which is the easy axis for
©2003 The American Physical Society03-1
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K.0, andZ is the coordination number.~In the following
we put S51.) It follows that the collinear Ne´el state, in
which u50 or p is stable forH,H1 , where

H15AK~2ZJ1K !, ~4!

and a spin-flop phase, withu56p/2, of lower energy than
the Néel state is stable forH.HSF5AK(2ZJ1Zk22k). If
k.0, thenHSF,H1 and the spin-flop transition is of firs
order. As will be shown below, the second-order transition
the more common case for the surface spin-flop transitio

The description of surface phase transitions begins wi
numerical minimization of the discrete Hamiltonian for th
two most interesting cases: the regular ladder~RL! structure
that is a semi-infinite spin ladder having a regular dimer
the end and the ladder with the single noncompensated~NC!
spin on the end.~The configurations of atoms for these cas
are present in the insets in the figures below.! The energy
minimization has been performed through a Seidel-like al
rithm, for spin ladders as long as 100 dimers, which is mu
larger than the size of a local state. The spins on one en
the ladder are free, with spins on the other end are fixe
the Néel state, corresponding to the bulk nonperturbed st
The distributions ofmz and l z as a function of the distanc
from the end of the ladder are qualitatively different for t
RL and NC structures as can be seen in Fig. 1. For the
structure, which is a model for the spin-flop transition
AFM systems with a compensated infinite surface, thel z data
show a surface spin-flop state described by Mills3 where l
rotates approximately 90° with a magnetization that dec
to zero into the ladder. For the NC ladder, the discomm
suration state6–8 containing a 180° domain wall appears. T
l z,n data for both cases are well described by an AFM
main wall in the continuum approximation:2 a 90° domain
wall with tanun5exp@2(n2n0)/Dp/2# or a 180° domain wall
with tan(un/2)5exp@2(n2n0)/Dp#. Numerical data illustrate
the nonregular behavior ofmz near the end of the ladder.

The numerical analysis also shows the presence of
types of behavior for the dependence of thez component of

FIG. 1. The spin distribution for different ladder systems w
single-ion anisotropy for magnetic fields~in units of J) far below
the critical field. Circles: regular ladder,H50.848,k50.06. Dia-
monds: NC ladder,H50.24,k50.01. Open symbols representl z ;
solid full symbols representmz , multiplied by 4 for the NC ladder
and by 20 for the RL. For the last case the end details are show
the inset.
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total spin Sz on the magnetic field. For both systems wi
single-ion anisotropy, the nonuniform phases have a fin
value of Sz at the transition point, where the energies
collinear and nonuniform phases coincide. However, for
case of exchange anisotropy the value ofSz goes to zero at
the transition point as shown in Fig. 2. This can be int
preted as the presence of first- and second-order transit
respectively.

To explain these features, consider the stability probl
of the collinear phase, having the values ofun50 andmn
50. The stability of this state can be investigated using
quadratic approximate Hamiltonian with small variablesun

and mn written asW5W(r )1DW, where W(r ) is, for the
regular semi-infinite ladder,

W(r )5 (
n50

`

@~3J12k13k!mn
212Jmnmn111~J1k!mn11

2

22Hunmn1J~un2un11!212~k13k!un
21kun11

2 #,

~5!

with the valuen50 indicating the end dimer, and in th
presence of extra spins,DW describes their interaction with
the end dimer. The connections between variablesun andmn
for any value of n can be found from the equation
]W/]un50, ]W/]mn50. Forn.0, there is an infinite set o
equations having the same structure as those for the infi
ladder:

J~2un2un112un21!1~2k13k!un2Hmn50,

~4J12k13k!mn1J~mn111mn21!2Hun50. ~6!

These equations can be solved using the exponential an

un5upe2np1~21!nuqe2nq, ~7a!

mn5mpe2np1~21!nmqe2nq, ~7b!

wherep andq are determined by substitution of Eqs.~7! into
Eqs. ~6! to give 2 coshp53J̃/J21 and 2 coshq53J̃/J11,

in

FIG. 2. TheSz(H) dependence for a regular ladder with singl
ion anisotropy, exchange anisotropy, and two types of combi
anisotropy. For the spin ladder structure shown here and in Fig
open and solid circles present up and down spins in the Ne´el state,
respectively.
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where 3J̃5A9J21H1
22H2. The connections between th

amplitudesup,q and mp,q can be written asup5A mp , uq
5mq /A, whereA'H/6J!1. Thus, for a slowly decaying
exponent withp!1 one obtainsmp!up , and for the stag-
gered exponent with fast decay the situation is the oppo
Next minimization of DW with respect to the paramete
describing the nonregular part of ladder with given values
u0 and m0 for the dimer withn50 gives this energy as
quadratic form with variablesu0 andm0 . Then the analysis
of stability can be done using the equation forn50, which
by use of the relationsu05up1uq and m05mp1mq
5A up1uq /A can be written as

~Jep2J2k!up2~Jeq1J1k!uq1]DW/2]u050,

~Jep1J1k!Aup2~Jeq2J2k!uq /A2]DW/2]m050.
~8!

These equations have nontrivial solutions only for so
particular value of the magnetic field, which defines the
stability field Hc . Finally the critical field, as well as the
connections between variables,up and uq , can be obtained
through the solvability condition for Eqs.~8!.

Using this procedure for the regular ladder (DW50), the
critical field to a first approximation in the small paramete
is

Hc
25H1

222~K1k) !2. ~9!

Notice that this value is smaller than the volume critic
field, where the difference betweenHc and H1 is propor-
tional to the small parameter (k,k)/J and for a given effec-
tive anisotropyK it is an increasing function ofk. This is in
good agreement with the numerical data illustrated in Fig
It is also noticed thatuq!up , but mp and mq are compa-
rable,mq'2/(11))mp'0.73mp , implying that the oscil-
latory part ofm is quickly decaying, but observable as se
in Fig. 1.

Next, this method is used to analyze the NC ladder. T
minimization ofDW with respect to the extra spin will give
the simple expression for this energy in terms ofu0 andm0 :

DW52a~u02m0!2/2, a5H22k22k1H2/J.
~10!

Then the solvability condition for Eqs.~8! gives the critical
field Hc

252H1
2/5, which is significantly belowH1 . For this

case againuq!up and mp'mq , but with opposite signs
mq'2mp /(11))'20.37mp , which is also seen in the
inset to Fig. 1.

Previously only first-order spin-flop transitions we
known to exist for the model Hamiltonian given by Eq.~1!
and only first-order transitions were previously reported6–8

in the spin-chain literature. The order of the transition can
clearly demonstrated through a plot ofSz versusH, which
goes to zero near the critical field for the second-order tr
sition. As was mentioned above, the first-order transition
pears for the RL and NC ladders with pure single-ion anis
ropy ~see Fig. 2!; however, for the case of exchang
anisotropy the transition becomes second order and the
21240
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plitude of the nonuniform distribution goes to zero at t
transition point. Therefore, for some finite value of the ra
of the exchange and single-ion anisotropy constants there
tricritical point. Taking into account that the magnetizatio
per dimer,mz,n5un mn , is quadratic over linear variable
and that the value ofSz50 in the Néel state, it is remarked
thatSz is the square of the order parameter. For a descrip
of the phase diagram with a tricritical point one needs
Landau expansion of the system energy containing the o
parameter to the sixth power:

F52~H2Hc!Sz1
1

2
bSz

21
1

3
gSz

3 , ~11!

where the first term has been obtained analytically from
linear approximation, withb andg being phenomenologica
coefficients. If the coefficients are known, then further ana
sis is simple: forb.0 the transition is second order with a
Sz magnetic field dependenceSz5(H2Hc)/b. For b,0
andg.0 the transition will be first order with nonzero valu
of total spin at the transition point given bySz

t 53ubu/4g.
Therefore, both quantities (dSz /dH)215b for b.0 andSz

t

at b,0 are proportional to the value ofubu. Near the tricriti-
cal pointb→0 and plots of these quantities versusk/K at a
constant value of the effective uniaxial anisotropyK52k
13k can be extrapolated to zero to obtain the anisotro
value at the tricritical point. This graphical analysis for th
NC ladder is illustrated in Fig. 3 and gives a tricritical poi
at the anisotropy ratio 2k/K'0.966. For the RL structure th
tricritical point is determined to be at 2k/K'0.78, and the
characteristic square root dependence is also seen in Fi
Thus, the second-order transition takes place for almos
values of anisotropies withk.0 andk.0. For a small AFM
particle bounded on all sides the situation becomes m
complicated. It is more or less obvious that the edg
noncompensated spins are the main sources of pinning
nonuniform states. Using numerical methods only for squ
particles with NC edge spins, it is remarked that the tran
tion is always second order for both single-ion and excha
anisotropy.

These analytical and numerical calculations show t
there is a rich array of ground-state structures in AFM s
tems of dimensionality greater than 1. In addition to the b

FIG. 3. Plots ofSz and (dSz /dH)21 vs k/K for K50.02 on a
NC ladder shown in the inset.
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spin-flop state there are localized surface states of both
spin flop and discommensuration type depending on whe
or not the surface is compensated. The transition to th
states can be either first or second order, which can be d
mined from theSz(H) behavior near the transition point. Th
second-order transition is realized for all systems conside
with exchange anisotropy, as well as for the 2D model o
square particle with NC edge spin. As the second-order t
sition is approached, the amplitude of the nonuniform s
distribution goes to zero at the transition point, producin
state which is neither SSF nor discommensuration, but ra
a slightly broken Ne´el state. For spin ladder models, RL an
NC structures with combined anisotropy, a tricritical point
the (H,k/K) plane is present.

The two-dimensional square planar structure can be r
ized in layered classical AFM-like Mn~II !-halide compounds
which can be approximately modeled by a classical sp9
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Another interesting possibility is provided by arrays of nan
structures such as magnetic dots,10 which can be synthesize
in square planar or ladder structures. Owing to the magn
static interaction between the dots, these have AFM orde
of the dot’s magnetic moment at zero field.11 These effects
could possibly be observed in these magnetic dot arra
where the effective anisotropy for one dot as well as
anisotropy of the dot interaction~the analog of single-ion or
exchange interaction! can be adjusted by modification of th
geometries of the dot and lattice, respectively.
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