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Discommensurate and inhomogeneous states induced by a strong magnetic field in low-dimensional
antiferromagnets
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Anisotropic antiferromagnetic systems of dimensionality greater than 1 in an external field are shown to
exhibit a complicated array of ground states depending on the spin structure of the surface. The simplest
structure that exhibits these effects is the spin ladder with the surface being the ladder end, which can be either
compensated or noncompensated spins. The structure with the compensated end has a surface spin-flop phase,
the noncompensated end has a discommensurational phase, and the transition to these phases can be either first
or second order with a tricritical point.
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Spin-flop transitions in antiferromagneti@FM) systems face spins. For the second-order transition the amplitude of
induced by magnetic fields have been studied for more thathe nonuniform spin distribution goes to zero at the transition
50 years;—2and this area still generates much interest. Usingpoint. In the vicinity of this point the state is neither SSF nor
the classical semi-infinite spin chain model with single-iondiscommensurational; rather, it is a slightly brokereNstate
anisotropy, Mills mentionetithat spin-flop states could be with the deviation from the N& state decaying into the bulk
localized at the surface of an AFM system at a critical fieldwith oscillations. Moreover, with both types of anisotropy, a
that is lower than the bulk critical field. This surface spin-tricritical point can be present.
flop (SSP state recently was obsen/etin Fe/Cr multilayer Both numerical and analytical methods are used to inves-
systems, which stimulated renewed interest in the nature dfgate the nature of the ground state with different surfaces
localized surface statés® In all of these references the one- and anisotropies. We begin with the discrete Hamiltonian of
dimensional model has been used since it is obviouslyhe uniaxial spin ladder with classical spisat sitesi of a
adequaté for multilayer systems, as well as for AFM sys- dimer lattice and an AFM interaction between nearest neigh-
tems with a simple surface consisting of spins from one subbors,
lattice only.

In this paper the nature of the surface states and the tran- ,, >
sitions to these states are investigated for systems of dimen- W= % (JSS+ 5+ kS2iSyiv0) kzi S~ HEi Szi-
sionality greater than 1. Even for the simple spin ladder, (1)

which is intermediate between one- and two-dimensional . . . ) . .
systems, there are unexpected and interesting effects absdifre: the first term describes the interaction of neighboring

from the simple spin-chain model considered previog§ly} ~ SPins connected by the vectarJ is the exchange integrat,
These effects originate in the more complicated surfaces th&t the measure of the exchange anisotrépiy, the single-ion

are possible in ladder structures and in two-dimensi@a) ~ anisotropy constant, anHl is the external field along the
arrays. In general there can be two types of surfdcem-  €aSyZ axis in energy unitgug, whereg is gyromagnetic
pensated, with an equal number of spins from different subf@tio andug is the Bohr magneton. For a description of the
lattices on the surface and zero surface magnetization in tH@dder system it is natural to take a single dimer as the mag-
AFM state, and noncompensated, with nonzero surface magetic unit cell and use the net magnetization and the
netization. For the last case, with the noncompensated en@ntiferromagnetic vectot, for the nth dimer,

spin antiparallel to the external field, the discommensuration

state with a 180° domain wall common to that considered for M= (S $)/251,= (5.~ $,)/2S. @

R N8 . - . . .
spin chain§~® appears. In contrast, for compensated surfaceg is sufficient to consider the spins confined to one plane and

the SSF phase, as proposed by Mills, found. In this state  to expressn,, andl, through the angular variabie, and the
the surface spins rotate to about 90° from the external fielfength of the magnetizatiom, :

with a net magnetic moment at the surface, and there is uni-

form decay to the AFM phase moving into the bulk. For both l,=1cosd, I|.,=lsing, m,=msiné,
cases a critical field is lower than the bulk critical field.
In past investigations of chain models only first-order m,= —m cosé, |=m. 3

transitions were reported in the literatdré. However, for

these more complicated structures it is shown here that thelimination of m for the infinite antiferromagnet without a
transition to the SSF phase or discommensurational statesirface gives the energy/(#) as a function ofé. In the
can be either first or second order depending on the type dbwest approximation in the small parametkfkJ and «/J,
anisotropy(exchange or single-ion anisotropgs well as on one can find the effective magnetic anisotropy per dimer,
the charactefcompensated or noncompensatefithe sur-  W(6) =K sir? 4, K=S?(2k+ Z«), which is the easy axis for
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_ FIG_. 1 The spin distribution for _diffgrent_ ladder systems with g5 2. TheS,(H) dependence for a regular ladder with single-
single-ion anisotropy for magnetic field& units of J) far below i anisotropy, exchange anisotropy, and two types of combined
the critical field. Circles: regular laddei} =0.848,k=0.06. Dia-  anjsotropy. For the spin ladder structure shown here and in Fig. 3,

monds: NC ladderti =0.24,k=0.01. Open symbols represdnt  gpen and solid circles present up and down spins in thel Blate,
solid full symbols represemh,, multiplied by 4 for the NC ladder respectively.

and by 20 for the RL. For the last case the end details are shown in

the inset. total spinS, on the magnetic field. For both systems with

single-ion anisotropy, the nonuniform phases have a finite
s . ; value of S, at the transition point, where the energies of

we put S=1.) It follows that the collinear N& state, in cqjlinear and nonuniform phases coincide. However, for the
which §=0 or m is stable forH<H,, where case of exchange anisotropy the valueSpfgoes to zero at

T = ymvay the transition point as shown in Fig. 2. This can be inter-
Hi=VK(22J+K), ) preted as the presence of first- and second-order transitions,

K>0, andZ is the coordination numbe(in the following

and a spin-flop phase, with= =+ 7/2, of lower energy than '€SPectively. , -
the Neel state is stable fafl>Hgr= VK(2Zd+ Zr—2K). If To explain these features, consider the stability problem

k>0, thenHse<H, and the spin-flop transition is of first ©f the collinear phase, having the values =0 andm,

order. As will be shown below, the second-order transition is— 0 1h€ stability of this state can be investigated using the
¢ approximate Hamiltonian with small variablgs

the more common case for the surface spin-flop transition, duadratic ¢ ; at

The description of surface phase transitions begins with &1d Ma written ?‘S_W:W( )+ AW, whereW" is, for the
numerical minimization of the discrete Hamiltonian for the "égular semi-infinite ladder,
two most interesting cases: the regular ladd®lr) structure

that is a semi-infinite spin ladder having a regular dimer aty\/(n = 2 [(33+ 2K+ 3x)m2+2Imm 1+(J+K)m2
n n''in+
n=0

the end and the ladder with the single noncompensex nt+1
spin on the end(The configurations of atoms for these cases 5 ) 5

are present in the insets in the figures belofhe energy = 2H0ymp+J(0n— 05.41) "+ 2(K+3K) 05+ k67 4],
minimization has been performed through a Seidel-like algo- (5)

rithm, for spin ladders as long as 100 dimers, which is much

larger than the size of a local state. The spins on one end &fith the valuen=0 indicating the end dimer, and in the
the ladder are free, with spins on the other end are fixed ifPresence of extra spina,W describes their interaction with
the Neel state, corresponding to the bulk nonperturbed stat¢he end dimer. The connections between variabjeandm,

The distributions ofm, and|, as a function of the distance for any value ofn can be found from the equations
from the end of the ladder are qualitatively different for the /W/36,=0, dW/dm,=0. Forn>0, there is an infinite set of
RL and NC structures as can be seen in Fig. 1. For the REquations having the same structure as those for the infinite
structure, which is a model for the spin-flop transition in ladder:

AFM systems with a compensated infinite surface | ftdata
show a surface spin-flop state described by Millerel
rotates approximately 90° with a magnetization that decays
to zero into the ladder. For the NC ladder, the discommen- (43+2k+3k)mp+J(My 1+ Myg) —HO,=0.  (6)

. _8 . . ) .
suration stafe® containing a 180 domain wall appears. The Thege equations can be solved using the exponential ansatz
|, data for both cases are well described by an AFM do-

J(20,— 0p11— On_1) + (2k+3k) 6,— HM,=0,

main wall in the continuum approximaticna 90° domain On= 0,6 "P+(—1)"0,e ", (79)
wall with tané,=exd —(n—ng)/A ;»] or a 180° domain wall
with tan(@,/2)=exd —(n—ng)/A.]. Numerical data illustrate m,=m,e "P+(—1)"m,e ", (7b)

the nonregular behavior of, near the end of the ladder. _ o _
The numerical analysis also shows the presence of tw@herep andq are determined by substitution of E¢#) into
types of behavior for the dependence of theomponent of Egs. (6) to give 2 coslp=3J/J—1 and 2 coslq=3J/J+1,
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where 3=./9J2+H?—H2. The connections between the 1~Ql ! i !

amplitudesé,  and m, , can be written ag/,=A m,, 6,

=my/A, whereA~H/6J<1. Thus, for a slowly decaying 0.84 <,

exponent withp<1 one obtainsn,<¢,, and for the stag- 1 _

gered exponent with fast decay the situation is the opposite. 0.6 ‘\ K=0.02 H

Next minimization of AW with respect to the parameters N :

describing the nonregular part of ladder with given values of 0.4 ‘\ .

0, and my for the dimer withn=0 gives this energy as a } e w

qga?rgtli_(t: form \g/ithdvariablt_aﬁo {ahnd mg. I_hen f;r:% ana[yiis 024 = S(H) L ., :

of stability can be done using the equation , whic i ° u

by use of the relationsty=#6,+6, and my=m,+m, 00 ® (dS,jdf) "100 ® g 2k/K

=A 6,+ 0,/A can be written as 00 02 04 06 08 10
(Jep—J—K)ap—(Jeq—i—J—i— K)0q+ dAWI296,=0, FIG. 3. Plots ofS, and (dS,/dH) ! vs k/K for K=0.02 on a

NC ladder shown in the inset.
(JEP+ I+ k)Ab,— (Je9—J— k) O3/ A— IAW/20my=0. . . o
(8) plitude of the nonuniform distribution goes to zero at the
transition point. Therefore, for some finite value of the ratio
These equations have nontrivial solutions only for someof the exchange and single-ion anisotropy constants there is a
particular value of the magnetic field, which defines the in-tricritical point. Taking into account that the magnetization
stability field H.. Finally the critical field, as well as the per dimer,m,,= 6, m,, is quadratic over linear variables
connections between variable, and 6, can be obtained and that the value o§,=0 in the Nel state, it is remarked
through the solvability condition for Eq$8). thatS, is the square of the order parameter. For a description
Using this procedure for the regular laddénf/=0), the  of the phase diagram with a tricritical point one needs a
critical field to a first approximation in the small parametersLandau expansion of the system energy containing the order
is parameter to the sixth power:

H2=HZ2—2(K+ kV3)?. 9) 1 1

) F=—(H-HoS+ 585+ 375, (11
Notice that this value is smaller than the volume critical
field, where the difference betweeti, and H, is propor-  here the first term has been obtained analytically from the
tional to the small parametek(k)/J and for a given effec-  |inear approximation, withg and y being phenomenological
tive anisotropyK it is an increasing function ot. This is in - coefficients. If the coefficients are known, then further analy-
good agreement with the numerical data illustrated in Fig. 2g;s is simple: forg>0 the transition is second order with an
It is also noticed tha®;<6,, but mp ar_1d My are compa- g magnetic field dependencd,=(H—H.)/8. For B<0
rable, mq~2/(1+v3)m,~0.73m, , implying that the oscil- 44> the transition will be first order with nonzero value
latory part ofm is quickly decaying, but observable as seenys ;i spin at the transition point given t§,=3||/4y.

in Fig. 1. I 1 i
. . Therefore, both quantitiesdS,/dH) =g for >0 andS,

Next, this method is used to analyze the NC ladder. The : g
minimization of AW with respect to the extra spin will give at <0 are proportional to the value {f|. Near the tricrif

the simple expression for this energy in terms9gfandmy: cal point5—0 and plots of these quantities versu at a
P P ay 9 0 constant value of the effective uniaxial anisotroldy= 2k

+3k can be extrapolated to zero to obtain the anisotropy
(10) value at the tricritical point. This graphical analysis for the

NC ladder is illustrated in Fig. 3 and gives a tricritical point
Then the solvability condition for Eq¢8) gives the critical ~ at the anisotropy ratiolK ~0.966. For the RL structure the
field H2=2H%/5, which is significantly belowH,. For this tricritical point is determined to be atk?K~0.78, and the
case againd,<6, and my~mg, but with opposite signs, characteristic square root dependence is also seen in Fig. 2.
Mg~ —my/(1+v3)~—0.37m,, which is also seen in the Thus, the second-order transition takes place for almost all
inset to Fig. 1. values of anisotropies witk>>0 andx>0. For a small AFM

Previously only first-order spin-flop transitions were particle bounded on all sides the situation becomes more

known to exist for the model Hamiltonian given by H4) complicated. It is more or less obvious that the edge-
and only first-order transitions were previously repctd noncompensated spins are the main sources of pinning for
in the spin-chain literature. The order of the transition can bewonuniform states. Using numerical methods only for square
clearly demonstrated through a plot 8f versusH, which  particles with NC edge spins, it is remarked that the transi-
goes to zero near the critical field for the second-order trantion is always second order for both single-ion and exchange
sition. As was mentioned above, the first-order transition apanisotropy.
pears for the RL and NC ladders with pure single-ion anisot- These analytical and numerical calculations show that
ropy (see Fig. 2 however, for the case of exchange there is a rich array of ground-state structures in AFM sys-
anisotropy the transition becomes second order and the antems of dimensionality greater than 1. In addition to the bulk

AW=—a(6y—mg)%/2, a=H-—2k—2k+H?/J.
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spin-flop state there are localized surface states of both th&nother interesting possibility is provided by arrays of nano-
spin flop and discommensuration type depending on whethestructures such as magnetic dtsyhich can be synthesized

or not the surface is compensated. The transition to thes@ square planar or ladder structures. Owing to the magneto-
states can be either first or second order, which can be detestatic interaction between the dots, these have AFM ordering
mined from theS,(H) behavior near the transition point. The of the dot's magnetic moment at zero fiéfdThese effects
second-order transition is realized for all systems consideregould possibly be observed in these magnetic dot arrays,
with exchange anisotropy, as well as for the 2D model of gyhere the effective anisotropy for one dot as well as the
square particle with NC edge spin. As the second-order traMgnisotropy of the dot interactiofthe analog of single-ion or

sition is approached, the amplitude of the nonuniform Spinychange interactiorcan be adjusted by modification of the
distribution goes to zero at the transition point, producing &,.ometries of the dot and lattice respectively
state which is neither SSF nor discommensuration, but rath ’ '

a slightly broken Nel state. For spin ladder models, RL and  The authors thank A.K. Kolezhuk for fruitful discussions.
NC structures with combined anisotropy, a tricritical point on This research was supported by National Science Foundation
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