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Critical behavior of repulsive linear k-mers on square lattices at half coverage:
Theory and Monte Carlo simulations
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Monte Carlo(MC) simulations have been used to study the critical behavior of repulsive laears on
square lattices at 50% coverage. A&(22) ordered phase, characterized by a repetition of alternating files of
adsorbeck-mers separated bl adjacent empty sites, was found. This ordered phase is separated from the
disordered state by a order-disorder phase transition occurring at a critical temp&gatwkich presents an
intriguing dependence with the sikeof the adsorbed molecules. In addition, two analytical techniques were
combined with Monte Carlo simulations to predict the critical temperature of the order-disorder transformation.
The first is based on a detailed mean-field approximaf@FA), considering the exact interactions between
the k-mers belonging to a region (the clustey and a mean-field interaction with the rest outsideDifferent
sizes fory (kX 1kx2,2kx1,2kXx2) were used in the calculations in order to discuss its influence in the
determination ofT.. The second approach is based on a free energy minimization cri{@twvCA). The
dependence ok of the transition temperaturg;(k) observed in MC is in remarkable qualitative agreement
with DMFA and FEMCA. Both allow us to interpret the physical meaning of the mechanisms underlying the
observed transitions.
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[. INTRODUCTION to solve thek-mers problem. An early seminal contribution
to dimer statistics was done by Fowler and Rushbrddke,
The two-dimensional lattice-gas modelith repulsive in-  while an isomorphous system, namely, adsorption of binary
teractions between the adparticles is of experimental interesiquid in two dimensions, was treated by FId&t More
because it provides the theoretical framework to study theecently, leading contributions have been presented in Refs.
order-disorder phase transition occurring in many phys8,14—18 treating with multisite adsorption on homogeneous
isorbed monolayer films. An example is the case of heliumand heterogeneous surfaces. In general, these studies was
adsorbed on graphite, which has been widely stufiédn  focused on(i) effect of the chemical structure of a noninter-
this system, the size of the admolecule is somewhat largeacting adsorbate on its mode of adsorpti6n), influence of
than the lattice constant, so there is a repulsive interactiothe surface heterogeneity on noninteractiamers adsorp-
energyw between the adatoms. The presence of this kind ofion, or (iii) description of the first-order phase transition
lateral interaction leads to a transition between ordered andccurring in the adsorbate for attractive nearest-neighbor in-
disordered phases taking place when the thermal erlgffy teractions. On the other hand, there have been very few stud-
is comparable in magnitude te Similarly, there exist many ies devoted to the order-disorder transition associated to mul-
adsorption systems in which the size of the adsorbate dodisite adsorption with repulsive lateral interactions. Among
not correspond to the dimensions of the adsorption site. Typithem, the structural ordering of interacting dimers has been
cal systems, such as methanethané® propane-butané, analyzed by Pharest all® The authors calculated the en-
etc., adsorbed in nanotubes of aluminophosphates, have beapy of dimer on semi-infiniteM XN square lattice
recently reported. —) by means of transfer matrix techniques. They con-
In spite of the obvious evidence of the character of poly-cluded that there are a finite number of ordered structures for
atomic admolecules in many real situations, most developeimers with repulsive nearest-neighbor interactions.
ments in adsorption theory have mainly dealt with mono- In previous work we have studied the phase diagram of
atomic adsorptioi-° The inherent complexity of the dimers with repulsive nearest-neighbor interactions on
multisite adsorption statistics still represents a major diffi-square lattic® confirming the structural ordering predicted
culty to the development of approximate solutions for thein Ref. 19. In addition, we have analyzed the influence of
thermodynamic functions. This difficult is mainly associatedsuch structural ordering on interesting properties as adsorp-
to three factors which makes themers statistics different tion isotherm and heat of adsorpti®hcollective diffusion
from the usual single particle statistics. Naméll), no sta-  coefficient?? and configurational entropy.From these stud-
tistical equivalence exists between particles and vacancieggs it is not possible to know completely the critical behavior
(2) the occupation of a given lattice site ensures that at leash a lattice gagstructure of the different ordered phases oc-
one of its nearest-neighbor sites is also occupied,(@hdn  curring at low temperature and critical temperature charac-
isolated vacancy cannot serve to determining whether thaerizing each transitionas the sizek of the admolecules is
site can ever become occupied or not. increased. However, from the ¥&2) phase appearing in
However, several attempts were done in the past in ordedimers at critical regime we can predict the existence of a
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(2kx 2) structure fork-mers at half coverage. (1) The sites were arranged in a square lattice of side
Accordingly, the scope of the present work is to deter--(M=LXL), with conventional periodic boundary condi-
mine, via Monte CarldMC) simulation and two analytical tONS.
approximations, the critical behavior of repulsiners ad- (2) Due that the surface was assumed to be homogeneous,
sorbed at half coverage on a square lattice. For this purpos€e interaction energy between the adsorkeder and the
the critical temperaturd@ (k) characterizing the transition atoms of the substraie, was neglected for sake of simplic-
from the disordered state to theK2 2) phase is obtained as Y- o )
a function of the sizeé of the adsorbed molecules. The out- (3 In order to maintain the lattice at half coverage
line of the paper is as follows. In Sec. Il we describe the=KN/M=1/2, the number ok-mers on the lattice was fixed
lattice-gas model, the simulation scheme, and we present tiR8N=M/2k. .
behavior of T (k), obtained by using the MC method. In  (4) Appropriate values of /k were used in such away that
Sec. Il we present the analytical approximatidaetailed the (ZX2) adlayer structures are not perturbed.
mean-field approximatiofDMFA) and free energy minimi- A number Monte Carlo stepMCS) per site between
zation criterion(FEMCA)] and compare the MC results with 10°— 10° were discarded in each run to allow for equilibrium
the theoretical calculations. Finally, the general conclusion@nd the next 10-10° MCS were used to compute averages.

are given in Sec. IV. At temperatures far for the critical point fewer thar® i@ere
found to be enough to obtain sufficient precision. In the vi-
II. LATTICE-GAS MODEL AND MONTE CARLO cinity of critical points up to 16 MCS had to be used be-
SIMULATION SCHEME cause fluctuations are greatly enhanced.
In order to study the order-disorder phase transition oc-
A. The model curring in the adsorbate, it is convenient to define a related

In this section we described the lattice-gas model for thedrder parameter. In particular, at=1/2, a (XX 2) ordered
adsorption of linear rigid molecules with multisite occu- structure is formed in the adsorbate below the critical tem-
pancy. In order to make the treatment as general as possibleerature. Figure 1 shows snapshots corresponding to two
we considered the adsorption of homonuclear linearer ~ possible configurations of the §42) phase appearing for
molecules on hypercubic lattice modeled lasnteraction  adsorbed dimersk(2) at critical regime. Due to the peri-
centers at a fixed separation, which is equal to the lattic@dic boundary conditions the degeneracy of this phase is
constanta. In the adsorption process, it is assumed that eackqual to 8. These configurations allow us to decompose the
monomer occupies a single adsorption site. The highoriginal lattice into eight different sublatticésee Fig. 22°
frequency stretching motion along the molecular bond haghe coverage on each sublattice is denoted &&
not been considered here. Theners bond length remains =1, .. .,8). Inthis way, an order parametercan be defined
constant throughout the treatment. The surface is representéer dimers as
as an array oM adsorptive sites. In order to describe the
system ofNk-mers adsorbed oN sites at a given tempera- ¢=[01= 03| +[03— O] +[05— 06| +| 67— 0g,  (2)
tureT, let us introduce the occupation varialgiewhich can  where we sum the differencé®m absolute valuebetween
take the values;=0 if the corresponding site is empty and the coverage corresponding to two complementary sublat-

ci=1 if the site is occupied. The energy involved in the tices. The term complementary refers to sublattices without
adsorption of eack-mer unit is smaller than the bond energy superposition.
between thek units. On the other hand, molecules adsorb or |n general, the number of sublattices femers will be
desorb as one unit, neglecting any possible dissociation. Untk, each one having a surface coverag@=1, ... ,%k).
der this consideration, the Hamiltonian of the system is giverThus, the generalized order paramei€k) can be written as
by

2k—1

H=W<Z> cic;~N(k— 1w+ €S, ¢, ) (P(k):AkiZO |62 1= 02112, ()]
] i

. . . . whereA, is a normalization factor defined as

wherew is the nearest-neighbdNN) interaction constant

which is assumed to be repulsiyeositive, (i,j) represents

pairs of NN sites, and is the energy of adsorption of one K for even K,

given surface site. The tertd(k—1)w is subtracted in Eq. A= @)

(1) since the summation over all the pairs of NN sites over- k 2k

estimates the total energy by includidk—1) bonds be- 2 forodd k.
. k+3

longing to theN adsorbedk-mers.

When the system is disordered¥T.), all sublattices
are equivalents and the order parameter is minimum. How-
We have used a standard importance sampling M@@ver, when a configuration of the KX 2) phase appears at
method in the canonical ensemBland finite-size scaling low temperature T<T,), this is allocated on a sublattice
technique$® The lattices were generated fulfilling the fol- (between a set ofl). Let us suppose that this configuration

lowing conditions. lies on the sublatticé. Then, the coveragé; is maximum

B. Monte Carlo method
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a) Horizontal order

b) Vertical order
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FIG. 2. Different sublattices defined fér=2.

The thermodynamic properties of the present model have
been investigated by means of the computational scheme de-
scribed in the previous section. The calculations were devel-
oped for lineark-mers withk=2-5 (as it is well knowr?®
the value ofT, for k=1 is exac}. The simulation lattice was
a square lattice of sizé& XL with conventional periodic
boundary conditions. Note, however, that the choice of ap-
propriate linear dimensions has to be done in such away
that the ordered structures are not disturbed. In our case, for
(2kx2) ordered phaselL(=4k,8k,12,16k,24k) were used.

Hereafter we discuss the behavior of the critical tempera-

FIG. 1. Snapshot of the ordered phase for dimers at half coverture as a function of the size for adsorbed-mers at mono-

age.

layer. Figure 3 illustrates the reduced four-order cumulants
U, (T) plotted versuskgT/w (where kg is the Boltzmann

(6,=1) and the coverage of the complementary sublattice isonstank for several lattice sizes. From their intersections
zero. In addition, the rest of the sum is zero or minimum. Inone gets the estimation of the critical temperature. As an
conclusion, the definitiori3) is computationally convenient €xample, the figure shows the results for two values of
and ¢ appears as a good order parameter evidencing thk=2, Fig. 3a) and k=3, Fig. 3b)]. The curves of the
order-disorder phase transition. Finally, the reduced fourthorder parameter, which were used to obtap(T), are
order Cumu]anUL introduced by Bmde?,7 can be calculated shown in the insets of the figure. The prOCEdUre was done for

as

<‘P4>T
u(m=1- , 5
(M=1-275% 5

where the thermal average --)t, in all the quantities,
means the time average throughout the MC simulation.

C. Computational results

The standard theory of finite-size scafffig®>?"allows for
various efficient routes to estimatg from MC data. One of

k=2-5 and the results are collected in Table I.

As can be observed, the critical temperature presents an
nontrivial behavior as a function of the particle sizeAn
understanding of the intriguing dependenceTgtk) on k
can be developed by following the subtle interdependence of
energetic and entropic cost necessary to alter the ordered
phase. This will be discussed in Sec. Il C.

A systematic analysis of critical exponents for e&ainer
size was not carried out since this was out of the scope of the
present work. Although, they might be expected to belong to
the two-dimensional Ising model’s universality class, it is not
clear that this would be true fdemers in general. It is worth
pointing out that we did not assume any particular universal-

this method, which will be used in the next section, is fromity class por the transitions analyzed here in order to calcu-

the temperature dependencelhf(T), which is independent

of the system size foT=T.. In other words,T. is found
from the intersection of the curug, (T) for different values
of L, sinceU, (T.)=const.

late their critical temperatures, since the analysis relied on
the order parameter cumulant’'s properties. However a pre-
liminary finite-size scaling analysis of the size dependence of
the specific heat's maximum reveals that critical exponents
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FIG. 3. U (T) versuskgT/w, for two sizes of the adsorbed
molecule:k=2 (a) andk=3 (b). From their intersections one ob-

PHYSICAL REVIEW B8, 205407 (2003

FIG. 4. Cluster of size X2 for dimers.

(i) The substrate consists of a set of neighbor sites
grouped in a rectangular structure, the so-called cluster,
which is embedded in an infinite lattice. Figure 4 shows a
cluster of size X 2.

(i) The k-mers adsorb into the clustére., each one of
thek particles belonging to B=-mer must adsorb on a cluster
site).

(iii) The interactions between thkemers belonging to the
cluster are explicitly accounted for. Additionally, a mean-
field interaction with the rest of sites out the cluster bound-
aries is added.

(iv) Because the ordered phases may develop on different
sublattices(as discussed in Sec.)/|ldifferent sublattices are
defined on the cluster. This is the main difference with the
standard cluster method for monométs.

Hereafter, we calculate in the grand canonical ensemble,

tainedkgT./w. The order parameters corresponding to the curvesyhere the critical temperature is found from the condition

of U (T) are presented in the insets.

#=1/2 and ¢—0 (T—T.). An example for adsorbed
dimers follows in order to make this point clear. Figure 4

different from the two Ising ones have to be assumed irshows a snapshot corresponding to>a2cluster. This clus-
order for the critical temperatures from both ways to be conter is constituted by four sites, belonging to two different

sistent.

IIl. ANALYTICAL APPROXIMATIONS AND COMPARISON
BETWEEN SIMULATED AND THEORETICAL
RESULTS

A. Detailed mean-field approximation (DMFA)

In this section, we will extend the basic ideas of a cluster
method, which has been applied successfully to describe the
continuous transition occurring in repulsive monomers at

critical regime?® The proposed system can be summarized i
the following rules.

TABLE I. T(k) for k ranging from 1 to 5. The value df.(1)
is exact(Ref. 28 while in the other case&=2—5, the data were
obtained from the intersection &f, (T) versuskgT/w.

k ke Tc/W +A

1 0.567

2 0.331 0.001
3 0.405 0.001
4 0.482 0.002
5 0.546 0.006

n

sublattices. Circlegsquarey denote sites on the sublattice
1(2), where 6, and 0, are the mean coverages on each sub-
lattice. The possible configurations for our example are
shown in Fig. 5.

The grand partition functio® will be

E =1+ )\[6—401BW+ e—402ﬁw+ 26—2(01+ BZ)BW]
+ 2)\23—(491+492+2)5W

(6)

whereB=1/kgT and\ =eP* is the fugacity. From Eq6), it
is possible to calculate the mean coverage on both sublattices

1
01:2_:{)\[2e—402BW+ 26_2(01+ QZ)BW]

+4)\2e*(401+462+2)ﬁW}’ 7
gzzzi:{)\[ze*%ﬁw 20 201t O2) W]
+ AN e—(4el+492+2)ﬁW}_ (8)
Taking into account that
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and by defining the order parameter as

R
2

the critical temperature can be obtained from the conditio
0=1/2 and ¢—0 (T—T.). The procedure to solve this
problem is as follows.

[(1)] Becausef=1/2, the fugacity can be determined
from Eqgs.(6)—(9);

(10

¢

e?,ﬁw
A= f (12)
[(2)] From Egs.(9) and(10)
1
Or=0-9=5-¢ (13

[(3)] From Egs.(11)—(13), the grand partition function is
rewritten as

efw
E=2+ —2(e4<°/3‘”+ e eV 2). (14)
[(4)] From Egs.(7), (8), and(10)—(13), we obtain
et
o= (eteBW_ g 4eBw) (15)

=

[(5)] The right-hand sidéRHS) of Eq. (15) is expanded in
powers ofe arounde =0 (which corresponds td=T,)

ﬁwﬁcewﬁc)
e (p—‘,— ce

2+ \/8e"he
where B8.=1/kgT.. Then, by comparing the terms of or-
derO(1) of Eq.(16),

2+ \/8e"Be= \[Bw.e"Ee.

o= (16)

17
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FIG. 5. Different configura-
tions for dimers adsorbed on a
cluster of size X 2.

Finally, the numerical solution of Eq17) yields kgT./w
=0.826.

By following the procedure detailed abovex 1, kx 2,
2kx 1, and XX 2 clusters fokk=2, . .. ,5were solved. The
r{esults of these calculations are shown in Sec. IlI C in com-
parison with the MC simulations.

We predict that the critical temperature as a function of
the adsorbate size presents a local minimum for dimers. The
critical temperature for dimers, trimers, 4-mers, and, roughly,
for 5-mers is lower than the one for monométke Ising
mode). The overall behavior shown by the MC simulations
is qualitatively well reproduced by the cluster approximation
developed here, especially for the minimal critical tempera-
ture for dimers.

B. Free energy minimization criterion (FEMCA)

Hereafter, we present a thermodynamic analysis that
sheds light on the underlying physics of the observed size
dependence of .. Let us consider an ideal gas in a container
of fixed volume. The total system is assumed to be isolated.
By “isolated” it is meant that the system does not exchange
energy with anything external to it. Then we split the sample
into two parts(left and righy by means of a movable heat-
conducting wall(a metallic piston in an isolated and closed
cylinder containing gas at low pressuras it is well known,
the wall moves until the pressure and the temperature on
both parts of the partition are the same. In this way, it is
possible to determine the thermodynamical equilibrium.

This analysis, which is mainly based on the mechanical
equilibrium between the different parts of the system, can be
replace by statistical arguments. In this framework, an iso-
lated system will be in a state of thermodynamical equilib-
rium when the entropys has reached a maximdf+!

S=maximum(isolated system (18

The stability will be reached when the values of the free
system’s parameters allow one to satisfy the conditi).
In our case, we can verify the conditi¢h8) by arranging the
piston in an adequate position. The position of the conduct-
ing wall is denoted by. Then the entropy of the system will
be
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S(x)=S(x) + S (x), (19 In thi; way we have obtained the mean energy at temperature
T. This quantity corresponds to a equilibrium state of the
where§(x)[S;(x)] represent the entropy on the léfight)  system.
for a given value of the positior of the barrier. The equi- |t s straightforward that between two possible states, an
librium is obtained by calculating the positior=xo, which  isolated (closed system prefers the state having the maxi-
maximizes Eq.(19). Only x=Xx, corresponds to a state of mum entropy(minimum free energy). Based on these con-
equlllbrlum for the isolated system with a movable wall. If Cepts we will deve|0p an approximation to determmin
the position of the piston is fixedk(is not a free parametgr  the canonical ensemble and we will apply the methodology
other states of equilibrium will be reached for different val- to our system.
ues ofx. On the other hand, if the wall is allowed to move  |n a closed system of adsorbed particles with repulsive
freely, these states will be out of the equilibrium and thejnteractions, the phase transition occurring in the adsorbate is
entropy will not be defined. a continuougsecond-ordérmphase transition. In other words,
From these arguments, it can be concluded that the prahe entropy varies continuously from a completely ordered
cedure to calculate the state of equilibrium for an isolatedstate (when T—0) to a disordered statéwhen T— ).
system requires two stepé) to obtain the entropy of the AroundT,, Schanges abruptigbut continuously.? Then, it
system by fixing the parameters of interest in accessible vals possible to analyze the phase transition taking into account

ues andii) to choose the set of these parameters so that thie functionF in the two extreme statdmaximum order and
entropy reach the maximum. In the following, a closed sysmaximum disorder Accordingly,

tem in contact with a large thermal reservoir at temperature

is studied. With these assumptions, the equilibrium condition F.=limF and Fo=IlimF (25)
for the system is that the total free enelfgy-U—TS must T—oo T—0

be a minimum®3! in comparison with any other state to

which the system might go without violating fundamental then

conservation laws. Then,

F.<Fy=T>T,, (26
F=U —TS=minimum(closed system (20
F.>Fo=T<T,, (27)
whereU represents the mean energy.
To obtain the equilibrium state, we must calculate the en- F.=Fo=T~T,. 28)

tropy of the system as a function of the ene§yJ). This
process implies that we should isolate the system for differ-

ent energies and to calculate the entropy corresponding Q4
each energy. Then, the equilibrium state at temperaiure
(characterized by andU) is determined from the condition

(20). ill show in the followi lysis, E i
An example of this type of analysis is the following deri- st\gr(;vg\]“oo?j g;vplrr(]);in(:agoﬂgg;,g analysis, E@8) provides
-

vation for an ideal gas. The procedure requires the following. Let us consider a well-known system, the ferromagnetic

(i) To obtain %2? relationshiS(U). For the ideal gas is Ising model without external field. The Hamiltonian of this
well-known that? system is

\V; CU 3/2
N) (W) } (21) H= —J(Z) vio;. 29
1)

The last equation allows us to determifig. This calcu-

ion is not exact due to the fact that the system does not

pass from a extreme order to an extreme disorder. There exist
intermediate states between the two extreme states. However,

S= NkBIn

whereN is the number of particle/ is the volume, an€ is . . . . . .
a constant. whereJ is the exchange interactiow; is the spin variable

(i) To build the functionF, this is associated to the sii€o;==*=1), and (,j) represents pairs
' of NN sites. For a lattice oN spins and connectivity, the

V\/CuU\32 mean energy and the entropy can be calculated in two ex-
F=U-TNkgIn N) (W) } (22 treme states
(iii) To minimize F with U as the free parameter Uo=— EZ‘]N and Spy=kgin2 (orden, (30
v\/C 3/2
9F HN) N) } 3 U,=0 and S,=kgNIn2 (disordey. (31
— =1-TNkg———=—57 = U¥?=0, 23 . -
Ju ke V\/CU\%?3 2 3 In the thermodynamical limit, the free energy per spiaill
N/I N be
3 - Fo 1
U=>NkgT. (24) fo=lim {7 ="32J (orden, (32

205407-6
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ergy and the entropy of the disordered state. In first term,

f.=lim Ww= —kgTIn2 (disordey. (33 will be calculated from the mean-field approximation
N—o
. U, N&é
Evidently, the system prefers the orderé&disordered W m[6+2(k—2)]= TR (39

state asT—0(w). However, a temperature exists in which
both free energies are equals. This temperature will be usesthere #=1/2. Equation(39) is exact for monomers k(

as a criterion of the estimation of the critical temperaflye = =1), due to the fact that in this case all sites in the border
Taking into account Eq28), are equivalents. In order to calculate the entropy of the dis-
ordered state, the configurational factor of monomerskfor
fo=f,=T~T.=kgT./J~2/In4. (34) =1 is employed:
For z=4 we havekgT./J~2.88, which is a rough esti- M!
mation to the real value of 2.269. Q= m (40)

In general, for a system d¢fémers at temperaturé _ _ _
and the configurational factor of Guggenh&frfor k=2 is

fo=uUg—Tsy and f.=u,—Ts,, 35
0=Ho™ 750 , 39 LM (bN+M —kN)! %2
where u and s represent the mean energy per site and the O=~¢ , (41)
> TE o) . NI (M —kN)! M!
entropy per site in the thermodynamical limit, respectively,
U S where{=2/2 andb=[(z—2)k+2]/z. Thus,
u= lim — and s= lim —. (36) Kaln Q
MM MM 5= lim = (42
If fo=f.., this is M=
Up—TSy=U..— TS, (37) _ In the par_ticular case af=4 andf).: 1/2, the entropy per
site of the disordered state results in
thenT~T, and
S:x:
AU U.—Ug k—=|n2 fork=1 (43
~As s s (38 B
S S=T% and
From Eq.(38), it is possible to calculate the critical tem- ¢ 1 1 1 1 3
perature and to interpret the dependencd ofvith k, for a —=~_—Indk+ zIn2+| ==+ = |In| —+ —| for k=2.
= : kg 2k 2 2k 2 4k 4
system of repulsive lined-mers on a square lattice at half (44)

coverage. In this case, the mean energy, the entropy, and the
free energy for the ordered statd£0) are up=sy=" Finally, from Eqgs.(38), (39), (43), and (44), we obtain
=0. Then, the critical temperature depends on the mean eff(k):

|
1/In4=0.721 fork=1,

keTo(K) U /w

= 1 3 (45)
w S, /Kg (k+1)/| 2 In4k+ 2k In 2+ (6k+2)In H+Z for k=2.
I
C. Comparison between theoretical and simulated results Equation (38) shows thatkgT.(k)/w depends on the

Figure 6 shows the comparison between the simulatejean energy and the entropy of the disordered state. The
results previously presented in Table | and the theoreticaP€havior of these quantities as a functionkadllows us to
predictions obtained from DMFA and FEMCA for the critical Understand the arguments presented in the previous para-
temperature as a function of the sizeThe MC simulations ~9raph. In first term, we will analyze the entropy. In the one-
reveal two main characteristics for the behavior of the criti-dimensional case,, diminishes ak is increased. The expla-

cal temperature versus the sikef linear rigid k-mers: (i) ~ nation is simple: a¥=1/2, the number of entities per lattice

the curve presents a minimum fior=2 and(ii) for k>2, the site n, (and for this reason, the number of accessible states
critical temperature is monotonically increasing knBoth ~ diminishes ask increases[ng(k)«1/]. From Ref. 35,
characteristics are well reproduce by FEMCA and DMFA fors..(k=1)=0.693, s..(k=2)=0.477, ands..(k=3)=0.375,
clusters of sizesk(x 2) and (%% 2). On the other hand, the for monomers, dimers, and trimers adsorbed in 1D, respec-
curves corresponding to DMFA and clusters of sizés ( tively. In 2D, the situation changes slightly) the entropy is

X 1) and (%X 1) do not reproduce the minimum k=2.  similar for monomers and dimers arfi) for k>2, s, di-

This behavior can be understood as follows. minishes ask is increased. From Ref. 23s,(k=1)
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30— —T results from DMFA are in good qualitative agreement with
- DMFA (kx 1) MC simulations[see the curves fork(x2) and (XX 2) in
™| DMFA @x2) DNEA CEx ) Fig. 6].
E ] IV. CONCLUSIONS
" DMEA (3¢ 2) In the present work, we have addressed the critical prop-
o 10 4 erties of repulsive lineak-mers on two-dimensional square
] lattice at half coverage, and shown the dependence of the
0.54@. Y o.-@ " ®—— MC Simulation . critical temperature on the size The results were obtained
1 ° by using MC simulations and two analytical approaches
00— —"TT7 T 77T I I 1 i -
1 5 3 4 3 ¢ 7 2 o 10 Em'c:)ﬁ and FEMCA, which were introduced in this contri
k Several conclusions can be drawn from the present work.

FIG. 6. Comparison between simulated and theoretical resulton one hand, the critical temperature depende_nce on_the par
for k T./. K Th boloav is indicated in the fi ﬁcle' size of an ordered phasé@<1/2) of repulsive stralght
Or KgTo/W VS K. The symbology 1s Indicated in tne figure. particles have been reported and we found that dimers
present the minimum value. An analysis of the delicate bal-
! . / . ance between the size dependence of entropy and ener er
mers, dlmers,. af‘d trimers adsorbed n ZD.' respectwely. Thgite allowed to interpret thFi)s minimum an thef))éverall behga)tlvf)
reason for this is the following. In two dimensions a New;q. of T versusk.
degree of freedom appears for the adsorbed particles whose o, t?]e other hand, the comparison between DMFA and
size isk=2: dimers, trimers, etc., can rotate on the lattice.\jc simulations allowed us to test the validity of this ana-
The new accessible states for dimers due to possible rotaytical approximation in the present problem. In this sense,
tions compensate the diminution in the number of entitiesye can conclude that for linear clustdikx 1), (2kx 1),
with respect to monomers. Consequently, the variation in thetc] the theoretical results disagree with the computational
entropy between monomers and dimers is small. Howevegimulations. Contrarily, for rectangular clustefgkx2),
due to the fact that the new degree of freedom appears fq2kx 2), etc] DMFA is in good qualitative agreement with
k=2, the diminution in the entropy is reestablish@dsoci- the simulations.
ated to the diminution in the number of entities Moreover, FEMCA appears as a meaningful theoretical

With respect to the mean energy, the approximated soluargument to account for the main features of the critical tem-
tion given in Eq.(39), shows thau..(k) diminishes until an perature sincdi) provides results in very good qualitative
asymptotic value for higherk’s: u,(1)=0.5, u.(2) agreement with MC simulations and) constitutes a theo-
=0.375, u,(3)=0.333, u..(4)=0.312 . . ., U,(»)=0.25.  retical framework in order to interpret the behaviorigfvs
Note thatu..(k) diminishes abruptlyslightly) in the range k. According to Eq.(38), T, depends on the ratio of the
k=1-2 (k=2—m). energy and entropy differences between a fully disordered

Now we can interpret the two main characteristics in thestate T—«) and the ground statel(~0). In other words,
numerical curvekg T (k)/w versusk presented in Fig. 61)  an increase im\u(As) with respect toAs(Au) implies an
Fromk=1 to k=2, the mean energy value diminishes ap-increasedecreasgin T.. This important result can be gen-
preciably. On the other hand, the entropy remains practicallgralized beyond the specific system studied in the present
constant. Thus, in agreement with FEMCEgs. (38) and  contribution. In the particular case of repulsive linkaners,
(45)], kgT(k)/w decreases betwederr1 andk=2. (2) For  the k dependence of; is as follows: the mean energy di-
k=2, the entropy diminishes monotonically and the meamminishes appreciably frork=1 to k=2 while the entropy
energy stabilize its value. ThukgT.(k)/w increases mono- remains practically constant. Consequently, for dimers
tonically ask is increased, such as is predicted by FEMCA. lowers with respect to the one for monomers. Kor2, the

In addition, as we discuss above, the possibility of orien-entropy diminishes monotonically and the mean energy sta-
tation of the adsorbed molecules originates the minimum apbilize its value. Thus,T, increases monotonically ds is
pearing in the curve okgT.(k)/w versusk. Based on these increased.
arguments it is possible to understand the results obtained The two models presented in this paper represent very
from DMFA. For linear cluster§(kx1) and (%X 1)] the important tools in order to study the phase behavior of dif-
curves increases monotonically and do not reproduce thferent interacting lattice gases. In particular, future efforts
minimum in k=2. When a new degree of freedom is in- will be directed to obtainT, versusk for other existing or-
cluded in the clusters, allowing the rotation of the dimers, thedered phases in the whole range of coverage.

=0.693,s,(k=2)=0.635, and.,(k=3)=0.462, for mono-
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