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Microcavity effect on the electron-hole relative motion in semiconductor quantum wells
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We rigorously find that for a quantum well embedded within a semiconductor microcavity near resonance
with the 1s-exciton transition, the upper~lower! polariton is associated with an electron-hole relative-motion
probability-density distribution larger~smaller! than the two-dimisional exciton Bohr radius if half the normal-
mode splitting exceeds the 1s-exciton binding energy. In this case, the exciton continuum comprises an
essentialpart of the description of the upper mode, leading to a strong asymmetry of the microcavity lines
observed in transmission.
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Recently, quantum wells~QWs! embedded within semi
conductor microcavities~MCs! have attracted considerab
interest due to the formation of spectroscopically pronoun
hybrid exciton-photon modes known ascavity polaritons
~CPs!.1 The two CPs are usually described as arising fr
the coupling of the crystal-ground-state~CGS!–1s-exciton
transition dipole moment to the optical resonance of the M
This picture, however, assumes that once the Schro¨dinger
equation for the exciton’s internal motion is solved~yielding
the quasi-two-dimensional exciton envelope functions!, all
states but the energetically lowest (1s) may be discarded
since the CGS–1s-exciton transition has the dominant dipo
moment. This transition dipole moment is then coupled
the confined mode of the MC.

This approach, however, neglects the coherent recyc
of photons between the various dipole-allowed interba
transitions.2 For a bare QW, indeed, its neglect is seen bel
to be justified; however, in a high-Q MC, most of the pho-
tons arising from the interband polarization associated w
one exciton internal state are fed back into the system, le
ing to a photon-mediated radiative renormalization of
optically allowed~i.e., s-like! exciton internal states. Thus
the new resonances of the MC system may possess elec
hole (e-h) relative-motion probability density~henceforth
spatial correlation! whose spatial extents may differ strong
from the otherwise dominant 1s states, i.e., from the two
dimensional~2D! exciton Bohr radiusa0/2 (a0 is the 3D
value!.3 In particular, for a near-resonant MC in which ha
the CP splitting exceeds the binding energy of the 1s exci-
ton, the upper~lower! CP may have a spatial extent larg
~smaller! thana0/2. This is thevery strong couplingregime.2

For typical parameters, the effect on the upper CP is m
pronounced.

Below, we present calculations demonstrating this effe
The exactly solvable model captures all the essential feat
we wish to explore. We begin with a rigorous Green-functi
~GF! treatment of thee-h spatial correlations in the MC. Ou
interest is in the linear optical spectra associated with dip
allowed transitions from the CGS to exciton states near
bandgap at theG point; hence, we begin with the polarizatio
equation of the semiconductor Bloch equations~SBEs! in the
low-density limit @see Eq.~12.25! of Ref. 4# coupled to the
0163-1829/2003/68~20!/205325~5!/$20.00 68 2053
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Maxwell equations, neglecting the carrier densities. Scat
ing ~e.g., carrier-phonon! is accounted for by a single
dephasing rate.

We aim to find the interband polarization, the field tran
mitted through the MC, and the self-consistent electric fi
due to the interaction of the applied field with the induc
polarization. We consider light normally incident on the M
so that the excitons have no in-plane center-of-mass mom
tum. Also, our treatment applies toN identical QWs in the
MC provided that the electromagnetic phase varies neg
bly over theN QWs; i.e., the total thickness of the QWs mu
be much less than the relevant optical wavelength in
medium. We treat a two-band model in the 2D limit,
which all quantities may be evaluated in a closed form. T
inclusion of more subbands or a nonzero QW width m
necessitate a numerical assault, but does not alter our
clusions.

We denote the weak optical-frequencyv electric field at
the QW locationz50 asEv(z50) exp (2ivt). The induced
interband polarization in response toEv(0) is given by the
polarization equation of the SBE in the low-density limit,4

~v2Ĥeh!P~r !52dcvUEv~0!d2~r !, ~1!

where Ĥeh5Eg2¹2/(2m)2e2/(e0r ) is the e-h Hamil-
tonian~with Eg the QW band gap,m the reducede-h mass,
e the electron charge,e0 the static dielectric constant, andr
the in-planee-h separation!, P(r ) is related to the spatial
frequency components of the 2D interband polarizationPki

via P(r )5(2p)22S* d2ki Pki
exp (iki•r ), with S the nor-

malization area, anddcv is the interband dipole matrix ele
ment. The 2D interband polarization isP(r50); the actual
interband polarization that couples to the optical field
UP(0). Note thatP(r ) is the spatial correlation of the inter
nal motion of thee-h excitation. Thee-h overlap integral is
U5 * dz fe(z) f h(z) where f e( f h) is the electron ~hole!
single-particle envelope function of the subband of intere
for QWs that are neither too narrow nor too wide,U;1. We
emphasize thatEv(0) is the amplitude of the optical
frequency part of theMaxwell field at the QW location. In
particular, Ev(0) contains contributions from the applie
field as well as from the self-field due to reradiation by t
interband polarization.
©2003 The American Physical Society25-1
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D. S. CITRIN AND J. B. KHURGIN PHYSICAL REVIEW B68, 205325 ~2003!
Equation~1! holds both for the case in which a cavity
present and the case in which the cavity is absent. The t
is to express the total optical amplitudeEv(0) at the QW
location in terms of the externally applied amplitude. Befo
doing so, a few remarks concerning the spatial degree
freedom associated with the e-h motion are in order. C
sider the retarded GFD (0)(r ,r 8;v) of Eq. ~1!. It is defined
by

~v1 i012Ĥeh!D
(0)~r ,r 8;v!5d2~r2r 8!. ~2!

Thus, we can express the excitonic wave packet and the
tical polarization excited byEv(0) in terms of the Maxwell
field asP(r )52dcvUEv(0)D (0)(r ,0;v). Now D (0)(r ,r 8;v)
contains all the information about the spectrum ofĤeh :

D (0)~r ,r 8;v!5 ( nm

wnm~r !wnm* ~r 8!

v2vnm1 i01
. ~3!

Here wnm(r ) and vnm are the solutions ofvnmwnm(r )
5Ĥehwnm(r ); i.e., wnm(r ) is a quasi-2D exciton envelop
function4 of energyvnm , with n the principal quantum num
ber andm the axial quantum number, including bound a
continuum states. We are only considering a pair of s
bands; the inclusion of more subbands requires adding
band indices to the wavefunctionsw and to the overlap inte
gral U. Because onlys states play a role in the linear optic
properties@only D (0)(r ,0;v) enters into the expressions fo
P(r )], the summation overm collapses to the single valu
m50. Thus, we require the GFDs

(0)(r ,r 8;v) restricted tos
states. The desired exact expression has been obtaine
Zimmermann.5 In d dimensions,

Ds
(0)~r ,r 8;v!5

1

E0a0
2

~2k!d22

Sd

G~a!

G~b!
e2k(r 1r 8)/a0

3M ~a,b,2kr , /a0!U~a,b,2kr . /a0!,

~4a!

a5
d21

2
2

1

k
, b5d21, Sd5

2pd/2

G~d/2!
,

k5S Eg2v2 ig

E0
D 1/2

~4b!

with M and U Kummer functions, r ,5min(r ,r 8), r .

5max(r ,r 8), a05\2e0 /(e2m) the three-dimensional exci
ton Bohr radius, andE05\2/(2ma0

2) the 3D exciton Ryd-
berg. For the problem at hand, note thatD (0)(r ,0;v)
5Ds

(0)(r ,0;v) and D (0)(0,r 8;v)5Ds
(0)(0,r 8;v). Thus,

Ds
(0)(r ,r 8,v) contains precisely the information we desi

regarding thee-h spatial correlation; it will play a key roˆle in
the sequel.Finally, we replace the 01 in the denominator of
Eq. ~3! by the nonradiative contributiong to the homoge-
neous linewidth, which will be assumed to be state indep
dent.

The electron-hole degrees of freedom are now fully
scribed; it remains to relate these quantities to the elec
20532
ck

of
-

p-

-
b-

by

n-

-
ic

field. Specifically, we must still relateEv(0) to the incident
field E v

1(2z0) impinging from the outside of the MC atz
52z0 and traveling in the1z direction. This brings the
Maxwell equations into play. These may be solved via
transfer-matrix approach. The application of the transf
matrix method to MC problems was introduced in Ref.
however, a comprehensive treatment free of several er
appearing in Ref. 6 is given in Ref. 7.

Again, our results are quite general; however, to obt
fully closed-form expressions, we consider a simple mo
for the MC. That is, the MC is formed from two identica
dielectric multilayer mirrors, i.e., distributed Bragg reflecto
~DBRs!, separated byL. The DBR materials are assumed
be lossless and to have indices of refraction close toAeb,
with eb ~Ref. 8! the background high-frequency dielectr
constant in the absence of the excitonic resonances of in
est. Near the DBR stop-band center, the mirror reflectivityR
is real and the phase varies linearly with frequency, a
hence will be neglected. In addition, the mirrors have a tra
mission coefficientT. Light of frequencyv is incident nor-
mally on the MC; the light wave vector iskz5vAeb/c0
wherec0 is the in vacuospeed of light. The QW is assume
to lie in the center of the MC, though the present treatm
applies with little modification to other MC designs.9

We define x(v)5SQW(v)D (0)(0,0;v) associated with
exciton resonances in the QW. The radiative self-energy f
bare QWSQW(v) describes the decay of the interband p
larization associated with excitons. It is given by~at ki50)
SQW (v)522p iNv(c0Aeb)21dcv

2 uUu2.10,11 If the incident
electric field is of unit amplitude,E 1(z)5 exp (ikzz), the re-
flected and transmitted field amplitudesRc andTc are given
by7

FTc

0 G5F 1

T*
2

R

T*

2
R

T

1

T

G FeikzL/2 0

0 e2 ikzL/2GF11x x

2x 12x
G

3FeikzL/2 0

0 e2 ikzL/2GF 1

T*

R

T

R*

T*

1

T

G F 1

Rc
G . ~5!

The inverse of the 22 component of the product of matri
in Eq. ~5! is Tc ~Refs. 6 and 7!: Tc5T2@(12x)e2 ikzL2(1
1x)R2eikzL22xR#21. We focus on aL5l MC, i.e., L is
the wavelength of light in the medium corresponding to t
bare MC photon mode of interest. In the limitR→1, we
have

Tc5 i
T2

4p

vc

v2vc1 igc

Ds~0,0;v!

Ds
(0)~0,0;v!

, ~6!

where the MC resonant frequency isvc52pc0 /(AebL) and
gc'vc(12R)/(2p) is the cavity-mode width.12–14The new
function Ds(r ,r 8;v) is given by
5-2
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MICROCAVITY EFFECT ON THE ELECTION-HOLE . . . PHYSICAL REVIEW B 68, 205325 ~2003!
Ds~r ,r 8;v!5Ds
(0)~r ,r 8;v!Ds~0,0;v!/Ds

(0)~0,0;v!,
~7a!

Ds~0,0;v!5Ds
(0)~0,0;v!/@12Ds

(0)~0,0;v!S~v!#,
~7b!

whereS(v) is the radiative self-energy for the MC,S(v)
5Nvc(2ebL)21dcv

2 uUu2(v2vc1 igc)
21. It is useful to pa-

rametrizeS(v) in terms of the vacuum Rabi splittingV
between the CPs associated with the lowest-lying (1s) exci-
ton w00(r ) as S(v)5(V/2)2uw00(0)u22(v2vc1 igc)

21.
Note that (V/2)2}uw00(0)u258(pa0

2)21. In other words,V
is the vacuum Rabi splitting if only the 1s exciton is ac-
counted for. Below we show that the functionDs(r ,r 8;v) is
the s-wave part of the GF for the interband polarization a
counting self-consistently for the radiation of the dipole m
ment and its back-action on the polarization itself, i.e., ren
malized by the coupling to the MC electromagnetic field.

The expression forTc may be back-propagated using th
transfer matrices to the MC center to obtainEv(0):

FE v
1~0!

E v
2~0!

G5FeikzL/2 0

0 e2 ikzL/2GF 1

T*

R

T

R*

T*

1

T

G F 0

Tc
G . ~8!

Here, E v
6(0) is the field amplitude at the QW locationz

50 for the component wave traveling in the same or op
site direction as the incident field, i.e.,Ev(0)5E v

1(0)
1E v

2(0). One finds Ev(0)5@R exp (ikzL/2)1 exp
(2ikzL/2)#Tc /T. In the R→1 limit for the l cavity with v
'vc , Ev(0)52(2/T)TcE v

1(2z0) is obtained.
Let us return to Eqs.~1! and ~2! in order to understand

better the significance ofD and S. Denote the field in the
MC at the QW locationbut in the absence of the QW
~Ref. 15! as E v

(0)(0), so that Ev(0)5E v
(0)(0)1E v

self(0)
where the self-field associated with coupling to the int
band polarization isE v

self(0)5Ev(0)2E v
(0)(0). Using the

previous results, we obtainE v
self(0)5Ev(0)2E v

(0)(0)5
2(dcvU)21S(v)P(0). We cantherefore recast Eq.~1! as

@v2Ĥeh2S(v)d2(r )#P(r )52dcvUE v
(0)(0)d2(r ), from

which Ds(r ,r 8;v), introduced above, is shown to be th
s-wave part of the GF of

@v1 i012Ĥeh2S~v!d2~r !#D~r ,r 8;v!5d2~r2r 8!.
~9!

S(v)d2(r ) is seen to be the self-energy that accounts for
back action~accounting for the possible presence of a M!
of the radiated field on the polarization. The connection
tweenDs , Ds

(0) , andS was derived quantum mechanical
first by Agranovich and Dubovskii10 and further developed
by Citrin.11 Equation ~9! is to be compared with Eq.~2!
which definesD (0)(r ,r 8;v).

Let us contrast the case in which the MC is abs
with that in which it is present. In the absence of the M
S(v)→SQW(v). The relevant quantity associated wi
the radiative renormalization of excitonic resonanc
20532
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wn0* (0)SQW(v)wn80(0) is typically small (,10 meV), and
varies slowly withv. In this case, the separate treatment
thee-h Coulomb interaction and radiative effects is justifie
For the MC, however,S(v) exhibits a resonance atvc ;
both the magnitude ofwn0* (0)S(v)wn80(0) and its fre-
quency dependence can be substantial—in the range o
binding energy of the ground-state exciton.

Here a brief discussion of the key results is presen
beginning with Eq.~7a!. This states that the spatial correl
tions in the MC are the same as those in the QW in
absence of the MC, but with the new energy-depend
weightsDs(0,0;v)/Ds

(0)(0,0;v). Thus, the MC acts as a fil
ter to modify the bare-QWe-h spatial correlations that ar
seen at the MC resonances. Were only the 1s state retained,
we would haveDs(r ,0;v)} exp(22r/a0); however, for fre-
quencies aboveEg , Ds(r ,0;v) falls off with r as the con-
tinuum portion of the GFDs

(0)(r ,0;v) which is spatially
quite flat. Thus, for the MC in whichV/2@4E0, the lower
CP’s spatial characteristics will be dominated by the 1s ex-
citon, while those of the upper CP will be dominated by t
continuum. For the lower CP, asV increases,Ds(r ,0;v)
falls off more rapidly due to the absence of bare excit
eigenstates belowv0.

We consider a MC using parameters achievable for III
and II-VI semiconductors, withm50.05m0 (m0 is the free-
electron mass!, g51 meV, E052.5 meV,a05136 meV,
and gc51 meV. In Fig. 1~a! we show G(r ,v)
5 ln uDs

(0)(r,0;v)/Ds
(0)(0,0;v)u as a contour plot, which gives

the frequency dependence of thee-h spatial correlation nor-
malized atr50. Below v00, ]G(r ,v)/]r decreases with
increasingv; i.e., the spatial correlation decreases as
pected. Nearv00 and the other bound-state energies, t
quantity increases~the contours in the vertical direction ar
closely spaced!, while well aboveEg , the spatial correlation
is weak. One notes that there is a significant enhanceme
the spatial correlation within the rangeEg to ;Eg1E0 as-
sociated with the Sommerfeld factor. Also note the stro
departure from exponential decay as a function ofr in the
vicinity of Eg .

This said, one must use caution in describing a frequen
dependent length scale associated with the spatial cor
tion. An analysis of the data in Fig. 1~a! shows that the
spatial decay is strongly nonexponential except near
1s-exciton resonance. Clearly, the contribution of the co
tinuum gives a long tail far after the bound-state contribut
has decayed. We find that a fit of the exact formula o
several Bohr radii agrees qualitatively with the calculatio
@Fig. 2~b! of Ref. 2#. Thus, the variational approach of Ref.
indeed indicates the important trends insofar as the opt
properties are concerned. The single-exponential variatio
wave function used there may, however, miss important
pects specifically associated with the nonexponential na
of the decay. In particular, probes that are sensitive to
long-range part of the excitation, such as far-infrared abso
tion, may require the fuller treatment given here.

Figures 1~b!–1~d! show contour plots of the spectral de
sity A(v)522 ImDs(0,0;v) as a function ofv ~horizontal
axis! and detuningD5vc2v0 ~vertical axis! for V510
5-3
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FIG. 1. ~Color online! On a logarithmic con-
tour plotG(r ,v), the r andv dependence of the
spatial e-h correlation normalized to the value
r 50. ~b!-~d! The spectral densityA(v) as a
function of detuningD for various V @~b! V
510 meV,~c! 20 meV,~d! 30 meV#. The lighter
shaded contours indicate higher values in
frames.
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meV ~b!, 20 meV ~c!, and 30 meV~d!. Note that the peak
height of the upper CP is attenuated with respect to tha
the lower CP. This effect has apparantly been observe
Ref. 9 in the very strong coupling regime, as pointed ou
Ref. 2. For increasingV, the upper-CP maximum is strongl
suppressed.9 For V/2.E0, the upper CP strongly mirrors th
underlying continuum optical density. At negative detunin
the upper CP virtually dissappears@Fig. 1~d!#—a result born
out by experiment~see Fig. 2 of Ref. 9!. This strong asym-
metry of the MC spectrum arises in the absence of any
ditional scattering mechanism, and is intrinsic to Wann
excitons in QWs. Also worth pointing out, the smallest C
splitting occurs forD.0 due to the participation of excitoni
states lying above the 1s level.

To what extent are our results comparable to the line
dispersion theory of Ref. 16? In that work@cf. Eq.~1! of Ref.
16#, the transmission through a cavity containing Lorentz
absorbers~atoms! was treated, although there the absorb
were distributed uniformly throughout the cavity. In our ca
the QWs are spatially localized in the cavity, and thus g
rise to multiple reflections—an effect not accounted for
Ref. 16. Moreover, we assume a highly non-Lorentzian
sorber. It should thus be noted that some of the main res
e.g., the mode and normal-mode splittings determined
overall oscillator strength, are not strictly applicable to t
MC system treated here. In this case, because the bare
optical density is spread out over a spectral width exceed
the CP splitting, the roˆle of the continuum is enhanced. It
well known that a frequency independent absorption sp
trum broadens a Fabry-Perot mode without producing a s
ting. In the present case, the optical susceptibility associ
with the continuum electron-hole pair states has a logar
mic singularity at the QW band edge, giving rise to a ste
shaped absorption spectrum.~The optical-density enhance
ment associated with the Sommerfeld factor only modifi
this argument slightly.! Thus, if the MC splitting with the
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Lorentzian associated with the 1s exciton pushes a mod
into thee-h continuum, a strong broadening rather than sp
ting is expected to result. The observation that the spec
width of the normal mode depends on the dispersion in
vicinity of the mode@cf. Eq. ~7b!#, however, applies.

Finally, we turn to Eq.~9! which is satisfied by the GF
D(r ,r 8;v). Equation~9! suggests a mechanical interpret
tion of these effects. The self-energy in space is proportio
to d2(r ). Thus, the radiative self-energy plays the roˆle of a
localized impurity, but whose strength is energy depend
For the lower CP, for whichv,vc , the strength of the
effective impurity potential is negative~attractive!, while for
the upper CP, the strength is positive~repulsive!. The follow-
ing, therefore, are worth noting: Once thee-h Hamiltonian

Ĥeh is diagonalized, its solutionswnm(r ) still satisfy Eq.~9!
at rÞ0. The additional term proportional toS(v) thus pro-
duces energy shifts to the exciton states. Because thee-h
Coulomb potential is already singular atr50, the effective
impurity potential does not introduce any states of newspa-
tial character~in particular, new bound states! for two or
three dimensions~closely connected with the vanishing o
the scattering cross section for a point defect!; however, due
to its energy dependence, it acts as a filter so that
upper-CP resonance may occur at an energy where the s
ordinarily play a relatively small spectroscopic roˆle ~i.e., the
exciton continuum!.

What systems might exhibit new states arising fro
S(v)d2(r )? One might imagine quenching the singularity
the 2D e-h Coulomb interaction. The quasi-2D Coulom
matrix elements between conduction and valence subba
contain a logarithmic singularity~once the single-particle en
velope functions are integrated out!, which is not good
enough. Nor does the singularity go away in electrically
ased or spatially indirect QWs either as long as there is
e-h overlap, asU50 is required for an optically allowed
5-4
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transition. This is not to say systems in which the Coulo
singularity is suppressed do not exist. In such a system,
modified Coulomb potential will have a minimum; it is the
possible for radiatively localized states to exist below
bottom of the potential—a sort of self-trapping. We shou
also note that for quasi-one-dimensional systems, the po
tial S(v)d(r ) will in fact modify the excitonic states them
selves, since, in one dimension, the cross section of a p
defect does not vanish.

To conclude, we have presented a rigorous model of
e-h spatial correlation in MC-embedded QWs under we
optical excitation. The main results are as follows. First,
spatial correlation is that of the bare QW, but filtered by
frequency-dependent function possessing peaks at the
This means that for a resonant MC, the lower-CP spa
correlation is dominated by the 1s exciton independent ofV,
while the upper CP is dominated by the exciton continuum
se
y-
s
lte

d
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V/2 exceeds the 1s-exciton binding energy 4E0. A closely
related effect is the prediction of severe broadening of
upper-CP spectral line shape whenV/2.4E0. Another
manifestation of the change in the upper-CP spatial corr
tion will be in the far-infrared spectra at normal incidence
MCs excited at their upper CP, since the far-infrared prop
ties at normal incidence at low density are dominated
exciton internal transitions. Second, the radiative self-ene
in real spaceS(v)d2(r ) that describes the self-consiste
coupling of the interband polarization to the electromagne
field has the form of a localized-defect potential, but with
frequency-dependent strength. As such, it does not lea
the formation of internal exciton states with a new spa
character, but nevertheless couples them radiatively.
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