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Tunneling broadening of vibrational sidebands in molecular transistors
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Transport through molecular quantum dots coupled to a single vibration mode is studied in the case with
strong coupling to the leads. We use an expansion in the correlation between electrons on the molecule and
electrons in the leads, and show that the tunneling broadening is strongly suppressed by the combination of the
Pauli principle and the quantization of the oscillator. As a consequence the first Frank-Condon step is sharper
than the higher order ones, and its width, when compared to the bare tunneling strength, is reduced by the
overlap between the ground states of the displaced and nondisplaced oscillators.
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[. INTRODUCTION strate explicitly that this approximation is only valid for high
energies, i.e., for electrons or holes sufficiently far from the
In recent years, the field of molecular electronics has reFermi surface, or in the weak tunneling limit where the rate
newed the interest in transport through mesoscopic systenggjuation is valid. For the many-body system many decay
with strong e|ectr0n-phonon Coup“ng_ A number of experi_Chann6|S are in fact blocked by the Pauli principle. Other
ments have been reported to demonstrate transport throughany-body works that include Fermi sea effects have been
single moleculed; ® some of which show signs of vibrational done;*~*®and the blocking of the linewidth has also been
sidebands. In the pioneering experiments by Rarkll it ~ alluded to:**°
was shown that electron transport through a singjgrbl- In this paper, we focus on the broadening of the Frank-
ecule was strongly influenced by a single vibrational modeCondon peaks in the differential conductance due to tunnel-
The single phonon mode was associated with the motion dhg broadening, but in the non-Kondo regime. While this
the molecule in the confining potential created by the van degase cannot be solved exactly, an approximation, which is
Waals interactions with the electrodes. Later similar device$elieved to be valid above the Kondo temperature and which
with more complicate molecules were investigatédand  includes the Pauli principle, but ignores correlations between
they also showed excitation spectra which possibly could béead electrons, is developed. The main result is that the com-
associated with emission of vibrational quanta, so-calledPination of the Pauli principle and the splitting of the spectral
Frank-Condon peaks in the differential conductance. Som#éeight into phonon sidebands severely limits the phase space
of these devices furthermore exhibited a peak stemming for tunnel broadening. Hence the peaks are much narrower
from the Kondo effect, proving that the tunnel coupling to than the bare tunneling rate would suggest. We find a simple
the leads was rather strong. analytic result that describes thisee Eq(38)], and compare
Theoretically there has been a large amount of work oWith the SPA formula in Eq(25). The approximation is exact
the problem of tunneling through a single level with couplingin both the single particle limit and in the weak tunneling
to phonon modes. The approaches fall into two categoriedimit. Furthermore, we also support our conclusion by a per-
The first category is the kinetic equation approach, which igurbation theory in the electron-phonon coupling derived in
relevant in the weak tunneling limft In the kinetic equation Appendix B.
approach, it is essential that the excited vibrational levels are
allowed to relax through coupling to a bath. For a large pho-
non relaxation rate one can assume an equilibrium phonon
distribution; otherwise a nonequilibrium distribution function  \We consider a model of a single electron level coupled to
must be determined from the kinetic equatidrishe cou-  two leads. The single level is coupled to a vibrational mode
pling to the dissipative environment of the molecule leads tf the molecule through the on-site energy. For simplicity we
an additional broadening of phonon sidebahds. ignore the spin degree of freedom, which is not relevant

The second category, into which this paper also fallsunless Kondo-type effects are important. The model Hamil-
deals with the strong tunneling limit. The first approachesonian is

were an exact solution of a simplified situation, where only

one electron is preseftli.e., the presence of the Fermi sea

is ignored. The result of this exact solution is that the phonon H=H,+Hp+Hpg+Hg+Hr, @
sidebands in the tunneling density of states all are Lorentz-

ians with the same width. The exact solution amounts toyhere

decoupling the electron and oscillator displacement opera-

tors. This dec?ulgling approximation has been used in a num-

ber ‘(‘)f. papers! . Below we refgr to this approximation as Hy = 2 fk,aclackaa Hp=é&,d'd, )
the “single particle approximation{SPA), and we demon- k,a=L,R

II. MODEL HAMILTONIAN AND CURRENT FORMULA
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p2 1 . . The retarded Green'’s function becomes after this transforma-
HB:Z_mO + Emowoxo’ Hpg=M\Xed'd, 3 tion
GR(t—t")=—i6(t—t)({ePo®d(t),d"(t")e Pt })g,
HT:k ZL R tka(clad—i_dTCka)' (4) (14)

Herex, is the oscillator degree of freedom agglis the bare \Lvhere the average of course should be taken with respect to

onsite energy. The lead electron energies are give,py H, which is indicated by - - - )s.

=&y, Mo, Whereu, is the chemical potential of the lead

a. Thg tunneling amplitude betwe_en I_eadand the mol- Ill. CALCULATION OF THE SPECTRAL FUNCTION

ecule ist,,. The amplitudes could, in principle, also depend

on the oscillator position. However, in the experimental re- In this section, we calculate the spectral functié{¢)
alizations so far this is a negligible dependence and it ighat enters into the current formul&qg. (5)]. As mentioned
omitted here. Because of this, we can apply the current forin introduction, the tunneling broadening of phonon assisted
mula derived by Wingreen and Méfrwho expressed the side bands has been considered before in the case when the
current in terms of the nonequilibrium Green’s function of presence of the Fermi sea is ignor@PA). In this case the

the molecule. The current through the system is model can be solved exactly, at least in the so-called wide
band limit®1° For latter reference we start by quoting the
e[ dé I''l'g SPA result
—Hfzm[nL(f)—nR(f)]A(g), 5
GRSPAt) =exp —tT'/2)GX(1), (15)

where the left and right distribution functions are

n,(e)=np(e—eV,), (6) whereGR is the Green’s function in the absence of tunneling.
We see from this expression that the SPA implies that all

and whereng(e)=(e’“+1) " is the usual Fermi-Dirac conductance steps are smeared by the same amount.
function. The spectral functioA is given by

A(&)=-21ImGR(¢), (7) A. Dyson equation for GR

In the following, we develop a method to calculate the
broadened Green’s function using a truncated equation of
GR(t,t")=—i6(t—t")({d(t),d"(t")}). (8) motion technique. Our starting point is the retarded Green'’s

) ) function in Eqg.(14). We expand it in terms of eigenstates of
The widths of the level due to coupling to the leads are  he poson systems

where the retarded Greer@® functions are

L o(§)=2m2 tia8(€— &) ) R
© o “ GR(1)=2 G (D F (16)
The Green’s functiorGR must be calculated in nonequilib-
rium and in the presence of the leads. GR () =—i 0@ (In}{n’|d)(t),dT|m }(m|])s,
It is often useful to eliminate the linear coupling terms of o (OAmnlax I |]>S(17)

the Hamiltoniar{Eq. (1)] by a unitary transformation similar
to one used in the independent boson mé8i@he transfor-  where we have defined the overlap function between the os-

mation is cillator states
F=SHY, s=e o ¢(=—— (10 o =(nlePef[n’). (18)
Mow
_ _ _ o oo _ An expression foff ,, is given in Eq.(A12).
and with this choice the Hamiltonian transforms into We now generate a series of equations of motion, starting
- ~ with one foern, mm
H:Hk+HB+HD+HT! (11) ’
where (i g+ Enn = 20) Grryr (1)
~ 1 :LR,t+5t ddTnm 5rr
HD=80de, 80:50_ 57\& (12) nn ( ) ( )(< | >< |>S n'm

+(dd|m"}{n"[)sSm). (19
and
whereE,, =(n—n")w,, and Lsn, is the contribution stem-
HTZE tka(claeip0€d+dTe—ipo(fcka)_ (13) ming from the tunneling_HamiItonian.. The functidr® is
ka (see Appendix A for details of the derivations
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(i 1+ Eni = €ka) G et (V)

Lsn’(t) = gl tkafrn’[GEa,nl,mm’(t) o Gsdka,nl,mm’(t)]
=L ket (D) + 8()(Ciad )M} Sirr . (26)

R
+I§I tkafRIGn kayin’ i () 20 The functionLR ., ni(t) becomes after doing the same line
where we encounter two new Green'’s functions Zf).approxmatlons as was done be“’“'(t) (see Appendix
Gt mrr (D)= =1 0O (IM(N[0) (0, "'y (m[ ), . .
(21) Lndka,m(t)%tka(nka)}j: finGjl mm - (27)
R H ! !
Giy ket (D)= —18(([(In)(n"[d"d ) (1), dTIm") The set of equations now close. After integrating out the
Green’s function involving the lead electrons, we arrive at
x(m[])s. (22) linear equations for the molecule Green’s function,

The equation of motion for the first one is R
(w+ Ennr - SO)Gnn’,mm’(w)

. R
(190t a1~ Ea) Crcent o (V) = (el [)] s+ (] Y0 B
=L ni(D)+ 8D (Cad " [M)(M]) 56im
+ 20 LA PR Gl (@)
+(d"eio|m N1 sGam). (23 o mm

where againLEa,m is the contribution from the tunneling +Aﬂ|f|*n,f”GrFfj (@)1, (29)
term. Again the tunneling term generates new higher order ’
Green’s functions, but at this point we truncate it using thewhere
following physical principles: we neglect correlations in-
volving lead electrons, which means that we decouple terms A= S J dg&( N,(§) 1
lead electron operators using the Hartree-Fock approxima- =~ " m 2m\1-ny(§)) ot+E,—§étin’

tion. Furthermore, we sét,,d")~0 in the equation of mo- (29
tion for Egs.(21) and (22). With these approximation&see

Appendix A for more details The functionsA®" are in the case of energy independent

I' ,’'s (which we assume hencefojtgiven by

LEa I(t)thE <nka>f' G'F\I’ _ira Fa
" f Jrhmm Af(w)=2 > No(w+Eq)+ zlﬁ((ﬁ'Em) ;
a2y (1= (M) TGl (249 h ir, r.
Ap(@)=2 | 5Ny~ 0= En) = 5~ d(o+Eq)|,
It is now worth noting that in the case with only one electron, “ (30)
which is the SPA, the terrin,) is exactly zero and Eq24)
becomes exact for this case. In the same Iil@&aka,nl,mm’ where
=0, and the equations are easily solved. After setting the 1 1
result back into Eq(16) we get ¢(8)=J déng(é) E‘f’ | (3D
GRS )= [f, |2 (1=n)Np+nN,y (25 where the last term has been added as a regularization of the
@)= LU Eny—eo+il/2’ integral at large energies. This is allowed because it cancels

o . _ _ _ when adding the twa) terms in Eq.(28) (which is easily
which is nothing but the SPA result in E(L.5) written inthe  seen by noting thak, f% ;= 8,). Note thaty(e) is a func-
oscillator eigenstate basis. In doing this we have furthermor@gon of e/k T only, and thaty(e) = (—¢). At large values of
evaluated the last term in E(L9) as e/kT the y-function has the asymptotic formy(e)

o ~ —In(e/kT), while for smalle it goes asy(e)~—(e/kT)?
() () + el )0V s oo goes asi(e) = (=D
_ — — The only remaining question is how to evaluate the last
- - + ! rm’ . . . .
L(L=M)Nn+ 0N, ]S/ Snm, term in Eq.(19). In the absence of tunneling or in the single
where N,=(|n){n|) is the occupation of th@th oscillator  particle approximation, we can decouple the electron and
level andn=(d'd) is the average level occupation. phongﬂ degrees of freedom, such thédd'[n)(m|)

Here we want to go beyond the SPA and we continue by={dd")Nn&ym, whereN,=(|n)(nl) is the occupation of the
looking at the equation of motion for the last Green’s func-nth oscillator level anch=(d'd) is the average level occu-
tion in Eq. (22). We have pation. To leading order i this is a reasonable approxima-
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0.8 FIG. 2. Same plot as in Fig. 1 but witty/we=1.5 andl'/w,
=0.5. Note that when compared to teg=0 curve in Fig. 1 with
cl\<1 0.6 the samd” (top panel the first step is broader because the blocking
P of the level broadening gradually disappears further away from the
i% 04 Fermi energy.
<
0.2 . * dw
5n'm’<dd ><|n><m|>:f ZAnn’,mm'(w)nF(_w)u
0 —
-6 -4 -2 €/o 2 4 6 (39
Wo <R A
_ whereAnn mm (@) =[G (@) =Gy hn may (@) 1.
FIG. 1. The broadened tunnel density of stafgg¢) for the We have numerically solved these equations, and in Fig. 1
resonance conditiorg,=0 andg=2 and two different val.ues df: we plot the result for the spectral functioA (&), for &g
Top panel:I'/wy=0.5 and lower panell/wo=1. The thick solid =0 and different values of the tunnel broadening. It is

lines are the numerical solution of the full expressié@m. (28], clearly seen how the Fermi surface effects sharpen the lines
while the thin lines are the single particle approximation. Also 5¢ compared to the SPA. This effect is more pronounced for
shown is the approximation express{diy. (38)] with dashed lines. ¢ first neaks, which is also evident from Fig. 2, where we

. _ Show the spectral function for the off-resonance condition.
full result. It is clearly seen how the first Frank-Condon step re-

mains sharp even for large values of tunnel broadening, in accor- _ _ _
dance with the estimate in E¢39). In all cases we tak&T/wq C. Approximate solution of the Dyson equations

=0.01. In order to gain a more physical understanding of the
narrowing of the lines seen above and to obtain analytical

ti_on. However, in the more general case we should in prinyesyits, we now proceed to solve E(®8) approximately. As

ciple solve the term¢dd’|n)(m|) and(dd|m’)(n’[) onthe is shown in the numerical plots, the approximate analytic

first right hand of Eq.(28) self-consistently. In the general so|ution, that is derived below, is in fact close to the full
nonequilibrium case, it is, however, not possible to calculateygytion.

these expectation values from the retarded Green’s function e |ook for a solution of Eq(28) near one of the reso-

alone. One must therefore invoke new approximations fohances, w~g,+nw, Because the Green's function
this purpose. Instead of pursuing this, we concentrate on gR Y ;

case where this is not necessary, namely, the situation ofﬁf*““'*mm'(w) peaks atw=so~Eyy, the two terms in the

strongly asymmetric device. This is done in Sec. Il B. m in Eq.(28) are dominated by, ~Eny and Ey,

~E,, , respectively. Hence we can getn in the first one
andj=n’ in the second one, which then gives the following

B. Asymmetric transistor, I' | >I"g diagonal equations
In the strongly asymmetric thermal case, things simplify R
considerably, because the dot states are in thermal equilib- [0+ Enn —g0=Znn(0)]G s (@)
rium with one of the leads. For the caBe>1"g, the current _ _
iS :5nm6n/m/{(l_n)Nn+ nNn/}, (35)

e[ dé where the self-energy is
I_HJ EFR[HL(f)_nR(f)]AL(f), (32

, o N o (@)= 2 [Ap (@) ful*+ Af(@)[fin|?]. (36)
whereA, is the equilibrium spectral function in equilibrium !
with the left lead. Therefore, we can use the standard equ

librium expression for the self-consistent equations We have, furthermore, approximated

. © dw <ddT|n><m|>55n’m'+<de|m’><n’|>55nm~ 5nm5n’m’
5nm<d d|m ><n |>:f_wEAnn’,mm’(w)nF(w)a (33) X{(l—F)Nn-FFNn/}, (37)
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zero energy line is narrowed and that spectral function is
suppressed between the two peaks.

IV. CONCLUSIONS

A(§)/2m

We have presented results for transport through quantum
dots with strong electron-phonon coupling and with a strong

o 1 2 3 tunneling broadening of the phonon sidebands. This is not a
§/wa solvable problem even when the spin degree of freedom is
ignored, and we resorted to an approximation which incor-
porates the Fermi sea, but ignores correlation effects. The
approximation is exact in both the single particle and weak

perturbative results, which is derived in Appendix B, treats the tun-tunne"ng cases. However, physical conclusions can be

neling term exactly but the electron-phonon coupling only to Iinealrdr"’“"’n from j[he gpproximate approach, namely, that the tun-
order. The other parameters dtéw,=0.5 andg=0.25. nel broadening is much weaker than expected from a model

where the Pauli principle is not incorporated. We have, as
_ . gt . L mentioned, neglected the spin degree of freedom which is
whereN, =exp(—njwo) andn=(d'd). This approximation not expected to be important at temperatures above the

:fl \t/ﬁgdsfeoh[ ggaé?sqteliigilgglit\i%en hpi\;?o\:;r'eféegggjvn;ert'ﬁ:t”ﬁ isKondo temperature. It is, however, an interesting question to
) i . ’ k h he K ffect is infl h li -
indeed reasonably accurate fdVwy=<1. With these ap- ask how the Kondo effect is influenced by the coupling be

tween the electron occupancy and the vibrational mode of

FIG. 3. The perturbative result for the spectral functitimck
line) compared to the full solution of Ed28) (thin line) and the
approximate solutiohEq. (38)] for the symmetric poing;=0. The

proximations, we obtain a closed expression for the Green's =" /10 /e
function GR: '
(1-n)N,+nN,, ACKNOWLEDGMENTS
GRw)=2 [fanl? (38)
' 0+Eny—eg0— 2y (o) The author is thankful for stimulating discussions with P.

Brouwer, A.-P. Jauho, P. McEuen, and J. Sethna and for fi-

The result in Eq(38) thus generalizes the SPA approxi- nancial support from the Danish National Research Council.
mation[Eq. (25)], by including the leading order effect of the

Fermi sea. The new self-energy in E@6) has a simple
physical interpretation: the broadening, which is caused by  APPENDIX A: DERIVATION OF THE EQUATIONS
tunneling out and tunneling in processes, can only occur if OF MOTION

the state in the lead is either empty or occupied, respectively.
For the noninteracting case, where in Eg6) we setE, Here we present the commutators and the methods used to

=0 and use thak,|f,|2=1, the spectral functions reduces derive the set of equations of motion in Sec. Ill A. We write
correctly to an Lorentzian with widtl. the Hamiltonian in Eq(11) asH=H,+H+. In the oscillator

We can now in detail study the narrowing of the on- €igenstate representatiéhy is

resonance line seen in Fig. 1. At resonance we havée,
and we then straightforwardly find
Hr= 2 tio(dieg 1A + D fel,d). (AD)
|t TG el
Alw)~ Wt (Fog2)? Too=fod T (39
@ oo Then Eqgs(19) and(20) follow from
This result shows that the width of the resonanceat O is
considerably narrower than the bare tunnel broadening
would suggest. For large values @i fq5? becomes smaller
and the lines narrows in. However, also the weight of the line
goes down with fo|? as is evident from Eq(39).

[H01d|n><n,|]:(Enn'_80)d|n><n,|1 (A2)

[Hrdinyn'[1= 2 tfF,(—d'dell")

D. Comparison with perturbation theory in g keIl

It is interesting to compare the results where the tunneling X(n'[8m—dderaln)(1]8yr10). (A3)
is treated approximately but the electron-phonon coupling
exactly, to the results of a perturbation theory, where therhe equation of motion in E¢23) follows from the com-
tunneling is treated exactly but the electron-phonon couplingnytators
to lowest order. This situation is solved in Appendix B, and
Fig. 3 shows the result of the calculation. Note that both
methods give qualitatively the same result, namely, that the [Ho,Cua| Y11= (En— €ka) Cral N){I], (A4)
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also take the asymmetric casEgr<I'|=I". We want to

[Hr, Caln)(I]1= ’2_’ tirard = T3 LM [ Skakr ar computeGR in Eq. (8) and for the perturbative calculation it
kel is more convenient to use Hamiltonidf) instead of the
s Ccal |11 8= M) ' 81 1d transformed Hamiltonian. We will start from the equations of

motion for the Green’s functio®. Here we use the nota-
+5,(1) 8= In) (il 1) Ckarcied™. tion GR=—ia(t)([y(t),d"]). We obtain
(A5)
At this point we truncate the equations of motion approxi- (w—§o+i 5

mating the terms with three electron operators by the
Hartree-Fock decomposition for the lead electrons. We hav&he equation of motion for the functio®’, is

GR(w)=1+ G (w). (B1)

Cl/a/Ckad~<Cl/a/Cka>d_<Cl/a/d>0ka, (AG) (w_go _I/m) ( G)l(?d)
Ck/alckadTWCklal<CkadT>_Cka<CkrardT>. (A7) Imwg w_fo G?d
As mentioned in the main text, we will at this level neglect (x) Ghl N[ €3 5
the terms(c,,d") and therefore onlye], ,c,.d contributes =l o +zk t GR, 51 i Car=ol®),
and gives(cl,a,cka>dw5ka,k,a,<clacka>d. The last ap- P
proximate sign here means up to or@lerwhich is consistent (B2)
with neglecting(c,,d"). When this is inserted back into Eq. gnq
(A5), we get
w—§&+inp  —ilm cGY,
[HTncka|n><||]%2 tka{_fjj’[|n><j/|6j|+<clacka>(|j> Imwg w—§k+i7] ng
i’
R
X1 8m—|n){(j’| &) 1d}, (A8) Gua| . (0
. <| J’'n | ><J | il ] } . :tk R —ix L Gﬁk’)\:o(w), (83)
which then leads to Eq24). Finally, the last equation of Gpd

motion in Eq.(23) follows from where we used that sin€&%, in (B1) is multiplied by\, the

[HOadeCka|n><||]:(Enl_§ka)deCka|n><||! (A9) last term of Eq.(B3) should be calculate without electron
phonon coupling. Therefore, for temperatuteb<w, the
following replacements were made in that ternx?d

_ et

[HTadeCk|n><||]_k,Z”, tirar[= i1 Cyr 4 Ckal jrn =\ (x2)od=12d, and\ pxd=A(pX)od=(—i/2)d. The av-
a’ jj -

. . ; erage value(x) appearing in Eq.(B2) follows from (x)

=t InXilekaCiraddnl, (A1) = —Z(x)—(ng)A/m=0. Expressing the functior@? and

Ghy in Eq. (B3) in terms of GF; and Gy and inserting this

and after using the same arguments as before, we obtain h ]
back into Eqs(B2) and(B1), we obtain

[Hr.ddeg,/n)(1|]~ _; tkfjn|j><||<clacka>d1
(A11)

which leads to Eq(27). Furthermore, when the oscillator t(Ng+ &)
ion, i k{INo™ W™ Sk
states are chosen real the functigp, is X 2 Ek,xzo(‘”)’ (B4)

K (0= &ctin)’—w;

[ 1
Frne = We‘” where Ny=w— &+ pwo+i(T'/2). The first four terms in

(B4) are nothing but the SPA result in E®5) expanded to
[n—n’| lowest order irg. Therefore, it is evident that the last term of
signn’—n) \ﬁ} 2max(n,n’)|_min(n,n’)(g) Eqg. (B4) constitutes the correction to the SHAe Green’s
2 In—n’| : : R : i
function G, —o can be evaluated using Wick’s theorem

1-g gwp gn g(l—n)+>\2 1
No NZ  Nig N_; m N.3N_;Np

Gi(w)=

X

(A12)
Gﬁk,x:o(w):<nd>oGE,>\:o(w)_<dTCk>oG§,>\:o(w),
APPENDIX B: PERTURBATION THEORY IN g (BS)
In this appendix we derive a perturbative result for theWhere
spectral function to first order in the coupling constant but to
all orders in the tunneling matrix element. We do, however, GR _(w)=t 1 GR(w)
also assume a constant bare tunneling density of states and k=0 Ko—&+ing 8277
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" [ do' R A Finally, atT=0, we have
(d Ck>0:|JTnF(w/)[Gk,)\:o(w’)_Gk,)\zo(w/)]-
(B6) wy 2w—2&—iT/2

Yo)=5— ;
The integrant in Eq(B4) is analytic in the upper half-plane 27 (w— &,—iT/2)?— w§

of the complex¢, plane, and when performing the integral
by a contour in the lower half-plane only one term in Eq.
(B6) contributes. The last term in E¢B4), which was the

X{2| ’7Tn0+ |n[(§0/(00)2+ (1—‘/2(1)0)2]}

. o—§—wg .
correction to the SPA result, then reads + 20— Egt wo—iT12) [170(— wy— w)
2
—guwgl’ w—§éytw
8G(w)= ————y(w), (B7) - 07 %o
NN N2 FInl(wotw)lwol = 5= =7
where X[im0(wo— )+ In|(wg— )/ wg|],
(@) jw do’ (') 1 where
w)=w —Ng(w' )/
’ Of R e —iTR2
Lt _2§°)+1 (B9)
ny=—tan —.
2w—&y— o' 0 r 2
o (B8) 4

’ i 2 2°
(0" —o=in~o The zero temperature expression for the SPA correction is
The SPA is restored when the energy is either far above oseen to diverge alw|=wgy. This divergence is, however,
far below the Fermi surface, because the model is then simiut-off at finite temperatures. If Fig. 3 we show the result of
lar to a single electron or a single hole. This is clearly seen irthe perturbation theory compared to the approximate spectral
the limit |&;|, wo>max(,KT), where we can replace: by  function derived in the main text. The plot is at the symmet-
either one or zero. For the first cases it is clear #@tis 0.  ric point eg=&;— gwy=0. One should note that when ex-
Whenng=1, we have also get zero because the integrant ipanding ¢, to linear order it cancels off the term
analytic in one half-plane. —gwo/N3 in Eq. (B4).
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