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Tunneling broadening of vibrational sidebands in molecular transistors
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Transport through molecular quantum dots coupled to a single vibration mode is studied in the case with
strong coupling to the leads. We use an expansion in the correlation between electrons on the molecule and
electrons in the leads, and show that the tunneling broadening is strongly suppressed by the combination of the
Pauli principle and the quantization of the oscillator. As a consequence the first Frank-Condon step is sharper
than the higher order ones, and its width, when compared to the bare tunneling strength, is reduced by the
overlap between the ground states of the displaced and nondisplaced oscillators.
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I. INTRODUCTION

In recent years, the field of molecular electronics has
newed the interest in transport through mesoscopic syst
with strong electron-phonon coupling. A number of expe
ments have been reported to demonstrate transport thr
single molecules,1–6 some of which show signs of vibrationa
sidebands. In the pioneering experiments by Parket al.1 it
was shown that electron transport through a single C60 mol-
ecule was strongly influenced by a single vibrational mo
The single phonon mode was associated with the motio
the molecule in the confining potential created by the van
Waals interactions with the electrodes. Later similar devi
with more complicate molecules were investigated,2,3 and
they also showed excitation spectra which possibly could
associated with emission of vibrational quanta, so-ca
Frank-Condon peaks in the differential conductance. So
of these devices2,5 furthermore exhibited a peak stemmin
from the Kondo effect, proving that the tunnel coupling
the leads was rather strong.

Theoretically there has been a large amount of work
the problem of tunneling through a single level with coupli
to phonon modes. The approaches fall into two categor
The first category is the kinetic equation approach, which
relevant in the weak tunneling limit.7,8 In the kinetic equation
approach, it is essential that the excited vibrational levels
allowed to relax through coupling to a bath. For a large p
non relaxation rate one can assume an equilibrium pho
distribution; otherwise a nonequilibrium distribution functio
must be determined from the kinetic equations.7 The cou-
pling to the dissipative environment of the molecule leads
an additional broadening of phonon sidebands.8

The second category, into which this paper also fa
deals with the strong tunneling limit. The first approach
were an exact solution of a simplified situation, where o
one electron is present,9,10 i.e., the presence of the Fermi se
is ignored. The result of this exact solution is that the phon
sidebands in the tunneling density of states all are Lore
ians with the same width. The exact solution amounts
decoupling the electron and oscillator displacement op
tors. This decoupling approximation has been used in a n
ber of papers.11–13 Below we refer to this approximation a
the ‘‘single particle approximation’’~SPA!, and we demon-
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strate explicitly that this approximation is only valid for hig
energies, i.e., for electrons or holes sufficiently far from t
Fermi surface, or in the weak tunneling limit where the ra
equation is valid. For the many-body system many de
channels are in fact blocked by the Pauli principle. Oth
many-body works that include Fermi sea effects have b
done,14–16 and the blocking of the linewidth has also be
alluded to.14,15

In this paper, we focus on the broadening of the Fra
Condon peaks in the differential conductance due to tun
ing broadening, but in the non-Kondo regime. While th
case cannot be solved exactly, an approximation, which
believed to be valid above the Kondo temperature and wh
includes the Pauli principle, but ignores correlations betwe
lead electrons, is developed. The main result is that the c
bination of the Pauli principle and the splitting of the spect
weight into phonon sidebands severely limits the phase sp
for tunnel broadening. Hence the peaks are much narro
than the bare tunneling rate would suggest. We find a sim
analytic result that describes this@see Eq.~38!#, and compare
with the SPA formula in Eq.~25!. The approximation is exac
in both the single particle limit and in the weak tunnelin
limit. Furthermore, we also support our conclusion by a p
turbation theory in the electron-phonon coupling derived
Appendix B.

II. MODEL HAMILTONIAN AND CURRENT FORMULA

We consider a model of a single electron level coupled
two leads. The single level is coupled to a vibrational mo
of the molecule through the on-site energy. For simplicity
ignore the spin degree of freedom, which is not relev
unless Kondo-type effects are important. The model Ham
tonian is

H5Hk1HD1HDB1HB1HT , ~1!

where

Hk5 (
k,a5L,R

jk,acka
† cka , HD5j0d†d, ~2!
©2003 The American Physical Society23-1
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HB5
p0

2

2m0
1

1

2
m0v0

2x0
2 , HDB5lx0d†d, ~3!

HT5 (
k,a5L,R

tka~cka
† d1d†cka!. ~4!

Herex0 is the oscillator degree of freedom andj0 is the bare
onsite energy. The lead electron energies are given byjka
5«ka2ma , wherema is the chemical potential of the lea
a. The tunneling amplitude between leada and the mol-
ecule istka . The amplitudes could, in principle, also depe
on the oscillator position. However, in the experimental
alizations so far this is a negligible dependence and i
omitted here. Because of this, we can apply the current
mula derived by Wingreen and Meir17 who expressed the
current in terms of the nonequilibrium Green’s function
the molecule. The current through the system is

I 5
e

hE dj

2p

GLGR

GL1GR
@nL~j!2nR~j!#A~j!, ~5!

where the left and right distribution functions are

na~«!5nF~«2eVa!, ~6!

and wherenF(e)5(ebe11)21 is the usual Fermi-Dirac
function. The spectral functionA is given by

A~j!522 ImGR~j!, ~7!

where the retarded Green’sGR functions are

GR~ t,t8!52 iu~ t2t8!^$d~ t !,d†~ t8!%&. ~8!

The widths of the level due to coupling to the leads are

Ga~j!52p(
k

tka
2 d~j2jka!. ~9!

The Green’s functionGR must be calculated in nonequilib
rium and in the presence of the leads.

It is often useful to eliminate the linear coupling terms
the Hamiltonian@Eq. ~1!# by a unitary transformation simila
to one used in the independent boson model.18 The transfor-
mation is

H̃5SHS†, S5e2 ip0,d†d, ,5
l

m0v0
2

, ~10!

and with this choice the Hamiltonian transforms into

H̃5Hk1HB1H̃D1H̃T , ~11!

where

H̃D5«0d†d, «05j02
1

2
l,, ~12!

and

H̃T5(
ka

tka~cka
† eip0,d1d†e2 ip0,cka!. ~13!
20532
-
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The retarded Green’s function becomes after this transfor
tion

GR~ t2t8!52 iu~ t2t8!^$eip0(t),d~ t !,d†~ t8!e2 ip0(t8),%&S ,
~14!

where the average of course should be taken with respe
H̃, which is indicated bŷ •••&S .

III. CALCULATION OF THE SPECTRAL FUNCTION

In this section, we calculate the spectral function,A(j)
that enters into the current formula@Eq. ~5!#. As mentioned
in introduction, the tunneling broadening of phonon assis
side bands has been considered before in the case whe
presence of the Fermi sea is ignored~SPA!. In this case the
model can be solved exactly, at least in the so-called w
band limit.9,10 For latter reference we start by quoting th
SPA result

GR,SPA~ t !5exp~2tG/2!G0
R~ t !, ~15!

whereG0
R is the Green’s function in the absence of tunnelin

We see from this expression that the SPA implies that
conductance steps are smeared by the same amount.

A. Dyson equation for GR

In the following, we develop a method to calculate t
broadened Green’s function using a truncated equation
motion technique. Our starting point is the retarded Gree
function in Eq.~14!. We expand it in terms of eigenstates
the boson systems

GR~ t !5( Gnn8,mm8
R

~ t ! f nn8 f mm8
* , ~16!

Gnn8,mm8
R

~ t !52 iu~ t !^@~ un&^n8ud!~ t !,d†um8&^mu#&S ,
~17!

where we have defined the overlap function between the
cillator states

f nn85^nueip0,un8&. ~18!

An expression forf nn8 is given in Eq.~A12!.
We now generate a series of equations of motion, star

with one forGnn8,mm8
R

~ i ] t1Enn82«0!Gnn8,mm8
R

~ t !

5Lnn8
R

~ t !1d~ t !~^dd†un&^mu&Sdn8m8

1^d†dum8&^n8u&Sdnm!, ~19!

whereEnn85(n2n8)v0, andLnn8
R is the contribution stem-

ming from the tunneling Hamiltonian. The functionLR is
~see Appendix A for details of the derivations!
3-2
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Lnn8
R

~ t !5(
ka,l

tka f ln8
* @Gka,nl,mm8

R
~ t !2Gndka,nl,mm8

R
~ t !#

1(
ka,l

tka f nl* Gndka,ln8,mm8
R

~ t !, ~20!

where we encounter two new Green’s functions

Gka,nl,mm8
R

~ t !52 iu~ t !^@~ un&^n8ucka!~ t !,d†um8&^mu#&S ,
~21!

Gndka,nl,mm8
R

~ t !52 iu~ t !^@~ un&^n8ud†dcka!~ t !,d†um8&

3^mu#&S . ~22!

The equation of motion for the first one is

~ i ] t1Enl2jka!Gka,nl,mm8
R

~ t !

5Lka,nl
R ~ t !1d~ t !~^ckad†un&^mu&Sd lm8

1^d†ckaum8&^ l u&Sdnm!, ~23!

where againLka,nl
R is the contribution from the tunneling

term. Again the tunneling term generates new higher or
Green’s functions, but at this point we truncate it using
following physical principles: we neglect correlations i
volving lead electrons, which means that we decouple te
lead electron operators using the Hartree-Fock approxi
tion. Furthermore, we set^ckad†&'0 in the equation of mo-
tion for Eqs.~21! and ~22!. With these approximations~see
Appendix A for more details!

Lka,nl
R ~ t !'tk(

j
^nka& f jnGjl ,mm

R

1tka(
j

~12^nka&! f l j Gn j ,mm
R . ~24!

It is now worth noting that in the case with only one electro
which is the SPA, the term̂nk& is exactly zero and Eq.~24!
becomes exact for this case. In the same limit,Gndka,nl,mm8

R

50, and the equations are easily solved. After setting
result back into Eq.~16! we get

GR,SPA~v!5(
nn8

u f nn8u
2

~12n̄!Nn1n̄Nn8

v1Enn82«01 iG/2
, ~25!

which is nothing but the SPA result in Eq.~15! written in the
oscillator eigenstate basis. In doing this we have furtherm
evaluated the last term in Eq.~19! as

^dd†un&^mu&Sdn8m81^d†dum8&^n8u&Sdnm

5@~12n̄!Nn1n̄Nn8#dn8m8dnm ,

whereNn5^un&^nu& is the occupation of thenth oscillator
level andn̄5^d†d& is the average level occupation.

Here we want to go beyond the SPA and we continue
looking at the equation of motion for the last Green’s fun
tion in Eq. ~22!. We have
20532
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~ i ] t1Enl2jka!Gndka,nl,mm8
R

~ t !

5Lndka,nl
R ~ t !1d~ t !^ckad†un&^mu&d lm8 . ~26!

The functionLndka,nl
R (t) becomes after doing the same lin

of approximations as was done forLka,nl
R (t) ~see Appendix

A!:

Lndka,nl
R ~ t !'tka^nka&(

j
f jnGjl ,mm8

R . ~27!

The set of equations now close. After integrating out t
Green’s function involving the lead electrons, we arrive
linear equations for the molecule Green’s function,

~v1Enn82«0!Gnn8,mm8
R

~v!

5^dd†un&^mu&Sdn8m81^d†dum8&^n8u&Sdnm

1(
l j

@L ln8
e f nl* f j l Gjn8,mm8

R
~v!

1Lnl
h f ln8

* f l j Gn j ,mm8
R

~v!#, ~28!

where

Lnl
e,h~v!5(

a
E dj

Ga

2p S na~j!

12na~j!
D 1

v1Enl2j1 ih
.

~29!

The functionsLe,h are in the case of energy independe
Ga’s ~which we assume henceforth! given by

Lnl
e ~v!5(

a
F2 iGa

2
na~v1Enl!1

Ga

2p
c~v1Enl!G ,

Lnl
h ~v!5(

a
F2 iGa

2
na~2v2Enl!2

Ga

2p
c~v1Enl!G ,

~30!

where

c~«!5E djnF~j!F 1

«2j
1

1

j G , ~31!

where the last term has been added as a regularization o
integral at large energies. This is allowed because it can
when adding the twoc terms in Eq.~28! ~which is easily
seen by noting that( l f nl* f j l 5dn,l). Note thatc(«) is a func-
tion of «/kT only, and thatc(«)5c(2«). At large values of
«/kT the c-function has the asymptotic formc(«)
'2 ln(«/kT), while for small« it goes asc(«)'2(«/kT)2

30.213139 . . . .
The only remaining question is how to evaluate the l

term in Eq.~19!. In the absence of tunneling or in the sing
particle approximation, we can decouple the electron a
phonon degrees of freedom, such that^dd†un&^mu&
'^dd†&Nndnm , whereNn5^un&^nu& is the occupation of the
nth oscillator level andn̄5^d†d& is the average level occu
pation. To leading order inG this is a reasonable approxima
3-3
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tion. However, in the more general case we should in p
ciple solve the termŝdd†un&^mu& and^d†dum8&^n8u& on the
first right hand of Eq.~28! self-consistently. In the genera
nonequilibrium case, it is, however, not possible to calcul
these expectation values from the retarded Green’s func
alone. One must therefore invoke new approximations
this purpose. Instead of pursuing this, we concentrate o
case where this is not necessary, namely, the situation
strongly asymmetric device. This is done in Sec. III B.

B. Asymmetric transistor, GLšGR

In the strongly asymmetric thermal case, things simp
considerably, because the dot states are in thermal equ
rium with one of the leads. For the caseGL@GR , the current
is

I 5
e

hE dj

2p
GR@nL~j!2nR~j!#AL~j!, ~32!

whereAL is the equilibrium spectral function in equilibrium
with the left lead. Therefore, we can use the standard e
librium expression for the self-consistent equations

dnm^d†dum8&^n8u&5E
2`

` dv

2p
Ann8,mm8~v!nF~v!, ~33!

FIG. 1. The broadened tunnel density of statesAL(j) for the
resonance condition,e050 andg52 and two different values ofG.
Top panel:G/v050.5 and lower panel:G/v051. The thick solid
lines are the numerical solution of the full expression@Eq. ~28!#,
while the thin lines are the single particle approximation. Al
shown is the approximation expression@Eq. ~38!# with dashed lines.
The approximate expression is in fact bare distinguishable from
full result. It is clearly seen how the first Frank-Condon step
mains sharp even for large values of tunnel broadening, in ac
dance with the estimate in Eq.~39!. In all cases we takekT/v0

50.01.
20532
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dn8m8^dd†&^un&^mu&5E
2`

` dv

2p
Ann8,mm8~v!nF~2v!,

~34!

whereAnn8,mm8(v)5 i @Gnn8,mm8
R (v)2Gd,nn8,mm8

A (v)#.
We have numerically solved these equations, and in Fi

we plot the result for the spectral function,AL(j), for «0
50, and different values of the tunnel broadening. It
clearly seen how the Fermi surface effects sharpen the l
as compared to the SPA. This effect is more pronounced
the first peaks, which is also evident from Fig. 2, where
show the spectral function for the off-resonance conditio

C. Approximate solution of the Dyson equations

In order to gain a more physical understanding of t
narrowing of the lines seen above and to obtain analyt
results, we now proceed to solve Eqs.~28! approximately. As
is shown in the numerical plots, the approximate analy
solution, that is derived below, is in fact close to the fu
solution.

We look for a solution of Eq.~28! near one of the reso
nances, v'«01nv0. Because the Green’s functio
Gd,nn8,mm8

R (v) peaks atv5«02Enn8 , the two terms in the
sum in Eq. ~28! are dominated by,Ejn8'Enn8 and En j
'Enn8 , respectively. Hence we can setj 5n in the first one
and j 5n8 in the second one, which then gives the followin
diagonal equations

@v1Enn82«02Snn8~v!#Gnn8,mm8
R

~v!

5dnmdn8m8$~12n̄!Nn1n̄Nn8%, ~35!

where the self-energy is

Snn8~v!5(
l

@L ln8
e

~v!u f nlu21Lnl
h ~v!u f ln8u

2#. ~36!

We have, furthermore, approximated

^dd†un&^mu&Sdn8m81^d†dum8&^n8u&Sdnm'dnmdn8m8

3$~12n̄!Nn1n̄Nn8%, ~37!

e
-
r-

FIG. 2. Same plot as in Fig. 1 but withe0 /v051.5 andG/v0

50.5. Note that when compared to thee050 curve in Fig. 1 with
the sameG ~top panel! the first step is broader because the blocki
of the level broadening gradually disappears further away from
Fermi energy.
3-4
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whereNn5exp(2nbv0) and n̄5^d†d&. This approximation
is valid for not too largeG and we have verified numerically
in the self-consistent calculation performed above, that i
indeed reasonably accurate forG/v0&1. With these ap-
proximations, we obtain a closed expression for the Gree
function GR:

GR~v!5(
nn8

~12n̄!Nn1n̄Nn8

v1Enn82«02Snn8~v!
u f nn8u

2. ~38!

The result in Eq.~38! thus generalizes the SPA approx
mation@Eq. ~25!#, by including the leading order effect of th
Fermi sea. The new self-energy in Eq.~36! has a simple
physical interpretation: the broadening, which is caused
tunneling out and tunneling in processes, can only occu
the state in the lead is either empty or occupied, respectiv
For the noninteracting case, where in Eq.~36! we setEnn8
50 and use that( l u f nlu251, the spectral functions reduce
correctly to an Lorentzian with widthG.

We can now in detail study the narrowing of the o
resonance line seen in Fig. 1. At resonance we haven̄5 1

2 ,
and we then straightforwardly find

A~v!'
u f 00u2G00

2

v21~G00/2!2
, G005u f 00u2G. ~39!

This result shows that the width of the resonance at«050 is
considerably narrower than the bare tunnel broaden
would suggest. For large values ofg u f 00u2 becomes smalle
and the lines narrows in. However, also the weight of the l
goes down withu f 00u2 as is evident from Eq.~39!.

D. Comparison with perturbation theory in g

It is interesting to compare the results where the tunne
is treated approximately but the electron-phonon coup
exactly, to the results of a perturbation theory, where
tunneling is treated exactly but the electron-phonon coup
to lowest order. This situation is solved in Appendix B, a
Fig. 3 shows the result of the calculation. Note that b
methods give qualitatively the same result, namely, that

FIG. 3. The perturbative result for the spectral function~thick
line! compared to the full solution of Eq.~28! ~thin line! and the
approximate solution@Eq. ~38!# for the symmetric pointe050. The
perturbative results, which is derived in Appendix B, treats the t
neling term exactly but the electron-phonon coupling only to lin
order. The other parameters areG/v050.5 andg50.25.
20532
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zero energy line is narrowed and that spectral function
suppressed between the two peaks.

IV. CONCLUSIONS

We have presented results for transport through quan
dots with strong electron-phonon coupling and with a stro
tunneling broadening of the phonon sidebands. This is n
solvable problem even when the spin degree of freedom
ignored, and we resorted to an approximation which inc
porates the Fermi sea, but ignores correlation effects.
approximation is exact in both the single particle and we
tunneling cases. However, physical conclusions can
drawn from the approximate approach, namely, that the t
nel broadening is much weaker than expected from a mo
where the Pauli principle is not incorporated. We have,
mentioned, neglected the spin degree of freedom whic
not expected to be important at temperatures above
Kondo temperature. It is, however, an interesting question
ask how the Kondo effect is influenced by the coupling b
tween the electron occupancy and the vibrational mode
the molecule.
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APPENDIX A: DERIVATION OF THE EQUATIONS
OF MOTION

Here we present the commutators and the methods use
derive the set of equations of motion in Sec. III A. We wri
the Hamiltonian in Eq.~11! asH5H01HT . In the oscillator
eigenstate representationHT is

HT5 (
ka,l l 8

tka~d†ckau l 8&^ l u f l l 8
* 1u l &^ l 8u f l l 8cka

† d!. ~A1!

Then Eqs.~19! and ~20! follow from

@H0 ,dun&^n8u#5~Enn82«0!dun&^n8u, ~A2!

@HT ,dun&^n8u#5 (
ka,l l 8

tkf ll 8
* ~2d†dckau l 8&

3^n8udnl2dd†ckaun&^ l udn8 l 8!. ~A3!

The equation of motion in Eq.~23! follows from the com-
mutators

@H0 ,ckaun&^ l u#5~Enl2jka!ckaun&^ l u, ~A4!

-
r

3-5
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KARSTEN FLENSBERG PHYSICAL REVIEW B68, 205323 ~2003!
@HT ,ckaun&^ l u#5 (
k8a8 j j 8

tk8a8$2 f j j 8@ un&^ j 8udka,k8a8d j l

1ck8a8
† cka~ u j &^ l ud j 8n2un&^ j 8ud j l !#d

1 f j j 8
* ~ u j 8&^ l ud jn2un&^ j ud j 8 l !ck8a8ckad†%.

~A5!

At this point we truncate the equations of motion appro
mating the terms with three electron operators by
Hartree-Fock decomposition for the lead electrons. We h

ck8a8
† ckad'^ck8a8

† cka&d2^ck8a8
† d&cka , ~A6!

ck8a8ckad†'ck8a8^ckad†&2cka^ck8a8d
†&. ~A7!

As mentioned in the main text, we will at this level negle
the terms^ckad†& and therefore onlyck8a8

† ckad contributes
and gives ^ck8a8

† cka&d'dka,k8a8^cka
† cka&d. The last ap-

proximate sign here means up to orderG, which is consistent
with neglectinĝ ckad†&. When this is inserted back into Eq
~A5!, we get

@HT ,ckaun&^ l u#'(
j j 8

tka$2 f j j 8@ un&^ j 8ud j l 1^cka
† cka&~ u j &

3^ l ud j 8n2un&^ j 8ud j l !#d%, ~A8!

which then leads to Eq.~24!. Finally, the last equation o
motion in Eq.~23! follows from

@H0 ,d†dckaun&^ l u#5~Enl2jka!d†dckaun&^ l u, ~A9!

@HT ,d†dckun&^ l u#5 (
k8a8, j j 8

tk8a8@2 f j j 8u j &^ l uck8a8
† ckadd j 8n

2 f j j 8
* un&^ j uckack8a8d

†d j 8 l #, ~A10!

and after using the same arguments as before, we obtai

@HT ,d†dckaun&^ l u#'2(
j

tkf jnu j &^ l u^cka
† cka&d,

~A11!

which leads to Eq.~27!. Furthermore, when the oscillato
states are chosen real the functionf nn8 is

f nn85A 1

2n2n8n!n8!
e2g/2

3F sign~n82n!Ag

2G un2n8u

2max(n,n8)L un2n8u
min(n,n8)

~g!.

~A12!

APPENDIX B: PERTURBATION THEORY IN g

In this appendix we derive a perturbative result for t
spectral function to first order in the coupling constant bu
all orders in the tunneling matrix element. We do, howev
also assume a constant bare tunneling density of states
20532
-
e
e

t

o
r,
nd

also take the asymmetric case,GR!GL5G. We want to
computeGR in Eq. ~8! and for the perturbative calculation
is more convenient to use Hamiltonian~1! instead of the
transformed Hamiltonian. We will start from the equations
motion for the Green’s functionGd

R . Here we use the nota
tion Gy

R52 iu(t)^@y(t),d†#&. We obtain

S v2j01 i
G

2 DGd
R~v!511lGxd

R ~v!. ~B1!

The equation of motion for the functionGxd
R is

S v2j0 2 i /m

imv0
2 v2j0

D S Gxd
R

Gpd
R D

5S ^x&

0 D 1(
k

tkS Gxk
R

Gpk
R D 1

l

2 S ,0
2

2 i
DGd,l50

R ~v!,

~B2!

and

S v2jk1 ih 2 i /m

imv0
2 v2jk1 ih D S cGxk

R

Gpk
R D

5tkS Gxd
R

Gpd
R D 2 ilS 0

1DGnk,l50
R ~v!, ~B3!

where we used that sinceGxd
R in ~B1! is multiplied byl, the

last term of Eq.~B3! should be calculate without electro
phonon coupling. Therefore, for temperatureskT!v0 the
following replacements were made in that termlx2d
5l^x2&0d5 1

2 ,0
2d, andlpxd5l^px&0d5(2 i /2)d. The av-

erage valuê x& appearing in Eq.~B2! follows from ^ ẍ&
52v0

2^x&2^nd&l/m50. Expressing the functionsGxk
R and

Gpk
R in Eq. ~B3! in terms ofGxd

R andGpd
R and inserting this

back into Eqs.~B2! and ~B1!, we obtain

Gd
R~v!5

12g

N0
2

gv0

N0
2

1
gn

N11
1

g~12n!

N21
1

l2

m

1

N11N21N0

3(
k

tk~N01v2jk!

~v2jk1 ih!22v0
2

Gnk,l50
R ~v!, ~B4!

where Np5v2j01pv01 i (G/2). The first four terms in
~B4! are nothing but the SPA result in Eq.~25! expanded to
lowest order ing. Therefore, it is evident that the last term o
Eq. (B4) constitutes the correction to the SPA.The Green’s
function Gnk,l50

R can be evaluated using Wick’s theorem

Gnk,l50
R ~v!5^nd&0Gk,l50

R ~v!2^d†ck&0Gd,l50
R ~v!,

~B5!

where

Gk,l50
R ~v!5tk

1

v2jk1 ih
Gd

R~v!,
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^d†ck&05 i E dv8

p
nF~v8!@Gk,l50

R ~v8!2Gk,l50
A ~v8!#.

~B6!

The integrant in Eq.~B4! is analytic in the upper half-plan
of the complexjk plane, and when performing the integr
by a contour in the lower half-plane only one term in E
~B6! contributes. The last term in Eq.~B4!, which was the
correction to the SPA result, then reads

dGd
R~v!5

2gv0
2G

N11N21N0
2
g~v!, ~B7!

where

g~v!5v0E
2`

` dv8

p
nF~v8!

1

v82j02 iG/2

3
2v2j02v8

~v82v2 ih!22v0
2

. ~B8!

The SPA is restored when the energy is either far above
far below the Fermi surface, because the model is then s
lar to a single electron or a single hole. This is clearly see
the limit uj0u,v0@max(G,kT), where we can replacenF by
either one or zero. For the first cases it is clear thatdG is 0.
WhennF51, we have also get zero because the integran
analytic in one half-plane.
d

.R
an

r,

rk

20532
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Finally, atT50, we have

g~v!5
v0

2p

2v22j02 iG/2

~v2j02 iG/2!22v0
2

3$2ipn01 ln@~j0 /v0!21~G/2v0!2#%

1
v2j02v0

2p~v2j01v02 iG/2!
@ ipu~2v02v!

1 lnu~v01v!/v0u#2
v2j01v0

2p~v2j02v02 iG/2!

3@ ipu~v02v!1 lnu~v02v!/v0u#,

where

n05
1

p
tan21S 22j0

G D1
1

2
. ~B9!

The zero temperature expression for the SPA correctio
seen to diverge atuvu5v0. This divergence is, however
cut-off at finite temperatures. If Fig. 3 we show the result
the perturbation theory compared to the approximate spe
function derived in the main text. The plot is at the symm
ric point «05j02gv050. One should note that when ex
panding «0 to linear order it cancels off the term
2gv0 /N0

2 in Eq. ~B4!.
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