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Optical schemes for quantum computation in quantum dot molecules
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We give three methods for entangling quantum states in quantum dots. We do this by showing how to tailor
the resonant energy~Förster-Dexter! transfer mechanisms and the biexciton binding energy in a quantum dot
molecule. We calculate the magnitude of these two electrostatic interactions as a function of dot size, interdot
separation, material composition, confinement potential, and applied electric field by using an envelope func-
tion approximation in a two-cuboid dot molecule. In the first implementation, we show that it is desirable to
suppress the Fo¨rster coupling and to create entanglement by using the biexciton energy alone. We show how to
perform universal quantum logic in a second implementation which uses the biexciton energy together with
appropriately tuned laser pulses: by selecting appropriate material parameters high-fidelity logic can be
achieved. The third implementation proposes generating quantum entanglement by switching the Fo¨rster in-
teraction itself. We show that the energy transfer can be fast enough in certain dot structures that switching can
occur on a time scale which is much less than the typical decoherence times.
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I. INTRODUCTION

Quantum dots1,2 are quantum heterostructures which a
composed of nanoscale regions of one type of material wh
is embedded in a second type. In a semiconductor quan
dot ~QD!, materials with differing band gaps are used; th
leads to the possibility of electronic confinement with
the dot region. Moreover, the confined electronic states
be accurately controlled by varying the dot size, shape
composition, and the number of confined electrons;
of these may be altered by using different growth conditio
and hence specifically tailored ‘‘artificial atoms’’ or ‘‘supera
toms’’ can be produced.1,2 Some prominent atomlike prope
ties of QD’s include an electronic shell structure3

Rabi oscillations,4 photon antibunching,5,6 controlled quan-
tum light emission,7,8 and quantum entanglement.9,10 One of
the most intriguing possible applications of quantum dots
that they may be used to build quantum computers.11,12 A
practical realization of a quantum computer would be v
significant, since there exist theoretical quantum algorith
which would make some classically hard computatio
problems tractable.13 Such quantum devices could als
accurately simulate any physical system~and the evolution
of its local interactions! by invoking the same amoun
of energy and Hilbert space requirements as the sys
itself.14–16

The basic unit of a quantum computer is a two-level qu
tum system, the so-called qubit. Of the utmost importa
is the identification of a physical system where a coher
qubit evolution can be performed, thus allowing a prec
execution of the elementary quantum gates required
universal quantum computation.11,12 Many different types
of hardware for embodying qubits have been propo
~for a collection of papers detailing some of these see R
17! and some of them have already been implemen
for performing elementary quantum gate operations. Th
include ion traps,18–22 quantum electrodynamic
0163-1829/2003/68~20!/205319~18!/$20.00 68 2053
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cavities,23–27 nuclei in molecules,28–31 dopants in
semiconductors,32–34 optical lattices and Bose-Einstei
condensates,35–37 Josephson junctions,38–41 and quantum
dots.10,42–51In this paper we concentrate on a quantum d
implementation. Previous proposals9,10,42–44,46,47,51–53include
the use of a single electron43,51,52or nuclear44 spin located on
each of an array of interacting dots, the presence or abs
of an electron charge state,42 or the use of excitonic
states.10,46,47,53We show how an energy selective approach
manipulating the excitonic states of coupled QD’s, toget
with control over the energy transfer and biexciton bindi
energy, can be used to perform quantum computation~QC!
and to produce controlled exciton quantum entanglemen
so doing, we investigate the Fo¨rster-Dexter resonant energ
transfer, a mechanism first studied in the context of the s
sitized luminescence of solids,54,55 in which an excited
sensitizer atom can transfer its excitation to a neighbor
acceptor atom, via an intermediate virtual photon. T
mechanism is also responsible for photosynthetic ene
processes in antenna complexes, biosystems~BS’s! that
harvest sunlight.56 More recently, interest has focusse
on energy transfer in quantum dot nanostructures57 and
within molecular systems~MS’s!.58 In this paper we show
how to exploit such energy-transfer mechanisms with
view to processing quantum information. This pap
is a more detailed account of the work which appe
in Ref. 46.

II. BUILDING QUANTUM LOGIC GATES

We consider the Hamiltonian of two interacting quantu
dots. We assume that the dots are sufficiently far apart
tunneling processes between them may be neglected bu
there is a strong exciton-exciton coupling. Our two-level s
tem is represented in each dot by a single low-lying exci
state u1& and the ground stateu0&. Then the interaction
©2003 The American Physical Society19-1
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LOVETT, REINA, NAZIR, AND BRIGGS PHYSICAL REVIEW B68, 205319 ~2003!
Hamiltonian can be written in the computational ba
($u00&,u01&,u10&,u11&%, with the first digit referring to dot I
and the second to dot II! as follows:

Ĥ5S v0 0 0 0

0 v01v2 VF 0

0 VF v01v1 0

0 0 0 v01v11v21VXX

D .

~1!

The diagonal interactionVXX is the direct Coulomb binding
energy between two excitons, one located on each dot,
VF denotes the Coulomb exchange~Förster! interaction
which is off-diagonal and therefore induces the transfer of
exciton from one QD to the other. These are the only C
lomb interaction terms which act between the qubits and
be calculated and discussed in detail in Sec. V.v0 denotes
the ground-state energy,v1 (v2) refers to the energy re
quired to create an exciton on dot I~II ! in the absence o
interactions, and includes intradot coupling contributions~di-
rect Coulomb binding energy and spin splitting! which we
shall discuss in Sec. IV. We also defineD0[v12v2 to be
the difference between the exciton creation energy for d
and that for dot II in the absence of interactions between
dots. Thus, ifH05H I1H II denotes the free particle Hami
tonian, thenH0(ug1&ug2&)5(g1v11g2v2)ug1&ug2&, g1 ,g2
50,1 (\51 throughout this paper!, then H5H01V1,2
~where V1,2 accounts for the qubit-qubit interactions,VXX
andVF) is the system’s overall Hamiltonian. In the case of
n-qubit register with nearest-neighbor interactions,
Hamiltonian takes the formH5H0

(n)1( i 51
n21Vi ,i 11, where

H0
(n)[( i 51

n Hi is the free particle Hamiltonian, andVi ,i 11

are the interaction terms. A related Hamiltonian was inve
gated in Ref. 53, but there the off-diagonal interaction ter
(VF) were neglected.

The eigenenergies and eigenstates of the interacting q
system are
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E005v0 , uC00&5u00&,

E015v01v12
D0

2
~11A!, uC01&5c1u10&1c2u01&,

E105v01v12
D0

2
~12A!, uC10&52c1u01&1c2u10&,

E115v01v11v21VXX , uC11&5u11&, ~2!

whereA5A114(VF /D0)2, c15A(A21)/2A ('VF /D0 for
VF /D0!1) andc25A(A11)/2A. The eigenenergies in th
absence and presence of interdot interactions are display
Figs. 1~a!, 1~b!, and 1~c!. Figure 1~a! shows the energy level
when the interactions are off; Fig. 1~b! shows these when th
interactions are on, but whereVF!D0; Fig. 1~c! showsE10
andE01 as a function of the ratioVF /D0. Figure 1~d! shows
c1 andc2 as a function ofVF /D0. These figures demonstrat
thatVF causes a mixing of the statesu01& andu10& such that
the eigenstates of the interacting system are not the sam
the computational basis. As we show below, thisVF coupling
can be used for generating highly entangled states.

Single-qubit operations can be achieved by inducing R
oscillations in the excitonic system~e.g., see Refs. 4 and 59!.
If we take a Bloch sphere representation of a qubit, wh
the stateu0& is represented by a unit vector from the origin
the north pole of the Bloch sphere and the stateu1& by
a unit vector to the south pole, then the qubit stateuc&
5exp(il)@cos(u/2)u0&1exp(iw)sin(u/2)u1&], where l is a
global phase, is defined by the unit vect
(cosw sin u,sinw sin u,cosu). Depending an the values ofu
andw, this vector may point to any point on the surface
the sphere, and for universal quantum computation it mus
possible to move the vector between any two of these poi
this defines an arbitrary single-qubit rotation. In our QD sy
tem, this control can be achieved by using laser pulses
induce two distinct Rabi oscillations~see Fig. 2!. The energy
and length of such pulses must take into account struct
factors such as the dot confinement energies and trans
FIG. 1. A schematic diagram of the properties of the model Hamiltonian, Eq.~1!. ~a! Energy levels in the absence of qubit~interdot!
interactions.~b! Energy levels in the presence of qubit interactions for two dots~I and II! of different excitation frequencies.e125v2

1VXX2d, e215v11VXX1d, and d[VF
2/D0, where VF and VXX represent the strengths of the Fo¨rster and direct Coulomb binding

interactions, respectively. In this caseVF!D0. ~c! EigenenergiesE01 andE10 corresponding to the qubit eigenstatesuC01& and uC10& as a
function of the ratioVF /D0 for v1 /D0[20. For comparison, the dashed lines show the energies whenVF /D050. ~d! The eigenstate
coefficientsci as a function of the strengthVF /D0. These coefficients show the departure from the basis statesu01& andu10& followed by the
eigenstatesuC01&5c1u10&1c2u01& and uC10&52c1u01&1c2u10&.
9-2
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OPTICAL SCHEMES FOR QUANTUM COMPUTATION IN . . . PHYSICAL REVIEW B68, 205319 ~2003!
dipole moments.59,60It is also essential that the exciton stat
have long enough decoherence times that control over
phasew is possible.61,62 For example, self-assembled sem
conductor~e.g., InGaAs/GaAs! quantum dots could be ad
vantageous for qubit manipulations since they exhibit la
dipole moments and long dephasing times.4,59 We shall
return to the role of the QD material composition paramet
for QC below.

The VXX andVF interactions lead to three possible wa
of achieving quantum entanglement. First, if the ra
VF /D0@1, the eigenstates of the system are approxima
u00&, 1/A2(u10&2u01&), 1/A2(u10&1u01&), and u11&. We
now further assume that the ratioVF /D0 can be controlled,
by means of applying an electric field to either changeVF
directly, or to increaseD0 by means of the Stark shift~we
shall discuss both of these effects in detail in Sec. V!.
Then, we initially prepare the system in a state wh
VF /D0!1 and we selectively excite QD I and createu10&.
Now, when the Fo¨rster interaction is turned on, the syste
will naturally evolve sequentially into the following state
u10&°1/A2(u10&1 i u01&)°u01&°1/A2(u10&2 i u01&)°u10&
~see Fig. 3!. This evolution could be then stopped when t
system is in a maximally entangled state by applying
electric field to suppress the Fo¨rster coupling once more, a
effect which we shall again explore in detail in Sec. V A.

Second, if the system does not have a strong Fo¨rster cou-
pling, i.e., VF /D0!1 all the time, the computational bas
states are essentially the eigenstates of the system. The
VXX coupling term implies that the resonant frequency
transitions between the basis statesu0& and u1& of one qubit
dependson the state of the neighboring qubit. This mea
that it is possible to construct a controlled-NOT gate in this
system. Such a gate flips the target qubitk if the control qubit
j is in the state u1& and acts trivially otherwise
CNOT jk(um& j un&k)°um& j um% n&k , where m,nP$0,1%, and
% denotes addition modulo 2 orXOR operation. By referring
to Fig. 1~b!, we can see that the logic operatio
CNOT12(u1&1u0&2)°u1&1u1&2 can be achieved by illuminat
ing the qubit system in the stateu10& with a p pulse of

FIG. 2. Bloch sphere representation of a single qubit. In orde
perform an arbitrary single-qubit rotation in the exciton system, i
necessary to have the ability to induce two different Rabi osci
tions. Example trajectories for two such oscillations are shown
dashed lines.
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energy e125v21VXX2d ~a pulse which we labelpe12
).

Conversely, if the role of the control qubit is to be perform
by the second qubit, the gate operatio
CNOT21(u0&1u1&2)°u1&1u1&2 can be realized via the applica
tion of ap pulse of energye215v11VXX1d ~a pe21

pulse!

to the system stateu01&. Crucially, the energy difference be
tween these twop pulses, and hence the energy selectivity
the logic gate, is determined byD0 , VXX , andVF . From Fig.
1~b! we can also see how to use the controlled-NOT gate to
create maximally entangled states. For example, if we sta
the ground state and first apply ap/2 or 3p/2 pulse at energy
v1, we create the states 1/A2(u00&6u10&); if we now apply
a pe12

pulse, we generate the maximally entangled sta

1/A2(u00&6u11&).
Third, the interaction with the laser field does not nec

sarily have to be the entangling mechanism in the case w
VF /D0!1. If each of two neighboring single qubits are pr
pared in the superposition state 1/A2(u0&1u1&) ~i.e., a Had-
amard transform is applied to both of them!, making the state
1
2 (u00&1u01&1u10&1u11&), this will then naturally evolve
into entangled states under the action ofVXX alone.

Although we have discussed our Hamiltonian specifica
in the context of a dot molecule, these ideas are valid for
nanostructure with corresponding diagonal and off-diago
interactions where an energy selective excitation is possi
However, we focus on a quantum dot implementation, and
the next sections we shall analyze in detail the interdot
intradot interaction terms and show how they can be tailo
as a function of the interdot distance, dot sizes, and mate
composition.

III. THE MODEL SYSTEM

Different dot geometries~e.g., spherical, pyramidal, o
cuboidal shaped dots! can be used to implement the log

o
s
-
y

FIG. 3. Illustration of how to create an entangled state by m
nipulating the off-diagonal Fo¨rster coupling between two nanostru
tures. When the interaction is on and much greater thanD0, the
eigenstates of the system correspond to the large dots on the eq
of the Bloch sphere. Thus after selective excitation of stateu10& the
system will naturally evolve to the equator. The interaction m
then be suppressed by means of an applied field, and the
remains maximally entangled as the eigenstates become the co
tational basis states.
9-3
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LOVETT, REINA, NAZIR, AND BRIGGS PHYSICAL REVIEW B68, 205319 ~2003!
gates and quantum entanglement schemes discussed a
and in this paper we choose dots of a square-based cub
shape~for another possible geometry see Ref. 62!. We as-
sume that the potential energyV of both electrons and hole
increases abruptly at the cuboid boundaries where the s
conductor band gap changes, and thatV50 inside the
cuboids~see Fig. 4!. The confinement potential is determine
by the band offsets for the electrons and the holes. This t
of square-well potential has the advantage of describing b
a well-defined dot size in all three dimensions and of bou
and unbound solutions in each direction~this is in contrast
with, for example, the parabolic potential considered in R
53!.

Our model captures the essential properties of quan
dots which are grown by the Stranski-Krastanow~SK!
method.63 Such structures show a degree
self-organization64 which is ideally suited for the manufac
ture of prototype quantum devices, and in the realization
the elementary quantum logic gates discussed in this pa
The SK dot growth proceeds through the evaporation o
layer of dot material on to a previously grown substrate: d
form spontaneously due to the competing energy contr
tions of dot surface area, dot volume, and strain during
growth process. After the formation of dots and subsequ
overgrowth of the substrate material, a second layer of d
may be grown; these nucleate preferentially above the do
the first layer due to the uneven strain field at the surfac65

An example of two dots grown in this way is shown in Fi
5—and it can be seen there that two vertically stacked d
have been grown with a controlled spacing; dots with su
characteristics may be well suited for performing the lo

FIG. 4. Schematic diagram of the cuboidal dot model. T
cuboids have base sides of lengths 2a and 2b and heights ofh1 and
h2, respectively. Their centers are separated by a distanceR. The
potential inside the cuboids is set to zero, and that outside the
determined by the band offsets of the conduction and valence b
within the heterostructure.
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operations described above. As can be seen in Fig. 5, the
tend to have smaller dimensions in the growth direction th
in the perpendicular directions, and the upper dot of the p
tends to be of a slightly larger size, thus allowing for
appropriate identification of the excitation frequenciesv1
andv2 required in our model. Qubit scalability is availab
via the SK growth procedure since several layers of d
have been shown to grow in stacks.66

Our computational Hilbert space requires up to one ex
ton per dot, and we must therefore calculate both the sin
particle energies, which are determined by the potential p
file of the dots, and the two- and four-particle interactio
which are determined by the strength of the Coulomb int
action between them. We look at these different quanti
separately in this section.

A. Single-particle states

There are a variety of methods for finding the solutions
the Schro¨dinger equation for electrons or holes in a quantu
dot. These include a full pseudopotential calculation,67–69fi-
nite element analysis,70 plane-wave expansion,71 and the use
of finite differences.72 We employ a similar strategy to that i
Refs. 73 and 74, where the Schro¨dinger equation is expande
in a set of analytical basis functions which are the ex
solutions of a potential which is close to the one under
vestigation. This method has the advantage that the state
lutions can be stored in a vector in Hilbert space rather t
as a wave function amplitude at each of a very large num
of different spatial points; time evolution of the quantu
states is also easier to simulate when the state is represe
by a vector and we shall extend our work to this area e
where. Furthermore, a vector representation can allow m
physical insight since the basis functions themselves ha
known physical interpretation.

Our first step is to express the wave functions for sin
particles in the envelope function approximation as1,75

cp~r !5fp~r !Up~r !, ~3!

wherefp(r ) is an envelope function describing the changi
wave function amplitude of confined states for particle typp
over the dot region, andUp(r ) is the Bloch function which
has the periodicity of the atomic lattice. In the effective ma

is
ds

FIG. 5. Transmission electron micrograph of two layers of qu
tum dots grown by the Stranski-Krastanow method. The dots
made of InAs and the encapsulating material is GaAs; note that
dots in the second layer nucleate preferentially above the dots in
first layer ~Ref. 90!.
9-4
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OPTICAL SCHEMES FOR QUANTUM COMPUTATION IN . . . PHYSICAL REVIEW B68, 205319 ~2003!
approximation, the envelope functions are solutions of
following single-particle Schro¨dinger equation:

F2
\2

2
“S 1

mp* ~r !
D“1Vp~r !Gfp

i ~r !5Ep
i fp

i ~r !, ~4!

whereVp is the confinement potential, which is displayed
Fig. 4 andmp* is the effective mass of the particlep. These
solutions may be obtained by expanding the Hamiltonian
set of envelope basis functions of the formJ(r )
5jx(x)jy(y)jz(z), where thej i( i ) are the solutions of a
one-dimensional square-well potential with the appropri
effective masses.73,74 Both bound and unbound states mu
be used in the expansion in order to obtain convergent s
tions: the forms of these are discussed in the Appendix.

There are two important things to mention about the
rect expansion technique. First, the basis functions we h
described above do not in general form an orthogonal s
the bound-state solutions have not decayed to zero at
artificial infinite barrier which is used to generate the u
bound states. In practice this is rarely a problem, but anyw
is circumvented by using a modified basis set which is
thogonal and whose components are linear combination
the original basis functions. This modified basis set spans
same Hilbert space as the original set. The method we
ploy to find this set is canonical orthogonalization76 which
relies on direct diagonalization of the matrix whose eleme
are the overlap integrals of the basis functions. The Ham
tonian may then be expressed in this new basis as a He
ian matrix, and solutions are found again by direct diagon
ization ~we use the NAG diagonalization algorithm in o
simulations!. The second point is that the basis set must n
essarily be truncated; hence the eigenenergies of the s
tions we obtain are really upper limits on the true eigen
ergies of the coupled dot system~we employ the Rayleigh-
Ritz variational method77!. In practice we can increase th
number of basis functions until a sufficiently accurate so
tion is obtained. We shall mention any important points
lating to solution convergence and approximations at the
propriate places later in the paper.

Results of a simple single-particle calculation are d
played in Fig. 6, where the ground-state energy of two p
ticles in QD I~of masses 0.6m0 and 0.06m0, wherem0 is the
free electron mass! is shown as a function of the dot size fo
two dot geometries. The two geometries correspond to a
bic shape (a5h1/2) and a flatter cuboidal shape (a55h1),
which is more typical of SK dots~see Fig. 5!. As would be
expected, the ground-state energy decreases for a large
size and is smaller for heavier particles. The cube sha
dots have ground states with smaller energies than the c
sponding cuboidal dot states since the cuboids have
smaller dimension which increases the kinetic energy of
wave function. All of the curves have a kink, and for d
sizes below this the ground-state energy saturates to
value of the confinement potential. This is a consequenc
including unbound states in the calculation: once the dots
small enough that the confined state energy has a large
ergy than the confinement potential, the ground state
comes unbound and there is hardly any dependence on
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size as it is further reduced. When the ground state i
bound state, the ground energy is always larger in the cas
the cuboidal shape, for a given value ofa: this is a conse-
quence of the smaller height dimension of the cuboid wh
increases the kinetic energy of the particle. Bound grou
states are always very closely approximated by the b
function corresponding to the ground state of the o
dimensional well in all three dimensions: in the case of cu
shaped dots, the amplitude of this state is always greater
0.999; for the cuboidal dot it is always greater than 0.99.
shall use the approximation that the ground state isexactly
this basis function later in the paper.

B. Coulomb interactions: General methodology

In this section we present our general methodology
calculating the Coulomb interaction matrix elements b

FIG. 6. The single-particle ground-state energy as a function
dot size for a quantum cube~lower graph! and a quantum cuboid
~upper graph!. We use the envelope function and effective ma
approximations. The filled symbols correspond tomp* 50.6m0

which is typical of heavy holes, and the open symbols correspon
mp* 50.06m0 which is typical of electrons. These values will b
used for electrons and holes throughout this paper. The diffe
symbols represent different values for the confinement poten
~see legend!.
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LOVETT, REINA, NAZIR, AND BRIGGS PHYSICAL REVIEW B68, 205319 ~2003!
tween electrons and holes in quantum dots. This will be
portant later for calculations of the intradot and interdot m
trix elements in our model system.

First, consider an initial wave function of anN-electron
system which represents a single exciton state of a quan
dot:68

C I5A@c1~r1 ,s1!,c2~r2 ,s2!, . . . ,cs8~r s,ss!, . . . ,

c t~r t ,s t!, . . . ,cN~rN ,sN!#, ~5!

where theA indicates overall antisymmetry~i.e., the wave
function takes a Slater determinant form!, the s i represent
the spin state of each electron, and thec i are single-particle
wave functions; we have labeled the states with a prime
symbol to indicate that it lies in the conduction ban
whereas all of the other states are in the valence band.

Next, we assume a final state which is a different sin
exciton:

CF5A@c1~r1 ,s1!,c2~r2 ,s2!, . . . ,cs~r s,

3ss!, . . . ,c t8~r t ,s t!, . . . ,cN~rN ,sN!#. ~6!

The Coulomb matrix element between these two state
given by

M IF
Coul5^CFu (

i j ,i , j

e2

4pe0e r~r ij !ur iju
uC I&, ~7!

wheree0 is the permittivity of vacuum,e r(r ) is the relative
permittivity of the medium~and therefore describes polariz
tion screening!, and r ij5r i2r j . The only nonzero terms in
the above expansion are those involving bothr s andr t , since
the ground and excited states of each single particle are
thogonal to one another. Hence, we obtain

M IF
Coul5^CFu

e2

4pe0e r~r st!ur stu
uC I&. ~8!

Owing to the antisymmetric nature of the wave function
this matrix element has contributions from a direct term a
an exchange term. Both terms take the form of an integ
over r s and r t . In spite of the fact that it arises from th
exchanged form of the wave function, the direct term is c
ventionally written as

M IF
J 5CE E c t8* ~r s!cs8~r s!

1

e r~r st!ur stu
cs* ~r t!c t~r t!dr sdr t ,

~9!

and the exchange term is

M IF
K 56CE E cs* ~r s!cs8~r s!

1

e r~r st!ur stu

3c t~r t!c t8* ~r t!dr sdr t , ~10!

where we have introduced the constantC[(e2/4pe0). The
sign of this exchange term is determined by the spin of
two particles: spin triplet (S51) states have positiveM IF

K

elements, whereas spin singlet (S50) states have negativ
M IF

K values. We have removed the spin variables from
20531
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single-particle wave functions since these are not impor
for spatial integrals, once the sign forM IF

K has been deter
mined. It is natural now to switch to a hole description of t
many-body wave functions introduced above: the matrix
ements obtained by the above procedure would be iden
if we labeled the statess andt as holes and simply expresse
each wave function as a product of the promoted elect
states and the left behind hole states. This allows the o
parts of the wave functions to be left out when calculati
matrix elements involving these specific electronic states
so makes calculations easier; it also explains the conven
on labeling direct and exchange terms. We shall hencef
use such a description.

We proceed further by noting that the two integrals, E
~9! and Eq.~10!, are both of the form

I 5E E rs~r s! f ~r s2r t!r t~r t!dr sdr t , ~11!

and so we may use Fourier transforms to reduce the dim
sionality of the integrand. Employing the convolution the
rem and Parseval’s relation leads to

I 5
1

~2p!6E Rs~K …Rt~K !F~K !dK , ~12!

where the Fourier transform ofr is denoted byR and that of
f is denoted byF. We now make the calculation more sp
cific by first assuming thate r is independent ofr st @see Ref.
68 for a detailed discussion of the form ofe r(r st)], and note
that the Fourier transform of the Coulomb operator is giv
by

F~K !5
4p

K2
. ~13!

The r functions are a product of two wave functions of th
form of Eq. ~3!, and their Fourier transform is simplified b
invoking the different length scales of the envelope funct
and the Bloch function. We may write, for theM IF

K integral~a
completely analogous method can be carried out for theM IF

J

integrals!:

Rs~K !5E cs* ~r s!cs8~r s!exp~ iK•r s!dr s

5Vcell(
Ti

fs,i* fs,i8 exp~ iK•T i !

3E
cell

Us* ~r s!Us8~r s!exp~ iK•r s!dr s, ~14!

where we have assumed that each envelope function tak
constant valuef i over each unit celli of the lattice, that the
translational lattice vector of celli is T i and that the volume
of the unit cell isVcell . We may express theK wave vector
as

K5k1G, ~15!
9-6
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wherek is a vector within the first Brillouin zone andG is a
reciprocal lattice vector, and we may further convert the s
to an integral to obtain

Rs~k,G!5E
space

fs* ~r !fs8~r !exp~ ik•r !dr

3E
cell

Us* ~r s!Us8~r s!exp@ i ~k1G!•r s#dr s.

~16!

Thus Rs is a product of Fourier transforms, one for the e
velope functions~which is independent ofG, so only needs
to be calculated within the first Brillouin zone! and the other
for the Bloch functions. It is also obvious that an analogo
expression exists forRt . The envelope function parts of th
Fourier transform are analytical: the wave function takes
ther a sinusoidal or exponential form depending on whet
it exists within or outside the quantum dot. We do not wr
out these expressions explicitly here however, since they
somewhat lengthy and tedious. The Bloch function par
also analytical for a suitable choice of wave function, and
simplify the calculations here we use a Kronig-Penn
model where the atomic wave functions are assumed to
the form of the solutions of an infinite square-well potent
of well width 2x. Specifically, we assume that the hole sta
we consider~at the top of the valence band! take the wave
function solution of this potential which haspz symmetry
and the electron states we consider take the solution wis
symmetry. We expect this to be sufficient approximation
elucidating the general properties of the system, thoug
more refined calculation would be required to obtain m
accurate estimates of the various quantities we calculate

By inserting Eq.~16! ~and the analogous expression f
Rt) and Eq.~13! into Eq. ~10! we obtain an expression fo
M IF

K . The expression has an integrand which is analytical
the integration over three-dimensionalK space must be car
ried out numerically. This is done by employing a NAG
brary routine for multidimensional adaptive quadrature.
the wave function labels are swapped around, an analog
method for calculatingM IF

J can be carried out@see Eq.~9!#.
We shall show the results of such calculations for vario
different cases in the next sections.

IV. INTRADOT COUPLING

In this section, we describe the predictions of the abo
model when it is applied specifically to the calculation of t
diagonal matrix element of the two ground-state basis fu
tions representing an electron and a hole on the same do
this case the statess and t are identical, and hence the e
pression forM IF

J reduces to the direct Coulomb interactio
between the ground basis state electron and the ground
state hole~we call thisM00

J ). We saw in the preceding sec
tion that the ground basis state is a good approximation
the true ground state of the system when only the sin
particle contributions to the Hamiltonian are taken into a
count. Thus this matrix element is a first-order correction
the energy due to the Coulomb force between the two p
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ticles. Furthermore, the expression forM IF
K reduces to the

spin splitting between singlet and triplet exciton states in t
first-order approximation.

Let us first consider the direct Coulomb interaction in d
I, which has basal side lengtha, and simplify things by cal-
culating for a cubic shape~i.e., we set 2a5h1). The results
may then be directly carried over to dot II, witha→b and
2b5h2. As we described earlier, it is necessary to evalu
the integral of Eq.~9! by first transforming to reciproca
space and then integrating overK space. The resultant inte
grand has peaks at each reciprocal lattice point~where k
50 and so the envelope function part of the integrand ha
maximum!. These peaks quickly die away over a length sc
;1/a as would be expected for envelope functions repres
ing wave functions within QD’s of side lengtha. However, it
turns out that only the central (G50) peak is important,
since the other peaks contribute much less to the total i
gral ~this is caused by both thek dependence of the atomi
contribution to the integrand and by the 1/k2 dependence of
the Coulomb interaction part!. The central peak is displaye
in Fig. 7, as a function ofKx andKy (Kz50).

By numerically integrating the central peak for a range
dot sizes and confinement potentials, we can obtain a plo
the dependence ofM00

J on these parameters~this is shown in
Fig. 8 for both the cubic geometry and for a flat cuboid,
which a55h1). As would be expected, the interaction d
creases as the size of the QD increases~and so the electron
and hole are not forced to be so close together!. It is inter-
esting to look at what happens at shorter distances when
confinement potential changes; a larger confinement po
tial causes a larger Coulomb binding energy. This resul
expected since the wave function of both the electron and
hole is contracted when the confinement potential is large
and the resultant closer proximity of the two wave functio
causes a larger Coulomb interaction. As would be expec

FIG. 7. The intradot direct Coulomb interaction strength in
grand, plotted in theKx-Kz plane of reciprocal space, and aroun
theK50 point. We have calculated the integrand for dot I and us
the cubic geometry (a5h1/2510 nm), and assumed thatVe5Vh

5500 meV.
9-7
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LOVETT, REINA, NAZIR, AND BRIGGS PHYSICAL REVIEW B68, 205319 ~2003!
intuitively, at very large dot sizes the size of the Coulom
interaction scales like 1/a. At very small dot sizes, the direc
Coulomb interaction does not follow these simple rules: fo
weak enough confinement there is a peak in the energy
at small values ofa it decreases. This can be understood b
thinking about the shapes of the wave functions in this
gion. When the well width is small, the curvature of th
wave function is necessarily rather high, and so the kin
energy is large. In order to compensate for this, the w
function spreads out into the barriers at the cost of so
potential energy, if the barriers are not too high~this energy
cost is balanced by the saving in kinetic energy!. Thus the
wave function has a larger size than would naively be
pected from the dot size, and the Coulomb binding ene
decreases. The peak in the Coulomb potential occurs f
larger value ofa in the cases of cuboidal geometry: this
simply because of the shorter height dimension in this ca
which means that the wave function spread effect discus
above remains significant at larger values ofa. At still larger
values ofa, the Coulomb interaction is larger for the cubo
dal geometry than it is for the cube: again this is because
cuboid has one smaller dimension, which means that
electron and hole are forced to be closer together in
cuboidal case.

We next look at the value of the exchange coupling
tween the two ground-state basis functions~i.e., the spin
singlet-triplet splittingM00

K , correct to first order!. The rel-
evant K-dependent integrand takes a somewhat differ
form in this case. The central peak~aroundG50) is dis-
played in Fig. 9, where it can be seen that the function ha
zero atK50; this is expected since the electron and h
wave functions have opposite parity. The suppression aK
50 means that, this time, the regions around other recipr
lattice points have to be included in the numerical integ
tion. The resultant dependence ofM00

K on dot size and con
finement potential is displayed in Fig. 10.

FIG. 8. The intradot direct Coulomb interaction strengthM00
J as

a function of dot size and confinement potential. The solid lines
for a cubic geometry (a5h1/2) and the dotted lines are for a cubo
(a55h1).
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By reference to Fig. 10 we see that the exchange split
is several orders of magnitude smaller than the direct C
lomb term, though it follows the same trends of increasing
value with smaller dot sizes and larger confinement pot
tials. These effects can be understood as follows: the
change splitting is essentially a consequence of Pauli’s
clusion principle which states that particles in the sa
quantum state cannot exist together at the same spatial p
Thus electrons and holes which are in a triplet spin state~and
so have indistinguishable spin properties! necessarily
‘‘avoid’’ each other, thus reducing the Coulomb attractio

e

FIG. 9. The intradot exchange Coulomb interaction strength
tegrand, plotted in theKx-Kz plane of reciprocal space, and aroun
the K50 point. Note that it has value zero atK50 and is asym-
metric inx andz due to the choice of thepz Kronig-Penney state for
the holes. We have calculated the integrand for dot I and used
cubic geometry (a5h1/2510 nm) and assumed thatVe5Vh

5500 meV.

FIG. 10. The intradot exchange Coulomb interaction stren
M00

K as a function of dot size and confinement potential. The so
lines are for a cubic geometry (a5h1/2) and the dotted lines are fo
a cuboid (a55h1).
9-8
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between them. This effect is expected to be more signific
when the wave functions in the absence of the Coulo
interaction overlap strongly—that is when they are localiz
in one small region of space. There is, in general, a gre
degree of localization of the wave functions when either
dots are smaller or when the confinement is stronger,
hence the exchange splitting gets larger when these co
tions are satisfied. However, there is again one region of
10 where this general rule is not obeyed—that is, when c
finement is relatively weak, but where the dot size is sm
Here, the exchange energy takes a downturn as the dot
gets smaller. This is caused by increased wave function
rier penetration, which again means the effective wave fu
tion size getslarger rather than smaller as might be expect
from the simple intuitive picture described above. The co
parison between the cubic and cuboidal geometries sho
similar trend to that discussed above for the case of the d
Coulomb interaction, and the reasons for this follow t
same lines. The turnover occurs for a largera for the cuboi-
dal dot due to the wave function spreading effect which
curs for smaller spatial dimensions: this spreading caus
reduction in the exchange splitting. At larger sizes, the
change splitting is larger for the cuboidal shape due to
effect of the smaller height dimension of the cuboid, whi
pushes electron and hole together and thus increases th
change splitting. At larger dot sizes, the interaction sca
like 1/a3.

V. INTERDOT INTERACTIONS

In this section we shall discuss the interdot coupling ter
which are due to the Coulomb operator introduced in pre
ous sections. These terms are crucial to the operation
quantum device, since they may allow qubit-qubit intera
tions to take place, which is an essential requirement for
~or more! qubit gates to be constructed. There are two i
portant types of interaction which may occur. The first ty
is called the Fo¨rster interaction, and is described by an o
diagonal matrix element~in the computational basis! be-
tween two single exciton wave functions of the type intr
duced in Eqs.~5! and ~6!, but where the two excitons ar
located on different quantum dots@this interaction is called
VF in Eq. ~1!#. The second interaction which is important f
this scheme is the direct self-Coulomb interaction in a bi
citon ~double substitutional Slater determinant! wave func-
tion, where one exciton is located on each dot. This is ca
VXX in Eq. ~1! and amounts to the Coulomb binding ener
between two excitons located on adjacent dots. We n
quantify both of these interaction terms and discuss th
properties within the context of the quantum computi
implementation described in Sec. II.

A. Off-diagonal coupling: Förster interaction

The Förster or Coulomb exchange interaction can indu
the transfer of an exciton from one quantum dot to the oth
This is a nonradiative energy transfer whereby an excito
destroyed on one dot and recreated on the other; it is
electrostatic interaction which proceeds via a shortlived
tual photon. Fo¨rster’s original theory78 showed that the inter
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action is dipole-dipole to lowest order; this theory was su
sequently elaborated by Dexter55 who derived higher-order
and exchange terms in studies of the sensitized luminesc
of solids. Here we extend this theory to the case of the ma
body exciton states of quantum dots. The off-diagonal nat
of the interaction causes the eigenstates of the Hamilton
Eq. ~1!, to become linear combinations of the computation
basis statesu10& andu01&. As described in Sec. II, the degre
of this mixing is crucial in determining how to genera
quantum entanglement in the quantum dot molecule. T
Förster coupling can be expressed as the matrix elemen
the direct Coulomb operator between excitons located
each of the two dots:

VF5CE E cs~r s!cs8~r s!
1

e r~R1r s2r t!uR1r s2r tu

3c t~r t!c t8~r t!dr sdr t . ~17!

This equation is equivalent to Eq.~9!, but we have explicitly
included the interdot vectorR in the Coulomb operator; we
assume in this case that the two variablesr s and r t are de-
fined from the centers of dot I and dot II, respectively. W
may evaluateVF in exactly the same way as we evaluated t
intradot couplings, so long as the new positions of the wa
functions are included in the calculation. An example of t
integrand appearing in Eq.~17! is shown in Fig. 11. It is
interesting to compare this figure to Figs. 7 and 9; in the p
of Fig. 11 there is an extra modulation due to the extra fac
associated with the interdot separation, and this added m
lation means the integral takes longer to evaluate num
cally. The results are displayed in Figs. 12 and 13, where
Förster strength is displayed as a function of dot separat
shape, and confining potential. The data are displayed o
log scale, and it can be seen that, for the cubic shape,

FIG. 11. The plot of the integrand inK space which leads to the
Förster strength, as a function ofKx and Kz (Ky50). The extra
modulation on the function~as compared with Figs. 7 and 9! is
caused by the interdot separation. The plot is for cubic dots w
a5b510 nm and R520 nm, and we have takenVe5Vh

5500 meV.
9-9
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LOVETT, REINA, NAZIR, AND BRIGGS PHYSICAL REVIEW B68, 205319 ~2003!
closely follow a 1/R3 law for all the separations considere
This form is expected for a dipole-dipole interaction, and
shall now discuss how a power-series expansion and su
quent approximation lead to this type of interaction in th
case. In so doing, we shall also explain why the interactio
modified as the size and shape of the dots are changed

By making the assumption thatR is much larger thanr s
and r t , we may Taylor expand the Coulomb operator. T
procedure yields, to lowest nonzero order,

VF5
C

e rR
3 S ^r I&•^r II&2

3

R2
~^r I&•R!~^r II&•R!D , ~18!

where it has been assumed that the dielectric constant i
dependent ofR1r s2r t , and as throughout the paper is a
sumed to take the constant value ofe r510. The matrix ele-
ment of the position operator between an electron and a
state on dot I or II is

^r I/II &5E c I/II8 ~r !rc I/II ~r !dr . ~19!

Equation~18! is therefore equivalent to the interaction of tw
point dipoles, one situated on each dot. We can proceed
ther by again employing the envelope function approxim
tion for electrons and holes@Eq. ~3!# and by rewriting Eq.
~19! as

FIG. 12. Dependence of the Fo¨rster interaction strength on th
interdot separationR. The dots have equal sizes and results
shown for two shapes:~i! cubic, with a5h/252 nm ~upper two
curves!, and ~ii ! cuboidal, witha55h52 nm ~lower two curves!.
The circles and squares represent the predictions of a full nume
simulation for well depths of 500 meV, and 2000 meV respectiv
~the electron and hole wells are assumed to be of the same de!.
The dotted lines represent the predictions of the dipole-dip
model for the cubic shaped dots and the dashed curve represen
maximum coupling predicted for the dipole-dipole model, whi
corresponds toOI5OII51.0. The dotted lines can be obtained
multiplying this maximum by the relevant values ofOi which can
be obtained from Fig. 14.
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^r I/II &5(
$Ti%

VcellE
cell

f I/II8 ~r2T i!U8~r !~r2T i!

3f I/II ~r2T i!U~r !dr , ~20!

whereT i represents the set of lattice vectors. We have m
use of the periodicity of the Bloch part of the wave functio
and assumed that this part of the wave function is the sa
for both dots. By making the assumption that the envelo
function is slowly varying on the length scale of the atom
lattice and by using the orthogonality of the electron a
hole Bloch functions we find that

VF5
C

e rR
3

OIOIIS ~ u^ra&u2!2
3

R2
~^ra&•R!2D , ~21!

where the term̂ ra& represents the atomic position operat
expectation value

^ra&5E
cell

Ue~r !rUh~r !dr , ~22!

which is the same for both dots and

Oi5E
space

fe
i ~r !fh

i ~r !dr ~23!

is the overlap of electron and hole envelope functions on
appropriate doti. Equation~21! shows how the effects of the
quantum dot size and shape~which determine the overlap
integrals! may be separated from the effects of the mate
composition of the dot~which determine the atomic dipol
operator!.
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FIG. 13. Dependence of the Fo¨rster interaction strength on th
shape of the dots. The dots are assumed to be identical, but ha
series of cuboidal shapes with different aspect ratios. The w
depth is 500 meV~the electron and hole wells are assumed to be
the same depth!. The solid curve represents the maximum coupli
predicted for the dipole-dipole model, which corresponds toOI

5OII51.0.
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It is now possible to obtain the strength of the interact
by assuming the specific forms for the envelope and ato
functions which we discussed earlier, in Sec. III. For t
Kronig-Penney model, with a well width of 2x, the atomic
position operator expectation value is given by

^ra&532x/9p2. ~24!

The overlap integrals are easily calculated for the envel
functions described earlier, and are displayed as a functio
dot size and confinement potential in Fig. 14. We show
overlap integral for the usual two dot shapes: cubica
5h/2) and flat cuboidal (a55h), where the latter is more
typical of dots grown by the Stranski-Krastanow metho
The overlap is enhanced when there is a larger confinem
potential and for larger dots, since in these cases the sha
the wave function is less sensitive to the effective mass
ference of the electrons and holes. We may use Fig. 14
gether with the atomic dipole value, to calculate the Fo¨rster
strength for a range of dot sizes and confining potenti
Owing to its dependence on the atomic dipole operatorVF
}x2), we plot VF /x2 as a function ofR in Fig. 12. Two
example curves, for two equally sized cubic dots are sho
for equal electron and hole potentials of 500 meV and 20
meV in Fig. 12, together with the earlier full calculation
which the dipole-dipole approximation was not made. T
full calculation was carried out for~i! cubic dots witha
5h/252 nm, and~ii ! cuboidal dots witha55h52 nm. For
both shapes it is clear that the influence of dot shape and
is much more important in determining the size of the int
action than the influence of the size of the confinement
tentials. Furthermore, the dipole-dipole approximation
very good in the case of a cubic dot, even at interdot se
rations which are relatively small when compared to the
sizes. For the cuboidal dot, the dipole-dipole approximat
fails at smaller separations. We investigated this effect m
thoroughly by repeating the calculations for cuboids of d
ferent aspect ratio~see Fig. 13!. The next-order term~dipole
quadrupole! is zero in all cases when the dots have eq

FIG. 14. The overlap integralOi @Eq. ~23!# as a function of dot
size and confinement potential. This graph can be used in conj
tion with Fig. 12 to obtain values of the Fo¨rster strength for a range
of dot sizes and confinement potentials.
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size; presumably the reason for the accuracy of the dip
dipole approximation in the case of cubic dots is that
dipole-dipole terms dominate the higher-order terms eve
smaller dot separations.

The simple Kronig-Penney model shows how the size
the Förster transfer depends upon the physical size of
atomic part of the wave function. However,^ra& is a widely
measured quantity since it determines the strength of dip
allowed transitions in optical spectra. In CdSe QD’s
can be in the range of 0.9 to 5.2e Å,57 in atomic systems it
can also be severale Å ~Ref. 79! and in BS’s and MS’s has
recently been observed to be about 1.7eÅ.58

As an illustration of the use of these curves, let us assu
that we have a dot system in which, as before,R55 nm, a
510 nm,b58 nm, andh15h252 nm. Furthermore, let us
take the measured dipole value for CdSe dots of 0.9
5.2 eÅ.57 In this case, the Fo¨rster strength is between 0.01
and 0.45 meV, which ifD050 would correspond to anon
resonanceenergy transfer time of between 318 and 9.2 ps
dots with Vh5Ve5500 meV. This is short enough to b
useful for quantum computing purposes: decoherence ti
as long as a few nanoseconds80 have been observed i
QD’s. In MS’s or BS’s, the interacting units can be as clo
together as 1 nm; using this and taking a typical molecula
biomolecular dipole value of about 1.7e Å,57,58we obtain an
interaction strength of 8.3 meV~or a transfer time of
;497 fs). Furthermore,VF must certainly be controlled if
the alternative scheme usingVXX is to be implemented~and
therefore cannot be neglected as in Ref. 53!. We note thatVF
is not particularly sensitive to differences in dot size, thou
the differences in the diagonal~self-energy! parts of the
Hamiltonian which are caused by having dots of unequal s
are very significant. We shall discuss this further in Sec.

In Sec. V B we shall discuss how the biexciton bindin
energy term depends upon applied electric field, and h
such a field may be crucial to the operation of a poten
quantum logic device. We now discuss how the Fo¨rster term
would vary when such a field is applied. Since an elec
field would move the electron and hole away from one a
other, the overlap integrals, Eq.~23!, would be reduced by
such a field. We show this specifically by simulating t
effect of applying a field on the overlap integralOi in Figs.
15 and 16. In Fig. 15, we see thatOi is significantly sup-
pressed for fields of a few tens of kV/cm, and that the s
pression is easier to achieve in dots which have a lar
dimension in the direction of the applied field. The reason
this is that in larger dots the electron and hole are more ea
separated since there is more distance between the two
barrier interfaces. In zero field, dots with asmaller dimen-
sion have smaller overlap integrals, for the reasons ass
ated with the balance of kinetic and potential ener
discussed earlier. Hence, we see that the curves for diffe
dot sizes cross each other in an applied field. In Fig. 16
plot the dependence of theOi on the depth of the confine
ment potentials, fora510 nm for both the cubic and cubo
dal geometries. We see here that the effect of varying c
finement potential is much smaller than varying dot size. T
small difference that is evident, that of a slightly easier su
pression for deeper confinement potentials, is presuma

c-
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LOVETT, REINA, NAZIR, AND BRIGGS PHYSICAL REVIEW B68, 205319 ~2003!
due to the fact that the wave functions in a shallower we
tend to be more spread out~since the potential-energy cost
doing so is smaller!, and so the overlap between an electr
and hole at opposite sides of the dot is slightly enhanc
Again the curves cross one another since, as we discu
earlier, in zero field the delocalization of the states for sh
lower potentials means that the shape of each particle’s w
function depends more strongly on its effective mass.

The fact that the Fo¨rster coupling may be suppressed
an external field could be very useful: if an entangled stat
produced by using this coupling, it may be maintained
switching offVF . If this could be done in a sufficiently sho
time ~i.e., on the time scale of the evolution of the quantu
device under the Fo¨rster coupling Hamiltonian, but muc
less than typical decoherence times!, it may be possible to
fabricate a two-qubit gate using this effect. It may also
possible to achieve this switching in an alternative way,
leaving the Fo¨rster coupling at a constant value but by tuni
the single exciton level spacingD0 through the electric field

FIG. 15. The overlap integralOi @Eq. ~23!# as a function of
electric-field strengthE for a range of dot sizes. The upper pa
shows the dependence when the dots take a cubic shapa
5h1/2); the lower part shows the dependence for a cuboidal sh
(a55h1). Note that the overlap integral, and so also the Fo¨rster
interaction, is suppressed at large field as the electron and hol
forced apart.
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which induces the Stark shift;1 we shall return to this in Sec
VI. It is also interesting that a negligible Fo¨rster coupling is
essential for the energy selective dot device discussed in
II: such a negligible coupling may be achieved through us
an external field. There are disadvantages doing this in
case, however. A smaller electron-hole overlap will also
duce the coupling to the light field itself, which we need
be strong enough to be able to perform conditional gates
time short enough when compared with typical decohere
times. Hence, as so often in quantum computing implem
tation, a compromise must be struck between these two
quirements.

B. Diagonal coupling

We now calculate the direct Coulomb interaction betwe
two excitons, where one exciton is located on each dot. T
interaction leads to the energy selectivity of the gate and
responsible for theVXX term of Eq.~1!.

(
pe

are

FIG. 16. The overlap integralOi @Eq. ~23!# as a function of
electric-field strengthE for a range of confinement potentials, for
dot size ofa510 nm. The upper part shows the dependence w
the dots take a cubic shape (a5h1/2); the lower part shows the
dependence for a cuboidal shape (a55h1).
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Consider the following double substitutional Slater det
minant, which we write using the hole prescription describ
in Sec. III B. It represents a combination of two ground co
duction electron states and two ground hole states wh
correspond to one exciton on each dot:

CXX5A@ce
I ~r1!ch

I ~r2!ce
II~r32R!ch

II~r42R!#, ~25!

whereA indicates that the wave function has overall an
symmetry, this being achieved by adding terms with lab
swapped around in a Slater determinant form.R is the vector
connecting the two dot centers,r1 andr3 represent the posi
tion vectors of electrons relative to the centers of dot I a
dot II, respectively, andr2 and r4 are the equivalent vector
for holes. The associated Coulomb operatorV̂XX is given by

V̂XX5
C

e r
F 1

uR1r12r3u
2

1

uR1r12r4u
2

1

uR1r22r3u

1
1

uR1r22r4uG . ~26!

Expanding this expression in a Taylor series aboutR gives,
to lowest nonzero order,

V̂XX5
C

e rR
3 H pI•pII2

3

R2
~pI•R!~pII•R!J , ~27!

wherepI5e(r12r2) is the overall dipole moment on dot
andpII5e(r32r4) is the overall dipole moment on dot II. T
evaluate the matrix element^CXXuV̂XXuCXX&, pI and pII in
Eq. ~27! are replaced by their expectation values for t
wave function, Eq.~25!. This procedure gives rise to a dire
term and exchange terms. The exchange terms arise from
parts of the wave function@Eq. ~25!# which do not appear
explicitly within the bracket but which have their labe
swapped around and they are zero in the absence of w
function overlap between dots. The direct term is obtain
through the use of the envelope function approximation,
~3!, which leads to the following equation for the expectati
value ^r1&:

^r1&5E
space

fe
I* ~r1!r1fe

I ~r1!dr1 , ~28!

where the orthogonality of the Bloch functions for differe
bands and the slow variation approximation for the envel
functions have again been used. Similar expressions hold
the other position expectation values.

For a cubic dot, where the electron and hole wave fu
tions have a definite parity about the dot center, Eq.~28!
implies that the exciton-exciton coupling is zero. Howev
this is not the case when this symmetry is broken. For
stance, for pyramidal shapes the electron may localize in
region of the dot and the hole in another region.72 Alterna-
tively, an electric field would induce a polarization on th
dot; this field may be externally applied or arise from intri
sic piezoelectric effects.47,53

We have simulated the effect of applying an electric fie
in our cuboidal model by including a linear potential in th
20531
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single-particle Schro¨dinger equations~4!, and the results are
displayed in Fig. 17. In the lower part of the figure we d
play the size of the exciton dipole momentpi on one of the
dots as a function of the dot size and of the applied elec
field strengthE. We do this for our usual two geometrie
cubic (a5h1/2) and flat cuboid (a55h1) ~see Fig. 4!. In
both cases the field is applied along one of the axes of
square base. The interaction strengthVXX is then obtained by
using the size ofpi for each dot and substituting into Eq
~27!. Thus, the upper part of Fig. 17 shows the strengthVXX ,
normalized byR3, for two dots of equal size and calculate
for both of the dot geometries just described.@The interac-
tion between two unequally sized dots can similarly be o
tained by the use of Fig. 17~b! and Eq.~27!.# At very small
applied field, the induced dipole is linearly proportional
the field, and hence the interaction strength takes a quad
dependence on field. At larger applied fields, the induc
dipole begins to saturate as the electron and hole appro
the edges of confining potential of the quantum dots; t
limits the useful interaction strength which may be obtain
from a given pair of dots. It is interesting that the interacti
strength is much more dependent ona than it is onh1; this is
because it is in the basal plane that the field is applied, an
it is in this direction that the dipole moment is induced. T
relative insensitivity ofVXX to h1 turns out to be very useful
it means that SK dots, which can be stacked closely on to
one another but which have a relatively large base size,
be made to interact very strongly. As an illustration, consi

FIG. 17. ~a! Exciton-exciton binding energy and~b! induced
dipole moment as a function of the dot size, shape, and app
electric field. We have assumed thatVe5Vh5500 meV.
9-13
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LOVETT, REINA, NAZIR, AND BRIGGS PHYSICAL REVIEW B68, 205319 ~2003!
the following typical SK dot parameters:R55 nm, a
58 nm, b510 nm, andh15h252 nm ~we have assumed
the usual experimental situation in which the upper dot of
stack has a slightly larger size!. In anx directed field of 100
kV/cm, these parameters giveVXX'120 meV, which would
result in a lower time limit for the gate operation of arou
10 fs. This is relatively short; decoherence times on the or
of nanoseconds have been observed for uncoupled do80

Finally, we note that we have only calculatedVXX to first
order; in some cases higher-order terms may be importa

VI. FURTHER DISCUSSION

The model outlined above can also be used to calcu
D0, the difference in exciton creation energy for two diffe
ent sized dots in the absence of interactions. This is don
simply calculating the single-particle electron and hole en
gies and taking into account the Coulomb binding ene
between them. We also assume that the electron and hol
in the spin singlet state; spin is not important for our pres
proposal and it is always possible to choose the spin sin
state by using light with the appropriate polarization. Hen
we can effectively ignore the triplet states in considering
scheme described in Sec. II.

The absolute value ofD0 is displayed as a function of th
ratio of the dot side lengths for each of the usual geomet
in Fig. 18. We have displayedD0, both in the absence of th
~intradot! Coulomb terms, and when these terms are inclu
to first order by using the calculations of Sec. IV.D0 is zero
when the dots are of equal size, and then increases a
difference in size becomes greater. The Coulomb terms s
to reduce the size ofD0 because they are larger for th
smaller dot of the pair~which also has the larger single
particle energies!.

We now use the analysis of Sec. II and the calculations
subsequent sections to obtain the size of thec1 component of
the uC10& and uC01& states. If we assume that the Fo¨rster
strength is small in comparison withD0, then we have tha
c1'VF /D0 @see inset of Fig. 1~c!# and by substituting Eq
~24! and Eq.~21!, we obtain

R3c1

x2OIOII

'
37.1

D0
, ~29!

whereD0 is measured in meV, andx andR are in nm. This
quantity is displayed as a function of dot size ratio for t
usual geometries in Fig. 19. It can be seen there that a ra
of c1 values can be obtained by choosing dots with app
priate values ofx, R, anda/b. For example, cubic dots with
large x (.1 nm say!, small R (,3 nm say!, and a/b;1
give a largerc1, and it is then more appropriate to use t
Förster interaction itself to create entangled states. On
other hand, dots with smallerx, largerR, or a large mismatch
in dot size would be more suited to the scheme which u
the VXX for QC and entanglement generation. A sche
similar to the latter one was discussed by Biolattiet al. in
Ref. 53, though the off-diagonal coupling was not conside
there at all; we now see how important it is to consider
effect of this interaction. Thefidelity81 of a typicalVXX en-
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tangling gate operation~e.g., u11&°u10&) is equal to
12c1

2—and so one must be careful when using the biexci
scheme to use the available parameter space and make
that the Fo¨rster transfer is suppressed to the desired accur
There are other sources of decoherence in this case~e.g., the
interaction with optical and acoustic phonons9,61,80! which
will reduce the value of the fidelity to below 12c1

2. To mini-
mize the effects of such decoherence channels, it is impor
to maximizeVXX , since this leads to an improved transitio
discrimination and so to a faster gating time. This can
done by applying an electric field and choosing an appro
ate dot shape, size, and separation~as described earlier!. It is
then necessary to minimize the basis state mixing for
chosen parameters by selecting a suitable dot size ratio
material composition. It was seen earlier that the value
VXX could be as high as several tens of meV. If we assum
conservative figure of 10 meV, we find that the uncertain
principle implies that a controlled-NOT gate could be per-

FIG. 18. Energy splittingD0[v12v2 of the singlet qubit ex-
citon statesuC01& and uC10& for ~a! cubic dots (a5h1/2,b5h2/2)
and ~b! cuboidal dots (a55h1 ,b55h2) in the absence of the Fo¨r-
ster interaction as a function of the dot size ratioa/b. The splitting
is independent of interdot distance. The solid lines represent
splitting in the presence of the Coulomb and exchange split
terms and each adjacent dotted line represents the splitting wit
Coulomb interactions for each dot size.
9-14
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OPTICAL SCHEMES FOR QUANTUM COMPUTATION IN . . . PHYSICAL REVIEW B68, 205319 ~2003!
formed in a time of around 100 fs. This is relatively sho
decoherence times on the order of nanoseconds have
observed recently for uncoupled dots.80 Hence we conclude
that this scheme looks rather promising as a solid-s
implementation of quantum computation.

It is also possible to use the Stark effect1 to tune two
nonresonant levels into resonance, thereby allowing for
kind of switching of the Fo¨rster interaction which is require
if it is to be used for quantum logic. This can be done so lo
as the two dots are made such that they have different po
izabilities ~which could be achieved by using either differe
sized dots or dots made of different materials!. So long as
this difference is such that the levels are brought closer
gether by applying a field, and that shifts as large asD0 can
be achieved, switchable resonant transfer is possible
might be difficult to achieve the switching in a time which
short enough for a quantum gate to be performed; howe
in this case the optical~ac! Stark shift could be employed b
using ultrafast lasers.82

Single shot qubit state measurement in QD’s could
performed by using resonant fluorescent shelv

FIG. 19. The size of the component of the wave functionc1 for
~a! cubic dots (a5h1/2,b5h2/2) and ~b! cuboidal dots (a
55h1 ,b55h2) as a function of the dot size ratioa/b. c1 has been
scaled by its dependence on the interdot distanceR, typical atomic
spacingx, and overlap integralsOi .
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techniques.83 The QD state measurement can also
achieved by means of projecting onto the computational
sis and measuring the final register state by exploiting
trafast near-field optical spectroscopy and microscopy:60,84

these allow one to address, to excite, and to probe the
excitonic states with spectral and spatial selectivity. In ad
tion, the qubit register density matrix can be reconstructed
measuring the QD photon correlations via standard quan
state tomography techniques.85 In particular, we believe tha
the activity of the ~Förster! resonant energy transfer pro
cesses discussed in this paper can be accomplished in
coupled dot molecule by measuring the intensity correlat
function ~usually denotedg(2)) in a Hanbury-Brown/Twiss
type experiment.6,8,86 Such an experiment can reveal sign
tures of purely nonclassical photon correlations arising fr
the QD molecule emission~i.e., photon antibunching o
bunching behavior!. This idea has already been experime
tally explored for the case of pairs of dye molecules by B
glundet al.86 Scalability of the scheme given here could al
be possible by adopting a globally addressed qubit strate87

on a stack of self-organized QD’s.64

We finalize this section with a discussion on how theVF
coupling can be usefully manipulated in biomolecular nan
structures. Light-harvesting antenna complexes56 or arrays of
strongly interacting individual molecules58 could provide an
appropriate system in which the Fo¨rster interaction could be
used for quantum information processing tasks. They
generally very uniform structures, and we may comp
them to QD’s by settinga/b;1, or VF /D0@1. Then the
one-exciton eigenstates of a two-qubit system with a Fo¨rster
coupling naturally allow the generation of the stat
1/A2(u01&6u10&), which, apart from their applications t
quantum protocols, can be particularly useful in the fig
against decoherence. Spectroscopic, line-narrowing te
niques ~e.g., hole burning and site-selective fluorescenc!,
infrared and Raman experimental studies reveal that
main decoherence mechanisms in the antenna compl
arise from energetic disorder, electron-phonon coupling,
temperature effects.56 In this scenario, the excitations coup
to an environment that typically possesses a much larger
herence length than the biomolecular units~BChl’s! spacing.
For example, the BChl’s in the antenna complex LH2, wh
we regard as a potential system for quantum logic,
spaced by as little as 1 nm, and hence so-called collec
decoherence is expected to apply. In this case, provided
the logical qubit encodingu↓& i[u01& jk , u↑& i[u10& jk that
uses two physical~exciton! qubits can be realized in th
BChl’s system, arbitrary superpositions of logical qub
such as (a i u↓& i1b i u↑& i)

^ N, i 51, . . . ,N, a i , b iPC, are im-
mune to dephasing noise~described by asz operator61!, and
single-qubit manipulations can be carried out on the ti
scale of the Fo¨rster coupling~which as we have seen can b
as short as 497 fs!. Two-qubit logic gates can also be imple
mented within a decoherence-free subspace by using
above encoding,88 thus completing a universal set of gate
Initialization of the system requires the pairing of the phy
cal qubits to the logical ‘‘ground’’ stateu↓& i

^ N , and readout
is to be accomplished by identifying on which of the tw
structures the exciton resides. Furthermore, rings of BC
appear side by side in naturally occurring anten
9-15



ng

b
rg

es
ion
in

A
e.

en

n-
t
u
t

ha
le
th

tio
e
m
s
e

he
th
p
re
he
m
c
rl

.
ro
to

as

e
b
e
s
h

re

. If

of
in

ave
hed

nd
n-

root
he

or-
are

the

he

LOVETT, REINA, NAZIR, AND BRIGGS PHYSICAL REVIEW B68, 205319 ~2003!
complexes and also display energy selectivity—smaller ri
tend to have higher energy transitions.56 Thus, following a
scheme as above, it may be possible to scale up such
logical units in a natural way and construct a robust ene
selective scheme for quantum computation.89 We also note
that arrays of strongly interacting individual molecul
which are coupled via a near-field dipole-dipole interact
are well suited for our quantum computing and entangl
schemes, especially due to the existence ofVXX type of
energy shifts,58 which have been analyzed in this paper.
full discussion of these ideas will be presented elsewher89

VII. SUMMARY

We have shown that it is possible to use the two differ
electrostatic coupling terms~Förster transfer and biexciton
binding energy! between excitons in quantum dots to co
struct two qubit gates which, in addition to an appropria
control over single qubits, are enough for universal quant
computation. We have also discussed how to generate
lored exciton entangled states by using these gates. We
furthermore modeled a pair of quantum dots in the simp
envelope function approximation, and have mapped out
areas of parameter space where one of the two interac
dominates. We have discussed in detail how to perform
tangling operations when one of the two interactions is do
nant; the case when the two have similar magnitude lead
a rich spectrum of entangled states whose degree of
tanglement can be quantifieda posteriori in, for example,
photon correlation experiments. We have concentrated
on two geometries, namely that of a cube-shaped dot and
of a cuboid-shaped dot, and our calculations have been
tially analytical and partially numerical. In future, we a
hoping to obtain simpler analytical results for many of t
quantities we have calculated, by using different dot geo
etries. We shall also extend our calculations to include de
herence effects, and in future work we shall be particula
interested in how we might use the Fo¨rster interaction to
create and use decoherence-free subspaces.
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APPENDIX: SINGLE-PARTICLE SOLUTIONS

As we discussed in the text, the solution of the thre
dimensional finite well square box potential is obtained
using the solutions of the one-dimensional finite square w
and expanding the Schro¨dinger equation in these basis state
In order to do this, both bound and unbound basis states
to be taken into consideration.

1. Bound states

The problem of finding the solutions of a finite squa
well is covered in most undergraduate text books~see, e.g.,
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Ref. 77!, and so we shall not go into too much detail here
we assume that the finite well is centered aroundx50, we
have different forms of solutions depending on the parity
the wave function. These forms of solutions are shown
Table I with reference to Fig. 20, and assuming that our w
functions have decayed once the infinite barriers are reac
~see Sec. III A!.

A, B, C, andD in Table I are normalization constants.a
5@2mp* (Vp2E)#1/2/\ and k5(2mp* E)1/2/\. By ensuring
the continuity of the amplitudes of the wave functions a
the probability current at the boundaries, the following tra
scendental equations for the energyE are obtained.

For even solutions,

tanS ~2mp* E!1/2a

2\ D 5S Vp2E

E D 1/2

. ~A1!

For odd solutions,

cotS ~2mp* E!1/2a

2\ D 52S Vp2E

E D 1/2

. ~A2!

These equations were solved by using the numerical
finding algorithm provided with the NAG package. Once t
energies are obtained,a andk follow from simple substitu-
tion. The normalization constants follow from the usual n
malization procedures once all of the other parameters
known.

FIG. 20. Schematic diagram of the potential used to generate
unbound basis states used in the calculations.

TABLE I. Table of the forms of the bound-state solutions for t
finite square-well potential.

Region Even solutions Odd solutions

x,2a/2 Aeax Ceax

2a/2,x,a/2 B cos(kx) D cos(kx)
x.a/2 Ae2ax 2Ce2ax
9-16
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2. Unbound states

The problem for unbound states is somewhat less strai
forward. We assume that the finite well~of width 2a) is
embedded within an infinite well~of width 2L), and that we
may set the wave function outside the infinite well to ze
~see Fig. 20!. Then there are again three regions which ha
different forms of solutions, which take the forms given
Table II.

The wave vector inside the dots is given byk
5(2m* E)1/2/\, andk85@2m* (E2Vp)#1/2/\. The solution
is obtained by again invoking the continuity of the wa
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\ D .
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