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Optical schemes for quantum computation in quantum dot molecules
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We give three methods for entangling quantum states in quantum dots. We do this by showing how to tailor
the resonant energyrorster-Dexter transfer mechanisms and the biexciton binding energy in a quantum dot
molecule. We calculate the magnitude of these two electrostatic interactions as a function of dot size, interdot
separation, material composition, confinement potential, and applied electric field by using an envelope func-
tion approximation in a two-cuboid dot molecule. In the first implementation, we show that it is desirable to
suppress the Fster coupling and to create entanglement by using the biexciton energy alone. We show how to
perform universal quantum logic in a second implementation which uses the biexciton energy together with
appropriately tuned laser pulses: by selecting appropriate material parameters high-fidelity logic can be
achieved. The third implementation proposes generating quantum entanglement by switchingstieifo
teraction itself. We show that the energy transfer can be fast enough in certain dot structures that switching can
occur on a time scale which is much less than the typical decoherence times.
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I. INTRODUCTION cavities®?" nuclei in molecule$®=3! dopants in
semiconductord>—3* optical lattices and Bose-Einstein
Quantum dots? are quantum heterostructures which arecondensate® 3" Josephson junctior’§;*! and quantum
composed of nanoscale regions of one type of material whictots'%42=51|n this paper we concentrate on a quantum dot
is embedded in a second type. In a semiconductor quantuimplementation. Previous proposat&42-4446.47.51-5clude

dot (QD), materials with differing band gaps are used; thisthe use of a single electrdtP*>%or nucleaf* spin located on
leads to the possibility of electronic confinement within each of an array of interacting dots, the presence or absence
the dot region. Moreover, the confined electronic states cagf an electron charge staté,or the use of excitonic
be accurately controlled by varying the dot size, shape Ostates'®4¢47->3\e show how an energy selective approach to
composition, and the number of confined electrons; almanipulating the excitonic states of coupled QD's, together
of these may be altered by using different growth conditionsyith control over the energy transfer and biexciton binding
and hence specifically tailored “artificial atoms” or “supera- energy, can be used to perform quantum computaQ®)
toms” can be producet? Some prominent atomlike proper- and to produce controlled exciton quantum entanglement. In
ties of QD's include an electronic shell structdre, so doing, we investigate the Fer-Dexter resonant energy
Rabi oscillations, photon antibunchingy’ controlled quan-  transfer, a mechanism first studied in the context of the sen-
tum light emissior|;® and quantum entanglemeht’ One of  sitized luminescence of solid&®® in which an excited
the most intriguing possible applications of quantum dots issensitizer atom can transfer its excitation to a neighboring
that they may be used to build quantum computél$A  acceptor atom, via an intermediate virtual photon. This
practical realization of a quantum computer would be verymechanism is also responsible for photosynthetic energy
significant, since there exist theoretical quantum algorithmgrocesses in antenna complexes, biosystéBS’s) that
which would make some classically hard computationaharvest sunlight® More recently, interest has focussed
problems tractabl&® Such quantum devices could also gn energy transfer in quantum dot nanostructifremnd
accurately simulate any physical systéamd the evolution  within molecular system$MS’s).%® In this paper we show

of its local interactions by invoking the same amount how to exploit such energy-transfer mechanisms with a
of energy and Hilbert space requirements as the systefjew to processing quantum information. This paper

itself 1410 . _ _ is a more detailed account of the work which appears
The basic unit of a quantum computer is a two-level quanin Ref. 46.

tum system, the so-called qubit. Of the utmost importance
is the identification of a physical system where a coherent

qubit evolution can be performed, thus allowing a precise II. BUILDING QUANTUM LOGIC GATES
execution of the elementary quantum gates required for
universal quantum computatidh!? Many different types We consider the Hamiltonian of two interacting quantum

of hardware for embodying qubits have been proposediots. We assume that the dots are sufficiently far apart that
(for a collection of papers detailing some of these see Refunneling processes between them may be neglected but that
17) and some of them have already been implementethere is a strong exciton-exciton coupling. Our two-level sys-
for performing elementary quantum gate operations. Thestem is represented in each dot by a single low-lying exciton
include ion traps® % quantum electrodynamics state|1) and the ground stat¢0). Then the interaction
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Hamiltonian can be written in the computational basis Eoo=wo, |¥oo)=]00),
({/00y,|01),|10),|11)}, with the first digit referring to dot |
and the second to dot)lks follows: Eor= wot 01— %(1+A), W 1) = ¢4|10) + ¢,/ 01),
wg 0 0 0 Ag
A 0 wotw, Ve 0 E10=w0+w1—?(1—A), |W19)=—C4[01)+C,[10),
H= 0 Ve wot+ wq 0
0 0 0 0o+ @1+ wp+ Vi En=wot o1+ 0+ Vyx, [P1p=[11), 2

(1 whereA=1+4(Ve/Ay)2 ci=(A—1)I2A (=VE/A, for

Ve/Ag<1) andc,=(A+1)/2A. The eigenenergies in the
The diagonal interactioWxx is the direct Coulomb binding absence and presence of interdot interactions are displayed in
energy between two excitons, one located on each dot, andgs. 1a), 1(b), and 1c). Figure 1a) shows the energy levels
Ve denotes the Coulomb exchand&drste) interaction  when the interactions are off; Fig(H) shows these when the
which is off-diagonal and therefore induces the transfer of afinteractions are on, but whek&-<A; Fig. 1(c) showsEj
exciton from one QD to the other. These are the only CouandE,, as a function of the rati%/A,. Figure 1d) shows
lomb interaction terms which act between the qubits and will, andc, as a function of/¢/A,. These figures demonstrate
be calculated and discussed in detail in Secwy.denotes  thatV;. causes a mixing of the statfl) and|10) such that
the ground-state energy, (w,) refers to the energy re- the eigenstates of the interacting system are not the same as
quired to create an exciton on dof(ll) in the absence of the computational basis. As we show below, Miscoupling
interactions, and includes intradot coupling contributi@is  can be used for generating highly entangled states.
rect Coulomb binding energy and spin splittinghich we Single-qubit operations can be achieved by inducing Rabi
shall discuss in Sec. IV. We also defilg=w;—w, to be  gscillations in the excitonic systefa.g., see Refs. 4 and 59
the difference between the exciton creation energy for dot |f we take a Bloch sphere representation of a qubit, where
and that for dot Il in the absence of interactions between thgnhe statg0) is represented by a unit vector from the origin to
dots. Thus, ifHo=H,+H, denotes the free particle Hamil- the north pole of the Bloch sphere and the stkite by
tonian, thenHo(|y1)|v2)) = (v101+ ¥202)[¥1)|¥2), ¥1.72  a unit vector to the south pole, then the qubit sthte
=0,1 (=1 throughout this papgr then H=Ho+Vi,  =exp(\)[cos@2)|0)+exple)sin(@2)|1)], where \ is a
(where V, , accounts for the qubit-qubit interactiongyy global phase, is defined by the unit vector
andVg) is the system’s overall Hamiltonian. In the case of an(cose sin 6,sin¢sin 6,cosé). Depending an the values 6f
n-qubit register with nearest-neighbor interactions, theand ¢, this vector may point to any point on the surface of
Hamiltonian takes the formH=H{"+=""1V/; ;. ;, where the sphere, and for universal quantum computation it must be
H(()”)EE{LlHi is the free particle Hamiltonian, and; ;. ; possible to move the vector between any two of these points;
are the interaction terms. A related Hamiltonian was investithis defines an arbitrary single-qubit rotation. In our QD sys-
gated in Ref. 53, but there the off-diagonal interaction termgem, this control can be achieved by using laser pulses to

(Vp) were neglected. induce two distinct Rabi oscillation(see Fig. 2 The energy
The eigenenergies and eigenstates of the interacting qukaind length of such pulses must take into account structural
system are factors such as the dot confinement energies and transition
Energy
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FIG. 1. A schematic diagram of the properties of the model Hamiltonian(Eq(a) Energy levels in the absence of qubitterdo
interactions.(b) Energy levels in the presence of qubit interactions for two dbtnd Il) of different excitation frequencies;,= w,
+Vyx— 8, €x=w,+Vyx+ 6, and §=VZA,, whereVg and Vyy represent the strengths of thérsr and direct Coulomb binding
interactions, respectively. In this ca¥g<A,. (c) Eigenenergie&,; and E,4 corresponding to the qubit eigenstatdsy,;) and| ¥,y as a
function of the ratioVg/Aq for w,/Ay=20. For comparison, the dashed lines show the energies Whéh,=0. (d) The eigenstate
coefficientsc; as a function of the strengi¥:/A 4. These coefficients show the departure from the basis $&teand|10) followed by the
eigenstate$¥ o) =c,|10) + c,|01) and| W 10)= —C4|01)+ c,| 10).
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FIG. 3. lllustration of how to create an entangled state by ma-

FIG. 2. Bloch sphere representation of a single qubit. In order tdhipulating the off-diagonal Hster coupling between two nanostruc-

perform an arbitrary single-qubit rotation in the exciton system, it istures. When the interaction is on and much greater thgnthe
necessary to have the ability to induce two different Rabi oscilla-€igenstates of the system correspond to the large dots on the equator

tions. Example trajectories for two such oscillations are shown byof the Bloch sphere. Thus after selective excitation of gtk the
dashed lines. system will naturally evolve to the equator. The interaction may

) 9601 - ) ) then be suppressed by means of an applied field, and the state
dipole moments>®It is also essential that the exciton statesremains maximally entangled as the eigenstates become the compu-
have long enough decoherence times that control over thgtional basis states.
phasey is possiblé!®2 For example, self-assembled semi-

conductor(e.g., InGaAs/GaAsquantum dots could be ad- energy e;,=w,+Vyx— 8 (a pulse which we Iabehelz).

vantageous for qubit manipulations since they exhibit large . .
dipole moments and long dephasing tifié%. We shall Conversely, if the role of the control qubit is to be performed

. " y the second qubit, the gate  operation
frg:u(r?rg:t%(terl\sv&ole of the QD material composition parameter%';’\lmﬂd0>1|1>2)H|1>1|1>2 can be realized via the applica-

The Vyx and Ve interactions lead to three possible ways 10N ©f @7 pulse of energy, = w, +Vyx+ 4 (@, pulse
of achieving quantum entanglement. First, if the ratiot0 the system stat@1). Crucially, the energy difference be-
Ve/Ao>1, the eigenstates of the system are approximateljveen these twer pulses, and hence the energy selectivity of
|00), 14/2(]10)—[01)), 14/2(|10)+|01)), and |11). We the logic gate, is determined ldy,, Vxx , andVe. From Fig.
now further assume that the ratiG:/A, can be controlled, 1(0) we can also see how to use the controlief- gate to
by means of applying an electric field to either change —create maximally enta_ngled states. For example, if we start in
directly, or to increaseé\, by means of the Stark shifve ~ the ground state and first applymd2 or 3m/2 pulse at energy
shall discuss both of these effects in detail in Sec.)V A @1, We create the states\iZ(/00) +|10)); if we now apply
Then, we initially prepare the system in a state whered 7, Pulse, we generate the maximally entangled states
Ve/Ag<1 and we selectively excite QD | and creat®).  1/y2(]00) +|11)).

Now, when the Frster interaction is turned on, the system  Third, the interaction with the laser field does not neces-
will naturally evolve sequentially into the following states: sarily have to be the entangling mechanism in the case where
|10)—1/y2(|10)+i|01))—|01)—>1/2(|10)—i|01))~>|10) ~ Ve/A,<1. If each of two neighboring single qubits are pre-
(see Fig. 3. This evolution could be then stopped when thepared in the superposition state/2{|0)+|1)) (i.e., a Had-
system is in a maximally entangled state by applying aramard transform is applied to both of themmaking the state
electric field to suppress the Fer coupling once more, an 3(|00)+|01)+|10)+|11)), this will then naturally evolve
effect which we shall again explore in detail in Sec. V A. into entangled states under the actionvgf; alone.

Second, if the system does not have a stronigtéo cou- Although we have discussed our Hamiltonian specifically
pling, i.e., Ve/Ap<<1 all the time, the computational basis in the context of a dot molecule, these ideas are valid for any
states are essentially the eigenstates of the system. Then thanostructure with corresponding diagonal and off-diagonal
Vxx coupling term implies that the resonant frequency forinteractions where an energy selective excitation is possible.
transitions between the basis stajt@s and|1) of one qubit However, we focus on a quantum dot implementation, and in
dependson the state of the neighboring qubit. This meansthe next sections we shall analyze in detail the interdot and

that it is possible to construct a controlledT gate in this
system. Such a gate flips the target qliftthe control qubit

j is in the state|1) and acts trivially otherwise:

CNOT i (|m)j[n))—>|m);|men),, where m,ne{0,1}, and
@ denotes addition modulo 2 aOR operation. By referring
to Fig. 1b), we can see that the

ing the qubit system in the statd0) with a = pulse of

logic operation
CNOT12(]1)4]/0)5)—|1)4]|1), can be achieved by illuminat-

intradot interaction terms and show how they can be tailored
as a function of the interdot distance, dot sizes, and material
composition.

Ill. THE MODEL SYSTEM

Different dot geometriege.g., spherical, pyramidal, or
cuboidal shaped dotxan be used to implement the logic
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FIG. 5. Transmission electron micrograph of two layers of quan-
tum dots grown by the Stranski-Krastanow method. The dots are

A=
|

A made of InAs and the encapsulating material is GaAs; note that the
T dots in the second layer nucleate preferentially above the dots in the
y QD 1 h first layer (Ref. 90.
V=0 ! operations described above. As can be seen in Fig. 5, the dots
¢ tend to have smaller dimensions in the growth direction than
in the perpendicular directions, and the upper dot of the pair

<— 23 —>I tends to be of a slightly larger size, thus allowing for an
appropriate identification of the excitation frequencies
FIG. 4. Schematic diagram of the cuboidal dot model. Theand w, required in our model. Qubit scalability is available
cuboids have base sides of lengtlesahd 2 and heights oh, and  via the SK growth procedure since several layers of dots
h,, respectively. Their centers are separated by a distBnde  have been shown to grow in stads.
potential inside the cuboids is set to zero, and that outside them is Qur computational Hilbert space requires up to one exci-
determined by the band offsets of the conduction and valence banggp per dot, and we must therefore calculate both the single-
within the heterostructure. particle energies, which are determined by the potential pro-
file of the dots, and the two- and four-particle interactions
gates and quantum entanglement schemes discussed abow#jch are determined by the strength of the Coulomb inter-
and in th|s paper we Choose dots Of a Square_based Cuboi(ﬂpnon betV\./een. them..We |00k at these d|fferent quantltles
shape(for another possible geometry see Ref).6®e as- Separately in this section.
sume that the potential ener§yyof both electrons and holes
increases abruptly at the cuboid boundaries where the semi- A. Single-particle states
conductor band gap changes, and that0 inside the
cuboids(see Fig. 4. The confinement potential is determined
by the band offsets for the electrons and the holes. This typ
of square-well potential has the advantage of describing bot
a well-defined dot size in all three dimensions and of boun
and unbound solutions in each directitthis is in contrast
with, for example, the parabolic potential considered in Ref.
53).
Our model captures the essential properties of quantu
dots which are grown by the Stranski-Krastand®K)
method®® Such structures show a degree of

self-organizatioff which is ideally suited for the manufac- f different spatial points; time evolution of the quantum

ture of prototype quantum dgwces, anq in the rgallzgtlon OLtates is also easier to simulate when the state is represented
the elementary quantum logic gates discussed in this papgy

The SK dot h ds th h th i H y a vector and we shall extend our work to this area else-
e ot growth proceeds throug € evaporalion ol & hare Furthermore, a vector representation can allow more
layer of dot material on to a previously grown substrate: dot

. . ?Jhysical insight since the basis functions themselves have a
form spontaneously due to the competing energy Cont”buknown physical interpretation

tions of dot surface area, dot volume, and strain during the Our first step is to express the wave functions for single

growth process. After the formatloln of dots and SUbsequeréarticles in the envelope function approximatior&s
overgrowth of the substrate material, a second layer of dot

may be grown; these nucleate preferentially above the dots in —

the first layer due to the uneven strain field at the surface. Vplr) = Sp(N)Up(1). ®

An example of two dots grown in this way is shown in Fig. whereg,(r) is an envelope function describing the changing
5—and it can be seen there that two vertically stacked dotwave function amplitude of confined states for particle tgpe
have been grown with a controlled spacing; dots with suctover the dot region, and(r) is the Bloch function which
characteristics may be well suited for performing the logichas the periodicity of the atomic lattice. In the effective mass

There are a variety of methods for finding the solutions of

the Schrdinger equation for electrons or holes in a quantum

ot. These include a full pseudopotential calculafibrt? fi-

ite element analysi€, plane-wave expansidtt,and the use

f finite differences’? We employ a similar strategy to that in
Refs. 73 and 74, where the ScHinger equation is expanded
in a set of analytical basis functions which are the exact
solutions of a potential which is close to the one under in-
rUestigation. This method has the advantage that the state so-
lutions can be stored in a vector in Hilbert space rather than
as a wave function amplitude at each of a very large number

205319-4



OPTICAL SCHEMES FOR QUANTUM COMPUTATION IN . .. PHYSICAL REVIEW B8, 205319 (2003

approximation, the envelope functions are solutions of the

following single-particle Schidinger equation: 2000 | a=>3h; i ggg :Zx
) a 1000 meV
52 A o <1000 o 2000 meV
_?V(m;m VVp(n) [ (N =Epdp(r), (@) %E) o
SN
whereV,, is the confinement potential, which is displayed in &
Fig. 4 andm? is the effective mass of the partigle These o
solutions may be obtained by expanding the Hamiltonian in a 5 200
set of envelope basis functions of the forfE(r) o
= &(X)&,(y) €,(2), where theg (i) are the solutions of a S 100¢
one-dimensional square-well potential with the appropriate o
effective masse& " Both bound and unbound states must © 50
be used in the expansion in order to obtain convergent solu-
tions: the forms of these are discussed in the Appendix.

There are two important things to mention about the di- 20 ——t——t——t
rect expansion technique. First, the basis functions we have 2000 Z ggg ::x
described above do not in general form an orthogonal set if 1000 gy » 1000 meV
the bound-state solutions have not decayed to zero at the < 500 Ml o 2000 meV
artificial infinite barrier which is used to generate the un- o X
bound states. In practice this is rarely a problem, but anyway \E, 200
is circumvented by using a modified basis set which is or- > 4o
thogonal and whose components are linear combinations of % E
the original basis functions. This modified basis set spans the  § S0t
same Hilbert space as the original set. The method we em- 20 [
ploy to find this set is canonical orthogonalizatibrvhich =
relies on direct diagonalization of the matrix whose elements © 10
are the overlap integrals of the basis functions. The Hamil- © s}
tonian may then be expressed in this new basis as a Hermit- 3
ian matrix, and solutions are found again by direct diagonal- 2r
ization (we use the NAG diagonalization algorithm in our ) S U Y IR NS U N
simulations. The second point is that the basis set must nec- 6 2 4 6 8 10 12 14 16

essarily be truncated; hence the eigenenergies of the solu- a (nm)

tions we obtain are really upper limits on the true eigenen-

ergies of the coupled dot systefwe employ the Rayleigh- dot size for a quantum cubgower graph and a quantum cuboid

Ritz variational methofl). In practice we can increase the (upper graph We use the envelope function and effective mass

number of basis functions until a sufficiently accurate SOlu'approximations. The filed symbols correspond e =0.6m,

tion is obtained. We shall mention any important points re-ypich is typical of heavy holes, and the open symbols correspond to
lating to solution convergence and approximations at the aRm% =0.06m, which is typical of electrons. These values will be
propriate places later in the paper. used for electrons and holes throughout this paper. The different

Results of a simple single-particle calculation are dis-symbols represent different values for the confinement potential
played in Fig. 6, where the ground-state energy of two partsee legend

ticles in QD I (of masses 016, and 0.06n,, wherem, is the i o )
free electron magss shown as a function of the dot size for Sizé as it is further reduced. When the ground state is a
two dot geometries. The two geometries correspond to a c2ound state, the ground energy is always larger in the case of
bic shape &é=h,/2) and a flatter cuboidal shapa+5h;), the cuboidal shape, for a given valu_e afthis is a conse-
which is more typical of SK dotésee Fig. 5 As would be ~duence of the smallier height dimension Qf the cuboid which
expected, the ground-state energy decreases for a larger dBfréases the kinetic energy of the particle. Bound ground
size and is smaller for heavier particles. The cube shapegfat€s are always very closely approximated by the basis
dots have ground states with smaller energies than the corr@nction corresponding to the ground state of the one-
sponding cuboidal dot states since the cuboids have orfdmensional well in aII.three dlm(_ansmns:_ in the case of cubic
smaller dimension which increases the kinetic energy of théhaped dots, the amplitude of this state is always greater than
wave function. All of the curves have a kink, and for dot 0.999; for the cubmdgl dqt it is always greater than Q.99. We
sizes below this the ground-state energy saturates to thg'all use the approximation that the ground statexictly
value of the confinement potential. This is a consequence dhis basis function later in the paper.

including unbound states in the calculation: once the dots are
small enough that the confined state energy has a larger en-
ergy than the confinement potential, the ground state be- In this section we present our general methodology for
comes unbound and there is hardly any dependence on dealculating the Coulomb interaction matrix elements be-

FIG. 6. The single-particle ground-state energy as a function of

B. Coulomb interactions: General methodology
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tween electrons and holes in quantum dots. This will be imsingle-particle wave functions since these are not important
portant later for calculations of the intradot and interdot ma-for spatial integrals, once the sign fdf|- has been deter-
trix elements in our model system. mined. It is natural now to switch to a hole description of the
First, consider an initial wave function of ad-electron  many-body wave functions introduced above: the matrix el-
System which represents a single exciton state of a quantuements obtained by the above procedure would be identical

dot®® if we labeled the statesandt as holes and simply expressed
, each wave function as a product of the promoted electron
W= A[P1(r1,01),82(r2,02), ... Ps(rs,09), .., states and the left behind hole states. This allows the other
(re, o) (Lo ] (5)  barts of the wave functions to be left out when calculating

matrix elements involving these specific electronic states and
where theA indicates overall antisymmetry.e., the wave so makes calculations easier; it also explains the convention
function takes a Slater determinant fornthe o represent  on labeling direct and exchange terms. We shall henceforth
the spin state of each electron, and theare single-particle use such a description.
wave functions; we have labeled the statevith a prime We proceed further by noting that the two integrals, Eq.
symbol to indicate that it lies in the conduction band,(9) and Eq.(10), are both of the form
whereas all of the other states are in the valence band.

Next, we assume a final state which is a different single

exciton: |:f fps(rs)f(rs_rt)Pt(rt)drsdrti (11

We=A[f1(r1,01),¥(r5,09), ... (T, and so we may use Fourier transforms to reduce the dimen-
, sionality of the integrand. Employing the convolution theo-
Xag, (o, - gn(rnson)] (8 rem and Parseval's relation leads to
The Coulomb matrix element between these two states is
given by

2 :ﬁf Rs(K)R(K)F(K)dK, (12)

Coul _

— | 7 , .
M <\PF||,§.‘21 4mepe (ry)) |r,J| ), ™ where the Fourier transform @fis denoted byR and that of

f is denoted byF. We now make the calculation more spe-
cific by first assuming tha¢, is independent of i, [see Ref.

68 for a detailed discussion of the form gf(rg)], and note

wheree, is the permittivity of vacuume, (r) is the relative
permittivity of the mediun{and therefore describes polariza-
tion screening andr=r;—r;. The only nonzero terms in - the Fourier transform of the Coulomb operator is given
the above expansion are those involving bathndr,, since by

the ground and excited states of each single particle are or-
thogonal to one another. Hence, we obtain Ao
2 F(K)= P (13
MU= (P | ——— | W),

" < F|477506r(rst)|rst| | I> ® . .

_ _ _ ~ Thep functions are a product of two wave functions of the
Owing to the antisymmetric nature of the wave functions.form of Eq.(3), and their Fourier transform is simplified by
this matrix element has contributions from a direct term andnvoking the different length scales of the envelope function
an exchange term. Both terms take the form of an integragnd the Bloch function. We may write, for tihéf integral(a

overrg andr,. In spite of the fact that it arises from the completely analogous method can be carrled out forMHe
exchanged form of the wave function, the direct term is con integrals:

ventionally written as

R«(K)= s s iK-rgdrg
= [ [ uirauitrg— et rowrodrar, 0= arirovicraei roar

9
© =Veen2s ¢35 expliK-T)

and the exchange term is

mis==xc [ [ wzranid o x| Ustauzrensix rodr, g
r(rst)|rst| cell
X a(ro il * (rodrgdry, (10) where we have assumed that each envelope function takes a
) 5 constant valuep; over each unit cell of the lattice, that the
where we have introduced the const@(e“/4me,). The translational lattice vector of ceilis T; and that the volume

two particles: spin triplet $=1) states have p03|t|vM|F as

elements, whereas spin singl&d=0) states have negative
M}‘F values. We have removed the spin variables from the K=k+G, (15
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wherek is a vector within the first Brillouin zone ar@ is a

reciprocal lattice vector, and we may further convert the sum 800
to an integral to obtain =
% 600
R(GG)= [ ginimexpik-nar £
space !: 400
Ig,
xf Ui (rgUi(roexdi(k+G)-rgdrs. $
cell X 200
=
(16)
0
ThusRg is a product of Fourier transforms, one for the en-
velope functiongwhich is independent oB, so only needs 01 2 : > 0.1
to be calculated within the first Brillouin zohand the other < .

for the Bloch functions. It is also obvious that an analogous
expression exists foR;. The envelope function parts of the
Fourier transform are analytical: the wave function takes ei-
ther a sinusoidal or exponential form depending on whether i i . . )
it exists within or outside the quantum dot. We do not write FIG. 7. The_ intradot direct Coulom_b interaction strength inte-
out these expressions explicitly here however, since they al%fa”d' plotted in thX,K, plane of reciprocal space, and around
somewhat lengthy and tedious. The Bloch function part i§ eK=Q point. We have calculated the integrand for dot | and used
also analytical for a suitable choice of wave function, and to'¢ CUPic geometryd=h,/2=10 nm), and assumed th&%=V,
. . . . =500 meV.

simplify the calculations here we use a Kronig-Penney
model where the atomic wave functions are assumed to take
the form of the solutions of an infinite square-well potentialticles. Furthermore, the expression fbit reduces to the
of well width 2x. Specifically, we assume that the hole statesspin splitting between singlet and triplet exciton states in this
we consider(at the top of the valence banthke the wave first-order approximation.
function solution of this potential which hgs, symmetry Let us first consider the direct Coulomb interaction in dot
and the electron states we consider take the solution svith |, which has basal side length and simplify things by cal-
symmetry. We expect this to be sufficient approximation forculating for a cubic shapg.e., we set 2=h,). The results
elucidating the general properties of the system, though @may then be directly carried over to dot Il, with—b and
more refined calculation would be required to obtain more2b=h,. As we described earlier, it is necessary to evaluate
accurate estimates of the various quantities we calculate. the integral of Eq.(9) by first transforming to reciprocal

By inserting Eq.(16) (and the analogous expression for space and then integrating ouw€rspace. The resultant inte-
R;) and Eq.(13) into Eq. (10) we obtain an expression for grand has peaks at each reciprocal lattice péivitere k
M. The expression has an integrand which is analytical but= 0 and so the envelope function part of the integrand has a
the integration over three-dimensiorlspace must be car- maximum. These peaks quickly die away over a length scale
ried out numerically. This is done by employing a NAG li- ~ 1/a as would be expected for envelope functions represent-
brary routine for multidimensional adaptive quadrature. Ifing wave functions within QD’s of side length However, it
the wave function labels are swapped around, an analogotigrns out that only the centralG=0) peak is important,
method for calculatingv IJF can be carried outsee Eq(9)]. since the other peaks contribute much less to the total inte-
We shall show the results of such calculations for variougral (this is caused by both the dependence of the atomic

0.1 0.1

different cases in the next sections. contribution to the integrand and by thekd/dependence of
the Coulomb interaction partThe central peak is displayed
IV. INTRADOT COUPLING in Fig. 7, as a function oK, andK, (K,=0).

By numerically integrating the central peak for a range of
In this section, we describe the predictions of the abovelot sizes and confinement potentials, we can obtain a plot of

model when it is applied specifically to the calculation of thethe dependence (Méo on these paramete(this is shown in
diagonal matrix element of the two ground-state basis funcgig. 8 for both the cubic geometry and for a flat cuboid, in
tions representing an electron and a hole on the same dot. {ghich a=5h,). As would be expected, the interaction de-
this case the statesandt are identical, and hence the ex- creases as the size of the QD increasesl so the electron
pression forM fF reduces to the direct Coulomb interaction and hole are not forced to be so close togethieris inter-
between the ground basis state electron and the ground bagisting to look at what happens at shorter distances when the
state hole(we call thisMéO). We saw in the preceding sec- confinement potential changes; a larger confinement poten-
tion that the ground basis state is a good approximation ttial causes a larger Coulomb binding energy. This result is
the true ground state of the system when only the singleexpected since the wave function of both the electron and the
particle contributions to the Hamiltonian are taken into ac-hole is contracted when the confinement potential is larger—
count. Thus this matrix element is a first-order correction toand the resultant closer proximity of the two wave functions
the energy due to the Coulomb force between the two parcauses a larger Coulomb interaction. As would be expected
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FIG. 8. The intradot direct Coulomb interaction strenith, as FIG. 9. The ir_1tradot exchange Coulpmb interaction strength in-
a function of dot size and confinement potential. The solid lines aréegrand, plot_ted n thKX'KZ_ plane of reciprocal space, a_lnd around
for a cubic geometryd=h,/2) and the dotted lines are for a cuboid the K.:_O point. Note that it hgs value zero I§t=0 and is asym-
(a=5h,). metric inx andz due to the choice of.thpZ Kronig-Penney state for

the holes. We have calculated the integrand for dot | and used the
intuitively, at very large dot sizes the size of the Coulombiug(')% r?g?/metry 4=hy/2=10 nm) and assumed tha.=Vy
interaction scales like &/ At very small dot sizes, the direct '
Coulomb interaction does not follow these simple rules: for a . -
weak enough confinement there is a peak in the energy and By reference to Fig. 10 we see that the exchange splitting
at small values o& it decreasesThis can be understood by S séveral orders of magnitude smaller than the direct Cou-
thinking about the shapes of the wave functions in this relomP term, though it follows the same trends of increasing in
gion. When the well width is small, the curvature of the \{alue with smaller dot sizes and larger confinement poten-
wave function is necessarily rather high, and so the kineti@/@ls- These effects can be understood as follows: the ex-
energy is large. In order to compensate for this, the wav&hange splitting is essentially a consequence of Pauli's ex-
function spreads out into the barriers at the cost of som&!usion principle which states that particles in the same
potential energy, if the barriers are not too highis energy quantum state cannot exist tc.)gether.at thg samelspatlal point.
cost is balanced by the saving in kinetic engrgyhus the Thus eIectr9n§ apd hples which arein atrlpl'et Spin Eﬁm.e'
wave function has a larger size than would naively be exSC have indistinguishable spin  properiiesiecessarily
pected from the dot size, and the Coulomb binding energyav0|d each other, thus reducing the Coulomb attraction
decreases. The peak in the Coulomb potential occurs for a
larger value ofa in the cases of cuboidal geometry: this is
simply because of the shorter height dimension in this case,
which means that the wave function spread effect discussed
above remains significant at larger valuesaoft still larger
values ofa, the Coulomb interaction is larger for the cuboi-
dal geometry than it is for the cube: again this is because the

cuboid has one smaller dimension, which means that the

electron and hole are forced to be closer together in the B

cuboidal case. -2
We next look at the value of the exchange coupling be- °'of§

tween the two ground-state basis functiome., the spin 10-3 °

singlet-triplet splittingMgo, correct to first order The rel- s| O Vi Va =200 mev

evant K-dependent integrand takes a somewhat different A Vg, Vo = 500 meV

form in this case. The central pedgroundG=0) is dis- 2 g Ver b = ;g% sl

played in Fig. 9, where it can be seen that the function has a 10~* > - 1

zero atK=0; this is expected since the electron and hole ! Dot Sizes(nm) 10 2

wave functions have opposite parity. The suppressiol at

=0 means that, this time, the regions around other reciprocal fiG. 10. The intradot exchange Coulomb interaction strength

lattice points have to be included in the numerical integram; as a function of dot size and confinement potential. The solid
tion. The resultant dependence M, on dot size and con- lines are for a cubic geometr € h;/2) and the dotted lines are for
finement potential is displayed in Fig. 10. a cuboid @=5h,).
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between them. This effect is expected to be more significant
when the wave functions in the absence of the Coulomb

o
<]
]

interaction overlap strongly—that is when they are localized €
in one small region of space. There is, in general, a greater 3 o.01
degree of localization of the wave functions when either the £
dots are smaller or when the confinement is stronger, and %
hence the exchange splitting gets larger when these condi- %o'oo
tions are satisfied. However, there is again one region of Fig. f:’%’
10 where this general rule is not obeyed—that is, when con- 20,01

finement is relatively weak, but where the dot size is small.

Here, the exchange energy takes a downturn as the dot size
gets smaller. This is caused by increased wave function bar-
rier penetration, which again means the effective wave func- -0.1
tion size getdarger rather than smaller as might be expected
from the simple intuitive picture described above. The com-

-0.02

0

parison between the cubic and cuboidal geometries shows a K o)

similar trend to that discussed above for the case of the direct 0.1 0.1 ‘(\S\O

Coulomb interaction, and the reasons for this follow the

same lines. The turnover occurs for a largeor the cuboi- FIG. 11. The plot of the integrand i space which leads to the

dal dot due to the wave function spreading effect which ocForster strength, as a function #f; and K, (K,=0). The extra
curs for smaller spatial dimensions: this spreading causes gedulation on the functiorias compared with Figs. 7 and &
reduction in the exchange splitting. At larger sizes, the eX_(:aused by the interdot separation. The plot is for cubic dots with
change splitting is larger for the cuboidal shape due to th&=P=10nm and R=20nm, and we have takene=Vy
effect of the smaller height dimension of the cuboid, which =00 meV.

pushes electron and hole together and thus increases the ex-

- : : ; ction is dipole-dipole to lowest order; this theory was sub-
EE:rE:gspllttmg. At larger dot sizes, the interaction Scale"glequently elaborated by Dextewho derived higher-order

and exchange terms in studies of the sensitized luminescence

of solids. Here we extend this theory to the case of the many-

body exciton states of quantum dots. The off-diagonal nature
In this section we shall discuss the interdot coupling term®f the interaction causes the eigenstates of the Hamiltonian,

which are due to the Coulomb operator introduced in previEd. (1), to become linear combinations of the computational

ous sections. These terms are crucial to the operation of Rasis statel0) and|01). As described in Sec. II, the degree

quantum device, since they may allow qubit-qubit interac-0f this mixing is crucial in determining how to generate

tions to take place, which is an essential requirement for twéluantum entanglement in the quantum dot molecule. The

(or more qubit gates to be constructed. There are two im-Forster coupling can be expressed as the matrix element of

portant types of interaction which may occur. The first typethe direct Coulomb operator between excitons located on

is called the Erster interaction, and is described by an off- €ach of the two dots:

diagonal matrix elementin the computational basisbe-

tween two single exciton wave functions of the type intro- Vo= C , 1

duced in Eqgs(5) and (6), but where the two excitons are e wS(rS)ws(rS)er(RHS—rt)|R+rS—rt|

located on different quantum dofthis interaction is called

Ve in Eq. (1)]. The second interaction which is important for Xyr(ry) i (rydrgdry. (17

this scheme is the direct self-Coulomb interaction in a biex-_l_h. tion i valent to E6). but h licitl

citon (double substitutional Slater determinamtave func- . IS équation IS equivaient to (). but we have exp 'C_' y

dpcluded _the |_nterdot vectdR in the Cqulomb operator; we
Vyx in Eg. (1) and amounts to the Coulomb binding energyaSsume in this case that the two variabigandr, are de-
between two excitons located on adjacent dots. We neifned from the centers of dot | and dot Il respeciively. We

quantify both of these interaction terms and discuss theif"&Y evaluate/_F in exactly the same way as we evaluated the
properties within the context of the quantum computing'mraqIOt coupll_ngs, S0 I(_)ng as the new positions of the wave
implementation described in Sec. Ii functions are included in the calculation. An example of the

integrand appearing in Eq17) is shown in Fig. 11. It is
interesting to compare this figure to Figs. 7 and 9; in the plot
of Fig. 11 there is an extra modulation due to the extra factor
The Faster or Coulomb exchange interaction can induceassociated with the interdot separation, and this added modu-
the transfer of an exciton from one quantum dot to the othedation means the integral takes longer to evaluate numeri-
This is a nonradiative energy transfer whereby an exciton igally. The results are displayed in Figs. 12 and 13, where the
destroyed on one dot and recreated on the other; it is aRorster strength is displayed as a function of dot separation,
electrostatic interaction which proceeds via a shortlived virshape, and confining potential. The data are displayed on a
tual photon. Foster’s original theor{f showed that the inter- log scale, and it can be seen that, for the cubic shape, they

V. INTERDOT INTERACTIONS

A. Off-diagonal coupling: Forster interaction

205319-9
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1g 1
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FIG. 12. Dependence of the F&ter interaction strength on the FIG. 13. Dependence of the Bter interaction strength on the
interdot separatiorR. The dots have equal sizes and results areshape of the dots. The dots are assumed to be identical, but have a
shown for two shaped(i) cubic, witha=h/2=2 nm (upper two  series of cuboidal shapes with different aspect ratios. The well
curves, and (ii) cuboidal, witha=5h=2 nm (lower two curves depth is 500 me\(the electron and hole wells are assumed to be of
The circles and squares represent the predictions of a full numericéthe same depihThe solid curve represents the maximum coupling
simulation for well depths of 500 meV, and 2000 meV respectivelypredicted for the dipole-dipole model, which correspondsOio
(the electron and hole wells are assumed to be of the same)depth=0,,=1.0.

The dotted lines represent the predictions of the dipole-dipole

model for the cubic shaped dots and the dashed curve represents the

maximum coupling predicted for the dipole-dipole model, which (r,/,,>=2 Vce”J S (r=THu’ (r)(r—T)
corresponds t@®,=0,=1.0. The dotted lines can be obtained by Tt cell

multiplying this maximum by the relevant values ©f which can X by (r —THU(r)dr, (20)

be obtained from Fig. 14.
whereT; represents the set of lattice vectors. We have made

closely follow a 1R® law for all the separations considered. use of the periodicity of the Bloch part of the wave functions

This form is expected for a dipole-dipole interaction, and weand assumed that this part of the wave function is the same

shall now discuss how a power-series expansion and subsfar both dots. By making the assumption that the envelope

quent approximation lead to this type of interaction in thisfunction is slowly varying on the length scale of the atomic

case. In so doing, we shall also explain why the interaction isattice and by using the orthogonality of the electron and

modified as the size and shape of the dots are changed. hole Bloch functions we find that

By making the assumption th& is much larger thamg
andr,;, we may Taylor expand the Coulomb operator. This
procedure yields, to lowest nonzero order, VF:?O@”
€r

3
((ral®— Q«ra)-R)Z , ()

_C 3 where the term(r) represents the atomic position operator
Ve= erR3(<r'>'<r”>_ %«rl)'R)((ru)'R) , (18 expectation value

where it has been assumed that the dielectric constant is in-
dependent oR+rs—r;, and as throughout the paper is as- (ra= Le”Ue(r)rUh(r)dr, (22)
sumed to take the constant valueept=10. The matrix ele-
ment of the position operator between an electron and a hoblehich is the same for both dots and
state on dot | or Il is

Oi:f be(r) pi(r)dr (23)

<r,,||)=f Pim (V)1 gy (r)dr. (19 space

is the overlap of electron and hole envelope functions on the
Equation(18) is therefore equivalent to the interaction of two appropriate dot. Equation(21) shows how the effects of the
point dipoles, one situated on each dot. We can proceed fuguantum dot size and shagehich determine the overlap
ther by again employing the envelope function approxima-integralg may be separated from the effects of the material
tion for electrons and holelEq. (3)] and by rewriting Eq. composition of the dotwhich determine the atomic dipole
(19) as operatoy.
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1.0 size; presumably the reason for the accuracy of the dipole-
0.95} dipole approximation in the case of cubic dots is that the
dipole-dipole terms dominate the higher-order terms even at
09 smaller dot separations.
085} The simple Kronig-Penney model shows how the size of
the Faster transfer depends upon the physical size of the
. 08¢ , . ~ )
S atomic part of the wave function. Howevér?) is a widely
0.75} measured quantity since it determines the strength of dipole
07} allowed transitions in optical spectra. In CdSe QD’s it
can be in the range of 0.9 to 84, %" in atomic systems it
0.65} can also be several A (Ref. 79 and in BS’s and MS’s has
0.6} L Ve 2 1000 mev recently been observed to be about &7 °®
0.55 L —= Vg =V, = 2000 meV As an illustration of the use of these curves, let us assume
0 2 4 6 8 10 12 14 that we have a dot system in which, as befdes5 nm, a
a or b (nm) =10 nm,b=8 nm, andh,;=h,=2 nm. Furthermore, let us

take the measured dipole value for CdSe dots of 0.9 to
FIG. 14. The overlap integr@; [Eq. (23)] as a function of dot 5.2 eA 5" |n this case, the Hster strength is between 0.013
size and confinement potential. This graph can be used in conjungnd 0.45 meV, which ifA,=0 would correspond to aon
tion with Fig. 12 to ob_tain values of the Fster strength for a range resonanceenergy transfer time of between 318 and 9.2 ps in
of dot sizes and confinement potentials. dots with V;,=V,=500 meV. This is short enough to be

It ibl btain th hof the i . _useful for quantum computing purposes: decoherence times
t is now possible to obtain the strength of the interaction ¢ long as a few nanosecoflihave been observed in

by as_suming_the spec@fic forms for t_he gnvelope and atomi@D’s. In MS’s or BS's, the interacting units can be as close
functions which we discussed earlier, in Sec. Ill. For they,gather a5 1 nm: using this and taking a typical molecular or
Kronig-Penney model, with a well width ofi2 the atomic ;5 oecular dipole value of about 22, 5% we obtain an
position operator expectation value is given by interaction strength of 8.3 me\or a transfer time of
_ 2 ~497 fs). FurthermoreY must certainly be controlled if

(ra)=32x/9m™ 24 the alternative scheme usiMyy is to be implementedand
The overlap integrals are easily calculated for the envelopéherefore cannot be neglected as in Rej. ¥ note thav/
functions described earlier, and are displayed as a function a$ not particularly sensitive to differences in dot size, though
dot size and confinement potential in Fig. 14. We show thehe differences in the diagondkelf-energy parts of the
overlap integral for the usual two dot shapes: cubé&c ( Hamiltonian which are caused by having dots of unequal size
=h/2) and flat cuboidal §=5h), where the latter is more are very significant. We shall discuss this further in Sec. VI.
typical of dots grown by the Stranski-Krastanow method. In Sec. V B we shall discuss how the biexciton binding-
The overlap is enhanced when there is a larger confinemenergy term depends upon applied electric field, and how
potential and for larger dots, since in these cases the shape sifich a field may be crucial to the operation of a potential
the wave function is less sensitive to the effective mass difguantum logic device. We now discuss how thesfer term
ference of the electrons and holes. We may use Fig. 14, tawould vary when such a field is applied. Since an electric
gether with the atomic dipole value, to calculate thesker  field would move the electron and hole away from one an-
strength for a range of dot sizes and confining potentialsother, the overlap integrals, E(3), would be reduced by
Owing to its dependence on the atomic dipole operatr ( such a field. We show this specifically by simulating the
«x?), we plot Ve/x? as a function ofR in Fig. 12. Two effect of applying a field on the overlap integ@| in Figs.
example curves, for two equally sized cubic dots are showrd5 and 16. In Fig. 15, we see th@ is significantly sup-
for equal electron and hole potentials of 500 meV and 200@ressed for fields of a few tens of kV/cm, and that the sup-
meV in Fig. 12, together with the earlier full calculation in pression is easier to achieve in dots which have a larger
which the dipole-dipole approximation was not made. Thedimension in the direction of the applied field. The reason for
full calculation was carried out fofi) cubic dots witha  thisis thatin larger dots the electron and hole are more easily
=h/2=2 nm, and(ii) cuboidal dots witra=5h=2 nm. For  separated since there is more distance between the two dot-
both shapes it is clear that the influence of dot shape and sizgarrier interfaces. In zero field, dots withsanaller dimen-
is much more important in determining the size of the inter-sion have smaller overlap integrals, for the reasons associ-
action than the influence of the size of the confinement poated with the balance of kinetic and potential energy
tentials. Furthermore, the dipole-dipole approximation isdiscussed earlier. Hence, we see that the curves for different
very good in the case of a cubic dot, even at interdot sepadot sizes cross each other in an applied field. In Fig. 16 we
rations which are relatively small when compared to the doplot the dependence of th®; on the depth of the confine-
sizes. For the cuboidal dot, the dipole-dipole approximatiorment potentials, fom=10 nm for both the cubic and cuboi-
fails at smaller separations. We investigated this effect mordal geometries. We see here that the effect of varying con-
thoroughly by repeating the calculations for cuboids of dif-finement potential is much smaller than varying dot size. The
ferent aspect rati¢see Fig. 1R The next-order ternidipole  small difference that is evident, that of a slightly easier sup-
quadrupolg is zero in all cases when the dots have equapression for deeper confinement potentials, is presumably
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FIG. 15. The overlap integraD; [Eq. (23)] as a function of E (kV/cm)

electric-field strengttE for a range of dot sizes. The upper part

shows the dependence when the dots take a cubic shape ( FIG. 16. The overlap integraD; [Eq. (23)] as a function of
=h;/2); the lower part shows the dependence for a cuboidal shapelectric-field strengthe for a range of confinement potentials, for a
(a=5h;). Note that the overlap integral, and so also thesfey  dot size ofa=10 nm. The upper part shows the dependence when
interaction, is suppressed at large field as the electron and hole atiee dots take a cubic shapea=h,/2); the lower part shows the
forced apart. dependence for a cuboidal shae=(5h,).

due to the fact that the wave functions in a shallower well§yhich induces the Stark shiftwe shall return to this in Sec.
teqd to bg more spread ofgince the potential-energy costin v/ |t is also interesting that a negligible Fster coupling is
doing so is smallgr and so the overlap between an electrongssential for the energy selective dot device discussed in Sec.
and hole at opposite sides of the dot is slightly enhancedy: such a negligible coupling may be achieved through using
Again the curves cross one another since, as we disCusSgg external field. There are disadvantages doing this in this
earlier, in zero field the delocalization of the states for Sha"case, however. A smaller electron-hole overlap will also re-
Iower potentials means that the shape of eaqh particle’s wavgce the coupling to the light field itself, which we need to
function depends more strongly on its effective mass. be strong enough to be able to perform conditional gates in a
The fact that the Hster coupling may be suppressed by time short enough when compared with typical decoherence
an external field could be very useful: if an entangled state i§mes. Hence, as so often in guantum computing implemen-

produced by using this coupling, it may be maintained byiation, a compromise must be struck between these two re-
switching offVe. If this could be done in a sufficiently short qirements.

time (i.e., on the time scale of the evolution of the quantum
device under the Heter coupling Hamiltonian, but much
less than typical decoherence timei$ may be possible to
fabricate a two-qubit gate using this effect. It may also be We now calculate the direct Coulomb interaction between
possible to achieve this switching in an alternative way, bytwo excitons, where one exciton is located on each dot. This
leaving the Fester coupling at a constant value but by tuninginteraction leads to the energy selectivity of the gate and is
the single exciton level spacinty, through the electric field responsible for th&/yy term of Eq.(1).

B. Diagonal coupling
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Consider the following double substitutional Slater deter-
minant, which we write using the hole prescription described
in Sec. Il B. It represents a combination of two ground con-
duction electron states and two ground hole states which
correspond to one exciton on each dot:

Vyx = AL Yu(r) Ph(r2) ga(ra—R)Yh(r,—R)], (25

where A indicates that the wave function has overall anti-
symmetry, this being achieved by adding terms with labels
swapped around in a Slater determinant foRms the vector
connecting the two dot centens, andr 3 represent the posi-
tion vectors of electrons relative to the centers of dot | and
dot Il, respectively, and, andr, are the equivalent vectors

for holes. The associated Coulomb operélgg;g is given by

g C 1 1 1
e | [REri—r3] [REri—rg  [R+1,—1
+ ! 26
[R+r—14] | (29
Expanding this expression in a Taylor series alfRwives,
to lowest nonzero order, — a=5h
3 o=5nm | a=h/2
Vix=——=1pr-Pu——(p-R)(py-R) {, (27) 1 2 5 10 20 50 100 200
XX erRs[pl Pu R2 P Pui E (kV/cm)
wherep,=e(r;—r,) is the overall dipole moment on dot | FIG. 17. () Exciton-exciton hinding energy ang) induced

andp; =e(rz—ry,) is the overall dipole moment on dot . To gipole moment as a function of the dot size, shape, and applied
evaluate the matrix elemefiW yy|Vyx|Wxx), p @andp, in  electric field. We have assumed that=V, =500 meV.

Eqg. (27) are replaced by their expectation values for the ) o )

wave function, Eq(25). This procedure gives rise to a direct Single-particle Schidinger equation4), and the results are
term and exchange terms. The exchange terms arise from tiésplayed in Fig. 17. In the lower part of the figure we dis-
parts of the wave functiofiEq. (25)] which do not appear Play the size of the exciton dipole momemton one of the
explicitly within the bracket but which have their labels dots as a function of the dot size and of the applied electric
swapped around and they are zero in the absence of wayigld strengthE. We do this for our usual two geometries:
function overlap between dots. The direct term is obtaine@ubic (@=h,/2) and flat cuboid 4=5h,) (see Fig. 4 In
through the use of the envelope function approximation, EqPoth cases the field is applied along one of the axes of the

(3), which leads to the following equation for the expectationsquare base. The interaction strengy is then obtained by
value(r;): using the size ofp; for each dot and substituting into Eg.

(27). Thus, the upper part of Fig. 17 shows the strength,
. | normalized byR3, for two dots of equal size and calculated
(ry)= J; e (r)rige(ry)dry, (28 for both of the dot geometries just describ§@ihe interac-

P tion between two unequally sized dots can similarly be ob-
where the orthogonality of the Bloch functions for different tained by the use of Fig. 18) and Eq.(27).] At very small
bands and the slow variation approximation for the envelopapplied field, the induced dipole is linearly proportional to
functions have again been used. Similar expressions hold fahe field, and hence the interaction strength takes a quadratic
the other position expectation values. dependence on field. At larger applied fields, the induced

For a cubic dot, where the electron and hole wave funcdipole begins to saturate as the electron and hole approach
tions have a definite parity about the dot center, E28)  the edges of confining potential of the quantum dots; this
implies that the exciton-exciton coupling is zero. However,limits the useful interaction strength which may be obtained
this is not the case when this symmetry is broken. For infrom a given pair of dots. It is interesting that the interaction
stance, for pyramidal shapes the electron may localize in onstrength is much more dependentathan it is onh,; this is
region of the dot and the hole in another regfémlterna-  because it is in the basal plane that the field is applied, and so
tively, an electric field would induce a polarization on theit is in this direction that the dipole moment is induced. The
dot; this field may be externally applied or arise from intrin- relative insensitivity ofVyx to h, turns out to be very useful:
sic piezoelectric effect¥’>3 it means that SK dots, which can be stacked closely on top of

We have simulated the effect of applying an electric fieldone another but which have a relatively large base size, can
in our cuboidal model by including a linear potential in the be made to interact very strongly. As an illustration, consider
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the following typical SK dot parametersR=5 nm, a 2001
=8 nm, b=10 nm, andh;=h,=2 nm (we have assumed
the usual experimental situation in which the upper dot of the
stack has a slightly larger sizdn anx directed field of 100
kV/icm, these parameters gi%gx~120 meV, which would
result in a lower time limit for the gate operation of around —
10 fs. This is relatively short; decoherence times on the order g [
of nanoseconds have been observed for uncoupled®dots. £ 100}

[~

<

Finally, we note that we have only calculatdfgy to first
order; in some cases higher-order terms may be important.

VI. FURTHER DISCUSSION 50F
The model outlined above can also be used to calculate
Ay, the difference in exciton creation energy for two differ- 300

ent sized dots in the absence of interactions. This is done by
simply calculating the single-particle electron and hole ener-
gies and taking into account the Coulomb binding energy 250
between them. We also assume that the electron and hole are
in the spin singlet state; spin is not important for our present
proposal and it is always possible to choose the spin singlet -~
state by using light with the appropriate polarization. Hence ?
we can effectively ignore the triplet states in considering the élso -
scheme described in Sec. Il =)

The absolute value ok is displayed as a function of the d
ratio of the dot side lengths for each of the usual geometries

o
o
)

in Fig. 18. We have displayefl,, both in the absence of the a

(intradod Coulomb terms, and when these terms are included 50| o

to first order by using the calculations of Sec. I\§ is zero .

when the dots are of equal size, and then increases as the M M. " AP TN T T
difference in size becomes greater. The Coulomb terms serve %-0 0.2 04 0.6 08 1.0 1.2 1.4 1.6 1.8 2.0

to reduce the size of\, because they are larger for the a/b
smaller dot of the paifwhich also has the larger single-

particle energies FIG. 18. Energy splitting\ o= w,— w, of the singlet qubit ex-

We now use the analysis of Sec. Il and the calculations ogﬁzrzbitiffo?;g da(l)r:g ?ilghf[,féﬁ:)b;ﬁ ShoetsaSSeI:]geZ’Sf tEéIZF)O
subsequent sections to obtain the size oftheomponent of  gier interaction as a function of the dot size ratib. The splitting
the |Wyq) and |Woy) states. If we assume that theérB®r s jndependent of interdot distance. The solid lines represent the
strength is small in comparison withy, then we have that = gpjitting in the presence of the Coulomb and exchange splitting
c1~Ve/Aq [see inset of Fig. (£)] and by substituting EQ. terms and each adjacent dotted line represents the splitting without

(24) and Eq.(21), we obtain Coulomb interactions for each dot size.
R3¢, 371 tangling gate operatione.g., |[11)—|10)) is equal to
20,0, QA_o’ (29) 1—c2—and so one must be careful when using the biexciton

scheme to use the available parameter space and make sure
whereA, is measured in meV, arxlandR are in nm. This  that the Foster transfer is suppressed to the desired accuracy.
quantity is displayed as a function of dot size ratio for theThere are other sources of decoherence in this @age the
usual geometries in Fig. 19. It can be seen there that a rangeteraction with optical and acoustic phondf%®j which
of ¢, values can be obtained by choosing dots with approwill reduce the value of the fidelity to below—lci. To mini-
priate values ok, R, anda/b. For example, cubic dots with mize the effects of such decoherence channels, it is important
large x (>1 nm say, smallR (<3 nm say, anda/b~1  to maximizeVyy , since this leads to an improved transition
give a largercs, and it is then more appropriate to use thediscrimination and so to a faster gating time. This can be
Forster interaction itself to create entangled states. On thdone by applying an electric field and choosing an appropri-
other hand, dots with smaller largerR, or a large mismatch ate dot shape, size, and separatias described earligrlt is
in dot size would be more suited to the scheme which usethen necessary to minimize the basis state mixing for the
the Vyx for QC and entanglement generation. A schemechosen parameters by selecting a suitable dot size ratio and
similar to the latter one was discussed by Biolattial. in ~ material composition. It was seen earlier that the value of
Ref. 53, though the off-diagonal coupling was not considered/yyx could be as high as several tens of meV. If we assume a
there at all; we now see how important it is to consider theconservative figure of 10 meV, we find that the uncertainty
effect of this interaction. Thédelity’! of a typical Vyy en-  principle implies that a controlledoT gate could be per-
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10 technique$® The QD state measurement can also be
9 [ achieved by means of projecting onto the computational ba-
I sis and measuring the final register state by exploiting ul-
8 trafast near-field optical spectroscopy and microscﬁ?ﬁﬁ
’é‘7' these allow one to address, to excite, and to probe the QD
c 'l excitonic states with spectral and spatial selectivity. In addi-
6 tion, the qubit register density matrix can be reconstructed by
8_ I measuring the QD photon correlations via standard quantum
o~ 5 I state tomography teq_hniqu%ssln particular, we believe that
4 the activity of the(Forstep resonant energy transfer pro-
@ | cesses discussed in this paper can be accomplished in our
;;3 [ coupled dot molecule by measuring the intensity correlation
2 function (usually denotedy®) in a Hanbury-Brown/Twiss
! type experiment:®#® Such an experiment can reveal signa-
1 [ tures of purely nonclassical photon correlations arising from
1.0 the QD molecule emissiori.e., photon antibunching or
- bunching behavior This idea has already been experimen-
0.9 tally explored for the case of pairs of dye molecules by Ber-
08 glundet al® Scalability of the scheme given here could also
—_ be possible by adopting a globallg addressed qubit strétegy
Eo7 on a stack of self-organized QIF.
~o06 We finalize this section with a discussion on how the
Q coupling can be usefully manipulated in biomolecular nano-
o5 structures. Light-harvesting antenna complé%es arrays of
<0_4 strongly interacting individual molecul@scould provide an
& appropriate system in which the fster interaction could be
~0.3 used for quantum information processing tasks. They are
0.2 generally very uniform structures, and we may compare
them to QD’s by settingg/b~1, or Ve/Ay>1. Then the
.11 one-exciton eigenstates of a two-qubit system with esteo
0.0 P TP TP TP EEP I PO coupling naturally allow the generation of the states
0.0 0.2 04 06 08 1.0 1.2 1.4 16 1.8 20

a/b 1/J2(|01) +|10)), which, apart from their applications to
quantum protocols, can be particularly useful in the fight
FIG. 19. The size of the component of the wave functigior ~ @dainst decoherence. Spectroscopic, line-narrowing tech-

(@ cubic dots @=hy/2p=h,/2) and (b) cuboidal dots 4  hiques(e.g., hole burning and site-selective fluorescence
=5h,,b=5h,) as a function of the dot size ratwb. ¢, has been infrared and Raman experimental studies reveal that the

scaled by its dependence on the interdot distadgpical atomic ~ Main decoherence mechanisms in the antenna complexes
spacingx, and overlap integral®; . arise from energetic disorder, electron-phonon coupling, and
temperature effect®.In this scenario, the excitations couple
formed in a time of around 100 fs. This is relatively short; to an environment that typically possesses a much larger co-
decoherence times on the order of nanoseconds have bekerence length than the biomolecular uBEhI’s) spacing.
observed recently for uncoupled d8fsHence we conclude For example, the BChl's in the antenna complex LH2, which
that this scheme looks rather promising as a solid-stateve regard as a potential system for quantum logic, are
implementation of quantum computation. spaced by as little as 1 nm, and hence so-called collective
It is also possible to use the Stark effetd tune two decoherence is expected to apply. In this case, provided that
nonresonant levels into resonance, thereby allowing for théhe logical qubit encodind|);=|01);, |1)i=|10)j that
kind of switching of the Frster interaction which is required uses two physicalexciton) qubits can be realized in the
if it is to be used for quantum logic. This can be done so longBChl's system, arbitrary superpositions of logical qubits
as the two dots are made such that they have different polasuch as &;| | i+ 8i| 1)) ®"N,i=1,... N, «;, 8;€C, are im-
izabilities (which could be achieved by using either different mune to dephasing noigdescribed by ar, operato??), and
sized dots or dots made of different matenalSo long as  single-qubit manipulations can be carried out on the time
this difference is such that the levels are brought closer toscale of the Fister coupling(which as we have seen can be
gether by applying a field, and that shifts as larg\gcan  as short as 497 fsTwo-qubit logic gates can also be imple-
be achieved, switchable resonant transfer is possible. lented within a decoherence-free subspace by using the
might be difficult to achieve the switching in a time which is above encoding® thus completing a universal set of gates.
short enough for a quantum gate to be performed; howevehitialization of the system requires the pairing of the physi-
in this case the opticaho Stark shift could be employed by cal qubits to the logical “ground” statg| )®N, and readout
using ultrafast laser®&. is to be accomplished by identifying on which of the two
Single shot qubit state measurement in QD’s could bestructures the exciton resides. Furthermore, rings of BChl's
performed by using resonant fluorescent shelvingappear side by side in naturally occurring antenna
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complexes and also display energy selectivity—smaller rings TABLE I. Table of the forms of the bound-state solutions for the
tend to have higher energy transitiofisThus, following a ~ finite square-well potential.

scheme as above, it may be possible to scale up such big
logical units in a natural way and construct a robust energy Region Even solutions Odd solutions
selective scheme for quantum computaffoiwe also note

that f strongly interacting individual molecul X< a2 Aet ce”
at arrays of strongly interacting individual molecules —__.,_ __., B cosk) D cosk)
which are coupled via a near-field dipole-dipole interaction w>a/2 Ao X _Ce

are well suited for our quantum computing and entangling
schemes, especially due to the existenceVgf type of

energy shifts® which have been analyzed in this paper. A
full discussion of these ideas will be presented elsewftere.

Ref. 77, and so we shall not go into too much detail here. If
we assume that the finite well is centered arowsdd, we
have different forms of solutions depending on the parity of
the wave function. These forms of solutions are shown in
We have shown that it is possible to use the two differentfable I with reference to Fig. 20, and assuming that our wave
electrostatic coupling termgForster transfer and biexciton functions have decayed once the infinite barriers are reached
binding energy between excitons in quantum dots to con- (see Sec. lll A.
struct two qubit gates which, in addition to an appropriate A, B, C, andD in Table | are normalization constants.
control over single qubits, are enough for universal quantun®[2mj (V,—E)]1Y¥% and k=(2m%E)“44. By ensuring
computation. We have also discussed how to generate tafhe continuity of the amplitudes of the wave functions and
lored exciton entangled states by using these gates. We hatlee probability current at the boundaries, the following tran-
furthermore modeled a pair of quantum dots in the simplesscendental equations for the enefgyre obtained.
envelope function approximation, and have mapped out the For even solutions,
areas of parameter space where one of the two interactions

VII. SUMMARY

dominates. We have discussed in detail how to perform en- (2m*E)Y%a V. —E\12
tangling operations when one of the two interactions is domi- ta ) =|-F (A1)
] S . 2h E
nant; the case when the two have similar magnitude leads to
a rich spectrum of entangled states whose degree of en- )
tanglement can be quantifieal posterioriin, for example, For odd solutions,
photon correlation experiments. We have concentrated here
on two geometries, namely that of a cube-shaped dot and that (2m*E)Y?a V,—E\| 2
) i P _ P
of a cuboid-shaped dot, and our calculations have been par- o T\ TE . (A2)

tially analytical and partially numerical. In future, we are
hoping to obtain simpler analytical results for many of the ] ] )
guantities we have calculated, by using different dot geom- T_hese equations were so_lved by using the numerical root
etries. We shall also extend our calculations to include decdinding algorithm provided with the NAG package. Once the

herence effects, and in future work we shall be particularlyenergies are obtained, andk follow from simple substitu-
interested in how we might use the rBter interaction to tion. The normalization constants follow from the usual nor-

known.
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2a I
APPENDIX: SINGLE-PARTICLE SOLUTIONS R \/e
As we discussed in the text, the solution of the three- X
dimensional finite well square box potential is obtained by I Vh

using the solutions of the one-dimensional finite square well

and expanding the Schiimger equation in these basis states.

In order to do this, both bound and unbound basis states had ; ;

to be taken into consideration. I Pl M

1. Bound states —0 —0

The problem of finding the solutions of a finite square FIG. 20. Schematic diagram of the potential used to generate the
well is covered in most undergraduate text bo¢ese, e.g., unbound basis states used in the calculations.

205319-16



OPTICAL SCHEMES FOR QUANTUM COMPUTATION IN . .. PHYSICAL REVIEW B8, 205319 (2003

TABLE II. Table of the forms of the unbound state solutions for function amplitude and the probability current at the bound-
the finite square-well potential. aries, and the following transcendental equations are found
for the even and odd solutions, respectively,

Region Even solutions Odd solutions
E—Vp 1/2
—L/2<x<-—al2 —Asink (x—L)] C sink' (x—L)] T)
—al2<x<al2 B coskx) D coskx)
al2<x<L/2 Asink (x—L)] —Csink (x—L)] r( a(2m* E)1/2) I_( (a—L)[2m*( E—vp)]l’z)
=—tal ta ,
h h
2. Unbound states (A3)
The problem for unbound states is somewhat less straight-E—V, 2
forward. We assume that the finite webf width 2a) is E
embedded within an infinite we(bf width 2L), and that we
may set the wave function outside the infinite well to zero [(a(Zm* E)'? ta (a—L)[2m* (E-V)]"?
(see Fig. 2 Then there are again three regions which have h h '
different forms of solutions, which take the forms given in (A4)
Table II.
The wave vector inside the dots is given by Equations(A3) and (A4) are solved forE, and then the

=(2m*E)Y¥%, andk’ =[2m* (E—V,)]¥¥%. The solution wave vectors and normalization constants follow on as be-
is obtained by again invoking the continuity of the wave fore.
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