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Quantum and classical localization in the lowest Landau level
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Spatial correlations of occupation probabilities, if their decay is not too fast, can change the critical expo-
nents for classical percolation. From numerical studies of electron dynamics in the lowest Land&ulkeyel
we demonstrate the quantum analog of this effect. Similar to classical percolation, we find that the extended
Harris criterion applies to localization in the LLL. These results suggest experiments that might probe new
qguantum critical points in the integer quantum Hall setting.
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[. INTRODUCTION tions of the random potential can change the percolation
critical point leading to a different fractal geometry of its
Quantum or classical dynamics can lead to localization oequipotential lines. This happens when the exponent
a particle moving in a random environment. The localizedwhich characterizes the spatial decay of the potential corre-
state in the quantum case is described by a wave functiolations[see Eq(5)] satisfiesa<2/v.; v,=4/3 is the corre-
which spreads over a finite distance, the localization lengthlation length exponent for percolatidhHere we investigate
In the classical case particle trajectories are closed orbitthe effect that changing the fractal geometry of classical tra-
limited in extent. The mechanism by which localization canjectories, has on quantum localization in the IQH system. We
occur in the two settings is very different as quantum interfind new localization critical points whea<2/v, i.e., the
ference, which plays a crucial role in quantum localization,quantum analog of correlated percolati¢fhis problem was
has no classical counterpart. In this paper we report on thpreviously studied by Caiet al. using real space renormal-
intriguing relation between classical and quantum localizaization group techniques, but no definite proof of the effect
tion in the setting of the integer quantum HAQH) effect, was foundt!)
when a power-law correlated disorder potential is present.
The problem of localization in the IQH setting has been 1I. QUANTUM DYNAMICS IN THE LOWEST LANDAU
studied since the effect was first discovered. Localization is LEVEL
believed to be responsible for the plateaus in the Hall resis- o . _ _
tance which are observed as a function of the applied mag- The Hamiltonian for two-dimensional spm_less electrons
netic field! Transitions between adjacent plateaus have beefionfined to thec-y plane, and under the combined effects of
identified with a zero-temperature quantum critical point & magnetic field8=Bz and a random potential(r), is H
which is characterized by the divergence of the localization= 1/2m(p—eA)?+=,V_,py . HereA is the vector potential,
length as the magnetic field is tuned to its critical value.px=€"" is the one-particle density operator a¥g is the
Support for this picture is provided by observations of criti- Fourier transform of the disorder potential. At high magnetic
cal scaling in experiments of Waeit al® and Kochet al,*  fields (or low temperaturgs the quantum dynamics of the
which found a localization length exponeng~2.3. electron are governed by the projection of the Hamiltonian
Theoretical studies of localization in the IQH system usu-onto the lowest Landau levelLL)
ally take the semiclassical pictdras their starting point.
Here the electron’s motion is split into the fast cyclotron F'IE YA (1)
rotation and the slovie X B drift of the guiding center along K
lines of constant electrostatic potential. The potenti@al), .
caused by impurities, is assumed to be random. Quantuiyherep is the projected density operator. We focus our at-
mechanics enters at the saddle points of the potential Wheﬁ?ntion on the localization properties of the eigenfunctions of
the electron can tunnel from one equipotential orbit to anH. Previous numerical studisindicate that the localization
other, while the perpendicular magnetic field results in a ranlength increases towards the center of the LLL band, with a
dom Aharonov-Bohm phase between two tunnelling eventslocalization length exponent,~7/3. In these studies the
A lattice model which describes the network of saddle pointsandom potential was assumed to be short range correlated.
was introduced by Chalker and Coddingftemd it leads to a Here we take up the question of how power-law correlated
value of the localization exponent consistent with experi-potentials might affect the value of, .
ments. Recently, Sinovat al® have shown that the localization
The classical limit of the network model corresponds tolength exponent can be computed from the disorder averaged
percolation’ The classical trajectories are equipotential linesdensity-density correlation function projected onto the LLL.
of V(r), which can be mapped to the hulls of percolationlt was further shown by Gurarie and Zé¢hat the classical
clustersS However, little is known about quantum localiza- limit of the time evolution of this correlation function de-
tion when the classical limit is described by correlated perscribes electron drift along the equipotentials \6fr), as
colation. Namely, as shown by Weinfilpower-law correla-  expected. These results lead to a simple scaling argument for
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FIG. 1. Evolution of a wave
packet composed of all eigenstates
and initially localized atx=0.5.
A(x,y) is the wave packet ampli-

tude.
the subdiffusive spreading of wave packets in the lowest 1
Landau level®> Namely, start by assuming that the disorder (V(r)V(0))e —. (5
potential completely breaks the degeneracy of the LLL, leav- Ir|«

ing only one extended state at enefgy=0. Let us examine  The projected Hamiltonian matrix is written in the basis of

the time evolution of a wavepackigte(t)) constructed from  giates given by the Landau eigenstates on the torus, which in
localized eigenstates of E@l) that are taken from an inter- {he | andau gauge can be written as

val of width A centered arounde. The dispersion of this

wavepacket,( Ax2(t)) = (¥e(t)|x?| ge(t)), is expected to - y
be diffusive for short times [t<¢?(E)/D, D w(xy)= 2 exp 2mi L (Nm+1)
=diffusion constant], attaining a constant value set by the meo
localization lengthé(E) at long times. This can be summa- N L 2
rized by a scaling form Xexp( — | X— N(l + Nm)} ) . (6)
m: Dtf Dt @) Here | goes from O toN—1, labeling theN states on the
E(E))’ torus,N is the number of flux quanta through the torus, and

L is the system size. These wave functions are defined on
where the bar denotes disorder averaging fisda scaling [0,L)x[0.L), they are centered at=LI/N and have appre-
function, with propertiesf(x) —const forx<1, andf(x)  ciable amplitude in a narrow strip of width given by the
—constk for x>1. Now, if we construct a wave function in - magnetic lengtth.= L?/27N. [Below we sel=1, render-
the LLL as a superposition of the wave packptg(t)) its ing (x,y) dimensionles§.

dispersion can be written as The electron density operatgs(k;,k»)=exp 2i(k;X

E=0 +Kk»,y)] projected onto the LLL is a matrix of the form
(AP())y=_2 (AX%(1)e, 3) 2, 1.2
ES - 1+k3
p(ky,ky)=exp — oN 7 L(kq,k2), (7)

where the contributions of the nondiagonal terms can be ne-
glected since only the state Bt=0 is extended. Replacing where ki,k, are integers in the units chosep(k;,k»)
(AX2(t))e by Eq.(2), making use of(E)~E "4, and the ~#(0,0)], and the matrix elements df(k,,k;) are given by
nonsingular nature of the density of states 0, we i _
obtain [L(ky k)], =€ lkake2ralamDING, ] oan -

8

(AX*(t))~ (D)™~ M2, (4 (The formalism used to project the density operatponto

Therefore, the spread of the wave function at late times iéheFLLL was devellt_)peql n I?/ef. 1)6h . d ei
subdiffusive due to the presence of the extended eigenfunc- "~°" @ 9IVen rea |zat|o.n ov(r), the mggnvectqrs r?m er-
tion at the band center, and the anomalous diffusion expodenvalues ofH are obtained by exact diagonalizatitinA

nent =1—1/2v,. This forms the basis of the numerical Wave packet localized alongis made using all the eigen-
method we use below to compuig . states. As it evolves it spreads, and its width in xhdirec-

tion is computed as a function of time. For one realization of

the short-range correlated random potential, Fig. 1 shows a

set of snapshots for the evolution of a wave packet initially
To study quantum dynamics and localization in the LLL localized atx=0.5. To obtain{Ax?(t)) the width of the

in the presence of power-law correlated disorder potentialsyave packet is averaged over all initial positions and over

we make use of the Hamiltonian in E¢l) with V(k) a 1000 different disorder realizations; E@) is then used for

random Gaussian variable with zero mean and varianceomputingv,,.

given by |k|*~2. After Fourier transforming this leads to a  First, we checked this numerical procedure for a short-

potential which is power-law correlated in real space range correlated disorder potential, where the Fourier com-

Ill. POWER-LAW CORRELATED DISORDER POTENTIAL

205315-2



QUANTUM AND CLASSICAL LOCALIZATION INTHE. .. PHYSICAL REVIEW B 68, 205315 (2003

s ,_'_T..':'——_'-_-I 11 T T T T T T T
"" 1 T T
- L 0=1-o4 |
0.01F| 3 ]
E ] ] ]
~~ - v T 3
= Er 3 0<062+-001
< = - 0 0.5 1 1.5 2
< 0.001 3 3 009 o -
T 08 i
0.0001F / 0 0002 0004  0.006 J 2 4
E/// 1 1 IN 1 h
0.1 1 10 100 6= 0.78? +/— 0.008
O)Ct 0'70 1.5 2

FIG. 2. Disorder averaged spread of the wave packetNfor o
=1000 basis states in the LLL, as a function of time, and for dif- FIG- 3. The anomalous diffusion exponeht 1—1/2v, charac-

ferent disorder potentials. Anomalous diffusion is evident at inter-t€rizes the spread of a wave packet in the LLL. The powete-

mediate times. Inset: The exponehfor different values oN inthe ~ Scribes the long-range nature of the correlations of the random po-

case of a short-range correlated disorder potential. tential. Full lines are theoretical curves obtained from the extended
Harris criterion. The inset shows analogous results for the case of
classical electron motiofRef. 18.

ponents ofV(r) (in units ofZw;) are independent and uni-

formly distributed on the intervdl—0.5,0.9. The value of 2 2

0=1—1/2v is given by the slope ofAx*(t)) when plotted a> a*zﬂlc:a—*, a<at=ve=_, 9

on a log-log graph. To take into account finite size effects we

repeat the computation @ffor 200<N<=1500 and plot it as wherea* =3/2. However, there is to our knowledge no evi-

a function of 1N; see inset of Fig. 2. By linear extrapolation dence of the validity of the extended Harris criterion for

we find v=2.33(9) in theN— o limit, consistent with pre- quantum critical points. Since the localization transition in

vious results. We then repeat the computation for long-rangée LLL is believed to be the quantum counterpart of the

correlated disorder potentials for different values of the paclassical percolation transition, it provides an ideal testing
rametera. Results are shown in Fig. 2. ground for the applicability of the criterion in the quantum

———— - . Im.
For each(Ax2(t)) curve in Fig. 2, three regions can be reaim L
identified. Due to the finite system size, at long enough times,. W'Fh this in mind we calculate the valu_e of the anomalous
the spread of the wave packet reaches a constant value Whighffusmn exponent=1-1/2vq by computing the value of
. ... __Ih the critical region for different values for the degeneracy
corresponds roughly to 70% of the system size. The critica

. . . . : f the LLL, ranging fromN=330 to N=1000, and then
region corresponds to intermediate times, while the Shoréxtrapolating toN— . Results from this computation, as
time behavior is described by the slope-2. Ballistic mo- y

X _ _ well as the theoretical prediction based on the extended Har-
tion (§=2) follows from a perturbative calculation of yis criterion are shown in Fig. 3. In the quantum case the
(Ax*(t)) at short times® Comparison among different criterion reads as written in E49) except nowa* =2/,
(Ax%(t)) curves shows that the value of the slope in the=0.78§8). In theinset of Fig. 3 we also show results of
critical region begins to increase far<a* ~0.75-0.80. numerical analysis of classical electron motion in the same
long-range correlated random potential, and compare to the
prediction from the extended Harris criterihThe classical
IV. EXTENDED HARRIS CRITERION results were reported previously in Ref. 21. Our data confirm
the validity of the extended Harris criterion for both quantum
The effect of short-range correlated disorder on a criticalaind classical electron dynamics in the LLL.
point is summarized by the Harris criteriéhThe criterion The main result of this paper is contained in Fig. 3. From
states that critical exponents for the disordered and the cleghe striking resemblance between classical and quantum be-
system remain equal as long as the value of the correlatiohavior, we conclude that disorder correlations affect in a
length exponent satisfiesdv—2=0, whered is the dimen-  qualitatively similar way quantum and classical percolation.
sionality of the system under consideration. It is derived byindeed, the quantum version of the extended Harris criterion
demanding that the fluctuations of the random potentiatan be argued in close analogy with its classical counterpart.
within a volume set by the correlation length do not growIn this case we should consider the fluctuations of the ran-
faster than its average value, as the transition is approachedom potential in a volume set by the localization length
An extension of the criterion was proposed by Weinrib and¢(E)~E™"a, and compare them t&. The calculation that
Halperirf® to include power-law correlated disorder poten-follows'® exactly parallels that done by Weinrib and
tials, similar to that in Eq.(5). When applied to two- Halperin?’ and Eq.(9) follows with v, replacingw.
dimensional percolation this “extended Harris criterion”  An interesting consequence of the applicability of the ex-
reads tended Harris criterion to the IQHT, is the conclusion that the
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simple relation between the classical and quantum localizeelectron layer. The height fluctuations of the material surface,
tion length exponenty,= v + 1,22 cannot be valid in gen- and hence the correlations in the random field, can, in prin-
eral. According to the quantum version of Ef), for along-  ciple, be controlled by adjusting the growth conditions under
range correlated disorder with Gs&<1.5 the quantum which the material is made. Magnetic decoration techniques
localization exponent will be the same as in the case of shorer magnetic force microscopy can be used to determine spa-
range correlated disorder while the classical one will varytial correlations of the field and thus extract the valuexof
continuously witha. At T=25 mK, the saturated width of the Hall conductance
step isAB=0.5T for AlGaAs/GaAs structures. The tem-
V. CONCLUSION perature and\ B place limits on the size of the random field

] ) ] fluctuations, which should roughly be in the interval
We conclude by speculating about a possible experimentalg-3 T< s8<10"1 T. Whether or not magnetic materials

test of our findings. The random potential present in sampleg;ith these properties can be prepared, and placed in close

that exhibit the IQH effect is thought to be short-range cor-poximity to the two-dimensional electron gas so as to effect
related, due to the nature of the spatial distribution of impu-jg dynamics, remains to be seen.

rities within the heterojunctioh.However, the effect of a
random magnetic field in the presence of a much stronger
constant magnetic field is equivalent to that of a random
potential®® This opens up the possibility of engineering the
properties of the disordered environment seen by the elec- It is a pleasure to acknowledge useful conversations with
trons, by applying a random magnetic field. This was, forB. Halperin, J. Sinova, V. Gurarie, S. Boldyrev, J. Moore,
example, demonstrated in Ref. 24 using a magnetic materiand S. Simon. J.K. was supported by the NSF under Grant
with a rough contact surface placed in close proximity to theNo. DMR-9984471, and by the Research Corporation.
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