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Quantum and classical localization in the lowest Landau level
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Spatial correlations of occupation probabilities, if their decay is not too fast, can change the critical expo-
nents for classical percolation. From numerical studies of electron dynamics in the lowest Landau level~LLL !
we demonstrate the quantum analog of this effect. Similar to classical percolation, we find that the extended
Harris criterion applies to localization in the LLL. These results suggest experiments that might probe new
quantum critical points in the integer quantum Hall setting.
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I. INTRODUCTION

Quantum or classical dynamics can lead to localization
a particle moving in a random environment. The localiz
state in the quantum case is described by a wave func
which spreads over a finite distance, the localization len
In the classical case particle trajectories are closed or
limited in extent. The mechanism by which localization c
occur in the two settings is very different as quantum int
ference, which plays a crucial role in quantum localizatio
has no classical counterpart. In this paper we report on
intriguing relation between classical and quantum locali
tion in the setting of the integer quantum Hall~IQH! effect,
when a power-law correlated disorder potential is presen

The problem of localization in the IQH setting has be
studied since the effect was first discovered. Localization
believed to be responsible for the plateaus in the Hall re
tance which are observed as a function of the applied m
netic field.1 Transitions between adjacent plateaus have b
identified with a zero-temperature quantum critical poi2

which is characterized by the divergence of the localizat
length as the magnetic field is tuned to its critical valu
Support for this picture is provided by observations of cr
cal scaling in experiments of Weiet al.3 and Kochet al.,4

which found a localization length exponentnq'2.3.
Theoretical studies of localization in the IQH system us

ally take the semiclassical picture5 as their starting point.
Here the electron’s motion is split into the fast cyclotr
rotation and the slowE3B drift of the guiding center along
lines of constant electrostatic potential. The potentialV(r ),
caused by impurities, is assumed to be random. Quan
mechanics enters at the saddle points of the potential w
the electron can tunnel from one equipotential orbit to
other, while the perpendicular magnetic field results in a r
dom Aharonov-Bohm phase between two tunnelling eve
A lattice model which describes the network of saddle poi
was introduced by Chalker and Coddington,6 and it leads to a
value of the localization exponent consistent with expe
ments.

The classical limit of the network model corresponds
percolation.7 The classical trajectories are equipotential lin
of V(r ), which can be mapped to the hulls of percolati
clusters.8 However, little is known about quantum localiza
tion when the classical limit is described by correlated p
colation. Namely, as shown by Weinrib,9 power-law correla-
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tions of the random potential can change the percola
critical point leading to a different fractal geometry of i
equipotential lines. This happens when the exponenta,
which characterizes the spatial decay of the potential co
lations @see Eq.~5!# satisfiesa,2/nc ; nc54/3 is the corre-
lation length exponent for percolation.10 Here we investigate
the effect that changing the fractal geometry of classical
jectories, has on quantum localization in the IQH system.
find new localization critical points whena,2/nq , i.e., the
quantum analog of correlated percolation.~This problem was
previously studied by Cainet al. using real space renorma
ization group techniques, but no definite proof of the effe
was found.11!

II. QUANTUM DYNAMICS IN THE LOWEST LANDAU
LEVEL

The Hamiltonian for two-dimensional spinless electro
confined to thex-y plane, and under the combined effects
a magnetic fieldB5Bẑ and a random potentialV(r ), is H
51/2m(p2eA)21(kV2krk . HereA is the vector potential,
rk5eik•r is the one-particle density operator andVk is the
Fourier transform of the disorder potential. At high magne
fields ~or low temperatures!, the quantum dynamics of th
electron are governed by the projection of the Hamilton
onto the lowest Landau level~LLL !

Ĥ5(
k

V2kr k̂, ~1!

where r̂ is the projected density operator. We focus our
tention on the localization properties of the eigenfunctions
Ĥ. Previous numerical studies12 indicate that the localization
length increases towards the center of the LLL band, wit
localization length exponentnq'7/3. In these studies the
random potential was assumed to be short range correla
Here we take up the question of how power-law correla
potentials might affect the value ofnq .

Recently, Sinovaet al.13 have shown that the localizatio
length exponent can be computed from the disorder avera
density-density correlation function projected onto the LL
It was further shown by Gurarie and Zee14 that the classical
limit of the time evolution of this correlation function de
scribes electron drift along the equipotentials ofV(r ), as
expected. These results lead to a simple scaling argumen
©2003 The American Physical Society15-1
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FIG. 1. Evolution of a wave
packet composed of all eigenstate
and initially localized atx50.5.
A(x,y) is the wave packet ampli-
tude.
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the subdiffusive spreading of wave packets in the low
Landau level.15 Namely, start by assuming that the disord
potential completely breaks the degeneracy of the LLL, le
ing only one extended state at energyEc50. Let us examine
the time evolution of a wavepacketucE(t)& constructed from
localized eigenstates of Eq.~1! that are taken from an inter
val of width D centered aroundE. The dispersion of this
wavepacket,̂ Dx2(t)&E[^cE(t)ux2ucE(t)&, is expected to
be diffusive for short times @ t!j2(E)/D, D
5diffusion constant], attaining a constant value set by
localization lengthj(E) at long times. This can be summa
rized by a scaling form

^Dx2~ t !&E5Dt f S Dt

j2~E!
D , ~2!

where the bar denotes disorder averaging andf is a scaling
function, with propertiesf (x)→const for x!1, and f (x)
→const/x for x@1. Now, if we construct a wave function i
the LLL as a superposition of the wave packetsucE(t)& its
dispersion can be written as

^Dx2~ t !&. (
E→2`

E50

^Dx2~ t !&E, ~3!

where the contributions of the nondiagonal terms can be
glected since only the state atE50 is extended. Replacing
^Dx2(t)&E by Eq. ~2!, making use ofj(E);E2nq, and the
nonsingular nature of the density of states forE→0, we
obtain

^Dx2~ t !&;~Dt !121/2nq. ~4!

Therefore, the spread of the wave function at late time
subdiffusive due to the presence of the extended eigenf
tion at the band center, and the anomalous diffusion ex
nent u5121/2nq . This forms the basis of the numeric
method we use below to computenq .

III. POWER-LAW CORRELATED DISORDER POTENTIAL

To study quantum dynamics and localization in the LL
in the presence of power-law correlated disorder potenti
we make use of the Hamiltonian in Eq.~1! with V(k) a
random Gaussian variable with zero mean and varia
given by ukua22. After Fourier transforming this leads to
potential which is power-law correlated in real space
20531
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^V~r !V~0!&}
1

ur ua
. ~5!

The projected Hamiltonian matrix is written in the basis
states given by the Landau eigenstates on the torus, whic
the Landau gauge can be written as

c l~x,y!5 (
m52`

`

expS 2p i
y

L
~Nm1 l ! D

3expS 2p
N

L2 Fx2
L

N
~ l 1Nm!G2D . ~6!

Here l goes from 0 toN21, labeling theN states on the
torus,N is the number of flux quanta through the torus, a
L is the system size. These wave functions are defined
@0,L)3@0,L), they are centered atx5Ll /N and have appre-
ciable amplitude in a narrow strip of width given by th
magnetic lengthl c5AL2/2pN. @Below we setL51, render-
ing (x,y) dimensionless.#

The electron density operatorr̂(k1 ,k2)5exp@2p i (k1x
1k2y)# projected onto the LLL is a matrix of the form

r̂~k1 ,k2!5expS 2
k1

21k2
2

2N
p DL~k1 ,k2!, ~7!

where k1 ,k2 are integers in the units chosen,@(k1 ,k2)
Þ(0,0)#, and the matrix elements ofL(k1 ,k2) are given by

@L~k1 ,k2!# l 1 ,l 2
5e2p i [k1k2/21k1( l 121)]/Nd l 1 ,l 22k2

umodN .
~8!

~The formalism used to project the density operatorrk onto
the LLL was developed in Ref. 16.!

For a given realization ofV(r ), the eigenvectors and ei
genvalues ofĤ are obtained by exact diagonalization.17 A
wave packet localized alongx is made using all the eigen
states. As it evolves it spreads, and its width in thex direc-
tion is computed as a function of time. For one realization
the short-range correlated random potential, Fig. 1 show
set of snapshots for the evolution of a wave packet initia
localized atx50.5. To obtain^Dx2(t)& the width of the
wave packet is averaged over all initial positions and o
1000 different disorder realizations; Eq.~4! is then used for
computingnq .

First, we checked this numerical procedure for a sho
range correlated disorder potential, where the Fourier co
5-2
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ponents ofV(r ) ~in units of \vc) are independent and un
formly distributed on the interval@20.5,0.5#. The value of
u5121/2nq is given by the slope of̂Dx2(t)& when plotted
on a log-log graph. To take into account finite size effects
repeat the computation ofu for 200<N<1500 and plot it as
a function of 1/N; see inset of Fig. 2. By linear extrapolatio
we findnq52.33(9) in theN→` limit, consistent with pre-
vious results. We then repeat the computation for long-ra
correlated disorder potentials for different values of the
rametera. Results are shown in Fig. 2.

For each^Dx2(t)& curve in Fig. 2, three regions can b
identified. Due to the finite system size, at long enough tim
the spread of the wave packet reaches a constant value w
corresponds roughly to 70% of the system size. The crit
region corresponds to intermediate times, while the sh
time behavior is described by the slopeu'2. Ballistic mo-
tion (u52) follows from a perturbative calculation o
^Dx2(t)& at short times.18 Comparison among differen
^Dx2(t)& curves shows that the value of the slope in t
critical region begins to increase fora,a* '0.7520.80.

IV. EXTENDED HARRIS CRITERION

The effect of short-range correlated disorder on a criti
point is summarized by the Harris criterion.19 The criterion
states that critical exponents for the disordered and the c
system remain equal as long as the value of the correla
length exponentn satisfiesdn22>0, whered is the dimen-
sionality of the system under consideration. It is derived
demanding that the fluctuations of the random poten
within a volume set by the correlation length do not gro
faster than its average value, as the transition is approac
An extension of the criterion was proposed by Weinrib a
Halperin20 to include power-law correlated disorder pote
tials, similar to that in Eq.~5!. When applied to two-
dimensional percolation this ‘‘extended Harris criterion
reads9

FIG. 2. Disorder averaged spread of the wave packet, foN
51000 basis states in the LLL, as a function of time, and for d
ferent disorder potentials. Anomalous diffusion is evident at in
mediate times. Inset: The exponentu for different values ofN in the
case of a short-range correlated disorder potential.
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2

a
, ~9!

wherea*53/2. However, there is to our knowledge no ev
dence of the validity of the extended Harris criterion f
quantum critical points. Since the localization transition
the LLL is believed to be the quantum counterpart of t
classical percolation transition, it provides an ideal test
ground for the applicability of the criterion in the quantu
realm.

With this in mind we calculate the value of the anomalo
diffusion exponentu5121/2nq by computing the value ofu
in the critical region for different values for the degenera
of the LLL, ranging fromN5330 to N51000, and then
extrapolating toN→`. Results from this computation, a
well as the theoretical prediction based on the extended H
ris criterion are shown in Fig. 3. In the quantum case
criterion reads as written in Eq.~9! except nowa* 52/nq
50.786(8). In the inset of Fig. 3 we also show results o
numerical analysis of classical electron motion in the sa
long-range correlated random potential, and compare to
prediction from the extended Harris criterion.18 The classical
results were reported previously in Ref. 21. Our data confi
the validity of the extended Harris criterion for both quantu
and classical electron dynamics in the LLL.

The main result of this paper is contained in Fig. 3. Fro
the striking resemblance between classical and quantum
havior, we conclude that disorder correlations affect in
qualitatively similar way quantum and classical percolatio
Indeed, the quantum version of the extended Harris criter
can be argued in close analogy with its classical counterp
In this case we should consider the fluctuations of the r
dom potential in a volume set by the localization leng
j(E);E2nq, and compare them toE. The calculation that
follows18 exactly parallels that done by Weinrib an
Halperin,20 and Eq.~9! follows with nq replacingnc .

An interesting consequence of the applicability of the e
tended Harris criterion to the IQHT, is the conclusion that t

-
-

FIG. 3. The anomalous diffusion exponentu5121/2nq charac-
terizes the spread of a wave packet in the LLL. The powera de-
scribes the long-range nature of the correlations of the random
tential. Full lines are theoretical curves obtained from the exten
Harris criterion. The inset shows analogous results for the cas
classical electron motion~Ref. 18!.
5-3
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simple relation between the classical and quantum local
tion length exponent,nq5nc11,22 cannot be valid in gen-
eral. According to the quantum version of Eq.~9!, for a long-
range correlated disorder with 0.8&a<1.5 the quantum
localization exponent will be the same as in the case of sh
range correlated disorder while the classical one will v
continuously witha.

V. CONCLUSION

We conclude by speculating about a possible experime
test of our findings. The random potential present in samp
that exhibit the IQH effect is thought to be short-range c
related, due to the nature of the spatial distribution of imp
rities within the heterojunction.1 However, the effect of a
random magnetic field in the presence of a much stron
constant magnetic field is equivalent to that of a rand
potential.23 This opens up the possibility of engineering t
properties of the disordered environment seen by the e
trons, by applying a random magnetic field. This was,
example, demonstrated in Ref. 24 using a magnetic mat
with a rough contact surface placed in close proximity to

*Current address: Department of Physics and Astronomy, O
University, Ohio, OH 45701.
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