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Possible phase diagram for localization tuned by the disorder and Pauli-blocking effects
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Based on the acoustic analog, we investigate both of the effects, disordé@rauidblocking interaction, on
the possible localization in electron gases by using the quantum discrete kinetic model. We present effects of
the disordexor free orientatiory which is related to the relative direction of scattering of particles with respect
to the normal of the propagating plane-wave fyjomhich is introduced into the kling-Uhlenbeck equations
together with those of the Pauli-blocking. We obtain a possible phase diagedated to the strength of
disorders and the mean free pathhich qualitatively resembles that proposed by Abrahdsn. Phys.
(Leipzig) 8, 539(1999].
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I. INTRODUCTION here the eigenvalue parametgis w/cy, wherew is a natu-
ral (or an eigepfrequency and, is a reference wave speed.

Recently some developments in the localization proBIemComparing the time dependencies one gets the quantum and
have become a major theme in the condensed matter retassical relatiorE=% w.
search. One example is the strongly interacting electron |t seems that the control and observability of the classical
(non-Fermj liquid with different strengths of disordérin-  experimental analogs may be matched by analytical works or
teresting issues are the quantum phase transition and quagumerical simulations. However, classical systems could be
tum critical point, etc., as reviewed in Ref. 2. Both effects ofysed to study time-dependent potential fields and nonlinear
disorder and interaction are closely relevant to the weak angffects, which are very difficult and time consuming to treat
strong localizatior’:* They are then related to the metal- numerically or analytically. Motivated by the analogy be-
insulator transition in two dimensions. Although most of tween electrons in periodic or disordered metals and waves
theories proposed before are based on the Fermi liquid ben classical acoustical systems, an investigation for observing
havior, new insights could be obtained considering the posclassical(Anderson localizatior? using the quantum discrete
sible analogy with superconducting transition which mightkinetic model was performed, and will be presented here.
be related to the bosonic systém. Plane (sound wave propagation in dilute monatomic

Note that studies of classical wave mechanical systemgard-sphere gases has been successfully investigated by
have some important advantages over quantum mechanic@ntinuous and/or discrete kinetic models since the 1960s
wave systems even there are similarities in between. In gRefs. 6 and ¥ (please see the detailed cited references
mesoscopic system, where the sample size is smaller than thigerein. Relevant initial and/or boundary value problems—
mean free path for an elastic scattering, it is satisfactory for @e., the former being central to the analytical or numerical
one-electron' model to solve the time-independent Schrogpproach because of the propagation of the forced sound
dinger equation from a certain origin, and the latter being almost related to

the experimental environment due to the sensors and trans-

2 ducers located somewhere downstream—must be well de-

2 FOeN,f—
N ﬁv YV y=Ey, fined and then solved to obtain the complex spectra or dis-
persion relationgreal part: sound dispersion; imaginary part:
or (after dividing by —#2/2m) sound attenuation or absorptjoin comparison with experi-

ments, results of the continuous velocity approach gave a
- better fit than the discrete velocity approach. The integral
V2y+[g®=V(r)]$=0, @ form of the formef however, may smooth out some peculiar
phenomena or only give bulk physical behavior consider-
ing the continuous distribution of the particle velocities. The
discrete form of the latter, i.e., particle velocitiand the
associated number dengitigeing a finite set while keeping
the space and time continuous, provides us possibilities to
5 1 9%y adjust the discrete velocity, e.g., the free orientation of it in
p=——5=0 the two-dimensional2D) plane(which could be thought as a
kind of disorder for coplanar velocity modeland solve rel-
evant problems in order to gain more physical insights for
specific interests. For instance, a molecular beam interacting
with surfaces(solids or liquid$ will normally depend on
. some specific incident or reflecting angles. Wave propagation
V2y+[g?>—V(r)]y=0; (2)  in random or disordered media might be another a&e.

whereq is an (energy eigenvalue parameter, which for the
guantum-mechanic system {@mE/#2.
Meanwhile, the equation for classidacalay waves is

or (after applying a Fourier transform in time and contriving
a system where (the wave speddvaries with positiorr)
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Both theories and measurements are in rapid progress, for théth i e A={1, - -,p}. Here, the summation is taken over all
latter, acoustical analogs considering continuum-mechanicglk,le A, where A}, are non-negative constants

and guantum-mechanical approaches are inclétied. satisfyind'ls'l“A{jl:ALﬂ=AH(, the indistinguishability of the
As a continuous attemptadopting the quantum analog of particles in collisionAl}(u; +u; — u—u) =0, the conserva-
the di te kineti I thehlihg-Uhl k colli- 4 ; i ij _ akl :
e discrete kinetic model and thenlihg-Uhlenbeck colli- {5 of momentum in the collision; antl,=AX', the micror-

. : : L k=
sion term, which could describe the collision of a gas ofge(sihility condition. The conditions defined for the discrete
dilute hard-sphere Fermi or Bose particle by tuning a paramyg|qcities above require that there are elastic, binary colli-

eter y [via aPauli blocking factorof the form 1+ yf with f g5 guch that the momentum and energy are preserved,
being a normalizedcontinuous distribution function giving e., U+u=uc+u and |u|?+]|u|2=|ud?+|u? are pos-
S i i i

the number of particles per cell, say, a unit cell, in phasep o for 1<i i kl=<p.
spacg, in this paper we plan to investigate the possible " 14 ¢oiision operator is now simply obtained by joining

static? and/or dynamic localization which relates to the dis—A!q to the corresponding transition probability densitié%
persion relations of plane waves propagating in electron,"

Kl Kkl
gases by introducing a disorder or free orientatiénahich throughAjj'=Sju; —ujajj, where
is related to the relative direction of scattering of particles

with respect to the normal of the propagating plane-wave W P W o
front'*~19 into the quantum discrete kinetic mod@lhich a;;=0, kél aj;=1, Vi,j=1,--,p;
has been verified in Refs. 7 and 13+1%his presentation ’

will give us more clues for the studies of the quantum wave

dynamics in 2D electron gases and the possible appearan‘c’:v'th S being the effective collisional cross sectibtt 1" If

of a localization which is directly linked to the particles ,?hﬁ n(pk|=_21r/1) ]?umhni arzlf':ls.:#meq toklbiaoequally probable,
(numbey density and their energy states. enr?ii —/nloraffkan ,ho erlvwseaij =0. )
In the following presentation, based on the acoustical ana- ' "€ termS|u; —uj[dt is the volume spanned by the par-

logs (considering the continuum-mechanical and quantum:[icle with u; in the relative motion with respect to the mol-

mechanical approaches in betw&er), we shall demon- €cule with u; in the time intervaldt. Therefore, Sy

strate the possible phase diagram related to the route to theUilNj iS the number of particles involved by the collision

quantum critical point proposed by Abrahaii¥ote that our I umt_ .t|me. Cp!hsmns §at|sfy|ng the conservation and re-

previous results®=27in which ¢ is a disorder parameter, in- versibility conditions which have been stated above are de-
; ' : e e 2,15-17

dicate that forg=0 (larger disorder and 6= /4 (smaller ~ fined asadmissible collision$

disordey, there exist gaps of spectra and possifohgnami- The Simpiifjfﬂﬂi%fete kinetic model, i.e., the<2 ve-
cal) localization which are similar to those reported in Refs.!0City model; is to consider a one-component discrete

9-12. Our(quantum kineti¢ approach, as it includes the velocity gas such thqt the particles can gttain\@logitie_s in
nonuniform variation of those transport coefficients, such afh® 2D plane. In particular, the velocity discretization is char-
viscosity and thermal conductivity, which are directly linked 2Ct€rized by(i) |ui|=c, (i) ui+u;.,=0, and(iii) u;- Ui,

_ 2 s . . -
to the mean free path of the gasill thus give researchers = ¢ C0S@@/n), '11- - 31 where the index is to be in-
more insights for similar problems, especially for the current€nded modulo &, i.e.,i=i+2n. Such a model is called the
interest in interacting 2D electron gases. planar h velocity model. If only elastic collisions are taken

into account, then the nontrivial admissible oresere this
term is used to denote those collisions which produce non-
Il. FORMULATIONS vanishing terms in the collision operatare

We assume that the gas is composed of identical hard-
sphere particles of the same méas$' The velocities of  head-on encounters: (U, Ui+ n) < (Uj,Uj 4 ),
these particles are restricted to, €.g4;U,,- - -,Uy; Pis a
finite positive integer. The discrete number densities of par-
ticles are denoted biy;(x,t) associated with the velocities
at pointx and timet. If only nonlinear binary collisions and
the evolution ofN; are considered, we have

Vj#ii=1,...,2.

Meanwhile, the momentum and energy are presumably pre-
served:

&—M+u--VN-=F-=§ > (AUNEN;— AKINGN;) -~ 2 2= |y |2 2
ot [ ITTIT e gy VT T AR Ut Ui n=Uj+Ujen, [l [uien|“=[uj|*+ |uj %
) Moreover, all the velocity directions after collisions are as-
I1=1--,p, ©) sumed to be equally probable. For example, there are admis-
sible collisions (11,u3)«< (U,,v,) asn=2."*"1"We note
that the summation oN;(Z;N;), the total discrete humber
density here, is related to the macroscopic dengity
L (=m,Z;N;), wherem, is the mass of the particfé:*°
Fi(N)== 2 (ALJlNkNI_Az(jINiNj)v (4) 'I_'o_gether Witah the introduction of the Hing-Uhlenbeck
2% collision ternt’

where ,1) are admissible sets of collisiohd®"We may
also define the right-hand side of the above equation as
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i d d
Fi= 2 AUINN(L+ YN L+ 9Ny 21 P Vi 2 Pt 26SNy (Pt Py ) (1+ YNo)
~NiNj(L+ N (L+ 9Ny ], (5) 2SN, 2
- == 2 P14 o). ®

into Eq.(3) or (4), for y<0 (normally,y=—1), we can then

obtain a quantum discrete kinetic equation for a gas of Fermin these equations after replacing the indexwith m+n,
particles; while fory>0 (normally, y=1) we obtain one for and using the identitieB,, ,,=P,, we then have

a gas of Bose particles, and fer=0 we recover Eq(3).

Considering binary collisions only, from E¢(p) the model of i _ i

the quantum discrete Boltzmann equation for Fermi or Bose gt ™*" Vm' 9% Pmsnt2CSN(Pm+ Prmn) (14 ¥No)
gases proposed in Refs. 7 and 13 is then a systemnof 2 on

(=p) semilinear partial differential equations of the hyper- _2cSN

bolic type: T n g‘l Pi{1+¥No). ©)

Combining the above two equations, first adding then sub-

iNi"'Vi'iNi tracting, with A,=(Py+Pn:n)/2 and B,=(P,
at IX —Pm+n)/2, we can have
2n
:C_Sz NN (14 YN ) (1+ YN, ) d (m=1)m|d
n /&y j+1 j+n+1 EAm—cco 0+—0—XBm+4cSI\bAm(1+yNO)
—2CSNN 4 y(1+ YN+ 1) (1+ YNisps1), 4cSN, 2N
= 2 AdL+No), (10

i=1,...,4, (6)
d (m=1)m| o

where N;=N;, ,, are unknown functions, and =c(cog6 5Bm+0005{ 0+ — |5 Am=0 m=1,....A.
+(i—21)w/n],siM6+(i—1)w/n]); c is a reference velocity (12)
modulus and the same order of magnitude as thas (the
sound speed in the absence of scattesed in Ref. 99 is  Note thatdP,,/dy=0, asP,, only varies along the wave
the orientation starting from the positive axis to theu;  Propagating direction: the-axis direction. FromPy,. o,
direction and could be thought of as a parameter for intro=Pm, and with Ay=(Py+Py.n)/2 and By=(Ppn
ducing adisorder!121°-"and Sis an effective collision —Pm+n)/2, we can havé\, ,=An, Byin=—Bpy.
cross section for the collision system. After some similar manipulations, as mentioned in Refs. 7

Since passage of the sound wave will cause a small d&and 16, withB=yNy<0,”** which gives or defines the
parture from an equilibrium state and result in energy losgproportional contribution from the Fermi gase¥ y<O0,
owing to internal friction and heat conduction, we linearize€.g.,y=—1), we then have
the above equations around a uniform equilibrium sttte
particles number density iblg) by setting N;(t,x)=Ng[1 92 )
+P;(t,x)], whereP; is a small perturbation. The equilib- |72 1C cos
rium state here is presumed to be the same as in Refs. 7, 13,

9? J

(M=) & hesn(1+B) 2D
~ 5 +4cSN(1+B) 7| Dy

0+

and 16. First, we havésay,i =m) 4cSNy(1+B) & 4
B n g‘l ot Dk (12
J J
2t Pmt Ve = Pt 2SN (Pt Prnsn) whereD = (Pt Pmsn)/2, m=1,---,n, sinceD;=D,, for
1=m (mod 2n).
+ YNo(Pm+PmintPs)+-- -] We are ready to look for the solutions in the form of plane
n wave D ,=aexpi(kx—wt), (m=1, ... n), with o= w(k).
_CSN D This is related to the dispersion relations of 1@rced
T n & [(PktPientYNo plane wave propagation in Fermi gases. So we have
X (P + + +---1; -
(Px+Print Psum I (7) 1+ih(l+B)—2)\2C052 0+M )am
here,m=1,...,4, Py, =0 for n=2 because of the re- .
striction for the total perturbations in an equilibrium state ih(1+B)
and the remaining terms in both sides are higher order terms ST k§=:1 &=0, m=1.--,n, (13
related to ¢/No)?. The linearized version of the above equa-
tion is where
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FIG. 2. Variations of the attenuatiox; with respect toh for
different B's: =0 in different Pauli blocking paramete(8=0,
—0.2, and—0.5, 1. There is no attenuation f@=—1 and allh.

dynamical limit (h— ) rather slowly. Meanwhile, the maxi-
mum absorption(or attenuatioh for all the rarefaction pa-
rametersh keeps the same for dfl as observed in the lower

hp=h(1+B) or h'is the rarefaction parameter of the gas, part of Fig. 1. There are only shifts of the maximum absorp-
whereas, forB=0, h is the rarefaction parameter of the tion state(defined ash,,,) with respect to the rarefaction
Boltzmann-particle ga&K,, is the Knudsen number which is parameteh when|B| increases.

defined as the ratio of the mean free path of gases to the To examine the detailed disorder effect, which is to intro-

wave length of the planéound wave.

Let a,=C/(1+ih,—2\%cog[ 6+ (m—1)m/n]), whereC is

duce a free orientatiod into our approact;*>®we show

some of the results for which=0 and §=0.78 in Figs. 2

an arbitrary, unknown constant, since we here only have inand 3. We also tun® to check the Pauli blocking effects
terest in the eigenvalues of above relation. The Eigenvaméspecia”y wherB<0 in these presentations. Once the free

problems for different X n velocity models reduces to

1
1—

ihp «
o

1+ih,—2\?cog| 0+

IIl. RESULTS AND DISCUSSIONS

We can obtain the complex rootd £\, +i\;) from the
polynomial equation above by using the standard mathemati
cal (symbolig or numerical software, e.gMATHEMATICA Or
MATLAB.” The roots are the values for the nondimensional-
ized dispersion{positive real part, and a relative measure of
the sound or phase spgezhd the attenuation or absorption
(positive imaginary pajtf respectivelyB could be related to
the occupation number of different-statistic particles of gases
as we noticed the similarity in between from Ref. 7. We plot
the main results in Figs. 1, 2, 3, 4, 5, and 6, respectively. We

(m—1)m]

0.

orientation or disorde# is introduced, we observe that as the
disorder @) increases, the dispersion valugh,
=k,c/(\2w)] will reach the hydrodynamical limitH{— )

x10°

sorption
n

n or Ab:

uatiol

Atten

TN

TWwWw

~ooo0

6=0.78

shall review the general characteristic dispersion relations foi 0 0.01 0.02 0.03 0.04 0.05 0.06

dilute atomic gases as reported in Ref. 7 before we interpre
our present results for electron gases and/or non-Fermi gases.
Both families of curves in Fig. Ifor h=0) follow the

he 1/K
n

FIG. 3. Variations of the attenuatiox; with respect toh for

conventional dispersion relations of plane waves propagatingifferent B's: §=0.78 in different Pauli blocking parameter8 (
in dilute Bose and Boltzmann gaseSOur results show that =0, —0.2, and—0.5, 1. There is no attenuation f@=—1 and

once|B| increases, the dispersioi,{ will reach the hydro-

all h.
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FIG. 4. Variations of the attenuation;, with respect toh for FIG. 6. Possible phase diagram for non-Fermi gases with re-

different disorders:#=0.77, 0.78, and 0.785 in the same Pauli gpect to the disorder and the Knudsen numiser( the mean free
blocking parameter ¢ or B). h is within the rather low-density path.

regime.

later!*® Meanwhile, the maximum absorptidor attenua- ~€ases#=0.77,0.78, and 0.785, in Fig. 4. We noticed that, as
tion A\;=kic/(y2w)] for all the rarefaction parameteds reported beforé,' at ¢=m/4, there is no attenuation or
keeps decreasing #sincreases, as observed in Figs. 2 and 3absorption, i.e.\,=1.0 and\;=0.0. This means the disor-
or Refs. 15 and 16. There are also shifts of the maximunfler or its effect is nearly zero at thig value. This result
absorption statef(,,,,) with respect to the rarefaction param- also _prowd_es a good verlflcat|o_n for the experlmentaI_S|de
eterh when ¢ increasegup to /4~ 0.7853). mentioned |n.Refs. ;0—1(acoust|cgl analqg heras there is

If there is no rarefaction effech(=0), we have only real N° Io_ss for this particular cas@_(oelng a disorder parameter
roots for all the model¥’ Onceh+0, the imaginary part Put fixed asm/4). We also notice that arourft~ Ny, as
appears and the spectra diagram for each model looks eﬁpow_n in Fig. 1 or 2, there_ exists a trend for the absence of
tirely different. To illustrate the specific behavior of the at- diffusion (\; starts decreasing rapidly
tenuation or absorption for smaller disordeear6= /4) in Note that, for the largefabsolute value ok) branch(the

the near vacuum regimeh$1), we plot three different anomalous one which is similar to those propagations of dif-
’ fusion modes or entropy waves reported in Refs. 15 and 16

20 . . . . . there is a discontinuity nea#=0. Once@ increases from
zero, there exists a gap. Spectbmth A, and\;) will span
from the far infinity and then approach to the asymptotic
casef=0.7853(near/4) which accounts for the propaga-
tion of the diffusion mode or entropy wave. We noticed that
from the definition oty or K,,, hy=fconision/ fsound: Where
fsoung (cf. that used in Ref. Pis related to the classical
frequencyw as discussed in tHatroduction[cf. Egs.(1) and
(2)], so that it is relevant to the ener@yas defined for the
localization; thus we can estimate the localization length
from those figures which vary with, . Based on these con-
siderations and Eq$1) and(2), the relation for the possible
localization length versus the frequendy<1/w) extracted
from our resultd especially in Fig. 2; the attenuation or ab-
sorption defined here is related to tieverse measure of
6 ‘ ‘ ' ' s s ' (say, one wavelength; then corresponds to the minimum
' ' ‘ localization length in Fig. &) of Ref. 9] is qualitatively
similar to that reported in Ref. 9. This observation could be
FIG. 5. Disorder §) effects on the localization length (d). figured put as we schematically plot the.inverse of the wave
The energ)E (relevant to the illustration of localized states in Ref. @bsorption I (per unit wave lengthwith respect toh
9) corresponds tdiw (Refs. 9 and Iland h=4cSN,/w. Thus, =4CSNy/w. This also shows the exponential decay of the
Ex1/h oncecSN, is fixed. The minimum occurs arourid~ 1 localization length near the localized regidre., the absence
[whereas, as shown in Ref. 9, the minimum is néafc~0.9; c¢f.  of the further diffusion or the maximum absorptigwith
Fig. 5a) in Ref. 9 h,=h(1+B). respect tch or the inverse of the frequeney, a correspond-

Localization length : 1/A.

Rarefaction parameter hb
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ing measure to enerdy in the quantum-mechanical sense assince the long-range dominated casesg large correspond
already explained in Sec)]l Thus we can also obtain similar to our cases ofi being small oK, being large(collisionless

results which resemble that reported in Figa)5of Ref. 9. regime or rather-low density regime where long range inter-
People might argue that a nonzetevould only make the  actions can still exist).

system anisotropic, but not disordered. We should remind To conclude in brief, our illustrations here, i.e., the pos-

them that the derivation of the present kinetic approach wagiple localized behavior of the spectra near the range of dis-
based on the binary collision of a system of dilute particlesgrgersg=0 andg= /4 for different Pauli blocking param-
Once the concepts of the mean free path of the gases and thyrs seem to be the same as the acoustical aneloRef.
center of mass coordinate system were introduesgecially  11) of the localization found elsewhefg!? even though the
ibility which neglects the history when particles traverse inpath of the electron gases subjected to continuous collisions.
phase spacé“~*"were presumexdthe randomness and dis- Wwe found, for sufficiently strong interactiorihich would
order will occur although they are explained implicitly. occur at low density;2 say,h<1 orK,>1 in our approach

We demonstrate the disorder effects to the localizatiory non-Fermi-liquid state of interacting electrongX —1 in
length in differenth or h,=h(1+B) regime in Fig. 5. The  our formulation is stable in the presence of disorder. There
relevantx-axis parameter shown in Ref. 9ksa/c (ais the | pe no dissipations or attenuation&f absence of
hard-sphere diameter, amdis the wave speged The mini- localizatior?"121215- onceB=—1 or #= /4 which corre-
mum of the localization length occurs arouhd 1 (cf. that  gponds to any or K,. We shall investigate more compli-
of Ea/c~0.9 in Ref. 9. This good agreement confirms our cated problems in the futufé-22
present approach. We then illustrate in Fig. 6 the possible
phase diagram for non-Fermi gases considering different dis-
orders and Knudsen numbels$ {= the mean free pajhThis
result resembles that proposed by Abrahdputssible phase
diagram for “new insulator/non-Fermi liquid metat” cf. The author was partially supported by the National Natu-
Fig. 3 therein. Note thatK,, plays the role of ¢ (> the ratio  ral Science Foundation of Chin&SFQ under Grant No.
of Coulomb energy to Fermi energy as defined in Ref. 110274061.
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