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Possible phase diagram for localization tuned by the disorder and Pauli-blocking effects
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Department of Physics, Northwest Normal University, Gansu, Lanzhou 730070, People’s Republic of China
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Based on the acoustic analog, we investigate both of the effects, disorder and~Pauli-blocking! interaction, on
the possible localization in electron gases by using the quantum discrete kinetic model. We present effects of
the disorder~or free orientationu which is related to the relative direction of scattering of particles with respect
to the normal of the propagating plane-wave front! which is introduced into the U¨ hling-Uhlenbeck equations
together with those of the Pauli-blocking. We obtain a possible phase diagram~related to the strength of
disorders and the mean free path! which qualitatively resembles that proposed by Abrahams@Ann. Phys.
~Leipzig! 8, 539 ~1999!#.
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I. INTRODUCTION

Recently some developments in the localization proble1

have become a major theme in the condensed matte
search. One example is the strongly interacting elect
~non-Fermi! liquid with different strengths of disorder.2 In-
teresting issues are the quantum phase transition and q
tum critical point, etc., as reviewed in Ref. 2. Both effects
disorder and interaction are closely relevant to the weak
strong localization.3,4 They are then related to the meta
insulator transition in two dimensions. Although most
theories proposed before are based on the Fermi liquid
havior, new insights could be obtained considering the p
sible analogy with superconducting transition which mig
be related to the bosonic system.5

Note that studies of classical wave mechanical syste
have some important advantages over quantum mecha
wave systems even there are similarities in between. I
mesoscopic system, where the sample size is smaller tha
mean free path for an elastic scattering, it is satisfactory f
one-electron model to solve the time-independent Sch¨-
dinger equation

2
\2

2m
¹2c1V8~rW !c5Ec,

or ~after dividing by2\2/2m)

¹2c1@q22V~rW !#c50, ~1!

whereq is an ~energy! eigenvalue parameter, which for th
quantum-mechanic system isA2mE/\2.

Meanwhile, the equation for classical~scalar! waves is

¹2c2
1

c2

]2c

]t2
50

or ~after applying a Fourier transform in time and contrivin
a system wherec ~the wave speed! varies with positionrW)

¹2c1@q22V~rW !#c50; ~2!
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here the eigenvalue parameterq is v/c0, wherev is a natu-
ral ~or an eigen! frequency andc0 is a reference wave speed
Comparing the time dependencies one gets the quantum
classical relationE5\v.

It seems that the control and observability of the class
experimental analogs may be matched by analytical work
numerical simulations. However, classical systems could
used to study time-dependent potential fields and nonlin
effects, which are very difficult and time consuming to tre
numerically or analytically. Motivated by the analogy b
tween electrons in periodic or disordered metals and wa
in classical acoustical systems, an investigation for observ
classical~Anderson! localization3 using the quantum discret
kinetic model was performed, and will be presented here

Plane ~sound! wave propagation in dilute monatomi
~hard-sphere! gases has been successfully investigated
continuous and/or discrete kinetic models since the 19
~Refs. 6 and 7! ~please see the detailed cited referenc
therein!. Relevant initial and/or boundary value problems
i.e., the former being central to the analytical or numeri
approach because of the propagation of the forced so
from a certain origin, and the latter being almost related
the experimental environment due to the sensors and tr
ducers located somewhere downstream—must be well
fined and then solved to obtain the complex spectra or
persion relations~real part: sound dispersion; imaginary pa
sound attenuation or absorption!. In comparison with experi-
ments, results of the continuous velocity approach gav
better fit than the discrete velocity approach. The integ
form of the former,6 however, may smooth out some peculi
phenomena or only give abulk physical behavior consider
ing the continuous distribution of the particle velocities. T
discrete form of the latter, i.e., particle velocities~and the
associated number density! being a finite set while keeping
the space and time continuous, provides us possibilitie
adjust the discrete velocity, e.g., the free orientation of it
the two-dimensional~2D! plane~which could be thought as a
kind of disorder for coplanar velocity models! and solve rel-
evant problems in order to gain more physical insights
specific interests. For instance, a molecular beam interac
with surfaces~solids or liquids! will normally depend on
some specific incident or reflecting angles. Wave propaga
in random or disordered media might be another case.8–10
©2003 The American Physical Society08-1
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Both theories and measurements are in rapid progress, fo
latter, acoustical analogs considering continuum-mechan
and quantum-mechanical approaches are included.11

As a continuous attempt,7 adopting the quantum analog o
the discrete kinetic model and the U¨ hling-Uhlenbeck colli-
sion term, which could describe the collision of a gas
dilute hard-sphere Fermi or Bose particle by tuning a para
eterg @via a Pauli blocking factorof the form 11g f with f
being a normalized~continuous! distribution function giving
the number of particles per cell, say, a unit cell, in pha
space#, in this paper we plan to investigate the possib
static12 and/or dynamic localization which relates to the d
persion relations of plane waves propagating in elect
gases by introducing a disorder or free orientation (u which
is related to the relative direction of scattering of partic
with respect to the normal of the propagating plane-wa
front13–16! into the quantum discrete kinetic model~which
has been verified in Refs. 7 and 13–15!. This presentation
will give us more clues for the studies of the quantum wa
dynamics in 2D electron gases and the possible appear
of a localization which is directly linked to the particle
~number! density and their energy states.

In the following presentation, based on the acoustical a
logs ~considering the continuum-mechanical and quantu
mechanical approaches in between11,15!, we shall demon-
strate the possible phase diagram related to the route to
quantum critical point proposed by Abrahams.1 Note that our
previous results,15–17 in which u is a disorder parameter, in
dicate that foru50 ~larger disorder! and u5p/4 ~smaller
disorder!, there exist gaps of spectra and possible~dynami-
cal! localization which are similar to those reported in Re
9–12. Our ~quantum kinetic! approach, as it includes th
nonuniform variation of those transport coefficients, such
viscosity and thermal conductivity, which are directly linke
to the mean free path of the gas,7 will thus give researchers
more insights for similar problems, especially for the curre
interest in interacting 2D electron gases.

II. FORMULATIONS

We assume that the gas is composed of identical h
sphere particles of the same mass.7,13,14 The velocities of
these particles are restricted to, e.g.,:u1 ,u2 ,•••,up ; p is a
finite positive integer. The discrete number densities of p
ticles are denoted byNi(x,t) associated with the velocitiesui
at pointx and timet. If only nonlinear binary collisions and
the evolution ofNi are considered, we have

]Ni

]t
1ui•¹Ni5Fi[(

j 51

p

(
(k,l )

~Akl
i j NkNl2Ai j

klNiNj !,

i 51,•••,p, ~3!

where (k,l ) are admissible sets of collisions.7,13–17We may
also define the right-hand side of the above equation as

Fi~N!5
1

2 (
j ,k,l

~Akl
i j NkNl2Ai j

klNiNj !, ~4!
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with i PL5$1,•••,p%. Here, the summation is taken over a
j ,k,l PL, where Akl

i j are non-negative constan
satisfying7,13,14Akl

j i 5Akl
i j 5Alk

i j , the indistinguishability of the
particles in collision;Akl

i j (ui1uj2uk2ul)50, the conserva-
tion of momentum in the collision; andAkl

i j 5Ai j
kl , the micror-

eversibility condition. The conditions defined for the discre
velocities above require that there are elastic, binary co
sions, such that the momentum and energy are preser
i.e., ui1uj5uk1ul and uui u21uuj u25uuku21uul u2 are pos-
sible for 1< i , j ,k,l<p.

The collision operator is now simply obtained by joinin
Ai j

kl to the corresponding transition probability densitiesai j
kl

throughAi j
kl5Suui2uj uai j

kl , where

ai j
kl>0, (

k,l 51

p

ai j
kl51, ; i , j 51,•••,p;

with S being the effective collisional cross section.7,13–17 If
all n(p52n) outputs are assumed to be equally probab
thenai j

kl51/n for all k and l; otherwiseai j
kl50.

The termSuui2uj udt is the volume spanned by the pa
ticle with ui in the relative motion with respect to the mo
ecule with uj in the time interval dt. Therefore, Suui
2uj uNj is the number ofj particles involved by the collision
in unit time. Collisions satisfying the conservation and r
versibility conditions which have been stated above are
fined asadmissible collisions.7,15–17

The simplified discrete kinetic model, i.e., the 23n ve-
locity model,7,14–17 is to consider a one-component discre
velocity gas such that the particles can attain 2n velocities in
the 2D plane. In particular, the velocity discretization is ch
acterized by~i! uui u5c, ~ii ! ui1ui 1n50, and~iii ! ui•ui 11
5c2cos(p/n), i 51, . . . ,2n, where the index is to be in
tended modulo 2n, i.e., i[ i 12n. Such a model is called the
planar 2n velocity model. If only elastic collisions are take
into account, then the nontrivial admissible ones~where this
term is used to denote those collisions which produce n
vanishing terms in the collision operator! are

head-on encounters: ~ui ,ui 1n!↔~uj ,uj 1n!,

; j 5” i ,i 51, . . . ,2n.

Meanwhile, the momentum and energy are presumably
served:

ui1ui 1n5uj1uj 1n , uui u21uui 1nu25uuj u21uuj 1nu2.

Moreover, all the velocity directions after collisions are a
sumed to be equally probable. For example, there are ad
sible collisions (u1 ,u3)↔(u2 ,vu) as n52.7,14–17 We note
that the summation ofNi(( iNi), the total discrete numbe
density here, is related to the macroscopic densityr
(5mp( iNi), wheremp is the mass of the particle.13–16

Together with the introduction of the U¨ hling-Uhlenbeck
collision term7,13
8-2
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Fi5(
j ,k,l

Akl
i j @NkNl~11gNi !~11gNj !

2NiNj~11gNk!~11gNl !#, ~5!

into Eq.~3! or ~4!, for g,0 ~normally,g521), we can then
obtain a quantum discrete kinetic equation for a gas of Fe
particles; while forg.0 ~normally,g51) we obtain one for
a gas of Bose particles, and forg50 we recover Eq.~3!.
Considering binary collisions only, from Eq.~5! the model of
the quantum discrete Boltzmann equation for Fermi or B
gases proposed in Refs. 7 and 13 is then a system on
(5p) semilinear partial differential equations of the hype
bolic type:

]

]t
Ni1vi•

]

]x
Ni

5
cS

n (
j 51

2n

NjNj 1n~11gNj 11!~11gNj 1n11!

22cSNiNi 1n~11gNi 11!~11gNi 1n11!,

i 51, . . . ,2n, ~6!

where Ni5Ni 12n are unknown functions, andvi5c„cos@u
1(i21)p/n#,sin@u1(i21)p/n#…; c is a reference velocity
modulus and the same order of magnitude as that (c is the
sound speed in the absence of scatters! used in Ref. 9,u is
the orientation starting from the positivex axis to theu1
direction and could be thought of as a parameter for in
ducing adisorder,10–12,15–17and S is an effective collision
cross section for the collision system.

Since passage of the sound wave will cause a small
parture from an equilibrium state and result in energy l
owing to internal friction and heat conduction, we lineari
the above equations around a uniform equilibrium state~the
particles number density isN0) by settingNi(t,x)5N0@1
1Pi(t,x)#, where Pi is a small perturbation. The equilib
rium state here is presumed to be the same as in Refs. 7
and 16. First, we have~say, i 5m)

]

]t
Pm1vm•

]

]x
Pm12cSN0@~Pm1Pm1n!

1gN0~Pm1Pm1n1P(!1•••#

5
cSN0

n (
k51

2n

@~Pk1Pk1n1gN0

3~Pk1Pk1n1Psum!1•••#; ~7!

here, m51, . . . ,2n, Psum50 for n52 because of the re
striction for the total perturbations in an equilibrium sta
and the remaining terms in both sides are higher order te
related to (gN0)2. The linearized version of the above equ
tion is
20530
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]t
Pm1vm•

]

]x
Pm12cSN0~Pm1Pm1n!~11gN0!

5
2cSN0

n (
k51

2n

Pk~11gN0!. ~8!

In these equations after replacing the indexm with m1n,
and using the identitiesPm12n5Pm , we then have

]

]t
Pm1n2vm•

]

]x
Pm1n12cSN0~Pm1Pm1n!~11gN0!

5
2cSN0

n (
k51

2n

Pk~11gN0!. ~9!

Combining the above two equations, first adding then s
tracting, with Am5(Pm1Pm1n)/2 and Bm5(Pm
2Pm1n)/2, we can have

]

]t
Am2c cosFu1

~m21!p

n G ]

]x
Bm14cSN0Am~11gN0!

5
4cSN0

n (
k51

2n

Ak~11gN0!, ~10!

]

]t
Bm1c cosFu1

~m21!p

n G ]

]x
Am50, m51, . . . ,2n.

~11!

Note that]Pm /]y50, as Pm only varies along the wave
propagating direction: thex-axis direction. FromPm12n
5Pm , and with Am5(Pm1Pm1n)/2 and Bm5(Pm
2Pm1n)/2, we can haveAm1n5Am , Bm1n52Bm .

After some similar manipulations, as mentioned in Refs
and 16, with B5gN0,0,7,13 which gives or defines the
~proportional! contribution from the Fermi gases~if g,0,
e.g.,g521), we then have

H ]2

]t2
1c2cos2Fu1

~m21!p

n G ]2

]x2
14cSN0~11B!

]

]tJ Dm

5
4cSN0~11B!

n (
k51

n
]

]t
Dk , ~12!

whereDm5(Pm1Pm1n)/2, m51,•••,n, sinceD15Dm for
15m ~mod 2n).

We are ready to look for the solutions in the form of pla
waveDm5amexpi(kx2vt), (m51, . . . ,n), with v5v(k).
This is related to the dispersion relations of 1D~forced!
plane wave propagation in Fermi gases. So we have

S 11 ih~11B!22l2cos2Fu1
~m21!p

n G Dam

2
ih~11B!

n (
k51

n

ak50, m51,•••,n, ~13!

where
8-3
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l5kc/~A2v!,h~11B!5hb54cSN0~11B!/v }1/Kn,

hb5h(11B) or h is the rarefaction parameter of the ga
whereas, forB50, h is the rarefaction parameter of th
Boltzmann-particle gas;7 Kn is the Knudsen number which i
defined as the ratio of the mean free path of gases to
wave length of the plane~sound! wave.

Let am5C/(11 ihb22l2cos2@u1(m21)p/n#), whereC is
an arbitrary, unknown constant, since we here only have
terest in the eigenvalues of above relation. The eigenva
problems for different 23n velocity models reduces to

12
ihb

n (
m51

n
1

11 ihb22l2cos2Fu1
~m21!p

n G 50.

~14!

III. RESULTS AND DISCUSSIONS

We can obtain the complex roots (l5l r1 il i) from the
polynomial equation above by using the standard mathem
cal ~symbolic! or numerical software, e.g.,MATHEMATICA or
MATLAB .7 The roots are the values for the nondimension
ized dispersion~positive real part, and a relative measure
the sound or phase speed! and the attenuation or absorptio
~positive imaginary part!, respectively.B could be related to
the occupation number of different-statistic particles of ga
as we noticed the similarity in between from Ref. 7. We p
the main results in Figs. 1, 2, 3, 4, 5, and 6, respectively.
shall review the general characteristic dispersion relations
dilute atomic gases as reported in Ref. 7 before we inter
our present results for electron gases and/or non-Fermi ga

Both families of curves in Fig. 1~for h>0) follow the
conventional dispersion relations of plane waves propaga
in dilute Bose and Boltzmann gases.6,7 Our results show tha
onceuBu increases, the dispersion (l r) will reach the hydro-

FIG. 1. Variations ofl r andl i with respect toh for differentB’s
~away fromB521) B5gN0 ,g corresponds to21; l r denotes the
dispersion andl i denotes the attenuation.h54cSN0 /v, S is the
effective collision cross-section.
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dynamical limit (h→`) rather slowly. Meanwhile, the maxi
mum absorption~or attenuation! for all the rarefaction pa-
rametersh keeps the same for allB as observed in the lowe
part of Fig. 1. There are only shifts of the maximum abso
tion state~defined ashmax) with respect to the rarefaction
parameterh when uBu increases.

To examine the detailed disorder effect, which is to intr
duce a free orientationu into our approach,7,15,16 we show
some of the results for whichu50 andu50.78 in Figs. 2
and 3. We also tuneB to check the Pauli blocking effect
especially whenB,0 in these presentations. Once the fr
orientation or disorderu is introduced, we observe that as th
disorder (u) increases, the dispersion value@l r

5krc/(A2v)# will reach the hydrodynamical limit (h→`)

FIG. 2. Variations of the attenuationl i with respect toh for
different B’s: u50 in different Pauli blocking parameters~B50,
20.2, and20.5, 1!. There is no attenuation forB521 and allh.

FIG. 3. Variations of the attenuationl i with respect toh for
different B’s: u50.78 in different Pauli blocking parameters (B
50, 20.2, and20.5, 1!. There is no attenuation forB521 and
all h.
8-4
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POSSIBLE PHASE DIAGRAM FOR LOCALIZATION . . . PHYSICAL REVIEW B68, 205308 ~2003!
later.15,16 Meanwhile, the maximum absorption@or attenua-
tion l i5kic/(A2v)] for all the rarefaction parametersh
keeps decreasing asu increases, as observed in Figs. 2 an
or Refs. 15 and 16. There are also shifts of the maxim
absorption state (hmax) with respect to the rarefaction param
eterh whenu increases~up to p/4;0.7853).

If there is no rarefaction effect (h50), we have only real
roots for all the models.17 Once h5” 0, the imaginary part
appears and the spectra diagram for each model looks
tirely different. To illustrate the specific behavior of the a
tenuation or absorption for smaller disorder~nearu5p/4) in
the near vacuum regime (h@1), we plot three different

FIG. 4. Variations of the attenuationl i with respect toh for
different disorders:u50.77, 0.78, and 0.785 in the same Pa
blocking parameter (g or B). h is within the rather low-density
regime.

FIG. 5. Disorder (u) effects on the localization length (1/l i).
The energyE ~relevant to the illustration of localized states in Re
9! corresponds to\v ~Refs. 9 and 11! and h54cSN0 /v. Thus,
E}1/h once cSN0 is fixed. The minimum occurs aroundh;1
@whereas, as shown in Ref. 9, the minimum is nearEa/c;0.9; cf.
Fig. 5~a! in Ref. 9# hb5h(11B).
20530
3

n-

cases,u50.77,0.78, and 0.785, in Fig. 4. We noticed that,
reported before,15,16 at u5p/4, there is no attenuation o
absorption, i.e.,l r51.0 andl i50.0. This means the disor
der or its effect is nearly zero at this (u) value. This result
also provides a good verification for the experimental s
mentioned in Refs. 10–12~acoustical analog here! as there is
no loss for this particular case (u being a disorder paramete
but fixed asp/4). We also notice that aroundh;hmax, as
shown in Fig. 1 or 2, there exists a trend for the absence
diffusion (l i starts decreasing rapidly!.

Note that, for the larger~absolute value ofl) branch~the
anomalous one which is similar to those propagations of
fusion modes or entropy waves reported in Refs. 15 and!,
there is a discontinuity nearu50. Onceu increases from
zero, there exists a gap. Spectra~both l r and l i) will span
from the far infinity and then approach to the asympto
caseu50.7853~nearp/4) which accounts for the propaga
tion of the diffusion mode or entropy wave. We noticed th
from the definition ofhb or Kn , hb5 f coll ision / f sound, where
f sound ~cf. that used in Ref. 9! is related to the classica
frequencyv as discussed in theIntroduction@cf. Eqs.~1! and
~2!#, so that it is relevant to the energyE as defined for the
localization; thus we can estimate the localization len
from those figures which vary withhb . Based on these con
siderations and Eqs.~1! and~2!, the relation for the possible
localization length versus the frequency (h}1/v) extracted
from our results@especially in Fig. 2; the attenuation or ab
sorption defined here is related to theinversemeasure of
~say, one wave! length; then corresponds to the minimu
localization length in Fig. 5~a! of Ref. 9# is qualitatively
similar to that reported in Ref. 9. This observation could
figured out as we schematically plot the inverse of the wa
absorption 1/l i ~per unit wave length! with respect toh
54cSN0 /v. This also shows the exponential decay of t
localization length near the localized region@i.e., the absence
of the further diffusion or the maximum absorption~with
respect toh or the inverse of the frequencyv, a correspond-

FIG. 6. Possible phase diagram for non-Fermi gases with
spect to the disorder and the Knudsen number (Kn} the mean free
path!.
8-5
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A. KWANG-HUA CHU PHYSICAL REVIEW B 68, 205308 ~2003!
ing measure to energyE in the quantum-mechanical sense
already explained in Sec. I!#. Thus we can also obtain simila
results which resemble that reported in Fig. 5~a! of Ref. 9.

People might argue that a nonzerou would only make the
system anisotropic, but not disordered. We should rem
them that the derivation of the present kinetic approach
based on the binary collision of a system of dilute particl
Once the concepts of the mean free path of the gases an
center of mass coordinate system were introduced~especially
when the effective, admissible collision and the microreve
ibility which neglects the history when particles traverse
phase space7,14–17were presumed! the randomness and dis
order will occur although they are explained implicitly.

We demonstrate the disorder effects to the localizat
length in differenth or hb5h(11B) regime in Fig. 5. The
relevantx-axis parameter shown in Ref. 9 isEa/c (a is the
hard-sphere diameter, andc is the wave speed!. The mini-
mum of the localization length occurs aroundh;1 ~cf. that
of Ea/c;0.9 in Ref. 9!. This good agreement confirms ou
present approach. We then illustrate in Fig. 6 the poss
phase diagram for non-Fermi gases considering different
orders and Knudsen numbers (Kn} the mean free path!. This
result resembles that proposed by Abrahams~possible phase
diagram for ‘‘new insulator/non-Fermi liquid metal’’1; cf.
Fig. 3 therein!. Note that,Kn plays the role ofr s (} the ratio
of Coulomb energy to Fermi energy as defined in Ref.!

*Address after June 2004: P.O. Box 30-15, Shanghai 200030
China.
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