PHYSICAL REVIEW B 68, 205109 (2003

Theory of orbital state and spin interactions in ferromagnetic titanates

Giniyat Khaliullin
Max-Planck-Institut fu Festkaperforschung, Heisenbergstrasse 1, D-70569 Stuttgart, Germany

Satoshi Okamotb
The Institute of Physical and Chemical Research (RIKEN), Saitama 351-0198, Japan
(Received 13 July 2003; published 24 November 2003

A spin-orbital superexchange Hamiltonian in a Mott insulator wigh orbital degeneracy is investigated.
More specifically, we focus on a spin ferromagnetic state of the model and study a collective behavior of
orbital angular momentum. Orbital order in the model occurs in a nontrivial way—it is stabilized exclusively
by quantum effects through the order-from-disorder mechanism. Several energetically equivalent orbital order-
ings are identified. Some of them are specified by a quadrupole ordering and have no unquenched angular
momentum at low energy. Other states correspond to a noncollinear ordering of the orbital angular momentum
and show the magnetic Bragg peaks at specific positions. Order parameters are unusually small because of
strong quantum fluctuations. Orbital contribution to the resonant x-ray scattering is discussed. The dynamical
magnetic structure factor in different ordered states is calculated. Predictions made should help to observe
elementary excitations of orbitals and also to identify the type of the orbital order in ferromagnetic titanates.
Including further a relativistic spin-orbital coupling, we derive an effective low-energy spin Hamiltonian and
calculate a spin-wave spectrum, which is in good agreement with recent experimental observations;in YTIO
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I. INTRODUCTION and(ii) a special rotational symmetry bf; orbitals. Another
crucial point is that(iii) the JT coupling is relatively weak
Many transition-metal oxides fall into the category of for t,y systems. Indeed, JT-like elongation of octahedra on
Mott insulators’ in which the large degeneracy of atomic titanates and vanadates is much smaller compared with typi-
states remain unquenched down to low energies. Of particieal JT distortions in manganites withy orbitals. One may
lar importance here is the role being played by orbital degentherefore think that,, orbital states are much less affected
eracy inherent to perovskite lattices. An additional degenby electron-lattice coupling, and an intrinsic dynamics of
eracy of low-energy states and the extreme sensitivity of theoupled spin-orbital system governed by electronic superex-
chemical bonds to the spatial orientation of orbitals lead tachange interaction becomes the decisive factor in a first
frustrating interactions and a variety of competing phaseplace. Effects of lattice distortiongwhich are always
that are tunable by moderate external fi€lds. present can then be accounted for in a next step. This point
As “orbital physics” has started to become an essentiahas actually been emphasized long ago by Kugel and
ingredient of the physics of transition-metal oxides, moreKhomskif indicating also very peculiar specific features of
efforts are necessary to develop quantum many-body theoty spin-orbital models.
of coupled spin-orbital systems in order to understand spe- The aim of this paper is twofold. First, we study the or-
cific features of the orderings and fluctuations in these modbital state and orbital quantum dynamics in the ferromag-
els. Earlier work has emphasized a “classical part” of thenetic state of superexchange model wit orbital degen-
problem, focusing mainly on the strong interplay betweeneracy in a cubic lattice. Second, we discuss the results in
classical spin and orbital configurations. It is implicitly as- context of the magnetic properties of YTiQa rare example
sumed that at low temperature orbitals are frozen in a certaiof a ferromagnetic Mott insulatdf’ Recent spin-wave data
static pattern that optimizes both superexchaf@E) and show that the ferromagnetitF) state of this material is
orbital-lattice (JT) couplings. Such a classical approach hashighly isotropic having the same exchange couplings in all
been used with a great success as a theoretical guide in stuelibic directions® This is in sharp contrast with expectations
ies of magnetism of transition-metal oxides. from the conventional orbital ordering picture resulting com-
Recent experimental developments indicate, however, thmonly in a strong spatial anisotropy of the spin-exchange
limitations of this standard picture. It has been argued thabonds'!? This observation already indicates a rather un-
quantum fluctuations of orbitals might sometimes be of cru-usual orbital state in YTiQ We would like also to under-
cial importance, hence quantum version of the orbital physstand a mechanism which stabilizes such a isotropic F state
ics is needed. New concepts, such as three-dimensional drr YTiO3, having in mind that its sister compound LaEiO
bital liquid in LaTiO; (Refs. 3 and #and one-dimensional shows a completely different, antiferromagneiif) state.
orbital chains showing Heisenberg-like orbital dynamics inCuriously enough, spin-exchange couplings in LaTibe
cubic vanadategRef. 5, have been proposed. It is not acci- also of cubic symmetry and spin gap is also smaid these
dental that these ideas emerge from a study of titanates amghservations were understood in terms of fluctuating
vanadates having}, andt3, electronic configurations, re- orbitals**3
spectively. This is because (@ large, threefold degeneracy, ~ We argue that AF and F statestif, SE model are actu-
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ally very close in energy and strongly compete. This is be- KO = 3ed L (r—r VAP +L(r—r)BY
cause in both states there are large-scale orbital fluctuations 4 sd2(M=r)ATH35(r2=r3)B;
gaining almost the same amount of the superexchange en- —%(f1+rz)(ni+nj)(”], 3

ergy. Yet the AF state is slightly lower because of an addi- ) -
tional, composite spin-orbital fluctuation. However, an exter-Veré Jsg=4t/U. The coefficientsr,=1/(1-37), 2
nal parameter, namely, a larger distortion of Ti-O-Ti bonds™= /(1 7), andr3=_1/(%+277).or|g|n.ate from the Hund's
due to a small size of Y ion in the case of YF@duces an  SPlitting of the excited;; multiplet via 7=Jy/U. Refer-
additional ferromagnetic coupling in all three directions, andence 15 givesd,;~0.64 eV and the multiplet averaged Cou-
stabilizes the spin F state. This distortion induces also a galgmb interaction €U—%Jy) ~4 eV, from which repre-
for orbital excitations. The orbital order pattern is very spe-Sentative values/~5.4 eV and»~0.12 follow.
cific, and it supports exactly the same ferrocouplings in all  The operatoraA(”’, B{?, andn{” can conveniently be
three directions. We derive an effective spin Hamiltonianrepresented in terms of constrained partidiesbitons a;,
which includes effects of the relativistic spin-orbital coupling b;, ¢; with nj;+n;,+n;c=1 corresponding td, levels of
as well, and show that this Hamiltonian leads to spin-waveyz, Xz, Xy symmetry, respectivelyThis notation is moti-
dispersion and spin gap consistent with experimental obsewrated by the fact that eadh, orbital is orthogonal to one of
vations. Some of these results were presented in Ref. 14. the cubic axes, b, c.) Namely,

The following part of this paper is structured as follows:

Section I presents superexchange HamiltoniamjjpMott AP =niana +nppnp+albibla;+blaalb;, ()
insulator; Sec. Il presents orbital ordering and fluctuations © bt bt

in the F state; Sec. IV presents stabilization of the F state by Bij” =nNianjat Nipnjp +a; bjajb; + by a;bjay, ®)
Ti-O-Ti bond distortion; Sec. V presents orbital gap induced

by Ti-O-Ti bond distortion; effective spin Hamiltonian and n{9=nia+niy (6)

magnons are given in S?C' VI; Sec. .V“ ||sts.pred|ct|ons forfor the pair along the axis. Similar expressions are obtained
resonant x-ray scattering; Sec. VIl gives orbital angular MO% 0! the exchanae bonds alond the a db. by reolacin
mentum contribution to the neutron scattering cross SeCtionérbitons a.b) ?n Egs. ( 4)_(6)9 by (bEC'E)m ané (():/ a)ppairsg
a_nd Sec. IX CO”“%"”S summary and dlscqsspn. The Appenr'espectivelyl.6 Another useful representation of orbital ex-
dixes A—C contain some lengthy equations; Appendix D

shows magnon softening by orbital fluctuations; Appendix Echange Qper.ators IS via the angul_ar momentum operators of
I . - : . t,4 level,” using the following relations:
shows spin interactions in a previously reported orbital state<9

for YTiOs. l,=i(c'b—b'c),l,=i(a’c—c'a),l,=i(b’a—a'b).

)

IIl. HAMILTONIAN In terms of these angular momentum operatg), B,

A. Superexchange interaction int,, orbital system and ni(w are represented as
We start with a discussion of the model Hamiltonian. In AP =[(1-12)i(1=12);+ (Ld i1+ [x=y], ()

Mott insulators, the competition between kinetic and poten-

tial energies |s_resolved in fav_or of strong correlat_lon_s thgt Bi(jc):[(l—|§)i(1—|)2<)j+(|X|y)i(|x|y)j]+[XHy], (9)

lead to a localized electron picture. Charge localization is

however not perfect: electrons still make virtual excursions n©=12 (10)

to neighboring sites in order to retain their kinetic energy at

least partially. In terminology of Mott-Hubbard insulatdrs, Expressions of these operators toandb bonds are given

the zero-point charge motion is described as a high-energy replacing two component of the angular momentum

virtual transition across the Mott gap. Kinetic energy associ{!x,ly) in Egs. (8)—(10) with (Iy,I) and (,,l,), respec-

ated with these transitions leads to superexchange interatively. Angular and quadrupole momentum representation of

tions, which in orbitally degenerate systems strongly dethet,, superexchange has recently been used also in Ref. 17.

pends on the orbital structure. In general, it can be written a8 addition to Eqs(4)—(5) and (8)—(9), it is also useful to

representAi(j’/) and Bi(j” in terms of auxiliary orbital pseu-

y . . . . dospins:
He=(S- S+ 13+ 3K, (1) 0
Ai(jy):2 ;i.;—j+ %) , (11)
where the orbital operator:t,(jy) and Rfj’/) depend on bond
directionsy(=a,b,c). In at,y system like the titanates they nna )
are given by the following expressiofh: B§j7):2( @7+ %) (12

Here7\” is a pseudospin one-half operating on the subspace
of orbital doublet ¢,B)” active on a giveny bond.

—%(rl—rz)(ni+nj)(7)], 2 Namely, pseudospir;i(c) operates on the subspace spanned

ji(jy):JSE[%(rl"‘ rz)Ai(jY)_ %(rZ_r3)Bi(jY)
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by (a,b) pair of orbitons, whiler® and 7 act on p,c)
and (c,a) doublets, respectively. A symbab denotes a
product 7 ® 7= ()2,

B. Ferromagnetic state

The ferromagnetic state of a Mott insulator is usually
thought due to a particular orbital ordering that optimizes the
intraatomic Hund’s exchange of electrons in doubly occupied
virtual states. This is not the whole story, however. Neglect

. ! b
for a moment the Hund’s coupling terms in E¢8) and (3) ®)
(considerp— 0 limit). The Hamiltonian obtains then the fol-  FIG. 1. Two kinds of four-sublattice structure for orbital order-
lowing structure: ings in spin ferromagnetit,; superexchange model.

.1 €] each other. This brings about a Potts-model-like frustration,

T Tj+Zninj) . (13 from which the high degeneracy of classical orbital configu-
rations follows.

Th " e A here (iii) Finally, we observe iA{? a pseudospin=1 inter-

e unessential energy shift; Jgg, is not shown he . . . e

Regarding a single bond, one notices that spin coupling maaCtlon of pure biquadratic forfsee Eq(8)]. Would | be a

be of either sign, depending on the intersite orbital c:orrela-XIaSSIcal vector, it could change its sign at any site indepen-

tions. Singlet correlations of orbital pseudospins tend to alig dently. Such a localso-calledZ,) symmetry and the associ-

spins ferromagnetically, hence cooperating with Hund's rulgﬂed degeneracy of the classical states tell us that angular

effects. In systems with large, classical spieg.vanadatés momentum ordering, if any, must be of pure quantum origin.
such a quantum orbital singlet controls the ground stéfe. The above pointsi)—iii) govern the underlying physics

. ) . of the orbital Hamiltonian. We need to find such classical
In quantum spin one-half case of titanates, howe(&sin

triplet) X (orbital single} and (spin singlerx (orbital triplet states that provide best zero point energy when we switch on

confiaurations are degenerate and comoete. In a lattice uath_e guantum fluctuations. In other words, certain classical
9 g pete. » dUa8lhital patterns will be selected and stabilized by quantum

tum resonances between these configurations are posibl ffects via the order-from-disorder mechani&ormally,

In general,l,y superexchange Hamiltoniad) represents a these orderings are expected to be along symmetric orienta-

highly frustrated many-body problem. We will return to the yi, 1o of e crystal depending on symmetry of the underlying
interplay between antiferromagnetic and ferromagnetic statenalt eractions

later on, while focusing now on the ferromagnetic state real- By inspection of the global structure Aij) [Eq.(8)], one

ized in YTiOs. 2
In the spin saturated state, Eq$)—(3) are simplified to observes_ t_hat the NONCross terms, such aslf),-(l—lx)j '
are definitely positive. However, the cross terms,
(Idy)i(yh)j and @y1,)i(14ly); [which change the “color” of
orbitals, see Eq4)], can be made negative aifl the bonds
simultaneouslyif (i) on every bond, two particular compo-

nents of [, and rj are antiparallel, andii) remaining third

WhereAi(]-” is given by either of Eqs(4), (8), and (11). We components are paralle_l. Fofoc_mds the rule reads ds;!;,
consider the orbital order and dynamics in this Hamiltonian2ndlix!jx are both negative, whilg, components are parallel.
The effects of the dynamical coupling between spin excita{In terms of orbitonsc; andc; are in antiphases; anda; as
tions and orbitals that is present in Hd) will also be dis-  Well; butb; andb; have the same phagéVe find only two

cussed in the context of magnon spectra. topologically different arrangementgalled (a) and (b)],
which can accommodate this curious mixture of “2/3 anti-

ferro” plus “1/3 ferro” correlations(see Figs. 1 and)2In the
[1l. ORBITAL ORDERING AND EXCITATIONS state(a), sublattice unit vectors are along the cubic diagonals
[111], while in state(b), sublattice unit vectors afd10] and
[o02].
Even though spin as well as composite spin/orbital dy- For technical reasons, it is useful to introduce new quan-
namics is “switched off” in Hamiltonian(14), it still con-  tization axes. This is done in two steps. First, we introduce

.. 1
Ho=Jse>, 2(3~S,—+—
M 4

1
Horp= —T1Jset EHJS% Ai(jw , (14

A. Discussion of possible orderings

tains nontrivial physics. local, sublattice specified quantization axsee Fig. 2
It is useful to look at the structure ¢f,,, from different
points of view 1:(%,Y,2) = (X,Y,2),

(i) On a given bond, the operatéi’ acts within a par-
ticular doublet of equivalent orbitals. Spinlike physics, that

is, the formation of orbital singlets is therefore possible. 2:(x%y,2)=(=%~y.2),
(ii) On the other hand, interactions on different bonds are
competing: they involve different doublets, thus frustrating 3:(X,Y,2)—(—X,Y,—2),
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FIG. 2. Arrangement of the local quantization axes in stédes
and (b). Arrows indicate the quantization axes at each site, and
represent also a snapshot of local correlations of angular momen

tum: on every bond, two out of three components afe correlated
antiparallel.

4:(x,y,2)—(X,—Y,—Z). (15 1

After corresponding sign transformationslgf and orbitons, 3

one obtains FIG. 3. (Color onling Orbitals in a new basigyz specified by
transformation(19).

, 1
B - =—=|(c—s)d d,—d
[(C " S)dyz I —dxy] Vs \/g [(C s) y T (c+9)d,, xy]

A(c —n,anja-i- NipNjp—g; bleTaJ—blTalaJTbJ (16
1

=[(1—12)i(1—=12);— (L il 1+ [x=y]. (A7) ¢s=ﬁ

[(C+S)dyz+(c_s)dxz_ dxy]v

From now on, a sublattice structure will not enter in the

excitation spectrum. From the above observations it is also 1

clear that all the components bfare equally needed to op- %:ﬁ[(c_s)dyﬁ(ﬁs)d”_ Gyl

timize all the three directions. We anticipate therefore that

the cubic diagonals are “easylor “hard”) axes for I 1

fluctuations/orderinggrecall that the Hamiltonian has no ro- e=—=(dy,+dy,+dy,). (21
tational symmetry fof vecton. Therefore, it is convenient to V3

further rotate the quantization axis so that newxis (de- |y Fig. 3, we show schematic pictures of these orbitals. By
noted asz) corresponds t¢111] direction. This is done as construction,; is symmetric with respect to the rotation
follows: around[111] direction, having simply 2*—r? symmetry,

while ¢, and g, are symmetric with respect {d10] axis. At
(18  the end, the orbital Hamiltonian in a rotated basis obtains the
following form (symbol “tilde” denoting rotated axes is im-
wherefiz(TiX ,Tiy T.,) andR is given by plied for angular and quadrupole operators below, and con-
stant energy shift is dropped gut

> A2
I

1 cts c-s 1
R=—|[c-s cts 1], (19) Horp= rlJSEE AP, (22)
J3 2
-1 -1 1
_ _ with
with c=1/2 ands= \/3/2. Here, nevk andy axes are taken
to be symmetric with respect to the10] direction. Annihi-  3AD=2(1-Q;,Q,) = 31ilj, + 5 (QuT -1+ T_1Qx—ToTy

lation operators for constrained particles obey the same (9} 4 2
transformation: —T1T0)ij + 3(QxQx=ToTo+ T_1T_1)’ +5Qix(To

+cT) M+ 5(To+cT)Qj,+ 311, (L+1) 1

a a
b Rl b (20) +%(Ix"—ly)i()/)ljz_%(lx—"ly)i(}/)(lx"—ly)}wa (23
c T whereQ, andQ, represent the quadrupole moment operators

with e, symmetry, Z*~r? and x’—y?, respectively.T,

Explicit expressions for the wave functiogs, are obtained =T,, andT.,=T,*T,, whereT,, T,, and T, represent
by reversing Eq(20) as follows: the quadrupole moment operators vaa symmetry ofxy,
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xz, andyz, respectively. These operators are expressed ir
terms of angular momentum and orbiton operators as fol-
lows:
_1/72 2\ _ el ~
Qz_i(l _3|z)_nc_§(na+nb)a

—12 2_ e ~
Qx_lx_ly_nb_nar

T,=lly+1,lx=—(ab+b"a),

Te=1yl,+1,1,=—(b"c+<c'), I I
~y i FIG. 4. (Color onling. Schematic pictures of the orbital order-
Ty=ld,+1l=—(c'at+a’c). (24 ings. Left: Real orbital orderingd). Right: Complex orbital order-

y dependence of quadrupole moment operators is obtainéﬂg II(a). Here, the absolute values of the wave functions are pre-
. : sented. Arrows represent the directions of angular magnetic
by changingl,, in Eq. (24) to P 9 9

momenta in the orbital magnetic statéa)l

could be taken as and having in mind also two structures in
Fig. 1, one obtains a multitude of degenerate states. This
makes, in fact, all the orderings very fragile.

— -+ =
|(x7)=[ clyxsly for y=a(b)
I for y=c,

I(7):[—cly+sl,( for y=a(b) -
y ly for y=c. B. Orbital quadrupole order
Explicit expressions foR'?” andT!? are given in Appendix This state is driven by a condensationcobrbital, that is,

A. It should be noted that, among eight operators, namelyordering of the orbitaky; in Eq(21). To obtain a linear or-
five quadrupole moment and three angular momentum OPergital wave Hamiltonian, we resolve a constraint @sc'

tors, only four operators are independent of each other be- ——— ~
cause of the local constraint among orbiton operators. = v1-na—ng, and expand Eq23) up to second order ia

Although it looks a bit complicated, the rotated Hamil- @andb. The result is(in units ofr;Jsg)
tonian obtains a well-structured form. The first and second
terms of Eq(23) represent “Ising”-like interactiqn for quad- How= 2 (nz+nig)
rupole moments and angular momenta. This part of the [
Hamiltonian stabilizes the orderigondensationof an ap- 1
propriate orbiton. On the other hand, the other terms repre- — [Ti(z)lT(Z)l_(lx_'—Iy)i(y)(lx_'—ly)(y)]'
sent fluctuations oQ,, Ty, T,, T, and transverse compo- 2z 1) ! !
nents of angular momenta andl,. These terms generate (26)
dispersion of the orbital excitations.

Ordered states, promoted by the “Ising” part of interac- wherez=6, and
tions, can be characterized by the quadrupole mongent

=(Q,) (Q order may couple to a lattice distortion Bfsq T.,=—(a"+a)7(b"+b),
symmetry, and the angular magnetic momeni=(T,). We oy R
notice that the magnetid;,|;, term in the first line of Eq. lx=i(b—b"), I,=i(a’'-a). (27)

(23) is generated by quantum commutation rules when W&, 5 momentum space, this linearized Hamiltonian reads as
rotateH,,, ; this makes explicit that th&, symmetry is only

a classical one and emphasizes the quantum origin of orbital 1 et~ 1

magnetism. How= 2 |Nak+ Mo+ >(ntrl@a ta@-+5(n
As it follows from the definition ofQ,, quadrupole or- K

dering with finiteQ but zerol, corresponds to a condensa-

tion of thec orbiton. We call this solution state I. Classically,
Q=1 in this state. On the other hand, condensation of the )
complex orbital @—ib)/\2 generates a finite magnetic mo- thrjgl’ Y2 %‘d y3dare_dezf|ned asyl_/(6°><+cy+CZ.)/3|'
ment (m,= 1 classically, the state called II. The orbital pat- Y2~ (¢y—C)/6, and y3=(2¢,—c,—C,)/6, respectively,

terns in a classical states | and Il are shown in Fig. 4. welith Ca=C0%,. The Hamiltonian is diagonalized by using

now focus on fluctuations of orbitals, and show that the ex20doliubov transformatiofsee for details Appendix)BOne

citation spectra are in fact identical in these states. MoreovePPtins
we will obtain that the states | and Il can smoothly be con-
. . . = T R N T R
nected by a continuous phase rotation of the condensate How= 2> (wiga gaii+ o) +Eqg, (29
k

wave function. Noticing that an arbitrary cubic diagonal

—y2) (BB +bb - vs@b 43D |, (29

205109-5



GINIYAT KHALIULLIN AND SATOSHI OKAMOTO PHYSICAL REVIEW B 68, 205109 (2003

1.2
@ | ==
LF N . & ,
1
o8| 1 )4
!
. \
0.6 \
- 'I \ (a) (b) ©
\
0.4 ',’ \ FIG. 6. (Color online. Spatial electron distribution in different
1 “ states.(a) Disordered staten,=n,=n.=3. (b) Quadrupole or-
02h 1 dered statenz=0.46 andnz=ny=0.27. (c)Orbital magnetic state,
/ i n,=0.46 andn,=n:z=0.27. Arrow shows the direction of angular
0.0 momentum
(000) (m00) (rn0) (000) (~rm) (nn0) ’
rather smallQ=0.19. Reduction of quadrupole ord@rim-
() plies that electron density is much less anisotropic than that
shown for the classical state in Fig@t Including fluctua-
tion effects, that is, finite population af andb orbitals,
electron density at site 1 is given byl(F)zngwng n;:,b—g
2 - -
(000) +ngy; . Using Eq.(21), one then finds
FIG. 5. Upper panel: Orbiton dispersiofia units of r,Jsg), pl(F)=§(d§Z+ d>2<2+ diy)+§Q(dydez+ dy Oyt dy,dyy).
obtained in a linear spin-wave approximation. Lower panel: Posi- (32

tions of soft modes are shown by the thick lines. . . . . .
Electron density at other sites is given by a similar equation,

where o= VI— (714 <)2 and wyi=1—(y;—x)2 with where the second, df, symmetry, term is different for dif-

K= \/;%-i-_’yg The dispersion relations of orbitons are pre—L?trs r;t s(gbdlatgcejaN?jme_l)g 'tfgz?gi_sgézgxy;n%xfﬁy) (fjor
sented in Fig. 5. Orbital excitations are characterized by thé . yErxz | TYETXY  TXZEXY ! Yz Xz

; . . —dydyy+dy.dy,) for site 4. In Fig. 6b), we present the
flat dispersion with zero energy along (&0, (w,.k,) and electron distribution given by Eq32). For comparison, we

their equivalent directions. As discussed later, interaction ef- T o ~ ~
fects open the gap alongm(mk,) and equivalent ones, show in Fig. &a) the electron distribution wher, b, andc

while zero modes alongk(,0,0), (0k,,0), and (0,&,) are ~ are equally occupied. At finit€, the electron density,(r)

protected by the underlying symmetry of the model. is slightly elongated alonfj111] direction. Thus, we expect
A constantE, in Eq. (29) represents the energy gain due the quadrupole ordered state to be further stabilized by the
to the quantum fluctuations. It is given by electron lattice coupling, although this coupling is expected

to be weak fort,4 orbitals.
1 The anomalous reduction of the order parameter is due to
Eo=5 2 (0t o) —1=-0214rJsp).  (30)  the highly frustrated nature of the interactions in Ex). A
k special, non-spin-like feature of all orbital models is that

Prbitals are bond selective, resulting in a pathological degen-
eracy of classical states. This leads to soft mdadzserve
hatw, x is just flat along (0,0r) and equivalent directios

hese soft modes have their origin in special symmetry prop-
erties of thet, orbital model(14), which result in conser-
é(ation laws with important consequences. Namely, the total
d umber of orbitals of each “color” §,b,c) are conserved
during superexchange process, as can easily be seen from

We may compare this result with ground-state energy o
the orbital disordered AF stat&,=—0.33(r;+r,)Jse/2,*
where the result of Ref. 4 is corrected for the finite values o
7. For realistic values of the Hund’'s coupling, say
=Jy/U=0.12, this give€y= —0.285(in units ofr,Jsg) in
AF state. It is noticed that ferromagnetic and AF states ar
almost degenerate. Still, the ferromagnetic state is high

than the AF state, so its stabilization in YH®@equires an Eq. (4). Moreover, ast,, orbitals can hop only along two

additional effects as discussed in Sec. IV. A : . ) X
Due to the flat mode, one may expect strong orbital ﬂuc_dlrectlons [say,_ xy-orbital .mot|on is restricted o &b)
tuations in the ground state. Indeed, number of the excite lane, the orbital number is conserved on each plane sepa-
- ~ rately. Formally, these conservation rules are reflected by a
bosonsa andb is large even aT =0: possibility of uniform phase transformation of orbiton opera-
tors, e.ga—aexp(¢,), etc., which leaves the orbital Hamil-
tonian invariant. These continuous symmetries are spontane-
ously broken in above ordered states. The breaking of
continuous symmetry is usually followed by the generation
This reduces the condensate densityrig)=0.46. Conse- of gapless Goldstone modes. This is precisely what happens
quently, the quadrupole order parameter is obtained to bi the t,4 orbitally degenerate model. In fact, soft modes

(ng+ng)=—1+ % > (LJFL) =054. (3

kK \W1g o
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obtained above have two-dimension@D) feature (stem-
ming from 2D geometry of thé,, orbital hoppings As a

PHYSICAL REVIEW B58, 205109 (2003

and y5 are interchanged. Exchange 95 and y; does not
affect the excitation spectrum, however, as they entenig

result, long-range orbital order is possible only at zero temvyia the parametek = ¥+ 92 only. Thus, the ground-state
perature, just like in 2D Heisenberg models. Formally, this isenergy in the orbital magnetic stafg is given again by Eq.

manifested as a divergentas In 1) of the number of ther-

(30), so the states | and Il are degenerate even on quantum

mally excited orbitons;nz +ng), if one attempts to calculate |evel. Similarly, the number of out of condensate bosons is
this quantity at finite temperature, including the Bose popualso obtained from Eq31). This gives(n,+nz)=0.54, and
lation factor in the Eq(31). Soft modes will be discussed in values for the angular and quadrupole momentum order pa-

more detail later on.

C. Orbital magnetic order

In order to describe the magnetic orderigdgnoted above
by state 1), let us introduce orbital states

1 - - — 1 -
= —(a-ib), b:—z(a+|b). (33

V2 V2
In these states, angular momentum has eigenvalges: 1
(on local axej respectively. A condensation afleads there-

fore to the magnetic orderingvith T,=1 classically, and it
is associated with ordering of the complex orbital:

1 . .
= ﬁ{dyzeI (7/3) dxze7 (i) dxy}- (34)

rameters follow
m=1-3(n,+ng=0.19,

Q=—3%+¥(n,+nz=—0.095. (38)

Electron-density distribution in the state Il, given by E8R)

with above value of), is shown in Fig. €c). Electron cloud

in the magnetic state is almost of cubic symmetry, being just
slightly contracted along111] direction(opposite to that in
the state ). Thus the energy gain from the orbital lattice
coupling is smaller in this state. In principle, orbital magnetic
order could be supported by a relativistic spin-orbital cou-
pling; however, in the noncollinear state driven by the super-
exchange interaction, uniform component of the orbital mo-
ment is zerdsee Fig. 4b)], hence the coupling to the spin
ferromagnetism vanishes in linear order. The spin-orbital en-
ergy gain in a second order is possible though, via the cant-
ing of spins towards orbital magnetic pattern.

On global axes, this order is noncollinear, as shown in Fig.

4(b). We consider fluctuations of this state. Using the relation

a=a'=1-n,—n; and expanding interactions in E(®3)
up to second order ib andc, we obtain the following lin-
earized Hamiltonian:

1
HOWZEi (Np+nig)+ 27 % [QixTj—1+Ti-1Qjx—TioTia
~TuTjo+QRQY - TR TR+ T T
—(Le+ 1)U+ 1) 7. (35

Here, the operatorls Q, andT are linear functions ob and
c:

=@, 1y=- (-0,

o2

Q=—(b'+b), To=—i(b'-h),

1 - -
——[(AFi)c+(1=i)c].

T.iq= 36
*+1 \/E ( )
We introduce now new operatoes 3:
o= = (0+D), f=——([B-eF),  @30)
V2 L2 ’

D. Soft modes: Density-phase formulation

Having obtained an identical excitation spectrum for
states with apparently different ground-state condensates, we
would like to unify these states. It is convenient to use a
different approach, that is, the density-phase formulation by
Popov(Ref. 20, nowadays called “radial gauge.” This for-
malism is particularly useful also to clarify the physical ori-
gin of the soft modes obtained above. In the radial gauge,
density and phase degrees of freedom of the constrained par-
ticles are emphasized. We work in a basis obtained by first
transformation, Eq(15), and represent the orbiton operators
entering in Eq(16) as follows:

o= \[pr el (39

Further, the density and phase degrees of freedom are param-
etrized as

(a=a,b,c).

Piaby=Po+ 3(Cri=s\;),

Pic=pPo— 5T, (40)
and
Oiay= Qi+ Coi =6,
Oic=Qi— ¢, (41)

respectively. Herepo(=1/3) is an average electron density
on each orbital. The phag®;, common to all the three or-

with ¢= /4. Remarkably, after this transformation the lin- pitons, can as usually be absorbed by the constraint field,
earized Hamiltonian obtains in a momentum space the samghile the local constraint itself is explicitly resolved by pa-

form as Eq(28), wherea,b are just replaced by, 8, andy,

rametrization(40). The physically active degrees of freedom
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are therefore and \ fields for the amplitude fluctuations, 1
and # and ¢ for the phase fluctuations. We recall that the Ha¢=5p32 (¢ —¢i")2. (46)
coefficientsc=1/2s=/3/2. <”>

To start with, let use neglect for a moment the amplitudeThe fluctuations of the condensate density ahguare con-
fluctuations, and focus on the phase dependence of the claelled by the HamiltoniarH,,, which in a linear approxi-
sical condensate wave function. In terms of phases in Egnation reads as
(41), it is written as follows(up to unessential overall phase

facton):
’ =gt (5057 (@7

w( 0, (P) = \/%‘{dyzei (3ce+s6) + dxzei(sc¢750) + dxy}-
(42)  Here, s is the difference between the electron densities on

. . orbitals that are active on a given direction” = p(?
H d site d d f th K| !
ere, we suppressed site dependence of the pasilis- (7) . Using parametrizatiod0), they are expressed via

carding for a while slow space variations of the condensate. d f d oll
Now, it is noticed that the quadrupole and magnetic order?" \ felds as follows:
ings[see Eqgs(21) and(34)] do follow from Eq.(42) when

¢=6=0, ande=m/3c, 0= m/3s, respectively. Next obser- i(—c)\-isr-) for y=a(b),

vation is the orbital “color” conservation rule in the ferro- J3 ' '

magnetic state. In the radial gauge, it is evident from Eq. 557)= (48
(16), that the interactions do depend on thiferenceof the i)\_ for y=c.

orbiton phases only, that is of,— 6;,, etc., so we can J3 '

uniformly rotate the condensate functiga2) by arbitrary

phasesp, # with no energy cost. By such rotations, we canin  In a momentum spacei,, andH,, are represented as
fact mix quadrupolestate ) and magnetidstate 1) order-  follows:
ings. Slow phase rotation of the condensate is precisely the
origin of the soft modes obtained above. Because of the two _ 2 [E
dimensionality oft,, orbitals, the phases can spontaneously be

be fixed at zero temperature only. Of course, orbital-lattice

1
4 q +§a¢|¢a|2—ychaﬁa], (49)
q

and/or spin-orbital couplings may fix the phases, thus select- 1 , 1 5
ing a particular state even at finite Hy=2 Sa[Ng“t salrg+yahgrq(, (50
We now turn to the excitations of the model in density- 9

phase formulationAi(j” in Eq. (16) is expressed as where a,=1—(y1+7v3), a,=1—(y1—7v3), aa=1+(n

+v3), anda, =1+ (y;—v3).
A = (\piapja— VPibpin) >+ 2\piapja\Pibpin Equations(45) and (49), (50) determine the orbital dy-
namics in a harmonic approximation, which is equivalent to
x{1-cog ¢{?~ ()}, (43 the previous linear orbital wave approach. Indeed, the ob-

tained quadratic form in Eq45) can easily be diagonalized
giving exactly the same excitation spectrum, that is,
V1= (y,%=«)? found in the preceding section. In addition,
the origin of zero-energy excitations can clearly be identified
now. In a classical limifneglect dynamical term in E¢45)],

where ¢ = 6,,— ;. A}’ for y=a andb bonds are given
by replacing &,b) in Eq. (43) with (b,c) and (c,a), respec-

tively. In terms of the relevant phase degrees of freedom
and 6, we obtain

N A _ the quadratic forms#i,,, (49) andH,, (50) can be diagonal-
pN = J§( cixse) for y=a(b) (44) ized separately resuTting in normal modes with energies
30 for y=c. w, (K)=(1—y1%«) in phase sector, and, (K)=(1+y,

The density operatorp;,, are functionals of the; and \; +«) for the amplitude variablesw, vanlshes on lines
fields. We may expand now the operadf’ in terms of the (kx,0,0),(0ky,0),(0,0k;) (see Fig. 3 Therefore, zero-
amplitude and phase variables\, ¢, 0. Keeping quadratic €Neray excitations on these lines do correspond to uniform
only terms in the expansion, one arrives at the followmgphase rotations of orbitons on different planes as discussed
linearized Lagrangian for the phase-amplitude fluctuations before. On the other hand, the normal modeg(k) that are
associated with the density of orbital occupancies possess
zero lines at Ky, 7, m),(7 Ky, m),(7,mkK,). This reflects
Lorp= % Wi whi,—wt @iwli,—w) T HoptHiro (49 gofiness of thestaggerediuctuations of orbital§notice also
' that a uniform component, that i${”= &+ s, only
where o is the Matsubara frequency. The first term in thisenters in Eq(47)]. However, such soft modes |n the ampli-
equation originates from the time derivative, kinematic parttude sector are not protected by physical conservation rules;
of the Lagrangian-=3; ,«; Y(9197) a; , and produces dynami- therefore, they are expected to acquire a finite mass due to
cal coupling between the density and phase varialbtlgg.  interaction effects that go beyond linear orbital wave ap-
represents the phase fluctuations, and it is obtained from thgroximation. To see this, one should consider unharmonic
expansion of the second term in E423): terms in the expansion of E43). Most relevant term in that
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expansion is the interaction between the staggered fluctua 1.2
tions, that is, 8= "= &(”, with uniform components : :
8. When such a term is kept, E¢7) is replaced by wE o, /\
9 & 0.8 _ [, ===
Hy=groy {52+ 5252] oo
T8 Y (4pg)? T [
9 06 .
-2 2 21(y) I
= l+e) 0 +e 05\, 51
grozy ((1+e)00+e,05) (51 sl )
!
The Hartree decoupling is applied here to the interaction [
term, with e¢,=(1/4p0)%( 52 ). These expectation values — %2n 1
are finite due to the presence of quantum fluctuations in the !
ground state that are particularly enhanced in a staggere 00 0
channel. In a momentum space, the above equation reads : %0 (r00) (nn0) (000) (rem) - (w0)
1. 1
Hyo=Z.> {=ay|hal?+ saf|rgl+ vihar—af, (52
w=2e3) | NGl QA Yinar g )
where a,=1+(y{+7v5) and a,=1+(¥i—»5. 7 (n 0
=1,2,3) are defined ag;=(1—2¢) y, with e=¢,/Z,, and
Z.,=(1+e,+¢eg) is an overall rescaling factor.
Using nowH,, given by Eq.(52) in Ly, [EqQ. (45)], one (000)

obtains finally the following two eigenfrequencies:

FIG. 7. Orbiton dispersions corrected by interaction eff€Ets

0. (K)={1—(1-28) (12 k)%= 2e(y, £ 0)}2 (53

in units of \/Z r{Jsg. It should be noted thab . recover
the orbiton energy»; , whene=0. Using bare orbiton dis-
persions, the Hartree decoupling parameteys are calcu-
lated as follows:

1-(yi—«)?| 1

w1t 0o
(54)

3
es=7 2 | (1+7i+eD)+ —
k W1k®W2k

3 1
ev=7 2 11— %= kD) +orogt———. (89
k

Wit wog

Numerical calculation givesg=1.72 ande,=0.59, reflect-

(53)]. Energy is given in units 0ZY% ;Jqg=1.82r,Jse. The am-
plitude fluctuations open the excitation gap aroumdrgr), while
there still remain gapless Goldstone modes at positions, indicated
by the thick lines in the lower panel.

6 gradually decreases from~157 deg in LaTiQ to
~142 deg in YTiIQ, due to lanthanum contraction effect
that results in deviations of the lattice from an ideal perov-
skite structure. It is quite remarkable that such a small varia-
tion of the bond angle, driven by R-ionic size effect, affects
the magnetic state dramatically: It changes from isotropic AF
as observed in LaTi@to the isotropic ferromagnetic state in

a Y-based compound, indicating strong competition between
AF and F interactions in titanates.

ing that staggered fluctuations of densities are stronger. ThUs Ti_o_Ti hond distortion is important because it induces an

we obtain \Z,=1.82 ande=0.18. Dispersion relations of
the orbital excitations, Eq53), calculated using these pa-

rameters are presented in Fig.(in units of \Z, r,Jsp).

Staggered density fluctuations are gapped, and we are Ie|
now with true Goldstone phase modes protected by the Symy;

metry of interactions.

IV. WHY YTiO 3 HAS A FERROMAGNETIC
GROUND STATE

So far, we discussety, orbital physics on an ideal cubic

unfrustratedferromagnetic interaction, changing thereby a
delicate balance between AF and couplings that dynamically
oexist and compete in idet); superexchange models like
Eqg. (13). It was found in Sec. Il B that the ferromagnetic
ate is slightly higher in energy th&-type AF one; the
situation is however reversed when the bond angle is reduced
below some critical value, as we argue below.

The bond distortion brings about the following two ef-
fects.

(i) Reduction of transfer intensity between nearest-

lattice assuming a spin saturated ferromagnetic state. In theighbor (NN) t, orbitals ast=Ag,t3, cos6=tecose.®
remainder of the paper, we apply the theory to the ferromagHere, typ-(taps) is the transfer between TidBand O 2
netic state of Mott insulator YTiQ This requires some oOrbitals on them(o) bond, andAy, is the level difference
modifications of the theory implementing a specific featuredpetween Ti & and O 2 states. Superexchange energy scale
of this material. On empirical grounds, it is well documentedis then reduced adse=JS2co£6 with I =4t5/U.

that Ti-O-Ti bond angle is an important parameter control-

ling magnetic propertie of titanates RE® The bond angle

(i) Generation of transfer intensity between N and
€y orbitals,t’zAgpltdp(,tdpwsin 0. This transfer induces an
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additional SE interaction. Far bond, we consider the fol-
lowing transfer term:

H'O=t'[(a] aj,+H.c)+(i<])]. (56)
o' denotes the creation operator of electron in gherbital
with 3z°—r2 symmetry.H, for a andb bonds are given by
replacing @,a) in Eqg. (56) by [—(a—+/38)/2b] and
[ —(a++3B)/2,c], respectively, wherg denotes the elec-
tron annihilation operator in the, orbital with x*>—y? sym-
metry. By the second-order perturbation with respedt {q
one obtains the SE interaction between KJy electrons.
Here, energy of the intermediat¥ excited states with spin
triplet and singlet states betweepandt,g electrons is given
by U—-3Jy+A., andU—Jy+A,,, respectively, wherd,
is a cubic crystal-field splitting betweesy, andt,, levels
(so-called 10q). Explicit expression for the new SE inter-

action is
H=— 1) (t/)zu - (2—37+475"5)
SE 8 SE t U (1_3';])(1_';7) n USRS
X(Nig+Nja), (57

whereU=U+A,, and7=J,/U0. H for a(b) bonds are
given by replacingn, in Eq. (57) by n, (n;). It is stressed

PHYSICAL REVIEW B 68, 205109 (2003

Thus, AE obtains the followingf dependencéat represen-
tative valuery=0.12 for Hund’s coupling paramejer

tdp(,>2 §]

2
fj) ﬂS"FG Jgﬁ.

(60)

1
—0.111co86+=

AE= 5

td[:m'

With the realistic parameter@ypically, A, is about 2 eV
U/A, =25 and typ,/tgp,=2, the transition from AF
orbital-liquid phase to ferromagnetic orbital-ordered one oc-
curs at the critical angle{”)=136 deg in the SE model. This
angle is slightly smaller than that observed in YTiQd
~142 deg). Further, orbital-ordered state should be favored
over the AF orbital-liquid state by orbital-lattice coupling.
We simulate this by adding JT energy galE;1(<0) to the
energy of the ferromagnetic orbital-ordered state. As shown
in Fig. 8b), this increased.. A value of SE;r, which is
required to obtain a realistic valug.= 146 deg for titanates

is small (—0.04%), so it might be hard to observe the
associated 34-type distortion.

V. ORBITAL GAP IN YTIiO 3

Effect of TiOg tilting. In addition to the finite transfer
between NNt,,-e, orbitals, octahedron tilting changes also
the symmetry of NN,4-t,4 hopping matrix, making possible

that this SE interaction is of the ferromagnetic sign, becausénite electron transfer between the NN orbitals with different
t,; and ey orbitals are of the different symmetry, and the symmetry:’ We show now that such a hopping leads to an
Hund coupling between them favors spin triplet state. ASmportant modification of the orbital excitation spectrum, re-
Ti-O-Ti bond angles irg, b, andc directions are almost the moving gapless Goldstone modes. Taking into account non-
samé® this interaction supports ferromagnetism equally in alldiagonal hoppings between orbitals active on a given direc-
three directions. Here we differ from Ref. 21, which consid-tion

erst,q—ey hopping channel along theaxis only.

Either in the orbital-ordered stat¢s(a) and Kb)] with
Y= 1/\/§(dyz+ dy,+dyy), orin the orbital-liquid one, aver-
age occupation number of eathy orbital is given byn,
=ny,=n.=1/3. Thus, the spin interactiofb7) in these or-

bital states becomes/ ;= —J'3;,S;- S; with

poi [ 2fu
T 3vSE ¢ fj

One should notice thal’ is proportional to sif¥ (via t'),
and contains also the small numbgrJ,/U. This is be-
causel’ is_caused_by the Hun_d coup{irlg betwetgglandeq Here Bi(jy) is given by either of Egs(5),(9), and (12). A
electrons in the virtually eX,C'tedz(ethQ) state, which is  rycial point is that this operatsiolatesthe orbital “color”
evoked in SE process only in the presence of Ti-O-Ti bondonservation rule even in the fully spin polarized state.
angle distortion. ) “Therefore, uniform phase rotatioriseparately on each or-
The energy difference between AF and ferromagnetigyitg| flavon are not longer possible, hence the relative phases
phases stemming fromd,;, is given byAEge=3J", while il be fixed and orbital gap will be generated.
that from Hge is given by AEgg=[—0.33(1+r3)/2 Let us apply a radial gauge description, and focus on
+0.214,]Jse (Sec. 1l B). The total SE energy difference phase fluctuations, as the amplitude fluctuations have a large
between AF and ferromagnetic phases is then estimated agjap anyhow. In a local coordinatgdefined by Eq(15)], we
find
ri+ro, 1 t’)z( U
AE=|-033—240214,+=|—| | =
2 2\t U

t"[(a] B+ Bl aj) +(i<])]

up to second order in small ratié/t, we obtain the follow-
ing correction to the interaction between NN orbitals in a
spin-ferromagnetic state:

(61)

2 ”
. (59 Hg=ri3ed AP )+ AP0

n

1 S R,

t

2
7|Jse-

(59

1 t" 2
n(y) = 2(
H"be 2rlJSEp0(t) %

(6P + "2 (63
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(a) i , HI=H y+ HYy + Hor
dj
/‘ﬁ

Q@n

1. 1.
=7 Eaglaa 2+§a¢|<paz—y;<pg|0,a , (65
q

where Z=[1+ (t"/t)?>+3|E,|]] is an overall factor. Here
a,=1—(yi+vs) and a,=1—(yj—%), with modified
(b) form factors y\=(1—2f)y, (n=1,2,3) wheref={(t"/t)?
0.04 — : - : +3[Epl}Zs.
Using now Eqs(65) and(52) for H,, andH,,, respec-
tively, we obtain fromL,,, [Eq. (45)] the following excita-
tion spectrum:

0.00

W (K)={1—(1-2&)(1—2f)(y1 £ k)2
—2(e—f)(y1 = w)}V2 (66)

% -0.04

008 This is given in units oW,,,, which is defined as follows:

Worb= VZ Zsl 1JsE- (67)

W, represents the overall energy scale for orbital fluctua-
tions in the problem. Excitation gaps at (0,0,0) amd4, )

.12 1 1 1 1 1
180 170 160 150 140 130 120

© 6 (deg.) are given by 2/f(1—¢e)W,,, and 2/e(1—f)W,,,, respec-
tively. Takingt”/t=0.2 and|E;¢|=0.04(r,Jsp) as represen-
tative values, we obtaiti=0.086. Withe=0.18 and\/Z,
=1.82 estimated abovéSec. Il D), one obtainsW,,,
=1.96r,Jgg, and the lowest gap about 03, is then
expected at (0,0,0) point. Thus, we expect that the orbital
excitations in the modified model for YTiOcover the en-

F AF ergy window from~r,Jgg to ~2r,Jgg.
AF(G) F VI. EFFECTIVE SPIN HAMILTONIAN
0> 0, 0< 0,

The spin wave spectrum in YTihows the “cubic sym-
FIG. 8. (a) t,4-€4 transfer originating from Ti-O-Ti bond distor- metry” of the Heisenberg spin couplingd;=J,=J..*° The
tion. Ti-O-Ti bond angle is denoted ¥ (b) Energy differencedE ~ mMagnon gap was found to be very small, almost two orders
(in units of J(Soé) between spin-AFG)/orbital-liquid and spin-F/ of value smaller that the magnon bandWldt‘hZO meV). It
orbital-ordered states as a functionéfThe solid line is a result of has been noticed that such an apparent simplicity of spin
purely electronic SE interactions. The broken line includes small Jexcitations, showing high isotropy in both real and spin
energy gaindE ;¢ in the orbitally ordered ferromagnetic state. Pa- spaces, is remarkable and puts strong constraints on possible
rameters arep=0.12, U/A¢,=2.5, typ, /tap,=2, and 5E,7/JS  orbital orderings. Spin wave excitations are examined in this
=—0.04. (c) Schematic energy diagrams @t 6. (left) and at¢  section. Being a test case for the above theory for orbitals in
<6 (right). YTiO3, a comparison with experiment gives also an oppor-
. ) , tunity to estimate SE energy scalgg in the problem. To
Here, we expanded the function cgS{+ ("), which enters  gerive an effective Hamiltonian describing magnon excita-
in B, aboutf,¢=0 (this corresponds to the quadrupole tions, we assume that orbital-spin separation occurs at low
ordered state, which is in fact favored Bf’ term). energies. This is justified when the orbital gap induced by
Effect of trigonal TiQ; distortion. Our orbital state would Ti-O-Ti bond distortionssee Sec. Vis larger than magnon
be supported also by a trigonaD§,) distortion of TiQ;.  energy. Dynamical coupling between the spin and orbital de-
When this distortion is treated as a static one, an orbital feelgrees of freedom via fluctuations of superexchange bonds
the following potential:H ;1= —2|E;1|Q;,, whereE;+<0  and also via on-site spin-orbital interactibh,, is then con-
represents the total JT energy gain. In a radial gauge, wsidered as a high-energy process, leading to an effective spin
obtain the following phase Hamiltonian: Hamiltonian. The parameters of such a Hamiltonian are ob-
tained by integrating out high-energy orbital fluctuations.

9
Hyp=>5polExrl > (67+¢]). (64)
I A. Isotropic spin-exchange
Summing up all contributions »,, [Eq. (46)], H},, and We start with estimation of coupling constaiitin the
H3. . one obtains the following phase Hamiltonian: isotropic spin-exchange terid(S;-S;). As a first step, let us

205109-11



GINIYAT KHALIULLIN AND SATOSHI OKAMOTO PHYSICAL REVIEW B 68, 205109 (2003

531 (pain =1 (afal +b/b! —a/b - bfal +H.c).

(70)
[ w+v ® 1 w w . . . .
— > ~ (——)x —>@> We expect that orbiton pair fluctuations are rather incoherent
H,, () H,,() 1 D,(0) and local, and we parametrize their spectral function by a
2 k?

characteristic energ@,,;,, obtaining

FIG. 9. Scattering of low-energy magnons on local fluctuations
. : N , ) . . 4 2O,
of the spin-exchange integral;; . Its Green’s functioriwavy line) D (iv)== ﬁ, (71
is taken at zero frequendgpdiabatic approximation, see tgxthis N 9 an"+ V2
results in an additional effective spin-exchange constdahoted 4 .
by a filled circle on the right-hand sitlesde= 1D;;(0) for low-  NUS 0Jeri=51/M)pq;; . We notice that Eq(71) means also
energy magnons. that ((6J;;)°)=73, which can be simply understood as fol-
lows: on a given exchange bond, e.g., along ¢teis, one
consider mean-field approximation, in which the spin-may have in general nine orbital configurations. From Eqg.
exchange is given by an expectation value of the orbital opt11) one observes that these are the orbital singlet giving
—13)/3r(B{) and noticing that Q)= 2E,, one obtains ~ With J=+1, and five states with(”n{”'=0 giving zeroJ.
As orbital order is weak, and because of the formation of
Jo={—5nr,—5(1—9r,)|Eq|}riJse. (68)  orbital singlets/triplets at given bond necessarily frustrates
other neighboring bonds, all these configurations will be
tpresent givingX(&Jij)z%‘g‘. It is also natural to expect that
Qpair~Worp » With W, ~2(r1Jsg) as estimated in the pre-
ceding section. This gives an estimatiédy =3 (in units of
r.Jsg), resulting finally in effective exchange coupling for
low-energy spin excitations as follows:

The first term ¢ %) is driven by a conventional Hund’s cou-
pling, while the second one originates from orbital single
correlations in the ground state. For=0.12, these two
(classical and quantuntontributions are of the same order
and give togethedy=—0.214¢Jsp).

However, the actual value af measured experimentally
from magnon spectra could in fact be strongly reduced from 2,0 201 2
Jo In Eq. (68) due to a fluctuation effects. Indeed, AF and F I={= 5o 3L [Bol 51 dse (13
states are strongly competing “fb systems, and large-scale These qualitative estimations are substantiated in Appendix
orbital fluctuations are expected to bring about AF spin-D, in which we calculate magnon energy renormalization
exchange contribution. We, therefore, have to consider efwithin a linear orbital wave theory.

fects of the dynamical spin-orbital interaction: It is observed from Eq(72) thatJ is actually positive
(antiferromagneticfor realistic values ofp~0.12-0.13, in

agreement with the conclusion obtained above from energy

Him:% oS- §) 8y 69 considerations: The ground state of the model is not ferro-
magnetic in an ideal cubic lattice. At the presence of Ti-O-Ti
In a ferromagnetic stateb‘(éi . §j): - %(sf—s}r)(si—sj), bond angle distortion] is however modified as follows: Eq.
with s’ being a magnon creation operator. Neglecting small72) obtains a prefactor c64 and in addition a term-J’
(ry—r5)/2r; and (,—r3)/3r; terms in Eq.(2), exchange =—7%7sir*d[Eq.(58)] has to be accounted for. As a result,
integral fluctuations are given b§jij:5Ai(j7) (in units of @ classical Hund's rule part dfremains unchanged, and the

r,Jsg). As the coupling constant in E¢69) is not small, and ~ Net result

because of spins and orbitals may form bound stdtean ) 2g12_2 )
excited AF states, we will discuss here only a qualitative J=[—§nrp+cos6{§—35(1—nry)|Eel}Irdsg (73

picture. We introduce a correlation functiol | (7) gives a small ferromagnetic coupling=— 0.0 ;3 for
=(T,8J;;(0)8J;;(7)) describing fluctuations of the spin- YTiO; with #~142 deg Comparing this resuft 7=0.12)
exchange integral. We assume that its spectral functionith experimental ON&eyp= —2.75 meV2 we obtain the
p(w)=(1/m)D{i(w+i6) is distributed over the characteris- overall energy scalerlJ(SOg: 92 meV and J(SOE):4t(2J/U

tic energies larger than low-energy coherent magnons ob~59 meV. Bond distortion effect reduces the energy scale to
served in the experimerian adiabatic approximation which r Jjs. ~ 78 meV and~ 57 meV in La and Y based titanates,

is valid as far as one is concerned with low-energy spinrespectively. Based on the above considerations, we consider
excitationg. Within this approximation and neglecting vertex JE~60 meV andr,Jse~60 meV as representative energy
corrections we may evaluate the magnon scattering proceggaes for YTiQ.

on a given bond as described in Fig. 9. The result implies a A main message of the above considerations is that the
renormalization of the coupling constant in the |°W'e”ergyspin-exchange constant as seen by a coherent low-energy
spin Hamiltonian bysJesi=3D;j(0)=Jgp(w)dw/w, which  magnon excitations in YTiQrepresents in fact only a small

is of AF sign as expected. It is the renormalized exchanggraction of the real strength of dynamical spin couplings.
couplingJ=Jo+ 6Jcs that determines magnon spectra. WeBecause the sign df,,-spin exchange is not unique, and
can estimat®;;(w) by keeping indJ;;= 6A;; [Eq.(23)] the  because the orbital order is weak, large fluctuations of the
orbiton pair excitation terms only: spin couplings are present in titanates.
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B. Anisotropic SE interaction for the state (a). [For the state(b), matricesT for bondsa
Next, we consider effects of a relativistic spin-orbit cou- andb are equal and given by E¢76)].
pling Third-order perturbation with respect tds, and Hgg

gives asymmetricpart of the spin anisotropy Hamiltonian
Hani in a local coordinate:

Hoo= A2 (S-Th). (74)

! H) =~ JASM OIS, (79)
This interaction introduces anisotropy in the effective spinWith
Hamiltonian, which obtaingbesides the rotationally invari-
ant Heisenberg parian additional, so-calledntisymmetric 2 1 c—3s
Dzyaloshinskii-Moriya (DM) and symmetric anisotropy -
interactions’? The anisotropic interactions select orientation M(C)ZE 1 2 ct3s|. (79
of the magnetization in the crystal, and lead also to magnon c—3s c+3s -1

gafs). The structure of anisotropic terms is essentially de- ) o )

termined by orbital state via expectation values and dynamAnisotropy constana in Eq. (78) is given by the following

ics of the angular momentum operator in E64). Thus, we  EXPression:.

would like to obtain spin-orbit coupling induced corrections

to the spin Hamiltonian, and discuss their consequences on

magnon spectra, thereby testing the proposed orbital state.
As usual, anisotropic interactions are obtained by perturs,

bation theory involving both isotropitigg and Hg,. We ) ) o A Az A

mostly discuss the quadrupole ordered orbital state with coroordinates is expressed &s=RRS;. The matricesR; (i

densect orbitals(see Sec. Ill B. In derivation of the anisot- 1,2,3, and #transforming spin coordinates at four sublat-

ropy Hamiltonian, we need to keep in the superexchanggCes are as follows:

4 r{+ro
A=glse5—

A’ 2
AIoc) . (80)

ransformation of the spin operator from a local to global

operators){’ andK{? in Eq. (1) such terms thai) operate 1.0 0 -1 0 0
in the ab excited states and/dii) connect a - -
. ) and/dii) c ground state R=[0 1 0| R,=| 0 -1 o],
with excited states of orbitals. For instance,
0 0 1 0 0
3(0) R P o STt -t S~
Jij :JSET[nia+nja+ai a; +aja;—a;by—ab; -1 0 O 1 0 0
. R=| 0 1 o, R=|0 -1 o0
+ .
(a=b)] (79 0 0 -1 0o 0 -1
[Here, the terms proportional to small numbergr,) and (81
(r—r3) are neglected. Using this transformation, one obtains a symmetric anisot-

We consider nearest-neighboring siteandj. The local  yopy Hamiltonian defined in the global coordinate:
excitation energy to create an orbitanor b is denoted as
Ajoc. It is reasonable to associatg,. with the “center of H{)=—ASM;;S,, (82)
gravity” of the orbiton band that covers the energy window R
from ~r;Jsg to ~2r,Jsg as obtained in Sec. V. Thus, we where M;; depends on the NN bond. For 1¢3-4) bonds
will consider Aj,c~1.5r1Jsg in our estimations, when we along thec axis, |\7|13(24) is given by
compare later on the results with experiment.

To obtain spin anisotropy interactions, it is convenient to 32 0 =3
work again in a rotated basis, applying transformatib®) K1 _ } 0o 72 0 83)
also for the spins. The scalar product of NN spingHige is 13297 4 '

then expressed &&-S;=5TS;, where =3 0 -3k

The interaction matrices for NN spins anb bonds have

L -1 2 =2 similar structure:
T@__ — —
W=zl 2 -1 =2 (76 32 =3 0
-2 -2 -1 -
and 0 o 7/
L —(1%2s) -1 1+2s 712 0 0
~ ~ 1
T(Io,c>:§ -1 —(1%=2s) 1%2s (77 M 125~ 7 0 —-32 =3]. (84)
1+2s 1¥2s -1 0 +3 3/2
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terms are generated as shown in Figgbl@nd 11a). It is
noticed that these terms have a similar frustrated nature:
summed over all the bonds, they cancel each other exactly.
Thus, only a small gap is expected from these interactions.

Physically, the structure of anisotropy interactions is de-
termined by local correlations of the angular momentum, and
can therefore be traced back to noncollinear arrangements of
these correlations shown in Fig(@® For instance, the lead-
ing, “cubic” term [see Fig. 108)] reflects that, components
are correlated ferromagnetically along theaxis, whilel,

(I,) components are parallel alorg(b) axes.

FIG. 10. Schematic representation of the structure of symmetric In the state (b), the leading anisotropy interaction in the
spin anisotropy interactions &, symmetry. Interactions along dif- ab plane is given by SIZS]-Z and that along the direction is
ferent bonds are denoted hya;, which should read a§,S;,  obtained to be- 'S’ [as can easily be seen also from Fig.
times an overall interaction constant given below each figure. Fop(p)]. The number of bonds with anisotropic interaction
instance, a-bond interactions are— %észsz and SA(SxSix — /S’ is two times larger than that with S'S/ . This breaks
~SySjy) [note ey(3z°—r7)- and ey(x°~y?)-type symmetry,  yho rotational symmetry in a spin sector even in the classical
where the_ consta_rA is _defln_ed by Eq(80). Over_all c_ublc symme- limit, and generates a large magnon g&p. :%\/ESA
try of the interactions is evident for both contributions. - - : - g

Antisymmetric DM interaction appears in a second order
_ ) ) ) . perturbation theory as a combined effecttdfz and H,.

Symmetric anisotropy interactions can be classified acthe remarkable feature of the orbital state | is that leading
cording to cubic invariants: there are terms&fandty;  terms in SE interactions, which are proportional @, (
symmeties, genAerated by diagonal and nondiagonal elemengsrz) in Eq. (2), do not contribute to the DM interaction.
of the matricesM;; , correspondingly. For convenience, we That is because of the classical expectation valug;pfin
show the interactions for the stat@)l in Fig. 10 and Fig. Eqs.(4) and(8) vanishes in our orbital states. Rather, much
11(a), in which bond dependence, direction of spins, and th&maller Hund’s coupling terms proportional to the small
scale of individual anisotropy terms are shown. EBgesym-  number ¢, —r,) only give rise to DM interaction. This fea-
metry anisotropy in the Fig. 18) has been discussed in Ref. ture contrasts with that in the orbital state reported in Refs.
13 under the name of “cubic” anisotropy in context of mag- 15,23-26, in which a large DM interaction is preséste
non gap in LaTiQ. A remarkable feature of this interaction Appendix B.
is its intrinsic frustrations: namely, treated classically, it ac- After somewhat tedious but straightforward calculations
quires a rotational symmetry in spin sector, resulting in arpne obtains the following interaction between NN sites:
infinite degeneracy of classical states. An accidental pseudo-

Goldstone mode, which appears in classical limit, can ac- HO) — DENDE (85
quire finite gap by quantum fluctuations only. In the present DM == (
orbital ordered states, the symmetry is lowered compare‘z_l| th Tl© read
with the orbital liquid state in LaTiQ Thus, additional ' '€'€ e matn reads as
) . 2c—2s 1 c+s
/ ) N<c):§ 1 2c+2s c-s|, (86)
ct+s c-s -2

and the interaction constabx is obtained as follows:

rl_rz )\

D=Jsg—%—

6 Ao @

Transforming the local spin axes to the global ones, one ar-
rives at the following DM interaction:

F!G. 1. Left: Schematic representation of the structure of sym- H(Li)j'\)I _ Dai_ ) (é x$), (89)
metric spin anisotropy interactions bf; symmetry. The notation ! !
(ap);;i stands forS;,S; 3+ S 3S: , multiplied by interaction constant L3 ~ .
3A/4. Black arrows ]rgpresﬁel%t the direction of spins favorable forVith dij= a; . Here, aj is the unit vector parallel to one of
this interaction when the direction of the uniform moment is takenlOC@l axes &;, y;i, andz;) which is perpendicular to thej
along[001]. Right: Antisymmetric DM spin anisotropy interactions Pond direction and antlpatallel to its counterpart at .S[tfﬁ'e
[Eq. (89)]. Gray arrow denoted b@ij shows the orientation of DM~ Fig. 2@]. For example,d;3=(1,0,0), d1,=(0,1,0), dig
vectors on different bonds. A preferred spin pattern for this interac=(0,0,1), etc. For convenience, we show the DM interaction
tion is shown by black arrows. for state (a) in Fig. 11(b).
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C. Spin waves: Comparison with experiment wil 0)=ZSJ\/X|2[Y;2— a(c,— CX)S?,], (91)

Now, we discuss the anisotropic spin interactions in the NP _ (1 _
context of the experimental observations of magnon disper\fvhere >£k_(1 v)ta(l-cy), ,Yk_(l y1)+§(1 CX,)’

sion in YTio3.lO and a=A/3J represents the ratio between anisotropic and

Cubic symmetry of the spin wave dispersion: This puz_isotropic interactions. Finally, by calculating the zero-point
zling observation is naturally explained by the present™agnon energy, we obtain the ground-state endigyper
theory, as ferromagnetic couplings in all the states | and Ifite- In the limit of <1,
are perfectly isotropic)®=J® =3  The reason is high 1 1
symmetry of the orbital ordering patterns, as can be visual- Eo(0)=—-2J8S+1)(1+a)+= 2 wi(0)
ized from Fig. 4. It is stressed that this result is robust, “no 2 27
fine-tuning” property of the modelThe isotropy is expected
to be relaxed somewhat by lattice distortions. However, ef-
fects of two types of distortions, that is Ti-O-Ti bond angle Here,K . represents an effective spring constant. In the case
distortion and elongation of TiQoctahedron, on the anisot- of a<1 which we are interested in, the spring constant is
ropy of spin couplings are opposite and almost cancel eachiven byK,=A2R/zSJwith

= —const+ Ko¢S?62. (92

other?’)
Isotropy in spin space, magnon gap: Magnons in Y4[iO y%
are almost gaple&S(upper limit for the gap is 0.3 meVthis R= 3% -y, ~0.28. (93

is a serious test for possible orbital orderings. We show now
that high symmetry of orbital orderings in the present theoryThe potentialEy(8) in Eq. (92) can be associated with an
resolves this problem as well. The crucial point is the frus-effective uniaxial spin anisotropy Hamiltonian

trating nature of the anisotropic spin interactions obtained

above: Even though anisotropic couplings on an individual ani_ _ zcz

bond are substantial, there is cancellation of classical contri- et Keff(%c 5 59
butions stemming from different bonds, and one obtains only

small gaps of quantum origin. We illustrate this by consider-gener"’lted in the symmetry-broken phaseh spins oriented

ing first the leading cubic term. along [001]).~ Therefore, one finds a magnon gap, .,
Quantum magnon gap by cubic ter@onsider the effec- =2SKer=2A’R/zJ. Note thatA,q is independent ofS
tive spin Hamiltonian in the statdd) given as follows: and is proportional té\?. We confirmed that the same mag-
nitude of the magnon gap is derived frafy using single
Ho=Hjo+ Hani= — 2 [Jé . §j +~Asl(y)SJ(y)]_ (89) mode approximatici (see Appendix € Thus, cubic anisot-
(i1 ropy gives the magnon gapmag=2(§A)2R/zJ.
Here, H,., represents the isotropic SE Hamiltonian. Coeffi- NOW, we estimate the coupling constaatFrom Eq.(80)

. . ~ . with  r{Jgsg~60 meV and 7~0.12, one finds A
cient of the cubic term i&\=7/8A [see Fig. 108)], and axes 17SE i 7 ’ . X
in the spin space are changed [gf ngsxgi)%y and & =23(\/Ajc)?. As discussed in the preceding section, we

- o considerA .~ 1.5r1Jsg~90 meV. Using the atomic value
— S such thaty corresponds to the direction of thg pair. > loc 5 1VSE . ) X
Thus, we have- SiZSjZ for ¢ bonds,—Sf‘S}( for a bonds, and Nat=19 meV; one obtains theA=1 meV consistent with

the experimental value ok obtained in Ref. 10 from mag-
—8/s! for b-bonds. g 9

. . o ) non spectra. With this value &, the magnon gap from the
Because the effective spin Hamiltonighy has a discrete . pic term is only~0.03 meV in the state (a).

(cubig symmetry, magnon excitation is expected to have a o, the other hand, a large classical magnon gap,

gap. However, due to the rotational symmetry of ERf) in —1/2SA~1.2 meV is obtained in the statéb), as we al-

the limit of classical spins, linear spin-wave theory cannotregdy discussed in the preceding section. This allows us to
provide finite gap. This problem is resolved by the order-

; . . : exclude the orbital ordering structur@) from possible can-
from-disorder mechanisi,which selects a particular clas- 9 reo) b

sical state which provides the largest zero-point energy whedldates for YTIQ, although we do not know precisely which

Rind of latti istortions favor ver configuration
fluctuations are included. This opens also a magnon-g&p. I(b)d of lattice distortions favor statéd) over configuratio

Thus, we calculate spin-wave contribution to the ground
state energy as a function of the angldetween the axis
and the uniform moment. First, we rotate the spin quantiz
tion axes around thb axis:

Contributions from the other terménisotropy ofeg(x2
—y?) symmetry[see Fig. 1(b)] can be analyzed similarly;
&yve find that it also supports an easy magnetization axis along

one of the cubic axes, s§@01]. Its contribution to the mag-

Sf‘=cg§f‘+sﬁ§, non gap,Amagf6(§A)2R/2J20.014 meV, is smaller than
that of the cubic term, as expected.
S=—s §x+c ’SZ (90) Once the[001] direction is chosen as the direction of
- 4 0= »

uniform moment, spin anisotropy termstgf, symmetry and
where c,=cosé and sy,=sin 6. Second, by using Holstein- DM interactions give rise to spin cantings as shown in Figs.
Primakoff approximation, we obtain the magnon dispersionill(a) and 11b). The canting angled is given by 6
which shows explicit) dependence as ~(3/2y2)(Al43)=0.1 rad fort,q symmetric anisotropy in-
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teraction, andd~ \2(D/4J)=0.07 rad for the antisymmetric which should show up beloW,,,, may help to identify
DM interaction.[DM interaction constanD~0.57 meV is  order symmetry. For 4, ,0) [(100 in orthorhombic nota-
estimated from Eq(87)]. These values are within the experi- tions| scattering these dependences are obtained as follows
mental canting angles0.17 rad'® Finally, contributions of _

t,q symmetric anisotropy and DM interactions to the magnon | g (m,7,0) % SiNF2¢0 (96)

gap Apqq are estimated as-4JS0%(tz) ~0.05 meV and  for o' polarization(see Ref. 31 for notatiohsand
~4JSH#*(DM)~0.03 meV, correspondingly; these numbers

are rather small again. It should be noticed that a more quan- | o (77, 77,0)%(COS 2p SiN B+ Sing c0SHg)?  (97)
titative analysis of the problem, in particular the precise

’ H 1 1 —
structure of the spin canting pattern, requires consideratioﬁOr o-m p_olar|zr_:1t|or_1.(AZ|_muthaI a_nglegc_>—0 corre_sponds
of all the anisotropy terms on equal footing, which will be to the configuration in which the diffraction plane is parallel

presented elsewhere. to thec axis) Scattering intensities a?;l and ﬁs (which are

To summarize this section, we have obtained spin anisotcontributed byT, and T, components, respectivglgan be
ropy interactions induced by the spin-orbit coupling, andobtained from symmetry considerations.
considered their effects on spin-wave spectra. Because of It is still a controversial issue whether the resonant x-ray
high symmetry of the orbital ordering, particularly in the Scattering, observed in YT is related to orbital order or
quadrupole ordered statéal, magnon dispersion is found to lattice distortiongsee Refs. 17,26,33Either way, we expect
have cubic symmetry, magnon gap is small, and there arthat the orbital order contributionf present must be tem-
small cantings of spins away from theaxis. All these ob- perature dependent reflecting orbital order/disorder transi-

servations are consistent with experiment. tion, as in the case of manganites with strong orbital order.
Therefore, a careful analysis of tHedependence of reflec-
VIl. ORBITAL CONTRIBUTION TO THE RESONANT tions at orbital ordering vectors is desirable. .
X-RAY SCATTERING Above discussion brings us to the problem of the orbital

ordering temperature in YTi© Thus far, there are no reports

We turn to the discussion of further experiments whichon the orbital ordering temperature in YTj@weak struc-
may help to verify the proposed orbital state in YEiGrirst,  tural change at spin ordering temperatfine only an indi-
we consider the resonant x-ray scattering, which has proverect indication. In our SE-model picture, we expect that this
to be a useful method in the study of orbital ordertransition should occur at low temperatures only, and we
symmetry*¥The following section will be devoted to pos- suspect in fact that orbitals in YTiQdo order at ferromag-
sible ways of detecting orbital excitations. netic spin transitioil . This is because of the strong spin/

We focus on the orbital statéa) [which is the most plau-  orbital coupling, and also because of frustrated nature of
sible candidate as discussed in previous secliohile the  orbital-only model itself, which, as we have shown, may
exchange bonds in this state are the saimgortant for the  develop long-range order on a cubic lattice at zero tempera-
isotropy of spin waves a local symmetry is lower than a ture only. Lattice distortions that open a finite orbital gap
cubic onefsee Fig.(4)]. Thus, orbital order may induce spa- allow finite-temperature transition, but this cannot occur
tial modulations of the level structure of an excited photo-much above the ferromagnetic transition, because of strong
electron inp states via the so-called Coulomb mechan®m. disorder introduced by spin fluctuations in the paramagnetic
This may lead to additional weak reflections at orbital orderphase. In other words, orbital order and isotropic spin ferro-
ing vectors. Predictions of our theory for such an experimeniagnetism are intimately connected, supporting each other.
are as follows. Orbital order shown in Fig{I¥is identified  Physically, this implies that short-range ferromagnetic corre-
as a three-component quadrupole ordering,gfsymmetry, lations are of vital importance for orbital ordering, and vice
Ta(ﬁ) with a=Xx,y,z. Each component has its own propa- versa.

gation vector: namely, A quantitative description of the finite-temperature behav-
o ior of a realistic spin-orbital model is complicated. We may
To= (Il + 1 ,)r=3QeuR, give only very rough estimation for the orbital ordering tem-
perature based on a mean-field picture. As we are going to
Ty=(Ld 11 )a= %Qeidzfi, ignore fluctuations completely, this estimation should be re-
garded as an upper limit, which we would like to know. To
T,=(Idy+ 1,1 )a= %Qeida-fi, (95  this end, we consider a spin paramagnetic phase an(céset

R . . -§j>=0 in Eq. (1), neglect in the orbital interactiorA:,(jV) in
whereq; =(7,0,7), 4,=(7,7,0), andqs=(0,7,7). As or-  Eq.(23) all the terms except those which contain an emerg-
der parameteQ is strongly suppressed by quantum fluctua-ing quadrupole order parameter. This leads to
tions (Q=0.19, see Sec. llI B we obtain that each compo-

nent has only a small amplitude, giving,|?>~0.016. This 1 A A LA A

implies that the corresponding anomalous Bragg intensity is Hon==3; % QiQjz= —5(Q)Qiz- (98)
at least 60 times weaker compared with the classical orbital

orderings. It might therefore be very difficult to single out From Eq.(98) we obtainT,,,= (in units ofr,Jgg), which,
this contribution. However, new azimuthap) and scatter- including the Ti-O-Ti bond angle =142 deg) correction
ing (#s) angular dependencies of an additional intensity,for YTiO3, reads as

205109-16



THEORY OF ORBITAL STATE AND SPIN . .. PHYSICAL REVIEW B58, 205109 (2003

Torn= €0 0(r 1 3% =0.1(r Q). (99) » - - - - -

On the other hand, spin orderitimean-field temperature is 20k i
Te=2|J], with J=-0.03¢,J) given in Eq.(73. Both

Top @nd T should, of course, be reduced by fluctuations
(indeed, withJeyo=—2.75 meV1° one obtains mean-field £
Tc=48 K instead of observed 27)Kso it makes more sense 8
to consider their ratio, which is =>§

Torp/Tc=2.2. (100 Sr | ]
I 1
For Tc~25-30 K (which is sample dependenthis gives 0 ! . -
an upper estimatioii,,,~55-70 K. We would like to think 0.0 02 04 06 038 1o 1.2
that local orbital order, accompanied by short-range ferro- i

magnetic correlations, starts to develop at these tempera- . )

tures. In fact, the presence of such correlations in %TiO FIG. 12. .S(.’I.'d ",Pe: Imaginary part of the local angular momen-
below ~50—60 K has been reported from several experitu™ Susceptibilityyioc(w) [Eq. (102] in quadrupole ordered state
ments:(i) sharp drop in NMR relaxation rate, which has beenOf orbitals. The energy is given in units ofWor, defined by Eq.

- . 24 . (67). A finite gap for the orbital waves stemming from symmetry
speculated in terms of orbital Orde”%(”) electron spin- breaking interactions is taken into account according to (B6)

resonance line shape changes from typical paramagnetic sig;

e orda (ii ) . ith parameters = 0.086 ande = 0.18 (this givesW,,,=2r,Jsp).
nal to the ferromagnetic one(iii) weak quasielastic mag- The sharp peak structure is expected to be smoothed by damping

netic scattering is observed abovg.*° effects(not accounted for in the present stiidgs indicated by the
broken line.
VIII. ANGULAR MOMENTUM FLUCTUATIONS:
DYNAMICAL MAGNETIC SUSCEPTIBILITY In order to account for a finite gap induced in the orbital
) ) . } _~ sector by lattice distortionsee Sec. Y, we use hereafter Eq.

I_n this section, we would like to ca_llcul_ate or_bltal contrl- (g6) for the orbital excitation spectrum. The numerical result
bution to the inelastic neutron-scattering intensity. The poing,, Xlo() is presented in Fig. 12. The sharp structure about
is thatt,g orbitals are magnetically active, as their angularWOrb (taken as an energy scale in the figuerelated to the
momentum may directly couple to the neutrons. Of courseq piton band-edge effects, which should go away when
there is a contribution also in nonmagnetic channels: Th?jamping effects are properly taken into account.
orbital quadrupole moment is coupled to the phonons, and sk turn now to the momentum dependence of dynamical
hence single or double orbitqdepending on the structure of - ~ - . .

susceptibility, x(q,w)=(lg-1_g),,- This quantity deter-

this coupling may be excited by neutrons indirectly via lat- >~ \ ! S -
tice vibrations. We focus on the magnetic scattering, an ines a dynamical structure factor, which®t0 is given

calculate orbital angular momentum dynamical susceptibil- y

ity. If the t,4 orbital level is split up by strong lattice distor- R 1 R

tions, one would expect just a local, crystal-field transitions. S(q,w)=—Imx(q,w). (103

In SE-driven orbital picture, advocated in this paper, angular ™

momentum fluctuatios are however of the collective natureA noncollinear, four sublattice orbital order leads to the fol-

Thus, we expect momentum selectéthough strongly lowing structure fOVX(a,w)i

damped transitions, forming broad bands.
x(4,0)=5[x1(q+d1)+ x2(q+d2) + x2(q+as) 1,

A. Quadrupole order

Consider first local angular momentum susceptibility + i[X2(5+52)_X2(5+51)]w+%[2X3(a+53)
Xioc(®) in the quadrupole ordered state. It is defined as V3

Yoo @)=(T- T, (10 —X3(A+01) = X3(A+02) ], (104
o ) ) Here, the orbital ordering vectors
and its imaginary pa_rt des_crlbes spectral shape of the
[ir:)?]rhentum-mtegrated inelastic neutron-scattering cross sec- ﬁl=(77,0,77), ﬁz=(77,77,0), a3=(0777,7.,) (105
In a linear orbital wave approximation, the imaginary partfor the state(a) and

of x10c(w) at w>0 is given by - . .
q1=(7T,7T,7T), QZ:(W!’JT!O)v q3:(010177) (106)

Y 1 1 for the state(b). The susceptibilities
oo @) =72 | 80— w10) + — (0~ w0 |. P

k w w > ~ ~
- 3 (102 Xa(G,@) = 3T T ), (107
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tum resolution and smooth away sharp structures obtained in
Fig. 13 by using undamped orbital waves.

g B. Orbital magnetic state

For completeness, we also give equations for the mag-
netic response of the magnetically ordered state of orbitals.
In contrast to the quadrupole ordering, this state gives rise to
static Bragg peaks of orbital origin. These peaks are located

40 >
E at orbital ordering vectorsg; [Egs. (105 and(106)]:

0.6

0.4

0.2

00 (T4 T_gy=5m)?8(d—G1) + 8(d— )+ 8(q—da) ],
(000) ©m  (mm  (@w0)  (000) (109
FIG. 13. (Color onling. Intensity of the orbital contribution to @nd their intensity is determined by the orbital magnetic or-
the magnetic structure fact&(q, ») [Eq. (103] in the quadrupole der parameterm =O.19[Eq. (_?.’8)]; o
ordered state(#). Energyw is given in units oM,,,, defined by Eq. The dynamical susceptibility(q, ) is given by the same

(67). Afinite c_)rbital excitation gap due to symmetry-_breaking termsform as Eq.(104) with X1,2,3(a,w) having the same defini-
(see for details Sec. Ms taken into account according to H§6)  tions given by Eqs(107). In the orbital magnetic state, these

with parameterd =0.086 ande =0.18. susceptibilities are obtained as follows:
x2(d,0) =3 =TT 5, o T 1
R Xi(0,0)= 7| — (0= w19)+ — 8w—wsy)
- L/TXTY L TYTX “1 “2q
X3(q’w)=5<|dl—d+ldl—d>‘” (110)
are defined in a rotated basis given by the transformation i@nd
Eg. (19. We calculate these susceptibilities in a linear
ital- imati imagi ' v TY23 Y1 K Y1~ K
orbital wave apprommaﬂon. The imaginary partaf(q, ») X A0, 0)= Sw—wig)— S(w—wy3)|.
at w>0 is obtained as 4k | wyg Wag
1, . 1+y,+tk
;XQ(Q!O)):AQ - Sw— wli) IX. SUMMARY AND DISCUSSION
“1q In this paper we investigated a spin-orbital superexchange
1+ y,— K Hamiltonian in a Mott insulator With%g electron configura-
+B,—————d(w—wy), (108  tion, focusing mainly on the orbital order and dynamics in
W2q the spin ferromagnetic state. An important feature of the

where A;=B,=1/2, A,=—B,=7,/2k, and A;=—Bs Hamilt_onian in the spin polarized state is t_he large frustration
= y3/2k. _of orbital states, thus _the grounq state is governed by the
. - . interplay between orbital frustration and quantum fluctua-
. querlcal result.s fosﬁq"*’) in the state (a) are shov!n tions. On the classical level, there islacal Z, symmetry
in Fig. 13. An intensive hot spot at momentum  \yhich leads to an infinite degeneracy of classical configura-
=(m,m,m) at energies about orbiton gap, and flat dispersiongjons. Long-range orbital order does occur in the model by a
at (m,,q,) direction are noticed. The rather complicated quantum order-from-disorder mechanism, which selects a
multiband structure has its Origin in noncollinear nature of articular Ordering patterns_ Orbital orderings are quite un-
the underlying orbital ordering, characterized by a several;sual having highly noncollinear four sublattice structure,
ordering vectorslIn the state (b), which has different order-  and provide the same spin couplings in all cubic directions.
ing vectorsq;, S(q,w) shows different energy-momentum  Besides classical local, symmetry which is removed by
structure(not shown]. The energy scale for orbital fluctua- quantum dynamics, there are exact conservation laws in the
tions (~W,,p,~2r1Jsg) is much larger than magnon ener- orbital Hamiltonian. They are related to the conservation of
gies. This is because of strong cancellation of ferromagnetiorbital quantum numbers in the SE process, and lead to a
and AF contributions to the spin-exchange integialsee  multitude of degenerate quantum ground states which can
Sec. VI A), resulting in rather small magnon bandwidth smoothly be connected to each other by phase rotations of
(which is only a fraction ofr ;Jsg). Therefore, magnon ex- the complex orbital order parameter. Such continuous rota-
citations are expected to be well defined, since they are Iaions generate orbital Goldstone modes, which have 2D dis-
cated within the orbital gap. As for the high-energy orbital persion because of planar geometrytgf orbitals. As a re-
excitations, we expect strong damping effects stemmingult, static orbital order sets in at zero temperature only.
from nonlinear couplings between orbital waves themselved)egenerate quantum ground states are physically different:
and also from the dynamical coupling between spin and ordepending on the phase of the orbital condensate, they de-
bital fluctuations. These effects should in fact relax momenscribe quadrupole or magnetic orderings or their coherent
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relations are more antiferromagnetic, supported by noncol-
linear orbital orderings. To the left, the genuine ground state
of thet,y superexchange, an orbital disordered state support-
ing spin AF is stabilized. In the proximity area, a fluctuating
part of the overall superexchange interaction dominates, and
Spin: F separation of the spin and orbital degrees of freedom might
Orb.: “AF” no longer be possible. This scenario can be tested experimen-
tally by investigating the spin and orbital transition tempera-
tures under high pressure and magnetic field. On the theoret-
ical side, a quantitative description of the transition between
ferromagnetic and AF states, controlled by orbital order-
disorder transition, remains an interesting and challenging
. problem.
® Further, in order to discuss the recent spin-wave data in
La ~—— bond angle Y YTiO3, we derived the low-energy spin Hamiltonian by in-
<—pres51t1_reld— cluding a relativistic spin-orbit coupling and lattice distor-
magn. e tions that induce the orbiton gap. Using this Hamiltonian, we
FIG. 14. Proposed picture for the evolution of magnetic andqg|cylated the magnon gap and found that it is very small
orbital states in perovskite titanatd and Ty are Curie and Ne because of high symmetry of the underlying orbital order.
spin orde_ring tempera_ltures, respecti_vely. Qrbital ordering belowggih the real and the spin space isotropy of the spin-wave
Tor=Tc is expected in ferromagnetic region. BeloW, short-  gnac1ra observed experimentally find natural explanations
range ferromagnetic-type spin and noncollinear, dominantly “AF”- within the proposed theory.

type orbital correlations grow up. We also calculated the orbital contribution to resonant

mixture. Extrinsic perturbations, e.g., lattice distortions orX-fay intensity and to dynamical magnetic structure factor.
spin-orbit interactions may remove the degeneracy and ﬁfredlcUor)S made should be helpful in further experimental
the phase of the condensate. Reflecting the large quantuftudy of titanates.

fluctuations, the orbital order parameter is unusually small.

We found that the orbitally ordered ferromagnetic state is ACKNOWLEDGMENTS

slightly higher in energy than the spin-AF orbital liquid state.
This is because the latter state gains an additional quantu
energy from coupled spin-orbital fluctuations. To explain fer-
romagnetism of YTiQ, we emphasized the role played by
Ti-O-Ti bond angle distortion. This distortion favors fer-
rostate by generating an unfrustrated ferromagnetic SE inte

action via virtual hopping of electrons between Ny and work was carried out, for its kind hospitality. S.O. acknowl-

ﬁ?’:\toers Igj:lbsil[ aEleeor;tn:T:)(;g éggcr)]gagtlghtshz tl):rntldolfg(iatgllonaehn;:; efnges the hospitality of Max-Planck-Institutr fEestkoper-
P 9 gap, orschung in Stuttgart during his several visits.

that orbital order becomes stable at finite temperature. This
distortion stabilizes the quadrupole ordered state.

The strong competition between AF to F states in the APPENDIX A: BOND DEPENDENCE OF QUADRUPOLE
present model has direct relevance to nearly continuous tran- MOMENT OPERATORS
sition between these states observed in titanates. In these | this appendix, we present the explicit expressions for
compoundsA-site substitution from La to Y increases the Q(”, T By replacingl, in Egs.(24) with 1) one ob-
Ti-O-Ti bond distortion, hence changing gradually a delicate,ig “ “
balance between AF and F states. Because of the orbital fluc-
tuations, spin-exchange integral on every link experiences —cQy+sT, for y=a(b)
strong fluctuations, both in amplitude and in sign, and the f(y)=[
system may develop either an AF or F state depending on
local orbital correlations. In this picture of “fluctuating ex-
change bonds,” the magnetic transition temperatdrgsnd Tgy)zl
Tc represent only a time averaged static component of the
spin couplings. Its value is only a fraction of full superex-

Spin: AF
Orb.: liquid

We would like to thank B. Keimer and S. Maekawa for
rsqimulating discussions. Discussions with C. Ulrich, S. Ishi-
hara, T. Kiyama, M. Itoh, and J. Akimitsu are also acknowl-
edged. One of u$G.K.) would like to thank International
Frontier Center for Advanced Materials at the Institute for
Materials Research, Tohoku University, where a part of this

Q, for y=c,

—cT,=sQ, for y=a(b)
T, for y=c,

change energy scale, and can gradually be tuned by external T(y):( —CT,+sT, for y=a(b)

forces such as lattice distortion, pressure, etc. We think that X T, for y=c,

weak orbital order may continuously evolve in titanates

when the bond angle decreases below a certain critical value, —cTy=sT, for y=a(b)

and he phase di in Fi i T = (A1)
propose the phase diagram shown in Fig. 14. The sign of y T, for y=c.

the time-averaged spin coupling depends on a local correla-
tion of orbitals. To the right of the critical point orbital cor- T¢} is given by T} =T =T
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APPENDIX B: COEFFICIENTS OF BOGOLIUBOV
TRANSFORMATION

We present the coefficients of Bogoliubov transformation

which diagonalizeHqy, in Eqg. (28). This transformation
reads as follows:

ag=ucoshfa;+vcoshbra,i

—usinh 01a _Q smheza

2-k’

bg=—v coshf,ax+ucoshb,ax+v smhé'lal by

—u sinhaza;_lz. (B1)
The inverse transformation is given as follows:
1= U coshf,a;—v coshd;b;+u sinh 015:;
—vsinhob’
aze=v coshf,a;+U coshd,bi+v sinhd,a’ -
+usinhob’ (B2)
Here,u andv are
1
U= —~[14 22 (B3)
\/5 K
and
1 Y2
v \/E K gr( ’YS) ( )

respectively, and, , is given by tanh?, ,= vy, * «.

APPENDIX C: MAGNON GAP BY SINGLE-MODE
APPROXIMATION

PHYSICAL REVIEW B 68, 205109 (2003

>

F(V) 225 ala ar
& AE 73< K k> \/§72< K —k>

(S5S_i—0=2(1+akao). (C3)

Expectation vaIue$aEa,;> and(aEaL;} are calculated at

=0. Up to linear inA terms, one obtain@aEaQ:O and

A cx—cy ca
< k _k> 223 1—y, (€4
Consequently, we find the magnon gap
2AR
®G-0= 57 (CH

whereR is given by Eq.(93). This is exactly the result ob-
tained in Sec. VI C.

APPENDIX D: EFFECT OF ORBITAL EXCITATIONS
ON THE MAGNON DISPERSION

In Sec. VI A, we discussed the renormalization of nearest-
neighbor isotropic spin coupling by orbital fluctuations.
Here, we investigate this effect in more detail, by consider-
ing effects of the dynamical spin/orbital coupling on magnon
spectra. In terms of magnay and orbitonaa ,Ba operators,
the dynamical spin/orbital coupling in E¢69) is expressed
as(in units ofr{Jsg)

Hip=— E s sp[QFO(a a_ *+535 )

pqq

+(Fy+Tp)alal+ (M —T>)

ol
Q.+
ol
o+
|
N
!
W
o)

Zt et
'O

+H.c.,

We examine here the magnon excitation gap, generated by

cubic anisotropy interaction given in Sec. VI B, by using a
namely, we apply single-mode
approximatiorf® In this approximation, spin excitation en-

different approach:

ergy atﬁ—>0 is given as follows:

R _<[[Sar ’HS]!S:a]>(i~>O
T (SIS a0

whereHg is given in Eq.(89) with S¥=5 sP=9 and

(CD

S{9=g7. Double-commutator correlation function in the nu-

merator of Eq(C1) is equal to=;;T'{"’, where

rP=-ASS-3(S S +S ),
rf=—ASS-4s's =S 5,
rif=-A(-25'5+5's)). (C2)

By using linear spin-wave theory, one obtains

wherep’ =p—q—q’. FactorQ= 0.19 stems from Hartree
decoupling of theQ;,Q;, term in Eq.(23). 'y andT'j(—; 2 3,
are given as follows:

Po=1+ y1g+q'— Y1p~ Y1d+q'—p

Ti=vigt viqg = Yig-p— Yig —p - (D2)

Second-order perturbation with respectHg,, gives the
renormalization of magnon excitation energy ag= w%o)

— dwy. Here, magnon softeningw;; is given by

M(1+N\)

(1)1&"‘ (A)la/‘l‘ (1)5/_(1)5

M(1+X)

: (D3)

(1)1&"’ (1)2&/ + (1)51 - (1)[3
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where wy ;= (12— y2)*? with y.=y,*« correspond to 14
two orbiton branches. The orbiton chemical potengiaton- I
trols the orbital gap. Magnon energy, that enters in this 1.2 i 7T~ 1
equation is considered to have a NN Heisenberg form . | ’ A ]
3[J[(1— 7y1g). The matrix elements in the numerator have a l
following structure: 08 | i
T, L
M=(T1+1To)%(1+x)+T5(1+y)+T5(1-y) S o6l ]
+2(T1+rTg)(Tyc+T5¢5) + 2,05z, (D4) 04 | ]
where i
0.2 i
= M2+7+d7+d/_wldwld/ 00-
2015015/ ’ (000) (00m) (rrm) (xn0) (000)
TP FIG. 15. Solid line: The reduction of the magnon enefgy, (in
__ M Y+a" Y+’ Q units ofr,Jgg), calculated from Eq(D3). Broken line is a function
14N 20000 3(83)(1— y,5) with 8J=0.2, showing that the effect afw, can
1q@W1q p p
fairly be regarded as an effective reduction of NN spin coupling.
X=(Y2qY2q' T Y3qY3q' ) KqKq! » _ o
the ratio of small momentum spin stiffness to full magnon
Y=(v2qY2q'— Y3qYaq' ) KGKq » bandwidth as compare to the NN Heisenberg model. We
should notice however that more quantitative predictions are
Z=(Y2qY3q’ + Y3qY2q' ) KgKq' » (D5)  not possible at the present stage of the theory for rather ob-
q vious reason: A dynamical spin-orbital interaction is strong
an (with the coupling constant being of the order of o0 a
) ) ) ) more elaborate treatment is needed to quantify the strongly
o=l Y2 _Ysa, Vs (D)  correlated model under consideration.
Kd Kir Kd Kar

band orbi . db /(AjPPENDlX E: EXAMINATION OF SPIN INTERACTIONS
Interband orbiton transitions are represented by a secon IN THE PREVIOUS ORBITAL MODELS FOR YTiO 5

term in Eq.(D3). To obtainM andX, one should just replace

Kkg — — kg in the above equationéThis also leads te; In this appendix, we examine the magnetic interactions in

— g in X andr). One can verify that the functiofiwg the orbital state previously reported in Refs. 15, 23-26, in

has a cubic symmetry in a momentum space. This property jarder to check whether this state can explain recent neutron
guaranteed by the high symmetry of the underlying orbitaSCaltering results on the spin couplings, spin canting and

order in any level of approximations. The longer-range,Ma9non gap. , . _
next-NN spin couplings might, of course, be dynamically _The Heisenberg spin-exchange coupliRgst, we discuss
generated by orbital fluctuations. bond dependence of the isotropic spin interactions. The or-

We show the numerical result for magnon renormalizatiorPit@! state reported by Hartree-Fdtland band-structufé
Swj in Fig. 15. For magnon dispersion in E@3) we used calculations are expressed as

|3]=0.03¢ 1,3 =0.05(,Jsp) as obtained from Eq(73), _ N

while orbiton dispersion is calculated with=1.41 which |12 \/n—°|dxy>_ 1=ncldya),

gives orbiton gap=riJseg. As estimated in the main text, P 4>—\/n—|d >+\/ﬁ|d ) (ED)
2,4 — cl¥xy/ — cl™y

such a gap would be induced by nondiagonal hopping To see

a deviation of the magnon remormalizatiéw from the NN with n. being an occupation of they orbital. Using these
Heisenberg form, broken line shows a functioné3Y(1  wave functions, it is easy to obtain from ER) spin-
— 71g) With 6J=0.2. It is noticed tha®J is indeed close to exchange couplings alorg a, andb axes:

8Je11=2/9 obtained in the main text for the reduction of NN

spin couplings. Slight deviations from simple NN model are 99 =32Jsd (r1+r2r3)(1—ng)—(r;—rz)](1—nc)
however visible; in particular, a stronger softening at the (E2)
(7 ) pointis seen. By a numerical fitting, these deviationsgng

can be traced back to the appearance of longer-range ferro-

magnetic couplingsl,= —0.003, J;=0, and J,=—0.007 J@ =23 (ri+r,rg)nZ—2(r;—ry)(1+ny)]. (E3
(all in units ofr{Jsg). This is understood due to longer range
orbital singlet correlations along the cubic directions Jas The exchange interactions are presented as functiops of

corresponds to a ferromagnetic coupling between secondn Fig. 16 for different values ofi,. The “meeting” points,
nearest-neighbor spins along cubic axes. In principle, thesehere J(©=J@Y  are shown by circles for eaaf,. One
corrections could be observable as a slight enhancement &hds that the isotropy point for the state with= 0.5 (sug-
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1.0 T T T T ¥ T £ T i T T T
HOD=A(S1, S50, (E6)

n=05 0.6 0.7
¢ where

~ ri+ro,
A= s

x 2
A_aﬂ) 4nc(1—nc). (E?)

Here, the terms proportional to small numbers<r,) and
(r,—r3) are neglected. For 2-4 bond along théirection

HZO=A(S,,S4). (E9)

Note that spin components correspond to that of active an-
gular momentum and the interaction is of the AF sign. This
originates from the fluctuation of active angular momenta
with AF correlation between NN sites, as can be inferred
n from Eqgs.(E4) and(E5). For the 1-2 bond in thab plane,
H.ni has the following form:

1'5 L 1 " L 1 L "
000  0.05 0.10 0.15 020 025 0.30

FIG. 16. Spin-exchange interactions in mo¢€l) as a function

qf Hund’s coupling.n.for dif'ferzent va]ues Qf thexy-orbital occupa- HganI) %'A(SleZz) + %’A( S1ySax)- (E9)

tion n.. Energy unit islsg=4t“/U. Filled circles show the position ] )

where spin couplings are isotropic for a fixed valuengf Inset: ~ 1he combination of spin components in the last term

The ratioJ@/3() as a function of, for fixed 7=0.24. is different from that of active momenta at sites 1 and
2. Such terms originate from the following processes

gested in Refs. 15,23s right at the bordem=0, but the (combination of operato)s (11,S14(S1,5:)12ySzy)orb »

exchange coupling is of the AF sign there. For langgone  (l2yS2y(S1:5:7)11xS1xdorn, €tc. For 3-4 bond, symmetric

may obtain the isotropy point with F coupling, but this re- Spin anisotropy HamiltoniarH,,; has the same form as

quires too large values of. Moreover, the meeting point is H':, where site index 12) is replaced with 34). It can be

extremely sensitive to botly andn, and requires fine tun- shown thatH,,; does not cause finite spin canting wheh

ing. As shown in the inset of Fig. 16, th#2”/J(©) ratioc  =A/2, whereJ is the isotropic spin coupling. However, it

drastically changes even at a smlist within +5%) varia-  leads to a large magnon gap of classical origin, which we

tion of n., and may even reverse the sign. obtained to be/3AS.
Spin anisotropy interactiondNext, we investigate the ef-  p\ interaction For the 1-3 bond, second-order perturba-

fects of spin anisotropy interactions in the state, &1). We  ion with respect tH, andHgg gives
denote the occupied orbital state described by wave func-

tions in Eq.(EL) by «, while the lowest unoccupied state is H(Dla)zﬁ(C)als.(élxés), (E10
called 8. The stateB has wave function which is a counter- = _
part of that for a a state; e.g. | ¢1) ﬂldm where constanD'® is obtained as

—Jnc|d,) on site 1. Level separation betweenand 3 is 5 A
introduced asA 5. Active components of the angular mo- D©=Jg¢ X 4an¥2(1-n,)%2 (E12)
menta at sites 1, 3 and 2, 4 dreandl, respectively. These apB

are expressed in terms of orbital doublet operators as folbM vectord,sis given asd;s=(—1,0,0). We point out here

lows: that DM constantD(® is much larger tharD in Eq. (87),
obtained in the main text for the SE-driven orbital states. The

r{+r,

(15==i(BTa=a'p), (B4 eason is that the orbital order given by EB1) has not that
and high symmetry, and the terms proportional tg{r»,) in the
_ operatord{?’ do contribute to DM interaction. Therefore, the
(Iy)2a=Fi(Bla=a'p). S ratio DO/Do(ry+r,)/(r,—r,)x1/7y is large.

As usual, the spin anisotropy Hamiltonian follows from per- ~On the in-plane bond 1-2, we find
turbation theory with respect to spin-orbit coupllht(;é()) and H(lg): 10, , (§1>< §z) (E12)
superexchange interacti¢ise. In the SE operatord;;” and

I(]C), the following terms contribute to the spin anisotropy With B@=B@n./(1-n;) andd;,=(—1,~1,0). The DM

Hamiltonian: (i) the terms operating in thg excited states, Interactions on the 2-4 and 3-4 bonds are given by the same

and (ii) the terms connecting a ground statewith excited ~ forms as Eqgs.(E10) and (E12), respectively, whered,,

onesp. =(0,1,0) andds,=—d;,. The DM interaction and related
Symmetric spin anisotropy interactiofhird-order pertur-  spin structure in the orbital mod€E1) are schematically

bation with respect tdHy, and Hgg gives symmetric spin  shown in Fig. 17.

anisotropy HamiltoniarH ,,;. For 1-3 bond along the di- Spin canting and magnon gapirst we estimate anisot-

rection,H,,; is given by ropy constants. We consider the orbital state with+0.6
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FIG. 17. Antisymmetric DM interaction pattern obtained for the
orbital model(E1). Gray arrow denoted b&ij shows the orientation

of DM vectors. Black arrows represent the direction of spins favor-

able for these interactions.

which has a chance to explain tH&=J@ property, giv-
ing isotropic spin coupling about—0.1J5g at 7= 0.24(see
Fig. 17). Given these parameters, one obtains from Hg#).
and(E11),

PHYSICAL REVIEW B58, 205109 (2003

A=11(N/A )2,

D@D =(3/2)D©. (E13

By minimizing classical energy of DM and isotropic
Heisenberg interactions, we find that spins cant away from
the ¢ axis by an angle9~D@?/3,21~3.5(\/A ). Also,
within a linear spin-wave theory we estimate a magnon gap
generated by symmetric anisotropy and DM interactions as
V3AS~9.5(\ /A )| and 45/3|6°~25(\/A ,5)?|J|, cor-
respondingly. With\ =19 meV and|J|=2.75 meV, we ob-
tain that the ratio X/A,z) must be less than 0.05-0.06 in
order to be consistent with the observed canting angle
(~0.17 rad) and an upper limit for the gap-0.3 meV).
Thus, the splitting of the lowest orbital doublat,; should
be at least about 300 meV. However, this is hard to reconcile
with almost equal four short Ti-O bonds in titanates suggest-
ing an almost degenerate doublet picture.

Based on the above analysis, we think that the orbital
state(E1) predicted by band structure calculations is not sup-
ported by recent neutron-scattering experiments in %F©
This is perhaps not really surprising, as a Mott insulator with
orbital degeneracy represents a strongly correlated system,
which is difficult to address in a framework of weakly inter-
acting electrons.

*Present address: Department of Physics, Columbia University, ticed that such a pair-hopping term vanishes in a spin polarized

538 West 120th Street, New York, New York 10027.

IM. Imada, A. Fujimori, and Y. Tokura, Rev. Mod. Phy&), 1039
(1998.

2Y. Tokura and N. Nagaosa, Scien288 462 (2000.

3B. Keimer, D. Casa, A. lvanov, J.W. Lynn, M.v. Zimmermann,
J.P. Hill, D. Gibbs, Y. Taguchi, and Y. Tokura, Phys. Rev. Lett.
85, 3946(2000.

4G. Khaliullin and S. Maekawa, Phys. Rev. Le86, 3950(2000).

5G. Khaliullin, P. Horsch, and A.M. OlesPhys. Rev. Lett86,
3879(200).

6K.I. Kugel and D.I. Khomskii, Sov. Phys. Us@5, 231 (1982.

K. Kugel and D.l. Khomskii, Sov. Phys. Solid Stal&, 285
(1975.

8T. Katsufuji, Y. Taguchi, and Y. Tokura, Phys. Rev.5B, 10 145
(1997).

ferromagnetic state.

173, Ishihara, T. Hatakeyama, and S. Maekawa, Phys. R85, B
064442(2002.

18Shun-Qing Shen, X.C. Xie, and F.C. Zhang, Phys. Rev. 18&t.
027201(2002.

For a discussion of the order-from-disorder phenomena in frus-
trated systems, see A. M. TsveliQuantum Field Theory in
Condensed Matter Physi¢€ambridge University Press, Cam-
bridge, 1995, Chap. 17, and references therein.

20y, N. Popov,Functional Integrals in Quantum Field Theory and
Statistical Physic¢Reidel, Dordrecht, 1983

2IM. Mochizuki and M. Imada, J. Phys. Soc. Jgif), 1777(2001).

22T, Moriya, Phys. Rev120, 91 (1960.

23H. Sawada, N. Hamada, and K. Terakura, Physi@8B-238, 46
(1997; H. Sawada and K. Terakura, Phys. Rev.5B, 6831

9J.P. Goral, J.E. Greedan, and D.A. MacLean, J. Solid State Chem. (1998.

43, 244 (1982.

10¢. Ulrich, G. Khaliullin, S. Okamoto, M. Reehuis, A. Ivanov, H.
He, Y. Taguchi, Y. Tokura, and B. Keimer, Phys. Rev. L&8g,
167202(2002.

113.B. Goodenough, Phys. ReM00, 564 (1955.

123. Kanamori, J. Phys. Chem. Solitl, 87 (1959.

13G. Khaliullin, Phys. Rev. B64, 212405(2001).

G, Khaliullin and S. Okamoto, Phys. Rev. LeB9, 167201
(2002.

15T, Mizokawa and A. Fujimori, Phys. Rev. B4, 5368(1996.

'8In addition to the result of Ref. 13, the opera®” in Eq. (5)
contains morglast twog terms, which result from spin-singlet
electron pair dynamics in the virtuaP excited state. It is no-

243, Akimitsu, H. Ichikawa, N. Eguchi, T. Miyano, M. Nishi, and K.
Kakurai, J. Phys. Soc. Jpia0, 3475(2001).

25M. Itoh, M. Tsuchiya, H. Tanaka, and K. Motoya, J. Phys. Soc.
Jpn.68, 2783(1999.

264, Nakao, Y. Wakabayashi, T. Kiyama, Y. Murakami, M.v. Zim-
mermann, J.P. Hill, D. Gibbs, S. Ishihara, Y. Taguchi, and Y.
Tokura, Phys. Rev. B6, 184419(2002.

273, Okamoto and G. Khaliullitunpublishedl

28T, Yildirim, A.B. Harris, Amnon Aharony, and O. Entin-
Wohlman, Phys. Rev. B2, 10239(1995.

R. P. FeynmanStatistical Mechanics(Benjamin, New York,
1972, Chap. 11.

30A. Abragam and B. BleaneElectron Paramagnetic Resonance

205109-23



GINIYAT KHALIULLIN AND SATOSHI OKAMOTO PHYSICAL REVIEW B 68, 205109 (2003

of Transition lons(Oxford University Press, New York, 19Y7.0 34y, Furukawa, I. Okamura, K. Kumagai, Y. Taguchi and Y. Tokura,
31y, Murakami, H. Kawada, H. Kawata, M. Tanaka, T. Arima, Y.  Physica B237-238, 39 (1997.

Moritomo, and Y. Tokura, Phys. Rev. Le80, 1932(1998. 353, Okubo, S. Kimura, H. Ohta, and M. ltoh, J. Magn. Magn.
323, Ishihara and S. Maekawa, Phys. Rev. L&f.3799(1998. Mater. 177-181, 1373(1998.
33M. Takahashi and J. Igarashi, Phys. Rev68 075110(2001).

205109-24



