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Degenerate three-band Hubbard model with anti-Hund’s rule interactions: A model forA,Cgq
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We consider the orbitally degenerate three-band Hubbard model with on-site interactions which favor low
spin and low orbital angular momentum using standard second-order perturbation theory in the large
HubbardU limit. At even-integer filling this model is a Mott insulator with a nondegenerate ground state that
allows for a simple description of particle-hole excitations as well as gapped spin and orbital modes. We find
that the Mott gap is generally indirect and that the single-particle spectrum at low doping reappears close to
even filling but rescaled by a factor of 2/3 or 1/3. The model captures the basic phenomenology of the Mott
insulating and metallic fullerided,Cqq. This includes the existence of a smaller spin gap and larger charge
gap at even-integer filling, the fact that odd-integer stoichiometries are generally metallic while even integer
are insulating, as well as the rapid suppression of the density of states and superconducting transition tempera-
tures with doping away from=3.
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[. INTRODUCTION It is believed that the charge transfer is complete and that the
influence of the alkali ions is in general, negligible apart
The physics of Mott insulators has emerged as a key infrom changing the crystal structure and the corresponding
gredient in the study of strongly correlated systértagely ~ band theory.
motivated by the understanding that much of the exotic phys- If these were simple metals, band theory would predict a
ics of the underdoped cuprate superconductors has connewetallic state for any doping<On<6 and possibly super-
tions to the undoped Mott insulating state. The basic modetonductivity with transition temperatures which would fol-
for a Mott insulator discussed in connection with the cu-low roughly the density of states at the Fermi energy as the
prates is the large half-filled Hubbard model. For this doping is varied. Experimentally, however, it turns out that
model the low-energy spectrum at half filling is reasonablythe compounds with even-integer doping=2,4) are non-
well understood, but the higher-energy spectrum as well amagnetic insulatofs® and superconductivity is only seen in
the physics away from half filling is still very much an open a narrow range around half fillingi& 3) and with transition
problem. Much of the difficulty seems to trace back to thetemperatures that are sharply maximized HeBand theory
fact that the Mott insulating ground state for this system isaugmented by BCS theory of superconductivity fails to re-
not known. produce this behavior.
Here we will study a model of a Mott insulator which has It is well known that correlation effects are important as
a simple nondegenerate ground state and where we can déese are weakly bound molecular solids with a narrow band-
scribe the spectrum of excited states and explore the physiegidth of ~0.5 eV and it is believed that the on-site Coulomb
at and near the Mott transition in a well controlled manner.repulsion is~1 eV. One might therefore expect that the
The model is a degenerate three channel Hubbard modskstem would be a Mott insulator at any integer filling. This,
which has multiplet splitting on-site interactions that favor however, does not explain why systems with even-integer
low spin and low orbital angular momentum. This model isfilling are generally insulating, while systems with odd-
the simplest model with spin and orbital symmetries which atinteger filling are generally metallic. A second related ques-
even-integer filling allows for a Mott insulating nondegener-tion is why the insulating materials at even-integer filling are
ate ground statéSince the ground state is nonmagnetic, thenonmagnetic. From Hund’s rule, we would expect the high-
spin physics which complicates the single-band Hubbarast spin configuration to be the molecular ground st&te,
model is absent at low energies. Although interesting in itself=1 for n=2 andn=4, and consequently some sort of mag-
as a natural and simplifying extension of the Hubbard modelnetic ground state is to be expected for the solid.
our main motivation for studying this model is that it very ~ One explanation for the violation of Hund’s rule in the
naturally captures some of the most distinctive phenomenolinsulating materials is that the Jahn-Telld) effect coun-
ogy of the alkali doped g compounds, the fullerides. teracts Hund's rule, with the lowest-energy JT distorted state
Crystalline G is a band insulator with a completely filled of the Gy molecule at even-integer occupation being a spin
molecular orbitaf? Doping with alkali atoms, forming singlet® However, a problem with the naive Jahn-Teller sce-
AnCeo, transfers electrons into the lowest unoccupied mo-ario is that static distortions of thes&molecules have not
lecular orbital(LUMO), which according to elementary mo- been detected in solidgg.® Indirect evidence has come from
lecular theory is threefold degenerate. These form three spithe existence of two energy-gap scales in the insulating sys-
degenerate bands according to the band theory of the crystaéms, a smaller spin gap of around 50 meV and a larger
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charge gap of around 500 meV. The larger charge gap iping by a factor of 1/3 or 2/3. These characteristic properties
quite clearly a Mott gap related to the intramolecularof the nonmagnetic Mott insulator are in agreement with
electron-electron repulsion, whereas the smaller spin gap hasevious results on the same modet®
been linked to a singlet to triplet gap of JT distorted Apart from the correspondence with the physics of the
molecule Mott insulatingA,Cgy andA,Cgo Our main conclusion is that

A different scenario for the violation of Hund’s rule sug- Ceo With a filling n=2+x or 4+x of the LUMO band, with
gested by Chakravartgt al*® and Baskaran and Tosatti [x|<1, is best understood asd@ped Mott insulatarmani-
claims that electronic correlations on a,Gnolecule can fested by a charge-carrier concentration giverXjyinstead
break the degeneracy of any partially filled molecular orbitalof n. In addition, the density of states is up to a rescaling
in such a way as to minimize the spin and orbital angulaifactor, the same as that of the noninteracting band structure
momentum. Chakravarty and co-workers looked at a Hubat the band edges=|x| or n=6—|x| for particle and hole
bard model on single & molecule, with strong electron- doping, respectively. If we heuristically extend these results
electron repulsior{U) on each carbon atom, using second-to largerx~1, the observedariation of T with doping, for
order perturbation theory it). The linear inU terms give 2<n<4, follows naturally within any weak-coupling BCS-
Hund's rule with a preferred highest spin configurationlike scenario as a consequence of the rapid drop in the den-
which minimizes the overlap between electrons. The secondity of states close to noninteracting band edges.
order term on the other hand prefers low spin configurations We will not, however, discuss the actual mechanism of
with large overlaps which can take better advantage of virsuperconductivity, i.e., the source of pairing. In particular,
tual excitations of the core electrotfsThe validity of the ~ we will not assume that the intramolecular singlet-triplet gap
qualitative features of the perturbation theory is supported bys necessarily large enough to overcome the Coulomb repul-
exact diagonalization of smaller Hubbard clustérs. sion and give rise to a bare attraction along the lines of the

One important feature of the scenario based on intramcearlier work!®*!In fact, a fit of the parameters of the model
lecular electronic correlations is that in contrast to the statid0 experiment suggests that this is not the case. Nevertheless,
Jahn-Teller distortions the orbital symmetry of the moleculeany other mechanism, such as one based on attraction from
is preserved. More recently, it has also been emphasized inélectron-phonon interactions, certainly needs to include the
series of papers by Tosatti and co-worR&rs’ that Jahn-  strong electron correlations which are present as indicated
Teller phonons treated in the antiadiabatic limit will also give most clearly by existence of Mott insulating phases.
rise to an effective electronic Hamiltonian with inverse  The paper is organized as follows. In Sec. Il we define the
Hund’s rule which preserves the orbital symmetry of themodel and the strong-coupling limit we will primarily con-
molecule. It may thus be difficult to distinguish the latter Sider. Then we derive a perturbative effective Hamiltonian
scenario from the one based on electronic correlations and\&lid in the strong-coupling limit. In Sec. Il we study the
full treatment of both the electron-electron and the electronMott insulator at even integer filling and describe the spec-
lattice interactions to decide which energy scales dominate ium of excited states. We also discuss the distinction be-
asked for. Along these lines a recent density-functional caltween even and odd-integer dopings and why at odd-integer
culation does find that Hund’s rule is valid for an isolateg C doping the system is more likely to be on the metallic side of
and only counteracted by the JT efféttalthough issues the Mott transition. Then we use the results derived for the
such as electronic screening by the surrounding moleculg®odel to get an estimate of the parameters by comparing to
may also be importartt experiment onA,Cgo and A4Cqp. In Sec. IV we study the

Regardless of the mechanism behind the inversion ofloped Mott insulator at a filling close to even integer and
Hund’s rule on the g molecule it is an interesting problem speculate on the implications of these results to the whole
to study the effective model of solidggwhich this naturally ~ doping range 2:n<4 as well as the properties at higher
gives rise to, namely the three channel Hubbard model witfiemperatures. Finally, in Sec. V we conclude.
“anti-Hund’s rule” interactions. Here we study this model in
the limit of strong interactions where we can do standard Il. THE MODEL
second-order perturbation theory in the intermolecular hop- ) )
ping. We find that the even/odd integer doping effect, the Ve will be studying a three-band Hubbard model. The

existence of two energy gaps in the insulating systems, a@lectrons occupy three degeneraterbitals (L=1) on every
well as the rapid variation of . with doping away froom  Site of the lattice and we define electron creation and destruc-

=3 are all natural consequences of this model. tion operators; ¢ andc, js with site index, orbital quantum

We will focus primarily on even integer fillingn=2 or  number and spin, respectively. We will be working in e
4), where the problem simplifies significantly because of thebasis wheré=—1,0,1.
resultant nondegenerate strong-coupling ground state. Based The Hamiltonian reads
on this we can describe the spectrum consisting, in general,
of an indirect Mott gap to particle-hole excitations and H=h+H, (1)
chargeless spin and orbital modes with a distinct energy,
gaps. We also derive the spectrum of a single particle or hole
doped into the nonmagnetic Mott insulator. The particle and
hole spectra turns out to be exactly the same as the noninter- h= 2 tlflf/'c;f 1<Cr/ 178 2
acting band structure up to an overall rescaling of the hop- (re'y ’ ’

ith a nearest-neighbor hopping
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and on-site interaction TABLE |. Spectrum of the interaction, E@3), at a single site
with states specified by occupationtotal orbital angular momen-

1 - R tum L and total spinS.
H=>, EUn,2+J,_Lf+JSSr2, 3 P
' n (L,9 E
with U,J, ,Jg>0. Here 0 (0.0) o
' 1 3
NSNS " 1 (L3 lU+23,+33
T Pristrls 2 (0,0), (2,0), (1,1) P +{0,6J, , 2], +2Jg
3 (13).(23).(05)  3U+{23,+3Js, 6.+ 35,3 Js}
N 3 4 (0,0), (2,0), (1,1) 8+{0,6J,, 23 +2Jg
C.=> ch.Lc s, 5
r ”E/S rIs=L17%rl’s ( ) 5 (11%) 22_5U+%JS
6 (0,0) 18U
ér:Z C:,Isés,s’cr,ls’ (6)

Iss’ . . . .
ticle number and representation between the sites, g.e.,

are the number, orbital angular momentum, and spin opera=p’ andq’=p, there will be a nonzero energy difference
tors, respectively. _ _ - AE=E(qQ)+E(q’)—E(p)—E(p’) with respect toH,,

The lattice is three dimensional and we assume a pointyhich is some linear combination df, J_, Js. In the
group symmetry which is such that the hopping preserves thgirong-coupling limit Eq.(7) there is no accidental degen-
threefold orbital degeneracy, although this may be relaxed 8racy and the energy difference satisfeg>t, which will
long as the symmetry breaking crystal field is small com-5)i0\ us to do a perturbation theory ifAE. Henceforth we
pared to the interactions. We are going to study this in th§yj yse theAE, to define the absolute value of the minimum
strong coupling limit defined as nonzero energy difference between two different nearest
neighbor state configurations. From Table | we can check
that in the strong-coupling limit this corresponds A=

where t=max(],). For Gy, band-structure calculatiofls =4J., given for instance by E(3,23)+E(2,0,0)
give t~100 meV and values dfl of the order of 1 eV have —E(2,0,0-E(3,13).

been suggestetA subsequent fit of the parameters of the We will be using the effective Hamiltonian method de-
model to experiment om\,Cqo suggests that the lardé- scribed as applied to the one-band Hubbard model in, for

UsJg>J >t, (7

limit is quite well satisfied withU/t~5, while Jg~J, ~t. instance, Fazekds We introduce a canonical transformation
The limit U>t is essential for our treatment, while relaxing

the other limits probably will not change the qualitative fea- _ _ 2

tures of our results. Heotr=€'SHe 'S=H+i[S,H]+ SISISHIT+--, (®

At t=0 we find that the Hamiltonian is simply diagonal-
ized in terms of the statds,L,S,L?% S%), with n the number
of electrons on a site and. (S) the total angular momentum
and spin and the energ¥(n,L,S)=3Un?+J, L(L+1)
+JsS(S+1). In the strong-coupling limit the effect of the
hoppingt will be to reduce the translational degeneracy. It is
the topic of the following section to derive an effective
Hamiltonian which describes these low energy degrees o
freedom.

where the goal is to find@{.¢; such that it does not couple the
different energy sectors ¢, .

Let us considerh as a matrix which acts on nearest-
neighbor stategp,a),|p’,a’); =|a),» which in a short-
hand notation we will denote by a single inda),c, ... .

e write

hzz hrr,:E h;rl;|a>rr’<b|rr/: 9
(

A. Effective strong-coupling Hamiltonian rr’) (rr’)

Let us define the short-hand notatips=(n,L,S) anda  \yhere
=(L%S%). As shown in Table | any single-site stal@sa),
and|p’,a’), have the same energy, barring accidental de- )
generacies, if and only ff=p’. This implies that any eigen- m=(al >t (¢] 1 sCrr st HC)[D)rr . (10
state ofH, will not mix different representations at a site and 1
can be written asl, 1, ,/p,a),, whereyy ,#0 only for one ) ) ) ) )
particularp(r). Consider now the action of the hopping term Next we split hf, into h, =hof" +hif" , where h3'
h (_)n an eig(_anstate. This W,i” affgc_t two arbitrarly n,earest—: hgb/ 5E(a),E(b) only connects states with the same energy
neighbor sites rand r’, giving IPa)lp’ia’) gng hi' =h", —h%"" which connects states with different
—qsq' M|, B)¢|a’,8");, whereM are the matrix ele- energy. It follows that we can also write= hO+h?,
ments ofh between the in and out states. Unless the initial We introduceS=S;+S,, where §;~O(t/AE) and S,
and final nearest-neighbor states have only exchanged patO(t?/AE?) and expand Eq8) to O(t?/AE),
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Hers=H;+h%+h1+i[ S, H ] +i[S;,h+h?]
.2 ------------------------------

+ 5 [SulSLHTI+ILS: Hi. (1D) (n=3,L=1,8=1/2) + (n=5,L=1,5=1/2)
To first order int we want to canceh® by takingsS; to solve A
i[S;,H{]=—ht. (12 e
. . (n=4,L=1,S=1)
Clearly S; needs to act only on nearest-neighbor sites. 1
Defining Sy ==,y SY == 1 1 Sirap|@) (bl gives from
Eq_ (12)9 1 (rr ")y 1 (rr’y 1,ab| >rr< |rr g (n=4,L=2,8=0)
A _
i > htr ¥4 v? ¢ =a1-05-0)
(rr’)
FIG. 1. Spectrum at=0 and dopingh=4 showing the lowest-
= > [S’l" ,H[/I]: > Srlr;b[|a)rrr(b|”r H+ le’] energy excitations of the three distinct kinds discussed in the text.
(rr"yr” (rr'’) '
hrr’ rrb
= " o(E(D)—E(a))|a)y (bl 13 Hern)y=| hily — —= = :
(g Tan(E(D)—E(a@))|a) (bl (13 (Hetf)ap ab CYE(;E@ E(c)—E(a) | E@.E®)
17

where we have used the fact that we work in the eigenbasis
of H, such that (—|,’+H,’/)|a>”,=E(a)|a>”,. We thus ar-

. . . 1 hrr rbr +hr,cr/,hgb,
rive at the solution (Hetdap =— 2 cE@Ze@ E(c)—E(a) € (a),E(b) -
. hlrr (18)
T,ab:m- 14 Here |a), =|n,L,SL%S)|n",L",S'L'5S'?),, and

|a), » are arbitrary nearest-neighbor and next-nearest-
Recall thath!"" is defined as only having nonzero entries neighbor eigenstates d, with energy E(a) and hT, is

when|E(b) — E(a)|>AE so thatS;~t/AE. defined according to Eq10) with a straightforward exten-
Given the solution foiS; obeying Eq.(12) we can rewrite  sion for three-site states.
Eqg. (11) as

lll. THE MOTT INSULATOR

i
Herr=H,+h°+i[S1,h%+h']- §[Slyh1]+'[32:Hl] In the strong-coupling limit, Eq(7), of this model the
system is an insulator at any integer filling with a gap to
B 0. - or | . charge-carrying excitations of the orderldf At odd integer
=H +h"+i[S,h7]+ 5[851,h71+i[S2.Hi]. - (19 ijling the ground state is the highly degeners@sS,1/3/5
=1II,|n=1/3/5L=1,S=3,L%S%, and the hopping will in-

In ana|ogy to usingsl to cancel terms linear ih which troduce strong correlations in analogy with the half-filled
connect different energy subsectors we can nOW‘ShSH) Single-band Hubbard model. We will return to this prOblem
cancel similar terms to ordé? which arise from the com- briefly in discussing the fact tha3Cq is generally on the
mutators ofS; andh in Eq. (15). Technically this is slightly ~Mmetallic side of the Mott transition.
more involved because there is also three site next-nearest- However, at even integer fillingy=2 or 4, the ground
neighbor interactions generated to second orddrand we  State is nondegeneratf S,2/4)=11,[n=2/4|. =0,S=0); .

refer the reader to the Appendix for the details. Here, we will find that much of the physics can be under-
The final expression for the effective strong-couplingstood in terms of a simple noninteracting single-particle pic-
Hamiltonian reads ture. This will be the focus of the subsequent discussion and

the main issue of the paper. We will discuss 4 to compare
, with experiments on KCq, and RhCgq but the treatment of
Horr=Hi+ X (Hetn)ap @ (blr n=2 is completely analogous.
At filling n=4 there are three types of excitations of the
L ground state that can be readily identified and which are
+ = (Heff)rr @) (bl pn+ O(IAE?), indicated in Fig. 1. We can excite a single site into a higher-
(rr energy multiplet, creating stat¢4,2,0L%),11,..,|4,0,0),, or
(16) 141,112,591, ,,/4,00,, with energy A=E(4,2,0)

with —E(4,0,0=6J, and A=E(4,1,1)- E(4,0,0)=2J, +2Js,
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respectively. There is also “particle-hole” excitations in dif- the spinful h=4L=1,S=1) states, where there are nine
ferent multiplets, the one with lowest energy beingcoupled states per site. Although the bandwidth of these spin
13,13,L%,5%,[5,13,L'%,S'%), Tns,/|4,0,0,,» with energy and orbital modes are naivel_y of the ordert?ﬁp the high_ .
Ag=U+4J_+2Js. The energy\, is the Mott gap to zeroth degeneracy of these states is expected to give a significant
order int. broadening of bandwidth, perhaps by a factor of the spin and

The degeneracy of the excited states will be lifted by thePrbital degeneracies of these states. The spinful excitations
hoppingh and using the effective Hamiltonian E¢L7) we  Should be readily detectable experimentally as a band of

can study the spectrum perturbativelytin magnons with some gaps, a spin gap. We will return to the
issue of the spin modes in discussing NMR AgCgy and

A. Spin gap, spin and orbital modes A4Ceo-
The spin and orbital excitations [4,1,1L7
S, 11,/ 4,]4,0,0,, and|4,2,0L%),11,,.,/4,0,0),, are degen-
erate inL? and S* as well as positiorr. Acting with the At filling n=4 the lowest-energy charge-carrying excita-
effective Hamiltonian Eq(17) will split the degeneracy in  tions are the particle-hole statef3,1%,1,s),|5,1%,1",
space(as well as the orbital degeneradgading to a band gy 11, ,[4,0,0),» with an energyAy=U+4J, +32J.
description of these states. Clearly to first ordehift), the  Acting with the effective Hamiltonian Eq(17) on such a
effective Hamiltonian will not affect these states as it necessiate will translate either the particle€5) or the hole
sarily creates a high-energy particle-hole state. For the same ) g a nearest-neighbor site through the linear terrh in
reason the second-order three-site interaction will not congt) "o second order, there is next-nearest-neighbor hopping
tribute. However, the second-order nearest-neighbor terfphrough an intermediate state in a higher-energy multiplet.
can hop the excited state ato a nearest neighbar or to  gince it is higher-order®(t2/AE), we will ignore this con-
the same site through an intermediate particle-hole state. yiption. However, it should be noted that the denominator
Focgsmg on the spinless excitations we define theyg tor this process is proportional ts and/orJ, not U,
“bosonic” operator implying of course that we should consider the higher-energy
o article and hole multiplets if the strong-coupling limit Eq.
br, ;m=14,2,0m)(4.0.0, (19 F?) is not strictly valid. l\Fl)ote that due to tge enzrgg constra?nt
in terms of which we can write an excited orbital state asin the effective Hamiltonian the particle and hole are not
b;f'm|G34>, These operators do not obey proper commutaallowed to annihilate by hopping to the same site. We will
tion relations but if we consider only single-particle physicsignore the constraint which in three dimensions is expected
this is irrelevant. With these operators we can write the folto give a vanishing contribution to the spectrum at low den-
lowing single-particle Hamiltonian describing the dynamicssities.
of such excitations:

B. Charge excitations

1. Charged single-particle excitations

H= > 0 bl b+ > trmbl wby s (20) In order to understand charge transport, we need to con-
(rr'y ' r ' sider the single-particle and single hole states
where |51,8),I1,/|4);/», and |3],s),11,/|4), ., . Here we have
dropped the multiplet indices (S)=(1,3) or (0,0). When
o 1 acted on byH.¢s these excitations are translated to a nearest-
mny U+3/21g—2J, neighbor through with a matrix element
X > (4,2,0m[,(4,0,0, 17, (¢! v 115+ H.C)|ph o oy
2 ( m of i (CrisCr.ivs )[ph) (4],(5)",s'], 2 t;r,er,‘j,‘UCr'j'(, |51,8),]4),
, ii
X(phitij, (¢} jsCrr jrs+H.C)[4,0,01,[4,2,0m"), .
rr’
(21) =3 %t

and similarly fort,, . Here [ph) are particle-hole states
[5,13,1,8),/3,15,1",8), (or with reversed positionsand the (41,(31",s],
sum is over all indices except,m’ andr,r’. Similar con- nen e
tributions but with larger denominators from intermediate
particle-hole excitations in higher-energy multiplets have =_E5 g 22)
been ignored in Eq21). g3 oSS

Deriving the Hamiltonian Eq(20) is thus a straightfor-
ward problem. The Hamiltonian is noninteracting and can inand similarly with a factor of-1/3 for holes and of 2/3 for
principle be diagonalized in momentum space. In general thparticles with respect to the=2 ground state. The matrix
five orbital components will be mixed with a complicated elements in Eq(22) follow from the explicit expressions for
band structure. The same calculation can be carried out fahe states

’
Z t;";jcl“r,j,o'cr/’j/'o.) |3,| ,S>r|4>r,

i’
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5.1%,1.s)=1/3¢c|4,0,0), if there are inequivalent sitesiondegenerate bands depend-
15:12.1.9) V3 s ) ing on the precise nature of the hopping integrals which de-

3 3 pend on the crystal symmetry. Quite intriguingly, as seen
13,12,1,s)= \ﬁCLIZ,O,O): \/:(25)2||1C|s|41010>1 from Egs.(26) and(27), the band structure for these particle
2 2 and hole excitations from the Mott insulating ground state is
precisely the noninteracting band structure up to a rescaling
11,13.1,8)=c/{|0)=3(29)21"%c_,_{2,0,0, (23) factor. The reason for this remarkably simple behavior is that

which is a simple exercise in elementary quantum mechanic@e ground state at e_ven-lntege_r filling is in the trivial (
to derive. =0,S=0) representations of spin and angular momentum

We note the reduced magnitude of the matrix eIementénd as such is basically equivalent to the zero-particle
compared to the single-particle particle hopping on empt)yacuum.
sites 2. Mott gap
, ot , _ rr The Mott gap is defined as the gap between the ground
(0[(1)",8],/ ”2 t0iCrr jr oCrijo | [11,8)|0)r = Ssstyyy state and the lowest-energy charge-carrying excitation of the
(24) insulator. What is often measured, however, is the optical gap

o ) as defined by optical conductivity or reflectivity measure-
This is a general result of the reduced Hilbert space due tghents and we will be interested in calculating this too.

constraining then-particle states to the lowest-energy mul-  The Kubo formula for the optical conductivity which is

tiplet. _ _ _ the short-wavelength limit of the electrical conductivity is at
Let us define the particle and hole creation operators  zero temperature

cius=151.8)(4l;, cluc=[31.8) (4, (25 2ih%? o, o |(m|j3%q=0)|GS)|?

through which the particle and hole states can be written ad’aal®:d=0.T=0)= M2V

cl,s|GS4) andcl | GS4) with [GS4)=11,|4,0,0), . Note 29)

that these operators do not obey on-site anticommutation re- ) . -

lations, we can only use them with confidence in describingvhere |m) are excited states withwy,=En—Egs.” The

noninteracting single-particle physics. current operator can be derived from the continuity equation
In terms of these particle and hole operators we noWh‘l[n(r),H]+V-f(r). For the Hamiltonian Eq(l) con-

straightforwardly arrive at the following single-particle sidered here only the tight-binding part contributes and we

m Wm ou(w-i—ir;)—wﬁ1

Hamiltonians for the particle and hole states get
Hs= > Etlrlr”CngsCSr’l’s f@=3 (LS e ma%|et o (30
(rriyl’s 3 o o' \fap 3 I [ Zpralstpl's:
+>, (912U +3/4)g+ 23, — p)Cl 1<Csrs,  (26) Whgreg is the set of nearest-neighbor lattice vectors. For a
rls ’ cubic or orthorhombic lattice this simplifies to
2”,T > = 1 Aeiy > 20400 1
Hy=— E §t||'C3,r|sC3,r’l’s ](q):_g »2 ) sm(p'5)t||rcp+q,lscp,l’s- (31
(re") s p.ll's, s
B + The current operator creates particle-hole pairs when act-
* ;S (72U 43[40+ 2+ 1)Csp15Canis » (27) ing on the ground states S,4) and we expect to get nonzero

. . i . matrix elements with states
where the on-site energy is defined with respect to the

E(4,0_,O)=8U —4u and where we have introduced the KIs,k'l"S"y o= C;klsc;k,l,sl|es,4> (32)
chemical potentiale.

These are just simple tight-binding Hamiltonians whichdefined according to Eq$28) and (25).
we can diagonalize in momentum space in terms of states ~ With this we can calculate the matrix element

1« - (KIs,k'l's'[,1j*(q=0)|GS)
[Bkls)= ol GS 4= —= 2 €75y GS4), i
r

W V2 , -
:—ﬁ(zy)z“ HZ& 8sin(K- 8)t) %), S ds,— s -
1 L
|3k,Is)=C41| GS4) = N Z e *cl5/GS). (28 (33

In general, these are not eigenstates due to the fact that the Introducing an explicit band structure, i.e., definityg ,
hopping is not diagonal ihand we would get thre@or more  we can in principle calculate the optical conductivity due to
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r H P r X M an indirect gap where the optical gap is larger than the Mott
' ' ' ' ' ' gap and that the lowest-energy particle-hole excitations have
nonzero momenturff:

A word of caution may be appropriate in considering this
figure, namely that the single-particle states in the bands are
only well defined within our theory for a small density of
such states. We depict the lower “band” as filled with single-
particle states, but the real entities are only the holes in this
band. This is a strongly interacting system and the analogy
with a weakly interacting semiconductor has limitations. For
instance, it is quite obviously nonsensical to fill up the par-
ticle band with a density of more than two particles because
that would correspond to a total electron density of more
than six. We will return to issue of doping away from the
Mott insulator in Sec. IV.

For comparison with other models of the Mott transition
(Ref. 23] showing the indirect gap structure with optical gagy on degenerate Hubbard models it is useful to write down a

and Mott gapA,,.- The thin dashed lines indicate the centers of MoOre general expression for the Mott gap. If we make the

the particle and hole bands and the energy scales on the right af§aSonable assumption that the top and bottom of the band
defined with respect to thesdo=U+4J, + 3Jg is the gap int  Structure are roughly the same magniti€2, whereW is

=0 limit. the bandwidth of the tight-binding Hamiltoniam we can
write

the particle-hole excitations. A lower bound to the support of
the sum in Eq(29) will tell us the optical gap, below which
w, o(w) will decay. We simply maximize the kinetic energy
of the particle and hole under the zero-momentum constraint
in the usual manner to obtain this. We will ignore the pos-
sible complications due to the dispersion and angular mo-
mentum parts ;0°sinK- 8)1°%, which may kill the matrix ~WhereUe(4)=U+4J, +3Js. This expression is in sharp
elements at some high-symmetry points. Moving S“ghﬂycontrast to calculations oN:band ﬂubbard models without
away from such symmetry points will give a finite contribu- the multiplet splitting terms$? andL?, where forms such as
tion to the response. Ayor=U —NW or Ayoe~U—VNW has been suggestéd.
The optical gap is thus given by The intuitive motivation for theN dependence is an increase
in the kinetic energy of the particle-hole state due to the
3 . . additional hopping channels. In this model we see a different
Aoptica” U +4J L+ EJsﬂ%Sf(k)—§8f(k)]min(|2,i,j), behavior since the number of hopping channels are limited
(34) by the strong spin-dependent on-site interactions.

Energy

FIG. 2. Sketch of the band structure at doping 4 [K,Cgq

1
Aporr~Uesi(4)— W, (36)

wheres}(IZ) is the kinetic energy of thgth band at momen-

tum k and mink,i,j) means minimizing with respect to the N o
momentum and the band indices. One of the most striking facts about the fullerides is that
particle-hole state, which will in general be smaller than theeven-integer filling materials are likely largé-insulators.

optical gap. This corresponds to putting the particle at thd he problem of odd-integer filling is significantly more com-

bottom of the single-particle band and the hole at the top Plicated than that of even-integer filling as presented above.
The reason for this is that even in the strong-coupling limit,

3 qu. (7), the ground state consists of states=@,L=1,S
— = Lol = 28K T ey o =3) with spin and orbital degeneracies. This problem re-
Awor=U+4J+ 2JS+[38'(k) 321(K) Imine i sembles the half-filled single-band Hubbard model with a
(39 highly degenerate ground state which will be split to the
order of t?/U. The ground state may then have magnetic
In Fig. 2 we present a caricature of the band structureand/or orbital orders.
aroundn=4 based on a an explicit noninteracting band- However, if we assume that the putative insulating ground
structure calculated for }Cso by Gunnarssoet al,>® which  state is not ordered so that the hopping of partictes 4,L
is rescaled by a factor of 1/3 for the particle band and of 2/3=0,S=0) and holes If=2,L=0,5=0) is not frustrated by
for the hole band. For this band structure, and any othethe spin interactions we can derive a Mott gap in analogous
where the max and min are not at the same k vector, we fintashion to that fon=4 above which reads

C. Why is A3Cgq, metallic?
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s e 2 e Here we will look at the consistency of the model with these
Avor(N=3)=U—4J — 5 st [5ei(K) ~ 38j(K)Imini i,y ~ observations and make a fit to estimate our microscopic pa-
rameterdd, J, , andJg.

2
~Uei(3)— §W. (37 1. Optical gap

The charge gap is seen in optical conductivity as a deple-
whereW again is the noninteracting bandwidth lefIf the  tion of the low-energy weight in & and RhCs, below
ground state has significant magnetic or orbital correlationgoughly 500 me\f By inspection of Fig. 2 together with
we expect the gap to be bigger because of a lower-groundexpressior(34) for the optical gap we get the following es-
state energy and frustration of the motion of the particle andimate
hole.

Compared to the expression 36 for the Mott gam at4 Aopi K4Cp) ~U¢t1(4) —200 meV=500 meV, (38)
we note an increase froWv/2 to 2W/3 in the kinetic energy . B 3 .
of the particle and holes due to the larger phase-space a\{\_/_hereu agzjflnNLJ;gé4)—\L/J+4JL+2Js. Solving Eqg. (38)
lowed for hopping. InA;Cs Where the bandwidth is around 9'VES erf(4)~ mev.

0.5 eV it appears that this difference will not be large enough We can compare this h3Ceo Where we expect the
to close the 0.5 eV Mott gap seenAnCeo. charge gap to closg. Using express(@ﬁ) for the charge gap
However, in addition there is in this model also a moreatn:?’ together with a bare bandwidth of 600 meV gives

distinct difference between even- and odd-integer fillings,
namely, the sign change of tldg andJ, terms between the
effective Hubbard repulsiorq(4)=U+4J, +3Js and  with Ues(8)=U—4J, —2J5. Together with the estimate
Uerf(3)=U—4J, —3Js. This difference comes from the U,(3)>0 as discussed in Sec. lll C we thus find the rough
fact that the lowest-energy particle and hole excitations arestimate of 6<U .¢{3)=<400 meV.

(L=0S=0) at odd-integer filling, while they arel &1,S Combining the values folJg¢¢(4) andUg¢(3) we can
=1) at even integer. If the multiplet splitting interactions are now estimate the microscopic parameters of the model. We
large enough they could certainly destabilize the Mott insufind U<550 meV and 150 me¥ 3Jg+4J, <350 meV.

lating ground state at odd-integer filling. For instance]df

and J, are very large such thatl.;#3)<0 and|U.+(3)| 2. NMR, UT,

>t we would have a spinless Bose liquid consisting of an
equal number of two- and four-particle singlets which could
only propagate to second order tiR® At intermediate cou-
pling U.¢¢(3)~t we would expect some correlated metallic
state with most of the spectral weight in low spin configura-

Anott(AzCep) ~Ue(3) —400 meVs=0, (39

Various probe¥® have detected a thermally activated
magnetic susceptibility in KCgo and RRCg, and more re-
cently also in NaCg,.*° This has been interpreted as evi-
dence for a singlet-triplet gap of Jahn-Teller distorted mol-
' ) . ecules, where a molecule is thermally excited from the JT
tions of the two-, three-, and four-particle states, allowing forground-state singlet to the triplet which then acts as a local

hpp[l)n:g tofﬂrst ?rder Irt. EhV|dtePce for tlhe forrtnhanon ?f”. moment. In the model presented here it is natural to assign
fs'ﬂg (?d conN|ggra |onsRonCs or ngethsca es n h 3 mebg 'Such experimental signatures of gapped spin excitations to
ullerides N3CsCso, RByCeo, an € quenched CUbIC o shin modes or magnons which are a necessary part of the
CsGpo (n=1) have been presented from NMR spin-lattice

relaxation measuremeriaZe spectrum of the nonmagnetic Mott insulator.

. . . We will be focusing on measurements off 1/ the spin-
In addition, we know tha#\;Cqq is quite close to a metal- ¢ i P

lattice relaxation rate, deriving the temperature dependence

insulator transition. It has been found that intercalating Myt the relaxation by the magnons in the lifit<A..

monia into t_he crystal can cause a transi_tion into an ins_ulat- The probability of a transition between nuclear spin states
ing magnetically ordered phad&The main effect here is .. componentn’=m=1 due to a two magnon Process

presumably the expansion of the lattice and correspondin%hiCh scatters a magnon with= (L% and momentunk

decrease in the bandwidth, although the crystal symmetry [ i"=(L'%S'?) andk’ is given by Fermi's golden rule as
also reduced which may be important in facilitating a mag- ' g y 9

netically ordered ground state. An important consequence of 20

these findings if interpreted through our model is that for W, = >, ?|<m,nik,n’i,k,|V|m’,nik—1,n’i,k,+1)|2
AzCs0 Ues4(3)>0 because the ground state for smalk ik,i"k’

magnetic and thglU.;(3)| ~t because changes in the mag- X (Eip— Ejrer), (40)

nitude oft can induce a metal-insulator transition.
wheren;, is the magnon number operator, the interacton
D. Experiment =AI-S, with hyperfine couplingy, nuclear spin and elec-
tron spin at the nuclear siéb. We have dropped the small,
pears to be two distinct energy scales in these materialdYPically ~10 ° eV, Zeeman splitting of the nuclear spin.
Probes that are sensitive to spin, in particular NMR, are con- , The electron-spin  operator will act as a

sistent with a spin gap of around 50—100 meV, while opticalPr i 1zs2+ (m—m)Pr L2z With some small prefactor given by
conductivity sees a larger charge gap of around 500 me\the overlap of these states with the single atom, wbéiesz

A basic observation from experiments is that there ap
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Nevertheless, using the valug,=25 meV for the spin
gap we may estimate the microscopic parameters. Given a
bandwidthW,,4 Wwhich we assume to be symmetric around
the center we get

10

Ag=A—Wpad2, (43)

whereA =2J, +2Jgis thet=0 spin gap(There is an addi-
tional corrections to the spin gap of the ordert®U which
is a shift of the ground-state energy which should be in-
700 200 300 700 cluded in a more rigorous treatmenA very rough estimate
of the bandwidth may be given by the degeneracy of the spin
FIG. 3. Fit to ®C NMR data by Broueet al. (Ref. 30. The  modesW,=9t?/U. With U~500 meV as derived from
thick lines are fits to I;~T?e™*s'T with A;=240 K for K,Cy  charge gap and taking~100 meV form band-structure cal-

and A,=710 K for NgCe. The thin lines are fits to Th  culations givesNp,s~200 meV. Collecting into Eq43) for
~e 4T with corresponding\s=660 K and 1260 K(The bump he spi Vel = 23, +2J~125 meV. which .
around 180 K for NgCqq is presumably a molecular motion pegk. the spin gap givea =2J, + ~VS™ me, » Which seems in
reasonable agreement with the estimate 150 méVs

+4J, <350 meV from the charge gap. This order of magni-

creates a triplet excitation. Ignoring the details of the matrixt - -
. . . ude agreement for the coupling constaidsandJ, is cer-
element between the different triplet states one finds that th?ainly egncouraging in that it Eomges from experimtents on two

general magnon matrix element is given Kg; +1) apparently separate physical quantities.

x{ny), where(n;)=(e*Fik—1)"1 s just the Bose occupa- Afit to 1T for NauCer qi | f d 700
tion of the magnons. Finally the relaxation rate is giveritby Lto LTy Tor NaxLeo gIVES a larger gap ot aroun

1y Wi (B Emf)z/EmEfn where the magnon part of K. Within our model thet=0 spin gapA is the same fon

W, clearly is independent ah andm’. We thus arrive at — 2 @ndn=4 so the differing spin gaps are somewhat unex-
the final expression pected. However, since the crystal structure is different, the

tight-binding Hamiltonians of these materials may be very
different and consequently the bandwidth of the spin modes.
Ag+Winag N?(e) In fact, NgCqq is fcc while K, and RR are body-centered
1Ty~ f de SintP(Be/2)’ (41)  tetragonal. The natural interpretation for the variations within
As sinit(Bel2) this model is thus variations of the magnon bandwidth.
Along the same lines we note the behavior dflih Rlb,Cgq
where we have converted the sums to integrals by introduaunder pressure where it is found that the activated behavior is
ing the density of magnon statéfe). Here A, is the spin  replaced or coexists with a nonactivated component related
gap, i.e., the lower edge of the magnon band, g is the  to gapless excitatiorfslt has been suggested that this is re-
magnon bandwidth. lated to a closing of the Mott gap due to the expected pres-
For T<Ag we can replace the 1/sif(Be/2) by 4e #<and  sure induced increase of the bare bandwidth. Within our
the integral is dominated by~Ag. Assuming a quadratic model we find a possible alternative interpretation in terms
dispersion at the band edge we déte)~+e— A for €  of a closing of the spin gap.
=A;. By change of integration variable we arrive at the Above room temperature the activated behavior stops and
temperature dependence the relaxation rate saturates. Within our simple noninteract-
ing model for the spin modes we cannot expect to be able to
address the high-temperature behavior when a significant
number of modes are excited. A more sophisticated treatment
requires us to properly account for the interactions between
Figure 3 shows a fit of this model t&C 1/T, data on f[he spin_modes as well as thg exclusion statistic_s that are
K,Cqo and NaCep. ¥ ignored in the single-particle picture. The saturation cpuld
We get an excellent fit to the below room-temperaturealso be related to_molecular degrees of freedom at higher
activated behavior with a valud ;=240 K~25 meV for tempegaatures, which are completely neglected in our
K,Ceo. For comparison we also show fits to a model ofmoo!e!. However, we no';e that th-IS rapld saturation is very
localized triplet states corresponding W,,,~0 and 1T, reminiscent of the behavior o_f'!l{ in spin ladder materials
~e 2T This is the fit used in the the experimental with gapped'magnorfsz,where it is believed to have a purely
works# which is based on a model of a static uniform €€ctronic origiri
Jahn-Teller singlet-triplet gap. In this intermediate tempera-
ture regime it is difficult to tell which fit is best, in particular IV. THE DOPED MOTT INSULATOR
considering the fact that both models clearly fail at higher
temperatures where the relaxation rapidly saturates, and we We will now look at the problem of an incommensurate
conclude that these NMR data cannot resolve the two sceparticle density away from the Mott insulators at even-
narios. integer filling n=2 andn=4. This is obviously a much

UT,~T?e 4T T<A,. (42
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FIG. 4. Density of stateghoth
sping as function of filling n

given the noninteracting DOS in-
set. The dashed lines are extrapo-
lations of Eg.(44) toward odd-
A ; k integer filling. The noninteracting

! k / ' DOS is calculated from the band
structure of unidirectionalA3;Cgq
(Ref. 20.

40

20 r

more difficult task because in the strong-coupling limit the A. Small Fermi surface

ground state wiII. be highly degenerate. As a concrete ex- Tpe problem of a single-particle or hole was addressed
ample, at a dopinq=2+x (x<1) the ground state &  gjready in Sec. Ill B 1 in connection with particle-hole exci-
=0 is the set of states withthree-particle states (33),and  tation. There we showed that the single-particle or hole spec-
(1—x) two-particle states (2,0,0) at arbitrary positions intra are equivalent to the noninteractidg=0 spectrum up to
space. Introducing by means of effective Hamiltoniafi7) a rescaling by a factor of 1/3 or 2/3. At least in the very
we find to first order irt nearest-neighbor interchange of the low-density limit,n=2+x or n=4+x with |[x|<1, we ex-
two- and three-particle states and to second orderspin ~ Pect these single-particle states to give a qualitatively accu-
and orbital exchange terms between nearest-neighbor threfaté picture by fillingx such states.

particle states. This can be described by a generalizkd In particular this implies a “small Fermi surface,” where
e number of delocalized charge carriers is proportional to

model including a no double occupancy constraint becausl% :
only two and three-particle states are allowed. ;E.”? numb(her of dopgd holes or p?;tlclresand notf the totall

At first glance this may appear to be an even more diffi- 9 N- The remaining degrees of freedom are frozen be ow
cult problem than that of a doped antiferromagnet because 5Pe Mott gap. One Important consequence Is _that th_e density
the additional orbital degrees of freedom. However, in th Of states at the Fermi surface for small dopingill be given

o e . > aoy the density of state®©OS) at the band edges of the of

low-density limit, xfl, it is in fact considerably simpler noninteracting problem by the simple relation
than the doped antiferromagnet because only the doped par-
ticles (or holeg have internal spin and orbital degrees of DOSyyong couplingn=2—X)~3 DOS\oninteractingN=6—X),
freedom. In the doped antiferromagnet the scenario is just
the opposite with a large number—X of spinful particles

and a small numbex of spinless holes. This of course gives
rise to the very complex behavior in such systems where the®©OSsirong couplingN=4—X) ~3/2 DOSoninteracting = 6~ X),

spin interactions) can compete with the hoppingeven in
the limit J~t2/U<t because the important energetics is DO Strong coupling =4+ X)~3 DOSsoninteracting = X),
given roughly byxt and (1-x)J. Here for the doped non- x<1. (44)
magnetic Mott insulator a similar consideration would lead
us to comparexJ with xt because it is the doped particles or A detailed picture of what happens at larger doping
holes that carry both the spin and momentum. Effectively we—1 as we approach odd-integer filling is beyond our meth-
are thus looking at the low-densitiieavily dopedlimit of a ~ ods. However, a naive extrapolation of the results valid for
t-J model. smallx all the way tox=1 gives a density of states as shown
We will completely neglect the nearest-neighbor ex-in Fig. 4, where the density of states is generally peaked at
change interactions as well as the no double occupancy cowdd-integer filling as a consequence of the rapid decay to-
straint and only consider the single-particle physics. Cerward the effective band edges at even-integer filling. For
tainly, for the problem of a single-particle or hole doped intoreasons discussed in Sec. lll C we have to be in an interme-
the nonmagnetic Mott insulator this is completely rigorousdiate coupling regime, where the system is metallic at odd-
and again in sharp contrast to the problem of a single hole iinteger filling for this extrapolation to have any credibility.
an antiferromagnet where interactions obviously cannot be There is an interesting experiment that corroborates the
neglected. Even this single-particle physics has some intesmall Fermi-surface picture inggwhich is the variation of

esting implications for the doping dependence in the metallidensity of states in N&s,Cgg (0<x<1) corresponding to a
fullerides. doping range 2n<3.” It was estimated from the Pauli sus-

DOSstrong couplingN = 2+ X) =~ 3/2 DOSyoninteractingN = X).
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ceptibility that for samples witm=2.25, 2.5, 2.75, 3 the
density of states varies as 5, 7, 11, 15 é\both spin.
CorrespondinglyT . drops rapidly from 12 K ah=3 to 7 K
atn=2.75 and to<0.5K atn=2.5. Certainly, this behavior
seems consistent with the scenario sketched in Fig. 4, where
the density of states drops rapidly as the effective Hubbard
band edges are approached at even-integer filling.

The failure of naive band theory in the presence of strong
local repulsion is a consequence of the large inherent charge
fluctuations of such an uncorrelated state of delocalized elec-
trons. It may be illuminating to recall some of Hubbard’s
original work on the topic of narrow-band systeffidzor an
m-fold degenerate band at filling the probabilityPy(m,n)

of having N electrons on a particular atorfmoleculg is
given by
m\/n\N
PN(m’”):< N) (ﬁ) 1 (45) Hubbard's treatment of narrow-band systems used a real-
space Greens function method which is exact in the zero

where ({) is the multiplicity of atomic states wittN par-  bandwidtht=0 case but which depends critically on neglect-
ticles. The rms fluctuation is given by A{)ms ing correlations between electrons on different atoms in the
=n(1—n/m), which has a maximumA{)ms=Vm/2 at finite bandwidth case. He found that in the narrow bandwidth
half filling n=m/2. Clearly, at finite doping there are signifi- limit the original noninteracting band splits into a large num-
cant charge fluctuations of the order 1 which cost an energper of bands which correspond to transitions between states
of the order ofU per site in an uncorrelated state and whichwith particle number differing by one. In addition these Hub-
grows with the degeneracy. We can get an estimate of thkard bands reflect the noninteracting band with density of
energy cost of the charge fluctuations for our model by comstates which are some functional of the noninteracting den-
paring the potential energg=(H,) in an uncorrelated state sity of states. Our result for the doped Mott insulator is es-
which is the ground state of the kinetic energywith that  sentially a special case of Hubbard’s results for which we can
given by the small Fermi-surface state which is the groundsolve for the quasiparticle spectrum exactly in the low-
state of the potential energyl,. The latter is at fillingn  density limit where we can neglect interactions between the
given bypy N-particle states andy,; N+ 1-particle states doped particles or holes.
in the lowest energy multiplet wherdl<sn<N+1 and
pnN=+pns1(N+1)=n. The potential energy of this state is
given by

o O O o O O o

e B S 0 T VS BT U G ) B s AR |

FIG. 5. Potential-energy difference, in units bf,(2)=U
+4J, +3/2)5, between an uncorrelated and correlated ground state
as a function of fillingn. The solid line is forJs=2J, =0.1U and
the dashed line fod, =Js=0.

n m—N
m) '

B. High Temperatures

In the preceding section we discussed the ground-state
(H1)corr= PNEo(N) + P+ 1Eo(N+1), (46)  properties of the doped Mott insulator close to even-integer
whereE,y(N) is the energy of the ground-state multiplet with filling. We found a band of siljgle—particle states which up to
N particles. Expressiofé5) turns into a resca_led hopping are equivalent to the states of the non-
interacting problem. At low temperatures we thus expect a
n\ N 6—N simple metallic behavior with bandlike charge transport.
PnLs(n)=(2L+1)(2S+ 1)(6> (1— —) (47 Here we will speculate on some of the interesting physics

6 which could emerge from the model at higher temperatures.
for this model, where thé-particle multiplets are split ac- _ The derivation of the single-particle Hamiltonians, Egs.
cording toL andSand the corresponding potential energy for (26) and (27), for the particle and hole states depends cru-
the uncorrelated state is cially on the fact that the Mott insulating ground state is of

the simple nondegenerate forfGS4/2)=1I,|n=4/2L
=0,S=0>, and that we can ignore the higher orbital and
(H1)uncor™= NEL:S PnLs(NE(NL,S). (48) spin multiplets in the two and four-particle molecular spec-
o tra. At elevated temperatures of the order the the spinfgap
Figure 5 showsAE=(H,)uncor—{H)corr @S @ function of this assumption is no longer justified as the the spin and
doping and in units oUq#(2)=U¢1(4)=U+4J, +3/2Jg  angular momentum modes discussed in Sec. Il A are ther-
for two cases), =Js=0 andJ; =0.1U, Js=0.2U. mally occupied and we should consider their effect on the
We see that in a wide doping range around half fillingquasiparticle stated.The activated behavior discussed in
there is a significant energy cost due to charge fluctuations iBec. Il D 2 which has been linked to gapped triplet excita-
an uncorrelated state. Given that this leads to the Mott insutions is seen in NMR (T7;) also in the metallic N8CsGsg
lating behavior at even-integer filling we would also expectand RRCg, (Ref. 27.] These, in fact, interact very strongly
significant correlation effects in the metallic regionsc®2  with the quasiparticles in a quite nontrivial fashion. In the
<4, consistent with the small Fermi-surface scenario. presence of such an excited spin or orbital state the nearest-
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neighbor hopping integrals described by E®2) turn into  of the noninteracting band structure. Consequently, in three
some more complicated expressions given by, for instancedimensions the density of states will in general increase rap-
idly with the dopingx.

(41,115,857 (3)",s'|/ In this model there is also a distinct difference between
even- and odd-integer fillings, which follows from the simple
> t;r'j’C:j oCrrjro|131,8)[4,1,1L% %), fact that an odd number of electrons cannot form a spin

ii

singlet. From this follows that the effective on-site repulsion

(49) is given by Ug(n=2/4)=U+4J, +3/2]5 at even-integer
filling and by U z(n=1/3/5)=U—4J, —3/2]5 at odd. Con-

in the case of a hole hopping to a site occupied by a spisequently, depending on the magnitudeJpfand Jg, the

triplet. Depending on the configurations of the spin tripletMott gap may be significantly reduced or vanish at odd-

states the hopping of the holé3(,s)) may be completely integer filling.

suppressed or it may require a spin flip. Certainly the The properties of this model are strikingly similar to the

nearest-neighbor hopping integrals would be completely alphenomenology of the fulleride&,Cgo with 2<n=<4. The

tered from the simple form of Eq22). nonmagnetic Mott insulator at even-integer filling with a

It is not obvious how to model this problem but the mostsmall spin gap and a larger charge gap, the even/odd effect at
naive scenario might be to ignore the hopping of the spin anihteger doping wheré\;Cq, is generally metallic, as well as
orbital states and replace them by thermally excited impurithe rapid suppression of the DOS and the corresponding su-
ties causing disorder in the hopping of the particles or holesperconducting transition temperatures as the filing ap-
Such a model would be similar to that suggested by Varma tproaches even integer. We do a fit of the model to the charge
explain the paramagnetic insulator to ferromagnetic metajap from optical conductivity and the spin gap from NMR
transition in lanthanum manganitégiant magnetoresistive 1/T; in K,Cgo Which appear consistent with valuesXfand
compounds®® J, of around 50—100 meV.

One may speculate that this temperature activated off- There is a number of interesting open questions about the
diagonal disorder could destroy the bandlike motion of themodel and the possible implications to alkali dopeg.dn
charge carriers and possibly be related to anomalous propeparticular, we need a better understanding of the physics at
ties of A3Cq at elevated temperatures such as the evidencedd-integer filling on the metallic side of the Mott transition.
for localization from NMR?’ the disappearance of the Fermi Can this state have a superconducting ground state even
edg€® and the nonsaturation of resistivity and the corre-though, as evidence suggestk,{(3)>0 such that there is

sponding extremely short mean-free paths. no bare attraction in the way envisioned by Chakravarty and
coworkers as an electronic mechanism of superconductivity?
V. CONCLUSIONS In fact, also at even-integer filling there have been intriguing

suggestions of an intermediate superconducting state in the
We have studied an orbitally degenerate three-band Hulinetal-insulator transitiotf'*” Another issue is the properties

bard model with additional multiplet splitting on-site inter- of the model at elevated temperatures approaching the Spin
actions\lsé2 andJ, L2 which favor low-spin and low-orbital gap, where we have found that the spin and orbital modes
angular momentum. We use the effective Hamiltonianinteract strongly with the charge carriers and may signifi-
method in the strong-coupling limi >J<s>J, >t perturba-  cantly affect the simple bandlike charge transport.
tively to second order in. At even-integer fillingn=2 or
n=4, this model is an insulator with a nondegenerate ground
state where the electrons at each site occupyLth® and
S=0 configurations and with distinct spin and charge gaps.

The trivial ground state allows for a simple single-particle  Here we derive the expressions for the second-order terms

description of spin and charge excitations. The lowest-energy, the effective Hamiltonian Eq17). Starting with Eq.(15)
spinful excitations is a band of magnons with a bandwidth

Winag~t%/U and a gapAg=2J, +2Js— O(t?/U). A single- i

particle or hole doped into the Mott insulator are described _ 0, ; 0 19,

by the noninteracting tight-binding Hamiltonian but with an Heqr=Hi+ LS, W]+ S18, T HILS, Hil,

overall rescaling by a factor of 1/3 or 2/3 of the hopping

integra}ls and corrgsponding banQWidth. The I_attgr allows fo(/vhereSl is given by

a detailed description of the particle-hole excitations and the

corresponding charge gap is given hyy~U+4J,

+3/2Js—WI/2 in terms of the bandwidtkV of the noninter- ihir

acting Hamiltonian. Si= > W|a>rr’<b|rr’- (A1)
Close to the Mott insulator, at filling 2x or 4+x with {rr’)

|x|<1, we find a metallic state with a “small Fermi sur-

face,” where the density of charge carriers is given |kl Our purpose is to construéb, such that it cancels terms

and a density of states which is simply a renormalization bywhich connect different energy subsectors from the commu-

a factor of 3 or 3/2 of the density of states at the band edgestors[S; ,h%Y]. We have

APPENDIX: SECOND-ORDER CANONICAL
TRANSFORMATION
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s

(r,r’),(r”,r"’) E(b) - E(a)

”em
thgﬂr r [|a>rr r<b|rrr v|C>r”r”’<d|r”r”’]

We now split this into a pardg ),y Which is diagonal in
energy and (% Jga)gn)) Which connects different energy
sectors. The latter part we can cancel by solving $or
schematically

i[5, h01 =~

hl,rr’

_ 2 ab

& E(b)—E(a)

thijl’”/“a)rr’(bhr’ a|C>rr’<d|rr’]

1
[S2,Hi]=—|[S1,h°T+ 5LS1.h"] (A4)

off-diagonal

1rr’ H
hat' Using an

2 E(b)—E(a)

(ryr’ e’y

ansatz ;=3 1\Syapl@) (bl

+E<r,r,,r~>8r2f;{,"|a),,,,n<b|”,r" and using the fact that
st [|a>rr’r”<b|rr’r” -HI]:[E(b)_ E(a)]|a>rr’r"<b|rr’r” o we
Xheg" ")y (bl [C)er{dlr ], can solve fokS,~ O(t?/ AE). Apart from the cancellatiors,
(A2) will only contribute to higher orders.
_ Having done the cancellation we are left with terms that
where. we have used the fact.that thg operators commute i diagonal in energy. Clearys;,h°] does not contribute
there is no overlap between sites. Using the complete set % this becaus®® is diagonal in energy an~h* is strictly

three site states=115/a) (@l for the three-site inter- diagonal. The result for the remaining second order terms
action we arrive at <

hl,rr’
; 01— _ ac o/yr’
I[81,h ™ 2, (E(C)—E(a) ey : SRR N K N
(rir')c I[S hl] _ 1 2 hae hgp +hae hgp
- é]:_i;r’ 2 1 dlagonal_ 2 <r’r’>’c E(C)_ E(a)
"_hac’rr E )—E b) |a>rr’<b|rr’
(C ( ><5E(a)E(b)|a>rr’<b|rr'
S ( e o 1o g
c J—
(r,r’r"c E(c)—E(a) 2 e E(c)—E(a)
oy’ (l;'[;r, X 5E(a)E(b)|a>rr 'r”<b| rr’r’ s (AS)
+hac’ E(C)—E(b) |a>rr’r”<b|rr'r”-

(A3)  which simplifies to the final expression given in E47).
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