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Degenerate three-band Hubbard model with anti-Hund’s rule interactions: A model forAxC60
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We consider the orbitally degenerate three-band Hubbard model with on-site interactions which favor low
spin and low orbital angular momentum using standard second-order perturbation theory in the large
Hubbard-U limit. At even-integer filling this model is a Mott insulator with a nondegenerate ground state that
allows for a simple description of particle-hole excitations as well as gapped spin and orbital modes. We find
that the Mott gap is generally indirect and that the single-particle spectrum at low doping reappears close to
even filling but rescaled by a factor of 2/3 or 1/3. The model captures the basic phenomenology of the Mott
insulating and metallic fulleridesAxC60. This includes the existence of a smaller spin gap and larger charge
gap at even-integer filling, the fact that odd-integer stoichiometries are generally metallic while even integer
are insulating, as well as the rapid suppression of the density of states and superconducting transition tempera-
tures with doping away fromx53.
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I. INTRODUCTION

The physics of Mott insulators has emerged as a key
gredient in the study of strongly correlated systems,1 largely
motivated by the understanding that much of the exotic ph
ics of the underdoped cuprate superconductors has con
tions to the undoped Mott insulating state. The basic mo
for a Mott insulator discussed in connection with the c
prates is the large-U half-filled Hubbard model. For this
model the low-energy spectrum at half filling is reasona
well understood, but the higher-energy spectrum as wel
the physics away from half filling is still very much an ope
problem. Much of the difficulty seems to trace back to t
fact that the Mott insulating ground state for this system
not known.

Here we will study a model of a Mott insulator which ha
a simple nondegenerate ground state and where we can
scribe the spectrum of excited states and explore the phy
at and near the Mott transition in a well controlled mann
The model is a degenerate three channel Hubbard m
which has multiplet splitting on-site interactions that fav
low spin and low orbital angular momentum. This model
the simplest model with spin and orbital symmetries which
even-integer filling allows for a Mott insulating nondegene
ate ground state.2 Since the ground state is nonmagnetic, t
spin physics which complicates the single-band Hubb
model is absent at low energies. Although interesting in its
as a natural and simplifying extension of the Hubbard mod
our main motivation for studying this model is that it ve
naturally captures some of the most distinctive phenome
ogy of the alkali doped C60 compounds, the fullerides.

Crystalline C60 is a band insulator with a completely fille
molecular orbital.3 Doping with alkali atoms, forming
AnC60, transfers electrons into the lowest unoccupied m
lecular orbital~LUMO!, which according to elementary mo
lecular theory is threefold degenerate. These form three
degenerate bands according to the band theory of the cry
0163-1829/2003/68~20!/205107~14!/$20.00 68 2051
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It is believed that the charge transfer is complete and that
influence of the alkali ions is in general, negligible apa
from changing the crystal structure and the correspond
band theory.

If these were simple metals, band theory would predic
metallic state for any doping 0,n,6 and possibly super
conductivity with transition temperatures which would fo
low roughly the density of states at the Fermi energy as
doping is varied. Experimentally, however, it turns out th
the compounds with even-integer doping (n52,4) are non-
magnetic insulators4–6 and superconductivity is only seen i
a narrow range around half filling (n53) and with transition
temperatures that are sharply maximized here.7 Band theory
augmented by BCS theory of superconductivity fails to
produce this behavior.

It is well known that correlation effects are important
these are weakly bound molecular solids with a narrow ba
width of '0.5 eV and it is believed that the on-site Coulom
repulsion is'1 eV. One might therefore expect that th
system would be a Mott insulator at any integer filling. Th
however, does not explain why systems with even-inte
filling are generally insulating, while systems with od
integer filling are generally metallic. A second related qu
tion is why the insulating materials at even-integer filling a
nonmagnetic. From Hund’s rule, we would expect the hig
est spin configuration to be the molecular ground stateS
51 for n52 andn54, and consequently some sort of ma
netic ground state is to be expected for the solid.

One explanation for the violation of Hund’s rule in th
insulating materials is that the Jahn-Teller~JT! effect coun-
teracts Hund’s rule, with the lowest-energy JT distorted st
of the C60 molecule at even-integer occupation being a s
singlet.8 However, a problem with the naive Jahn-Teller sc
nario is that static distortions of the C60 molecules have no
been detected in solid C60.9 Indirect evidence has come from
the existence of two energy-gap scales in the insulating
tems, a smaller spin gap of around 50 meV and a lar
©2003 The American Physical Society07-1
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charge gap of around 500 meV. The larger charge ga
quite clearly a Mott gap related to the intramolecu
electron-electron repulsion, whereas the smaller spin gap
been linked to a singlet to triplet gap of JT distort
molecules.5

A different scenario for the violation of Hund’s rule sug
gested by Chakravartyet al.10 and Baskaran and Tosatti11

claims that electronic correlations on a C60 molecule can
break the degeneracy of any partially filled molecular orb
in such a way as to minimize the spin and orbital angu
momentum. Chakravarty and co-workers looked at a H
bard model on single C60 molecule, with strong electron
electron repulsion~U! on each carbon atom, using secon
order perturbation theory inU. The linear inU terms give
Hund’s rule with a preferred highest spin configurati
which minimizes the overlap between electrons. The seco
order term on the other hand prefers low spin configurati
with large overlaps which can take better advantage of
tual excitations of the core electrons.12 The validity of the
qualitative features of the perturbation theory is supported
exact diagonalization of smaller Hubbard clusters.13

One important feature of the scenario based on intra
lecular electronic correlations is that in contrast to the st
Jahn-Teller distortions the orbital symmetry of the molec
is preserved. More recently, it has also been emphasized
series of papers by Tosatti and co-workers14–17 that Jahn-
Teller phonons treated in the antiadiabatic limit will also gi
rise to an effective electronic Hamiltonian with inver
Hund’s rule which preserves the orbital symmetry of t
molecule. It may thus be difficult to distinguish the latt
scenario from the one based on electronic correlations a
full treatment of both the electron-electron and the electr
lattice interactions to decide which energy scales domina
asked for. Along these lines a recent density-functional c
culation does find that Hund’s rule is valid for an isolated C60
and only counteracted by the JT effect,18 although issues
such as electronic screening by the surrounding molec
may also be important.19

Regardless of the mechanism behind the inversion
Hund’s rule on the C60 molecule it is an interesting problem
to study the effective model of solid C60 which this naturally
gives rise to, namely the three channel Hubbard model w
‘‘anti-Hund’s rule’’ interactions. Here we study this model
the limit of strong interactions where we can do stand
second-order perturbation theory in the intermolecular h
ping. We find that the even/odd integer doping effect,
existence of two energy gaps in the insulating systems
well as the rapid variation ofTc with doping away fromn
53 are all natural consequences of this model.

We will focus primarily on even integer filling (n52 or
4!, where the problem simplifies significantly because of
resultant nondegenerate strong-coupling ground state. B
on this we can describe the spectrum consisting, in gen
of an indirect Mott gap to particle-hole excitations a
chargeless spin and orbital modes with a distinct ene
gaps. We also derive the spectrum of a single particle or h
doped into the nonmagnetic Mott insulator. The particle a
hole spectra turns out to be exactly the same as the noni
acting band structure up to an overall rescaling of the h
20510
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ping by a factor of 1/3 or 2/3. These characteristic proper
of the nonmagnetic Mott insulator are in agreement w
previous results on the same model.14,15

Apart from the correspondence with the physics of t
Mott insulatingA2C60 andA4C60 our main conclusion is tha
C60 with a filling n521x or 41x of the LUMO band, with
uxu!1, is best understood as adoped Mott insulator, mani-
fested by a charge-carrier concentration given byuxu instead
of n. In addition, the density of states is up to a rescal
factor, the same as that of the noninteracting band struc
at the band edgesn5uxu or n562uxu for particle and hole
doping, respectively. If we heuristically extend these resu
to largerx'1, the observedvariation of Tc with doping, for
2,n,4, follows naturally within any weak-coupling BCS
like scenario as a consequence of the rapid drop in the d
sity of states close to noninteracting band edges.

We will not, however, discuss the actual mechanism
superconductivity, i.e., the source of pairing. In particul
we will not assume that the intramolecular singlet-triplet g
is necessarily large enough to overcome the Coulomb re
sion and give rise to a bare attraction along the lines of
earlier work.10,11 In fact, a fit of the parameters of the mod
to experiment suggests that this is not the case. Neverthe
any other mechanism, such as one based on attraction
electron-phonon interactions, certainly needs to include
strong electron correlations which are present as indica
most clearly by existence of Mott insulating phases.

The paper is organized as follows. In Sec. II we define
model and the strong-coupling limit we will primarily con
sider. Then we derive a perturbative effective Hamiltoni
valid in the strong-coupling limit. In Sec. III we study th
Mott insulator at even integer filling and describe the sp
trum of excited states. We also discuss the distinction
tween even and odd-integer dopings and why at odd-inte
doping the system is more likely to be on the metallic side
the Mott transition. Then we use the results derived for
model to get an estimate of the parameters by comparin
experiment onA2C60 and A4C60. In Sec. IV we study the
doped Mott insulator at a filling close to even integer a
speculate on the implications of these results to the wh
doping range 2,n,4 as well as the properties at high
temperatures. Finally, in Sec. V we conclude.

II. THE MODEL

We will be studying a three-band Hubbard model. T
electrons occupy three degeneratep orbitals (L51) on every
site of the lattice and we define electron creation and dest
tion operatorscr ,ls

† andcr ,ls with site index, orbital quantum
number and spin, respectively. We will be working in theLz

basis wherel 521,0,1.
The Hamiltonian reads

H5h1HI ~1!

with a nearest-neighbor hopping

h5 (
^rr 8&

t l l 8
rr 8cr ,ls

† cr 8,l 8s , ~2!
7-2
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DEGENERATE THREE-BAND HUBBARD MODEL WITH . . . PHYSICAL REVIEW B68, 205107 ~2003!
and on-site interaction

HI5(
r

1

2
Unr

21JLLW r
21JSSW r

2 , ~3!

with U,JL ,JS.0. Here

nr5(
l ,s

cr ,ls
† cr ,ls , ~4!

LW r5(
l l 8s

cr ,ls
† LW l ,l 8cr ,l 8s , ~5!

SW r5(
lss8

cr ,ls
† SW s,s8cr ,ls8 ~6!

are the number, orbital angular momentum, and spin op
tors, respectively.

The lattice is three dimensional and we assume a po
group symmetry which is such that the hopping preserves
threefold orbital degeneracy, although this may be relaxe
long as the symmetry breaking crystal field is small co
pared to the interactions. We are going to study this in
strong coupling limit defined as

U@JS@JL@t, ~7!

where t5max(tll8
rr8). For C60 band-structure calculations20

give t;100 meV and values ofU of the order of 1 eV have
been suggested.3 A subsequent fit of the parameters of t
model to experiment onAnC60 suggests that the large-U
limit is quite well satisfied withU/t'5, while JS;JL;t.
The limit U@t is essential for our treatment, while relaxin
the other limits probably will not change the qualitative fe
tures of our results.

At t50 we find that the Hamiltonian is simply diagona
ized in terms of the statesun,L,S,Lz,Sz& r with n the number
of electrons on a site and (L,S) the total angular momentum
and spin and the energyE(n,L,S)5 1

2 Un21JLL(L11)
1JSS(S11). In the strong-coupling limit the effect of th
hoppingt will be to reduce the translational degeneracy. It
the topic of the following section to derive an effectiv
Hamiltonian which describes these low energy degrees
freedom.

A. Effective strong-coupling Hamiltonian

Let us define the short-hand notationp5(n,L,S) and a
5(Lz,Sz). As shown in Table I any single-site statesup,a& r
and up8,a8& r have the same energy, barring accidental
generacies, if and only ifp5p8. This implies that any eigen
state ofHI will not mix different representations at a site an
can be written as) rcp,a

r up,a& r , wherecp,a
r Þ0 only for one

particularp(r ). Consider now the action of the hopping ter
h on an eigenstate. This will affect two arbitrary neare
neighbor sites r and r 8, giving up,a& r up8,a8& r 8

→
t

(qbq8b8M uq,b& r uq8,b8& r 8 , whereM are the matrix ele-
ments ofh between the in and out states. Unless the ini
and final nearest-neighbor states have only exchanged
20510
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ticle number and representation between the sites, i.eq
5p8 and q85p, there will be a nonzero energy differenc
DE5E(q)1E(q8)2E(p)2E(p8) with respect to HI ,
which is some linear combination ofU, JL , JS . In the
strong-coupling limit Eq.~7! there is no accidental degen
eracy and the energy difference satisfiesDE@t, which will
allow us to do a perturbation theory int/DE. Henceforth we
will use theDE, to define the absolute value of the minimu
nonzero energy difference between two different nea
neighbor state configurations. From Table I we can ch
that in the strong-coupling limit this corresponds toDE

54JL , given for instance by E(3,2,12 )1E(2,0,0)

2E(2,0,0)2E(3,1,12 ).
We will be using the effective Hamiltonian method d

scribed as applied to the one-band Hubbard model in,
instance, Fazekas.21 We introduce a canonical transformatio

He f f5eiSHe2 iS5H1 i @S,H#1
i 2

2
†S,@S,H#‡1•••, ~8!

where the goal is to findHe f f such that it does not couple th
different energy sectors ofHI .

Let us considerh as a matrix which acts on neares
neighbor statesup,a& r up8,a8& r 85ua& rr 8 which in a short-
hand notation we will denote by a single indexa,b,c, . . . .
We write

h5 (
^rr 8&

hrr 85 (
^rr 8&

hab
rr 8ua& rr 8^burr 8 , ~9!

where

hab
rr 85^aurr 8(

l l 8
t l l 8
rr 8~cr ,ls

† cr 8,l 8s1H.c.!ub& rr 8 . ~10!

Next we split hab
rr 8 into hab

rr 85hab
0,rr 81hab

1,rr 8 , where hab
0,rr 8

5hab
rr 8dE(a),E(b) only connects states with the same ener

andhab
1,rr 85hab

rr 82hab
0,rr 8 which connects states with differen

energy. It follows that we can also writeh5h01h1.
We introduceS5S11S2, where S1;O(t/DE) and S2

;O(t2/DE2) and expand Eq.~8! to O(t2/DE),

TABLE I. Spectrum of the interaction, Eq.~3!, at a single site
with states specified by occupationn, total orbital angular momen-
tum L and total spinS.

n (L,S) E

0 (0,0) 0
1 (1,1

2 )
1
2 U12JL1

3
4 JS

2 (0,0), (2,0), (1,1) 2U1$0, 6JL , 2JL12JS%
3 (1,1

2 ), (2,12 ), (0,32 ) 9
2 U1$2JL1

3
4 JS , 6JL1

3
4 JS , 15

4 JS%
4 (0,0), (2,0), (1,1) 8U1$0, 6JL , 2JL12JS%
5 (1,1

2 )
25
2 U1

3
4 JS

6 (0,0) 18U
7-3
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He f f5HI1h01h11 i @S1 ,HI #1 i @S1 ,h01h1#

1
i 2

2
@S1 ,@S1 ,HI ##1 i @S2 ,HI #. ~11!

To first order int we want to cancelh1 by takingS1 to solve

i @S1 ,HI #52h1. ~12!

Clearly S1 needs to act only on nearest-neighbor sit

Defining S15(^rr 8&S1
rr 85(^rr 8&S1,ab

rr 8 ua& rr 8^burr 8 gives from
Eq. ~12!

i (
^rr 8&

h1,rr 8

5 (
^rr 8&r 9

@S1
rr 8 ,HI

r 9#5 (
^rr 8&

S1,ab
rr 8 @ ua& rr 8^burr 8 ,HI

r1HI
r 8#

5 (
^rr 8&

S1,ab
rr 8

„E~b!2E~a!…ua& rr 8^burr 8 , ~13!

where we have used the fact that we work in the eigenb

of HI such that (HI
r1HI

r 8)ua& rr 85E(a)ua& rr 8 . We thus ar-
rive at the solution

S1,ab
rr 8 5

ihab
1,rr 8

E~b!2E~a!
. ~14!

Recall thathab
1,rr 8 is defined as only having nonzero entri

when uE(b)2E(a)u>DE so thatS1;t/DE.
Given the solution forS1 obeying Eq.~12! we can rewrite

Eq. ~11! as

He f f5HI1h01 i @S1 ,h01h1#2
i

2
@S1 ,h1#1 i @S2 ,HI #

5HI1h01 i @S1 ,h0#1
i

2
@S1 ,h1#1 i @S2 ,HI #. ~15!

In analogy to usingS1 to cancel terms linear int which
connect different energy subsectors we can now useS2 to
cancel similar terms to ordert2 which arise from the com-
mutators ofS1 andh in Eq. ~15!. Technically this is slightly
more involved because there is also three site next-nea
neighbor interactions generated to second order int and we
refer the reader to the Appendix for the details.

The final expression for the effective strong-coupli
Hamiltonian reads

He f f5HI1 (
^r ,r 8&,ab

~He f f!ab
rr 8ua& rr 8^burr 8

1 (
^r ,r 8r 9&,ab

~He f f!ab
rr 8r 9ua& rr 8r 9^burr 8r 91O~ t3/DE2!,

~16!

with
20510
.

is

st-

~He f f!ab
rr 85S hab

rr 82 (
c,E(c)ÞE(a)

hac
rr 8hcb

rr 8

E~c!2E~a!
D dE(a),E(b) ,

~17!

~He f f!ab
rr 8r 952

1

2 (
c,E(c)ÞE(a)

hac
rr 8hcb

r 8r 91hac
r 8r 9hcb

rr 8

E~c!2E~a!
dE(a),E(b) .

~18!

Here ua& rr 85un,L,S,Lz,Sz& r un8,L8,S8,L8z,S8z& r 8 and
ua& rr 8r 9 are arbitrary nearest-neighbor and next-neare

neighbor eigenstates ofHI with energy E(a) and hab
rr 8 is

defined according to Eq.~10! with a straightforward exten-
sion for three-site states.

III. THE MOTT INSULATOR

In the strong-coupling limit, Eq.~7!, of this model the
system is an insulator at any integer filling with a gap
charge-carrying excitations of the order ofU. At odd integer
filling the ground state is the highly degenerateuGS,1/3/5&
5) r un51/3/5,L51,S5 1

2 ,Lz,Sz& r and the hoppingt will in-
troduce strong correlations in analogy with the half-fille
single-band Hubbard model. We will return to this proble
briefly in discussing the fact thatA3C60 is generally on the
metallic side of the Mott transition.

However, at even integer filling,n52 or 4, the ground
state is nondegenerate,uGS,2/4&5) r un52/4,L50,S50& r .
Here, we will find that much of the physics can be und
stood in terms of a simple noninteracting single-particle p
ture. This will be the focus of the subsequent discussion
the main issue of the paper. We will discussn54 to compare
with experiments on K4C60 and Rb4C60 but the treatment of
n52 is completely analogous.

At filling n54 there are three types of excitations of t
ground state that can be readily identified and which
indicated in Fig. 1. We can excite a single site into a high
energy multiplet, creating statesu4,2,0,Lz& r) r 8Þr u4,0,0& r 8 or
u4,1,1,Lz,Sz& r) r 8Þr u4,0,0& r 8 with energy D̄[E(4,2,0)

2E(4,0,0)56JL and D̄̄[E(4,1,1)2E(4,0,0)52JL12JS ,

FIG. 1. Spectrum att50 and dopingn54 showing the lowest-
energy excitations of the three distinct kinds discussed in the te
7-4
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respectively. There is also ‘‘particle-hole’’ excitations in di
ferent multiplets, the one with lowest energy bei

u3,1,12 ,Lz,Sz& r u5,1,12 ,L8z,S8z& r 8) r 9Þr ,r 8u4,0,0& r 9 with energy
D05U14JL1 3

2 JS . The energyD0 is the Mott gap to zeroth
order in t.

The degeneracy of the excited states will be lifted by
hoppingh and using the effective Hamiltonian Eq.~17! we
can study the spectrum perturbatively int.

A. Spin gap, spin and orbital modes

The spin and orbital excitations u4,1,1,Lz,
Sz& r) r 8Þr u4,0,0& r 8 and u4,2,0,Lz& r) r 8Þr u4,0,0& r 8 are degen-
erate inLz and Sz as well as positionr. Acting with the
effective Hamiltonian Eq.~17! will split the degeneracy in
space~as well as the orbital degeneracy! leading to a band
description of these states. Clearly to first order inh (t), the
effective Hamiltonian will not affect these states as it nec
sarily creates a high-energy particle-hole state. For the s
reason the second-order three-site interaction will not c
tribute. However, the second-order nearest-neighbor t
can hop the excited state atr to a nearest neighborr 8 or to
the same siter through an intermediate particle-hole state

Focusing on the spinless excitations we define
‘‘bosonic’’ operator

br ,m
† 5u4,2,0,m& r^4,0,0ur ~19!

in terms of which we can write an excited orbital state
br ,m

† uGS,4&. These operators do not obey proper commu
tion relations but if we consider only single-particle phys
this is irrelevant. With these operators we can write the f
lowing single-particle Hamiltonian describing the dynam
of such excitations:

H5 (
^r ,r 8&

t̄ mm8
rr 8 br ,m

† br 8,m81(
r

t̄ mm8br ,m
† br ,m8 , ~20!

where

t̄ mm8
rr 8 52

1

U13/2JS22JL

3( ^4,2,0,mur^4,0,0ur 8t i i 8
rr 8~cr ,is

† cr 8,i 8s1H.c.!uph&

3^phut j j 8
rr 8~cr , js

† cr 8, j 8s1H.c.!u4,0,0& r u4,2,0,m8& r 8 ,

~21!

and similarly for t̄ mm8 . Here uph& are particle-hole state

u5,1,12 ,l ,s& r u3,1,12 ,l 8,s& r 8 ~or with reversed positions! and the
sum is over all indices exceptm,m8 and r ,r 8. Similar con-
tributions but with larger denominators from intermedia
particle-hole excitations in higher-energy multiplets ha
been ignored in Eq.~21!.

Deriving the Hamiltonian Eq.~20! is thus a straightfor-
ward problem. The Hamiltonian is noninteracting and can
principle be diagonalized in momentum space. In general
five orbital components will be mixed with a complicate
band structure. The same calculation can be carried ou
20510
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the spinful (n54,L51,S51) states, where there are nin
coupled states per site. Although the bandwidth of these s
and orbital modes are naively of the order oft2/U the high
degeneracy of these states is expected to give a signifi
broadening of bandwidth, perhaps by a factor of the spin
orbital degeneracies of these states. The spinful excitat
should be readily detectable experimentally as a band
magnons with some gapDs , a spin gap. We will return to the
issue of the spin modes in discussing NMR onA2C60 and
A4C60.

B. Charge excitations

At filling n54 the lowest-energy charge-carrying excit

tions are the particle-hole statesu3,1,12 ,l ,s& r u5,1,12 ,l 8,
s8& r 8) r 9Þr ,r 8u4,0,0& r 9 with an energyD05U14JL1 3

2 JS .
Acting with the effective Hamiltonian Eq.~17! on such a
state will translate either the particle (n55) or the hole (n
53) to a nearest-neighbor site through the linear term ih
(t). To second order, there is next-nearest-neighbor hopp
through an intermediate state in a higher-energy multip
Since it is higher-order,O(t2/DE), we will ignore this con-
tribution. However, it should be noted that the denomina
DE for this process is proportional toJS and/orJL not U,
implying of course that we should consider the higher-ene
particle and hole multiplets if the strong-coupling limit E
~7! is not strictly valid. Note that due to the energy constra
in the effective Hamiltonian the particle and hole are n
allowed to annihilate by hopping to the same site. We w
ignore the constraint which in three dimensions is expec
to give a vanishing contribution to the spectrum at low de
sities.

1. Charged single-particle excitations

In order to understand charge transport, we need to c
sider the single-particle and single hole sta
u5,l ,s& r) r 8u4& r 8Þr and u3,l ,s& r) r 8u4& r 8Þr . Here we have

dropped the multiplet indices (L,S)5(1,1
2 ) or (0,0). When

acted on byHe f f these excitations are translated to a neare
neighbor throughh with a matrix element

^4ur^5,l 8,s8ur 8S (
j j 8,s

t j 8 j
rr 8cr 8, j 8,s

† cr , j ,sD u5,l ,s& r u4& r 8

5
1

3
dss8t l 8 l

rr 8 ,

^4ur^3,l 8,s8ur 8S (
j j 8,s

t j 8 j
rr 8cr , j ,s

† cr 8, j 8,sD u3,l ,s& r u4& r 8

52
2

3
dss8t l 8 l

rr 8 , ~22!

and similarly with a factor of21/3 for holes and of 2/3 for
particles with respect to then52 ground state. The matrix
elements in Eq.~22! follow from the explicit expressions fo
the states
7-5
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u5,1,12 ,l ,s&5A3cls
† u4,0,0&,

u3,1,12 ,l ,s&5A3

2
cls

† u2,0,0&5A3

2
~2s!2u l u21c2 l 2su4,0,0&,

u1,1,12 ,l ,s&5cls
† u0&5A3~2s!2u l u21c2 l 2su2,0,0&, ~23!

which is a simple exercise in elementary quantum mecha
to derive.

We note the reduced magnitude of the matrix eleme
compared to the single-particle particle hopping on em
sites

^0ur^1,l 8,sur 8S (
j j 8,s

t j 8 j
rr 8cr 8, j 8,s

† cr , j ,sD u1,l ,s8& r u0& r 85dss8t l 8 l
rr 8 .

~24!

This is a general result of the reduced Hilbert space du
constraining then-particle states to the lowest-energy mu
tiplet.

Let us define the particle and hole creation operators

c5,rls
† 5u5,l ,s& r^4ur , c3,rls

† 5u3,l ,s& r^4ur , ~25!

through which the particle and hole states can be written
c5,rls

† uGS,4& andc3,rls
† uGS,4& with uGS,4&5) r u4,0,0& r . Note

that these operators do not obey on-site anticommutation
lations, we can only use them with confidence in describ
noninteracting single-particle physics.

In terms of these particle and hole operators we n
straightforwardly arrive at the following single-partic
Hamiltonians for the particle and hole states

H55 (
^rr 8&,l l 8s

1

3
t l l 8
rr 8c5,rls

† c5,r 8 l 8s

1(
r ,ls

~9/2U13/4JS12JL2m!c5,rls
† c5,rls , ~26!

H352 (
^rr 8&,l l 8s

2

3
t l l 8
rr 8c3,rls

† c3,r 8 l 8s

1(
r ,ls

~27/2U13/4JS12JL1m!c3,rls
† c3,rls , ~27!

where the on-site energy is defined with respect to
E(4,0,0)58U24m and where we have introduced th
chemical potentialm.

These are just simple tight-binding Hamiltonians whi
we can diagonalize in momentum space in terms of stat

u5,k,ls&5c5,kls
† uGS,4&5

1

AV
(

r
eikW•rWc5,rls

† uGS,4&,

u3,k,ls&5c3,kls
† uGS,4&5

1

AV
(

r
e2 ikW•rWc3,rls

† uGS&. ~28!

In general, these are not eigenstates due to the fact tha
hopping is not diagonal inl and we would get three~or more
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if there are inequivalent sites! nondegenerate bands depen
ing on the precise nature of the hopping integrals which
pend on the crystal symmetry. Quite intriguingly, as se
from Eqs.~26! and~27!, the band structure for these partic
and hole excitations from the Mott insulating ground state
precisely the noninteracting band structure up to a resca
factor. The reason for this remarkably simple behavior is t
the ground state at even-integer filling is in the trivial (L
50,S50) representations of spin and angular moment
and as such is basically equivalent to the zero-part
vacuum.

2. Mott gap

The Mott gap is defined as the gap between the gro
state and the lowest-energy charge-carrying excitation of
insulator. What is often measured, however, is the optical
as defined by optical conductivity or reflectivity measur
ments and we will be interested in calculating this too.

The Kubo formula for the optical conductivity which i
the short-wavelength limit of the electrical conductivity is
zero temperature

saa~v,q50,T50!5
2i\2e2

m2V
(
m

v

vm

u^mu j a~q50!uGS&u2

v~v1 ih!2vm
2

,

~29!

where um& are excited states with\vm5Em2EGS.22 The
current operator can be derived from the continuity equat
i\21@n(r ),H#1“• jW(r ). For the Hamiltonian Eq.~1! con-
sidered here only the tight-binding part contributes and
get

jW~qW !5 (
pW ,l l 8s

S ]

\]pW
(

d
e2 ipW •dW t l l 8

0d D cp1q,ls
† cp,l 8s , ~30!

wheredW is the set of nearest-neighbor lattice vectors. Fo
cubic or orthorhombic lattice this simplifies to

jW~qW !52
1

\ (
pW ,l l 8s,d

dasin~pW •dW !t l l 8
0dcp1q,ls

† cp,l 8s . ~31!

The current operator creates particle-hole pairs when
ing on the ground stateuGS,4& and we expect to get nonzer
matrix elements with states

ukls,k8l 8s8&p-h5c5,kls
† c3,k8 l 8s8

† uGS,4& ~32!

defined according to Eqs.~28! and ~25!.
With this we can calculate the matrix element

^kls,k8l 8s8up-hj
a~q50!uGS&

52
A2

3\
~2s8!2u l 8u21(

d
dasin~kW•dW !t l ,2 l 8

0 d dk,k8ds,2s8 .

~33!

Introducing an explicit band structure, i.e., definingt l l 8
rr 8 ,

we can in principle calculate the optical conductivity due
7-6
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DEGENERATE THREE-BAND HUBBARD MODEL WITH . . . PHYSICAL REVIEW B68, 205107 ~2003!
the particle-hole excitations. A lower bound to the support
the sum in Eq.~29! will tell us the optical gap, below which
v, s(v) will decay. We simply maximize the kinetic energ
of the particle and hole under the zero-momentum constr
in the usual manner to obtain this. We will ignore the po
sible complications due to the dispersion and angular m
mentum part(ddasin(kW•dW)tl,2l8

0 d which may kill the matrix
elements at some high-symmetry points. Moving sligh
away from such symmetry points will give a finite contrib
tion to the response.

The optical gap is thus given by

Doptical>U14JL1
3

2
JS1@ 1

3 « i
t~kW !2 2

3 « j
t~kW !#min(kW ,i , j ) ,

~34!

where« j
t (kW ) is the kinetic energy of thej th band at momen-

tum kW and min(kW,i,j) means minimizing with respect to th
momentum and the band indices.

To get the Mott gap we just need to find the lowest-ene
particle-hole state, which will in general be smaller than
optical gap. This corresponds to putting the particle at
bottom of the single-particle band and the hole at the top

DMott5U14JL1
3

2
JS1@ 1

3 « i
t~kW !2 2

3 « j
t~kW8!#min(kW ,kW8,i , j ) .

~35!

In Fig. 2 we present a caricature of the band struct
around n54 based on a an explicit noninteracting ban
structure calculated for K4C60 by Gunnarssonet al.,23 which
is rescaled by a factor of 1/3 for the particle band and of
for the hole band. For this band structure, and any ot
where the max and min are not at the same k vector, we

FIG. 2. Sketch of the band structure at dopingn54 @K4C60

~Ref. 23!# showing the indirect gap structure with optical gapDopt

and Mott gapDMott . The thin dashed lines indicate the centers
the particle and hole bands and the energy scales on the righ
defined with respect to these.D05U14JL1

3
2 JS is the gap int

50 limit.
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an indirect gap where the optical gap is larger than the M
gap and that the lowest-energy particle-hole excitations h
nonzero momentum.24

A word of caution may be appropriate in considering th
figure, namely that the single-particle states in the bands
only well defined within our theory for a small density o
such states. We depict the lower ‘‘band’’ as filled with singl
particle states, but the real entities are only the holes in
band. This is a strongly interacting system and the anal
with a weakly interacting semiconductor has limitations. F
instance, it is quite obviously nonsensical to fill up the p
ticle band with a density of more than two particles beca
that would correspond to a total electron density of mo
than six. We will return to issue of doping away from th
Mott insulator in Sec. IV.

For comparison with other models of the Mott transitio
on degenerate Hubbard models it is useful to write dow
more general expression for the Mott gap. If we make
reasonable assumption that the top and bottom of the b
structure are roughly the same magnitudeW/2, whereW is
the bandwidth of the tight-binding Hamiltonianh, we can
write

DMott'Ue f f~4!2
1

2
W, ~36!

whereUe f f(4)5U14JL1 3
2 JS . This expression is in sharp

contrast to calculations onN-band Hubbard models withou

the multiplet splitting termsSW 2 andLW 2, where forms such as
DMott'U2NW or DMott'U2ANW has been suggested.25

The intuitive motivation for theN dependence is an increas
in the kinetic energy of the particle-hole state due to
additional hopping channels. In this model we see a differ
behavior since the number of hopping channels are lim
by the strong spin-dependent on-site interactions.

C. Why is A3C60 metallic?

One of the most striking facts about the fullerides is th
the A3C60 materials are generally metallic given that th
even-integer filling materials are likely large-U insulators.
The problem of odd-integer filling is significantly more com
plicated than that of even-integer filling as presented abo
The reason for this is that even in the strong-coupling lim
Eq. ~7!, the ground state consists of states (n53,L51,S
5 1

2 ) with spin and orbital degeneracies. This problem
sembles the half-filled single-band Hubbard model with
highly degenerate ground state which will be split to t
order of t2/U. The ground state may then have magne
and/or orbital orders.

However, if we assume that the putative insulating grou
state is not ordered so that the hopping of particles (n54,L
50,S50) and holes (n52,L50,S50) is not frustrated by
the spin interactions we can derive a Mott gap in analog
fashion to that forn54 above which reads

f
are
7-7
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DMott~n53!*U24JL2
3

2
JS1@ 2

3 « i
t~kW !2 2

3 « j
t~kW8!#min(kWkW8,i , j )

'Ue f f~3!2
2

3
W, ~37!

whereW again is the noninteracting bandwidth ofh. If the
ground state has significant magnetic or orbital correlati
we expect the gap to be bigger because of a lower-grou
state energy and frustration of the motion of the particle a
hole.

Compared to the expression 36 for the Mott gap atn54
we note an increase fromW/2 to 2W/3 in the kinetic energy
of the particle and holes due to the larger phase-space
lowed for hopping. InA3C60 where the bandwidth is aroun
0.5 eV it appears that this difference will not be large enou
to close the 0.5 eV Mott gap seen inA4C60.

However, in addition there is in this model also a mo
distinct difference between even- and odd-integer fillin
namely, the sign change of theJS andJL terms between the
effective Hubbard repulsionUe f f(4)5U14JL1 3

2 JS and
Ue f f(3)5U24JL2 3

2 JS . This difference comes from th
fact that the lowest-energy particle and hole excitations
(L50,S50) at odd-integer filling, while they are (L51,S
5 1

2 ) at even integer. If the multiplet splitting interactions a
large enough they could certainly destabilize the Mott in
lating ground state at odd-integer filling. For instance, ifJS
and JL are very large such thatUe f f(3),0 and uUe f f(3)u
@t we would have a spinless Bose liquid consisting of
equal number of two- and four-particle singlets which cou
only propagate to second order int.26 At intermediate cou-
pling Ue f f(3);t we would expect some correlated metal
state with most of the spectral weight in low spin configu
tions of the two-, three-, and four-particle states, allowing
hopping to first order int. Evidence for the formation o
singlet configurations on short time scales in the meta
fullerides Na2CsC60, RB3C60, and the quenched cubi
CsC60 (n51) have been presented from NMR spin-latti
relaxation measurements.27,28

In addition, we know thatA3C60 is quite close to a metal
insulator transition. It has been found that intercalating a
monia into the crystal can cause a transition into an insu
ing magnetically ordered phase.29 The main effect here is
presumably the expansion of the lattice and correspond
decrease in the bandwidth, although the crystal symmetr
also reduced which may be important in facilitating a ma
netically ordered ground state. An important consequenc
these findings if interpreted through our model is that
A3C60 Ue f f(3).0 because the ground state for smallt is
magnetic and thatuUe f f(3)u;t because changes in the ma
nitude of t can induce a metal-insulator transition.

D. Experiment

A basic observation from experiments is that there
pears to be two distinct energy scales in these mater
Probes that are sensitive to spin, in particular NMR, are c
sistent with a spin gap of around 50–100 meV, while opti
conductivity sees a larger charge gap of around 500 m
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Here we will look at the consistency of the model with the
observations and make a fit to estimate our microscopic
rametersU, JL , andJS .

1. Optical gap

The charge gap is seen in optical conductivity as a de
tion of the low-energy weight in K4- and Rb4C60 below
roughly 500 meV.4 By inspection of Fig. 2 together with
expression~34! for the optical gap we get the following es
timate

Dopt~K4C60!'Ue f f~4!2200 meV'500 meV, ~38!

where again Ue f f(4)5U14JL1 3
2 JS . Solving Eq. ~38!

givesUe f f(4)'700 meV.
We can compare this toA3C60 where we expect the

charge gap to close. Using expression~37! for the charge gap
at n53 together with a bare bandwidth of 600 meV gives

DMott~A3C60!'Ue f f~3!2400 meV<0, ~39!

with Ue f f(3)5U24JL2 3
2 JS . Together with the estimate

Ue f f(3).0 as discussed in Sec. III C we thus find the rou
estimate of 0,Ue f f(3)&400 meV.

Combining the values forUe f f(4) and Ue f f(3) we can
now estimate the microscopic parameters of the model.
find U&550 meV and 150 meV& 3

2 JS14JL,350 meV.

2. NMR, 1ÕT1

Various probes5,6 have detected a thermally activate
magnetic susceptibility in K4C60 and Rb4C60 and more re-
cently also in Na2C60.30 This has been interpreted as ev
dence for a singlet-triplet gap of Jahn-Teller distorted m
ecules, where a molecule is thermally excited from the
ground-state singlet to the triplet which then acts as a lo
moment. In the model presented here it is natural to ass
such experimental signatures of gapped spin excitation
the spin modes or magnons which are a necessary part o
spectrum of the nonmagnetic Mott insulator.

We will be focusing on measurements of 1/T1, the spin-
lattice relaxation rate, deriving the temperature depende
of the relaxation by the magnons in the limitT!Ds .

The probability of a transition between nuclear spin sta
with z componentm85m61 due to a two magnon proces
which scatters a magnon withi 5(Lz,Sz) and momentumk
to i 85(L8z,S8z) andk8 is given by Fermi’s golden rule as

Wmm85 (
ik,i 8k8

2p

\
u^m,nik ,n8 i 8k8uVum8,nik21,n8 i 8k811&u2

3d~Eik2Ei 8k8!, ~40!

wherenik is the magnon number operator, the interactionV

5AIW•SW 0 with hyperfine couplingA, nuclear spinIW and elec-
tron spin at the nuclear siteSW 0. We have dropped the smal
typically ;1026 eV, Zeeman splitting of the nuclear spin.

The electron-spin operator will act as
br ,L8zSz1(m2m8)

† br ,LzSz with some small prefactor given b
the overlap of these states with the single atom, wherebr ,LzSz

†

7-8
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DEGENERATE THREE-BAND HUBBARD MODEL WITH . . . PHYSICAL REVIEW B68, 205107 ~2003!
creates a triplet excitation. Ignoring the details of the ma
element between the different triplet states one finds that
general magnon matrix element is given by^ni 8k811&
3^nik&, where^nik&5(ebEik21)21 is just the Bose occupa
tion of the magnons. Finally the relaxation rate is given b31

1
2 (mm8Wmm8(Em2Em8)

2/(mEm
2 where the magnon part o

Wmm8 clearly is independent ofm andm8. We thus arrive at
the final expression

1/T1;E
Ds

Ds1Wmag
de

N2~e!

sinh2~be/2!
, ~41!

where we have converted the sums to integrals by introd
ing the density of magnon statesN(e). HereDs is the spin
gap, i.e., the lower edge of the magnon band, andWmag is the
magnon bandwidth.

For T!Ds we can replace the 1/sinh2(be/2) by 4e2be and
the integral is dominated bye;Ds . Assuming a quadratic
dispersion at the band edge we getN(e);Ae2Ds for e
*Ds . By change of integration variable we arrive at t
temperature dependence

1/T1;T2e2Ds /T, T!Ds . ~42!

Figure 3 shows a fit of this model to13C 1/T1 data on
K4C60 and Na2C60.30

We get an excellent fit to the below room-temperatu
activated behavior with a valueDs5240 K'25 meV for
K4C60. For comparison we also show fits to a model
localized triplet states corresponding toWmag50 and 1/T1
;e2Ds /T. This is the fit used in the the experiment
work5,6,30 which is based on a model of a static unifor
Jahn-Teller singlet-triplet gap. In this intermediate tempe
ture regime it is difficult to tell which fit is best, in particula
considering the fact that both models clearly fail at high
temperatures where the relaxation rapidly saturates, and
conclude that these NMR data cannot resolve the two
narios.

FIG. 3. Fit to 13C NMR data by Brouetet al. ~Ref. 30!. The
thick lines are fits to 1/T1;T2e2Ds /T with Ds5240 K for K4C60

and Ds5710 K for Na2C60. The thin lines are fits to 1/T1

;e2Ds /T with correspondingDs5660 K and 1260 K.~The bump
around 180 K for Na2C60 is presumably a molecular motion peak!
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Nevertheless, using the valueDs525 meV for the spin
gap we may estimate the microscopic parameters. Give
bandwidthWmag which we assume to be symmetric arou
the center we get

Ds5 D̄̄2Wmag/2, ~43!

whereD̄̄52JL12JS is the t50 spin gap.~There is an addi-
tional corrections to the spin gap of the order oft2/U which
is a shift of the ground-state energy which should be
cluded in a more rigorous treatment.! A very rough estimate
of the bandwidth may be given by the degeneracy of the s
modesWmag59t2/U. With U'500 meV as derived from
charge gap and takingt'100 meV form band-structure ca
culations givesWmag'200 meV. Collecting into Eq.~43! for

the spin gap givesD̄̄52JL12JS'125 meV, which seems in
reasonable agreement with the estimate 150 meV& 3

2 JS
14JL,350 meV from the charge gap. This order of mag
tude agreement for the coupling constantsJS andJL is cer-
tainly encouraging in that it comes from experiments on t
apparently separate physical quantities.

A fit to 1/T1 for Na2C60 gives a larger gap of around 70

K. Within our model thet50 spin gapD̄̄ is the same forn
52 andn54 so the differing spin gaps are somewhat une
pected. However, since the crystal structure is different,
tight-binding Hamiltonians of these materials may be ve
different and consequently the bandwidth of the spin mod
In fact, Na2C60 is fcc while K4 and Rb4 are body-centered
tetragonal. The natural interpretation for the variations with
this model is thus variations of the magnon bandwid
Along the same lines we note the behavior of 1/T1 in Rb4C60
under pressure where it is found that the activated behavio
replaced or coexists with a nonactivated component rela
to gapless excitations.6 It has been suggested that this is r
lated to a closing of the Mott gap due to the expected pr
sure induced increase of the bare bandwidth. Within
model we find a possible alternative interpretation in ter
of a closing of the spin gap.

Above room temperature the activated behavior stops
the relaxation rate saturates. Within our simple nonintera
ing model for the spin modes we cannot expect to be abl
address the high-temperature behavior when a signific
number of modes are excited. A more sophisticated treatm
requires us to properly account for the interactions betw
the spin modes as well as the exclusion statistics that
ignored in the single-particle picture. The saturation co
also be related to molecular degrees of freedom at hig
temperatures, which are completely neglected in
model.30 However, we note that this rapid saturation is ve
reminiscent of the behavior of 1/T1 in spin ladder materials
with gapped magnons,32 where it is believed to have a purel
electronic origin.33

IV. THE DOPED MOTT INSULATOR

We will now look at the problem of an incommensura
particle density away from the Mott insulators at eve
integer filling n52 and n54. This is obviously a much
7-9
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FIG. 4. Density of states~both
spins! as function of filling n
given the noninteracting DOS in
set. The dashed lines are extrap
lations of Eq. ~44! toward odd-
integer filling. The noninteracting
DOS is calculated from the ban
structure of unidirectionalA3C60

~Ref. 20!.
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more difficult task because in the strong-coupling limit t
ground state will be highly degenerate. As a concrete
ample, at a dopingn521x (x,1) the ground state att

50 is the set of states withx three-particle states (3,1,1
2 ) and

(12x) two-particle states (2,0,0) at arbitrary positions
space. Introducingt by means of effective Hamiltonian~17!
we find to first order int nearest-neighbor interchange of th
two- and three-particle states and to second order int spin
and orbital exchange terms between nearest-neighbor th
particle states. This can be described by a generalizedt-J
model including a no double occupancy constraint beca
only two and three-particle states are allowed.

At first glance this may appear to be an even more d
cult problem than that of a doped antiferromagnet becaus
the additional orbital degrees of freedom. However, in
low-density limit, x!1, it is in fact considerably simple
than the doped antiferromagnet because only the doped
ticles ~or holes! have internal spin and orbital degrees
freedom. In the doped antiferromagnet the scenario is
the opposite with a large number 12x of spinful particles
and a small numberx of spinless holes. This of course give
rise to the very complex behavior in such systems where
spin interactionsJ can compete with the hoppingt even in
the limit J;t2/U!t because the important energetics
given roughly byxt and (12x)J. Here for the doped non
magnetic Mott insulator a similar consideration would le
us to comparexJ with xt because it is the doped particles
holes that carry both the spin and momentum. Effectively
are thus looking at the low-density~heavily doped! limit of a
t-J model.

We will completely neglect the nearest-neighbor e
change interactions as well as the no double occupancy
straint and only consider the single-particle physics. C
tainly, for the problem of a single-particle or hole doped in
the nonmagnetic Mott insulator this is completely rigoro
and again in sharp contrast to the problem of a single hol
an antiferromagnet where interactions obviously cannot
neglected. Even this single-particle physics has some in
esting implications for the doping dependence in the meta
fullerides.
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A. Small Fermi surface

The problem of a single-particle or hole was addres
already in Sec. III B 1 in connection with particle-hole exc
tation. There we showed that the single-particle or hole sp
tra are equivalent to the noninteractingHI50 spectrum up to
a rescaling by a factor of 1/3 or 2/3. At least in the ve
low-density limit, n521x or n541x with uxu!1, we ex-
pect these single-particle states to give a qualitatively ac
rate picture by fillingx such states.

In particular this implies a ‘‘small Fermi surface,’’ wher
the number of delocalized charge carriers is proportiona
the number of doped holes or particlesx and not the total
filling n. The remaining degrees of freedom are frozen bel
the Mott gap. One important consequence is that the den
of states at the Fermi surface for small dopingx will be given
by the density of states~DOS! at the band edges of the o
noninteracting problem by the simple relation

DOSstrong coupling~n522x!'3 DOSnoninteracting~n562x!,

DOSstrong coupling~n521x!'3/2 DOSnoninteracting~n5x!,

DOSstrong coupling~n542x!'3/2 DOSnoninteracting~n562x!,

DOSstrong coupling~n541x!'3 DOSnoninteracting~n5x!,

x!1. ~44!

A detailed picture of what happens at larger dopingx
→1 as we approach odd-integer filling is beyond our me
ods. However, a naive extrapolation of the results valid
smallx all the way tox51 gives a density of states as show
in Fig. 4, where the density of states is generally peaked
odd-integer filling as a consequence of the rapid decay
ward the effective band edges at even-integer filling. F
reasons discussed in Sec. III C we have to be in an inter
diate coupling regime, where the system is metallic at o
integer filling for this extrapolation to have any credibility

There is an interesting experiment that corroborates
small Fermi-surface picture in C60 which is the variation of
density of states in Na2CsxC60 (0,x,1) corresponding to a
doping range 2,n,3.7 It was estimated from the Pauli sus
7-10
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ceptibility that for samples withn52.25, 2.5, 2.75, 3 the
density of states varies as 5, 7, 11, 15 eV21 ~both spins!.
Correspondingly,Tc drops rapidly from 12 K atn53 to 7 K
at n52.75 and to,0.5K at n52.5. Certainly, this behavio
seems consistent with the scenario sketched in Fig. 4, w
the density of states drops rapidly as the effective Hubb
band edges are approached at even-integer filling.

The failure of naive band theory in the presence of stro
local repulsion is a consequence of the large inherent ch
fluctuations of such an uncorrelated state of delocalized e
trons. It may be illuminating to recall some of Hubbard
original work on the topic of narrow-band systems.34 For an
m-fold degenerate band at fillingn the probabilityPN(m,n)
of having N electrons on a particular atom~molecule! is
given by

PN~m,n!5S m

ND S n

mD NS 12
n

mD m2N

, ~45!

where (N
m) is the multiplicity of atomic states withN par-

ticles. The rms fluctuation is given by (DN)rms

5An(12n/m), which has a maximum (DN)rms5Am/2 at
half filling n5m/2. Clearly, at finite doping there are signifi
cant charge fluctuations of the order 1 which cost an ene
of the order ofU per site in an uncorrelated state and whi
grows with the degeneracy. We can get an estimate of
energy cost of the charge fluctuations for our model by co
paring the potential energyE5^HI& in an uncorrelated stat
which is the ground state of the kinetic energyh with that
given by the small Fermi-surface state which is the grou
state of the potential energyHI . The latter is at fillingn
given bypN N-particle states andpN11 N11-particle states
in the lowest energy multiplet whereN<n,N11 and
pNN1pN11(N11)5n. The potential energy of this state
given by

^HI&corr5pNE0~N!1pN11E0~N11!, ~46!

whereE0(N) is the energy of the ground-state multiplet wi
N particles. Expression~45! turns into

PN,L,S~n!5~2L11!~2S11!S n

6D NS 12
n

6D 62N

~47!

for this model, where theN-particle multiplets are split ac
cording toL andSand the corresponding potential energy f
the uncorrelated state is

^HI&uncorr5 (
N,L,S

PN,L,S~n!E~N,L,S!. ~48!

Figure 5 showsDE5^HI&uncorr2^HI&corr as a function of
doping and in units ofUe f f(2)5Ue f f(4)5U14JL13/2JS
for two casesJL5JS50 andJL50.1U, JS50.2U.

We see that in a wide doping range around half filli
there is a significant energy cost due to charge fluctuation
an uncorrelated state. Given that this leads to the Mott in
lating behavior at even-integer filling we would also expe
significant correlation effects in the metallic regions 2,n
,4, consistent with the small Fermi-surface scenario.
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Hubbard’s treatment of narrow-band systems used a r
space Greens function method which is exact in the z
bandwidtht50 case but which depends critically on negle
ing correlations between electrons on different atoms in
finite bandwidth case. He found that in the narrow bandwi
limit the original noninteracting band splits into a large num
ber of bands which correspond to transitions between st
with particle number differing by one. In addition these Hu
bard bands reflect the noninteracting band with density
states which are some functional of the noninteracting d
sity of states. Our result for the doped Mott insulator is e
sentially a special case of Hubbard’s results for which we
solve for the quasiparticle spectrum exactly in the lo
density limit where we can neglect interactions between
doped particles or holes.

B. High Temperatures

In the preceding section we discussed the ground-s
properties of the doped Mott insulator close to even-inte
filling. We found a band of single-particle states which up
a rescaled hopping are equivalent to the states of the n
interacting problem. At low temperatures we thus expec
simple metallic behavior with bandlike charge transpo
Here we will speculate on some of the interesting phys
which could emerge from the model at higher temperatu

The derivation of the single-particle Hamiltonians, Eq
~26! and ~27!, for the particle and hole states depends c
cially on the fact that the Mott insulating ground state is
the simple nondegenerate formuGS,4/2&5) r un54/2,L
50,S50. r and that we can ignore the higher orbital a
spin multiplets in the two and four-particle molecular spe
tra. At elevated temperatures of the order the the spin gapDs
this assumption is no longer justified as the the spin a
angular momentum modes discussed in Sec. III A are th
mally occupied and we should consider their effect on
quasiparticle states.@The activated behavior discussed
Sec. III D 2 which has been linked to gapped triplet exci
tions is seen in NMR (1/T1) also in the metallic Na2CsC60
and Rb3C60 ~Ref. 27!.# These, in fact, interact very strongl
with the quasiparticles in a quite nontrivial fashion. In th
presence of such an excited spin or orbital state the nea

FIG. 5. Potential-energy difference, in units ofUe f f(2)5U
14JL13/2JS , between an uncorrelated and correlated ground s
as a function of fillingn. The solid line is forJS52JL50.1U and
the dashed line forJL5JS50.
7-11
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neighbor hopping integrals described by Eq.~22! turn into
some more complicated expressions given by, for instan

^4,1,1,L8z,S8zur^3,l 8,s8ur 8

3S (
j j 8,s

t j 8 j
rr 8cr , j ,s

† cr 8, j 8,sD u3,l ,s& r u4,1,1,Lz,Sz& r 8 ,

~49!

in the case of a hole hopping to a site occupied by a s
triplet. Depending on the configurations of the spin trip
states the hopping of the hole (u3,l ,s&) may be completely
suppressed or it may require a spin flip. Certainly t
nearest-neighbor hopping integrals would be completely
tered from the simple form of Eq.~22!.

It is not obvious how to model this problem but the mo
naive scenario might be to ignore the hopping of the spin
orbital states and replace them by thermally excited imp
ties causing disorder in the hopping of the particles or ho
Such a model would be similar to that suggested by Varm
explain the paramagnetic insulator to ferromagnetic m
transition in lanthanum manganites~giant magnetoresistive
compounds!.35

One may speculate that this temperature activated
diagonal disorder could destroy the bandlike motion of
charge carriers and possibly be related to anomalous pro
ties of A3C60 at elevated temperatures such as the evide
for localization from NMR,27 the disappearance of the Ferm
edge36 and the nonsaturation of resistivity and the cor
sponding extremely short mean-free paths.37

V. CONCLUSIONS

We have studied an orbitally degenerate three-band H
bard model with additional multiplet splitting on-site inte
actionsJSSW 2 andJLLW 2 which favor low-spin and low-orbita
angular momentum. We use the effective Hamilton
method in the strong-coupling limitU@JS@JL@t perturba-
tively to second order int. At even-integer filling,n52 or
n54, this model is an insulator with a nondegenerate gro
state where the electrons at each site occupy theL50 and
S50 configurations and with distinct spin and charge ga
The trivial ground state allows for a simple single-partic
description of spin and charge excitations. The lowest-ene
spinful excitations is a band of magnons with a bandwi
Wmag;t2/U and a gapDs52JL12JS2O(t2/U). A single-
particle or hole doped into the Mott insulator are describ
by the noninteracting tight-binding Hamiltonian but with a
overall rescaling by a factor of 1/3 or 2/3 of the hoppi
integrals and corresponding bandwidth. The latter allows
a detailed description of the particle-hole excitations and
corresponding charge gap is given byDMott'U14JL
13/2JS2W/2 in terms of the bandwidthW of the noninter-
acting Hamiltonian.

Close to the Mott insulator, at filling 21x or 41x with
uxu!1, we find a metallic state with a ‘‘small Fermi su
face,’’ where the density of charge carriers is given byuxu
and a density of states which is simply a renormalization
a factor of 3 or 3/2 of the density of states at the band ed
20510
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of the noninteracting band structure. Consequently, in th
dimensions the density of states will in general increase r
idly with the dopingx.

In this model there is also a distinct difference betwe
even- and odd-integer fillings, which follows from the simp
fact that an odd number of electrons cannot form a s
singlet. From this follows that the effective on-site repulsi
is given by Ueff(n52/4)5U14JL13/2JS at even-integer
filling and by Ueff(n51/3/5)5U24JL23/2JS at odd. Con-
sequently, depending on the magnitude ofJL and JS , the
Mott gap may be significantly reduced or vanish at od
integer filling.

The properties of this model are strikingly similar to th
phenomenology of the fulleridesAnC60 with 2<n<4. The
nonmagnetic Mott insulator at even-integer filling with
small spin gap and a larger charge gap, the even/odd effe
integer doping whereA3C60 is generally metallic, as well as
the rapid suppression of the DOS and the corresponding
perconducting transition temperatures as the filling
proaches even integer. We do a fit of the model to the cha
gap from optical conductivity and the spin gap from NM
1/T1 in K4C60 which appear consistent with values ofJS and
JL of around 50–100 meV.

There is a number of interesting open questions about
model and the possible implications to alkali doped C60. In
particular, we need a better understanding of the physic
odd-integer filling on the metallic side of the Mott transitio
Can this state have a superconducting ground state e
though, as evidence suggests,Ue f f(3).0 such that there is
no bare attraction in the way envisioned by Chakravarty a
coworkers as an electronic mechanism of superconductiv
In fact, also at even-integer filling there have been intrigu
suggestions of an intermediate superconducting state in
metal-insulator transition.16,17Another issue is the propertie
of the model at elevated temperatures approaching the
gap, where we have found that the spin and orbital mo
interact strongly with the charge carriers and may sign
cantly affect the simple bandlike charge transport.

APPENDIX: SECOND-ORDER CANONICAL
TRANSFORMATION

Here we derive the expressions for the second-order te
in the effective Hamiltonian Eq.~17!. Starting with Eq.~15!

He f f5HI1h01 i @S1 ,h0#1
i

2
@S1 ,h1#1 i @S2 ,HI #,

whereS1 is given by

S15 (
^r ,r 8&

ihab
1,rr 8

E~b!2E~a!
ua& rr 8^burr 8 . ~A1!

Our purpose is to constructS2 such that it cancels term
which connect different energy subsectors from the comm
tators@S1 ,h0/1#. We have
7-12
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i @S1 ,h0/1#52 (
^r ,r 8&,^r 9,r-&

hab
1,rr 8

E~b!2E~a!

3hcd
0/1,r 9r-@ ua& rr 8^burr 8 ,uc& r 9r-^dur 9r-#

52 (
^r ,r 8&

hab
1,rr 8

E~b!2E~a!

3hcd
0/1,rr 8@ ua& rr 8^burr 8 ,uc& rr 8^durr 8#

2 (
^r ,r 8,r 9&

hab
1,rr 8

E~b!2E~a!

3hcd
0/1,r 8r 9@ ua& rr 8^burr 8 ,uc& r 8r 9^dur 8r 9#,

~A2!

where we have used the fact that the operators commu
there is no overlap between sites. Using the complete se
three site states 15)aua& rr 8r 9^aurr 8r 9 for the three-site inter-
action we arrive at

i @S1 ,h0/1#52 (
^r ,r 8&,c

S hac
1,rr 8

E~c!2E~a!
hcb

0/1,rr 8

1hac
0/1,rr 8

hcb
1,rr 8

E~c!2E~b!
D ua& rr 8^burr 8

2 (
^r ,r 8,r 9&,c

S hac
1,rr 8

E~c!2E~a!
hcb

0/1,r 8r 9

1hac
0/1,r 8r 9

hcb
1,rr 8

E~c!2E~b!
D ua& rr 8r 9^burr 8r 9.

~A3!
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MATS GRANATH AND STELLAN ÖSTLUND PHYSICAL REVIEW B 68, 205107 ~2003!
E. Tosatti, Philos. Mag. B82, 1611~2002!.
19P.E. Lammert, D.S. Rokhsar, S. Chakravarty, S. Kivelson,

M.I. Salkola, Phys. Rev. Lett.74, 996 ~1995!.
20N. Laouini, O.K. Andersen, and O. Gunnarsson, Phys. Rev. B51,

17 446~1995!.
21P. Fazekas,Lecture Notes on Electron Correlation and Magnetis

~World Scientific, Singapore, 1999!.
22G. D. Mahan,Many-Particle Physics, 2nd ed. ~Plenum Press,

New York, 1990!.
23O. Gunnarsson, S.C. Erwin, E. Koch, and R.M. Martin, Ph

Rev. B57, 2159~1998!.
24For a review on semiconductors with indirect gaps, see B

Halperin and T. M. Rice, inSolid States Physics, edited by F.
Seitz, D. Turnbull, and H. Ehrenreich~Academic, New York,
1968!, Vol. 21.

25J.P. Lu, Phys. Rev. B49, 5687~1994!; O. Gunnarsson, E. Koch
and R.M. Martin,ibid. 54, 11 026~1996!.

26S. Chakravarty and S.A. Kivelson, Phys. Rev. B64, 064511
~2001!.

27V. Brouet, H. Alloul, S. Garaj, and L. Forro´, Phys. Rev. B66,
155124~2002!.

28V. Brouet, H. Alloul, and L. Forro´, Phys. Rev. B66, 155123
20510
d

.

I.

~2002!.
29Y. Iwasa, H. Shimoda, T.T.M. Palstra, Y. Maniwa, O. Zhou, and

Mitani, Phys. Rev. B53, 8836~1996!; T. Takenobu, T. Muro, Y.
Iwasa, and T. Mitani, Phys. Rev. Lett.85, 381 ~2000!.

30V. Brouet, H. Alloul, L. Thien-Nga, S. Garaj, and L. Forro´, Phys.
Rev. Lett.86, 4680~2001!; V. Brouet, H. Alloul, S. Garaj, and L.
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